
NATURE NANOTECHNOLOGY | VOL 8 | NOVEMBER 2013 | www.nature.com/naturenanotechnology 807

L
ight can exert a force on matter by means of momentum 
exchange on scattering1. �e existence of this force was �rst 
experimentally demonstrated by Lebedev2 and Nichols and 

Hull3 in 1901 using thermal light sources (electric or arc lamps) and 
a torsion balance. When the light was focused on a mirror attached 
to the balance, the radiation pressure moved the balance from its 
equilibrium position2,3. But the magnitude of these e�ects was con-
sidered insigni�cant for any practical use: to quote J. H. Poynting’s 
presidential address to the British Physical Society in 1905 (reported 
in ref. 4), “A very short experience in attempting to measure these 
forces is su�cient to make one realize their extreme minuteness — 
a minuteness which appears to put them beyond consideration in 
terrestrial a�airs.” It was not until 1970, and because of the advent 
of lasers, that Arthur Ashkin showed that the use of optical forces to 
alter the motion of micrometre-sized particles5 and neutral atoms6 
could have applications in the manipulation of microscopic parti-
cles and of single atoms4. 

�ese pioneering works have developed into two very successful 
research lines. On one hand, early techniques for laser cooling of 
atoms7–10 paved the way to modern ultracold atom technology11. On 
the other hand, what is now commonly referred to as optical twee-
zers — that is, a tightly focused laser beam capable of con�ning par-
ticles in three dimensions12 — has become a common tool for the 
manipulation of micrometre-sized particles13,14 and as a highly sen-
sitive force transducer15. But optical forces acting between ~1 and 
100  nm, a range of primary interest for nanotechnology (Fig.  1), 
have not been widely exploited because of the challenges in scal-
ing up the techniques optimized for atom cooling, or scaling down 
those used for microparticle trapping. Indeed, e�cient laser cooling 
of atoms relies on light scattering close to a narrow spectral line, 
without radiative losses, to reduce the atomic velocity distribution11. 
Nanostructures lack these features, limiting both the cooling rate 
and the minimum achievable temperature11. �e techniques used 
for manipulating microparticles rely on the electric dipole interac-
tion energy16,17. Because this scales down approximately with the 
particle volume, thermal �uctuations are large enough to over-
whelm the trapping forces at the nanoscale18.

New approaches were thus developed to stably trap and manip-
ulate nanoparticles. Over the past few years, these techniques 
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have been successfully applied to a variety of objects, for exam-
ple metal nanoparticles (MNPs)19–21, plasmonic nanoparticles 
(NPs)22–30, quantum dots31,32, carbon nanotubes (CNTs)33–37, gra-
phene �akes38,39, nanodiamonds40, polymer nano�bres41 and semi-
conductor nanowires42–49. Typically these techniques rely either 
on special properties of the trapped objects themselves — for 
example force enhancement related to plasmonic resonances sup-
ported by the trapped particles22–30, or highly anisotropic geom-
etries, such as in CNTs and nanowires35,38,43,44,46,47 — or on new 
approaches to optical manipulation, such as exploiting the �eld 
enhancement due to plasmons supported by nanostructures on a 
substrate50–57, or the feedback on the optical forces of the trapped 
object58. Optical manipulation has been used to build compos-
ite nanoassemblies32,42,43,59. Optical tweezers have been developed 
to measure forces with femtonewton resolution, enabling the 
study of interactions between nanoobjects34,59–64. �ey have also 
been integrated with spectroscopic techniques, such as Raman 
spectroscopy33,36,38,65–71 and photoluminescence40,44,45,48,49,72, pav-
ing the way to the selection and manipulation of NPs a�er their 
individual characterization36,38. Optically levitated nanoparti-
cles have been  laser-cooled towards their quantum-mechanical 
ground state73–76.

Here, we review the state-of-the-art, open questions and future 
directions in optical trapping and manipulation of nanostructures, 
and show how the development of these techniques can a�ect nano-
science and nanotechnology.

Optical forces on nanostructures
In this section, we review how optical forces arise. We �rst consider 
the case of particles much smaller than the trapping wavelength 
where one can make use of the Rayleigh approximation. We then 
address the case of larger particles, where the full electromagnetic 
scattering theory must be employed. We �nally discuss plasmon-
enhanced forces and optical binding, particularly relevant for opti-
cal trapping and manipulation of nanostructures.

Forces in the dipole approximation. �e optical response of 
a nanostructure can be o�en modelled as that of a dipole16 or a 
collection of dipoles17. �e dipolar polarizability determines the 
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strength of interaction with an optical �eld16. For a sphere of 
radius a and relative permittivity ε, this can be written as77:

 α =
α
0

6πε
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ik 3α
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 (1)

where α0 is the point-like particle polarizability given by the 
Clausius–Mossotti relation77 α0   =  4πε0a

3(ε  –  1)/(ε  +  2); k is the 
�eld wavevector; and ε0 is the vacuum dielectric permittivity. �e 
denominator in equation (1) acts as a correction to the Clausius–
Mossotti relation to account for the reaction of a �nite-sized dipole 
to the scattered �eld at its own location77. �e time-averaged force 
acting on such a dipole is16:
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where Ej are the electric �eld components. Equation  (2)  can be 
recast into the more explicit form78:
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where σ is the extinction cross-section, E the electric �eld, H the 
magnetic �eld, c the speed of light in vacuum, and ω the angular 
frequency of the optical �eld. �e �rst term in equation (3) is the 
force due to the gradient of the electric �eld intensity, which per-
mits three-dimensional con�nement in optical tweezers12 as long as 
it dominates the second and third terms. �e second term, responsi-
ble for the radiation pressure, corresponds to a force in the propaga-
tion direction5. �e third term is a force arising from the presence of 
spatial polarization gradients78.

Forces beyond the dipole approximation. When a particle cannot 
be approximated as a dipole, for example in the case of CNTs, 
nanowires, graphene and other two-dimensional material �akes, 
the time-averaged radiation force Frad on the centre of mass due to 
scattering of an electromagnetic �eld is equal in magnitude, and 
opposite in sign, to the rate of change of momentum of the electro-
magnetic �eld itself 79–84. �erefore, Frad can be calculated by inte-
grating the optical momentum �ux over a closed orientable surface 
S surrounding the object81,83: 

 Frad = ∫S 〈TM〉 · dS (4)

where TM is the Maxwell stress tensor, accounting for the interaction 
between electromagnetic forces and mechanical momentum79,80, 
which can be calculated from the scattered �elds, and dS is an out-
ward-directed element of surface area. �e time-averaged radiation 
torque Γrad on the centre of mass can be calculated in an analogous 
way as85:

 Γrad = −∫S 〈TM〉 × r · dS (5)

where r is the position of the element of surface area.
�e scattered electromagnetic �elds in equations (4) and (5) can 

be calculated using Maxwell’s equations. O�en, however, this turns 
out to be a cumbersome procedure79. Various algorithms have 
therefore been developed to handle this79. In the transition-matrix 
(T-matrix) method82–89, the total electromagnetic �eld — that is, the 
sum of incident and scattered �eld outside the particle and the �eld 
internal to the particle — is calculated by expanding all �elds in a 
common orthogonal basis set of functions and imposing boundary 
conditions on the object surface82,84,86,87. Most o�en, the T-matrix 
method uses vector spherical wavefunctions79 to take advantage of 
the spherical symmetry of the scatterer, for example Au or poly-
mer NPs84,88. Because the T-matrix works best with objects highly 

Figure 1 | The three size ranges of optical trapping. Objects of di�erent sizes can be trapped within three main regimes (from left to right): atom trapping 

(a few ångstrÖms to a few nanometres), nanotweezers (a few nanometres to a few hundred nanometres) and optical tweezers (from a fraction of a 

micrometre up). The horizontal scale bar shows the average object size and the corresponding light wavelength. NV, nitrogen vacancy. Image of layered 

material reproduced from ref. 169, © 2011 NPG.
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symmetric in shape and composition, one can treat non-spherical 
objects by modelling them as clusters of small spheres29,41,89.

Another method to calculate scattered electromagnetic �elds 
is the discrete dipole approximation (DDA)90, also referred to as 
the coupled dipole model (CDM)17, where the particle is modelled 
as a collection of dipoles. �e force on each dipole is due to the 
incident �eld and the �elds scattered by all other dipoles (equa-
tion (2)). �e force acting on the particle is given by the sum of 
the forces acting on each dipole. �e torque on the particle can be 
calculated in an analogous way. �e DDA, although more compu-
tationally intensive than T-matrix91, can be directly applied to par-
ticles of any shape and composition. Hybrid methods92,93 have also 
been developed that make use of the T-matrix obtained by point-
matching the near-�elds calculated with DDA to get the radiation 
force and torque.

Plasmon-enhanced forces. Two main approaches can be exploited 
to use plasmons to enhance optical forces on nanoparticles. �e �rst, 
discussed in this section, is to use the plasmons supported by trapped 
MNPs to enhance their mechanical reaction to the �elds22–30. �e 
second, covered in the section ‘Plasmonic tweezers’, uses plasmons 
supported by nanostructures on a substrate, for example pads52,53, 
nanoantennas54,55 and nanoholes56,58, to generate enhanced �elds, in 
which nanoparticles can be more e�ectively trapped50.

�e optical gradient forces (the �rst term in equation (3)) expe-
rienced by nanoparticles are typically very weak (some femtonew-
tons or less), because the dipolar polarizability given by equation (1) 
scales with the third power of the particle size77. �e volume-scaling 
of the maximum trapping force was evaluated explicitly in ref. 94 for 
polystyrene spheres, showing a decrease of three orders of magni-
tude in the maximum trapping force as the sphere radius decreased 
from 100 to 10 nm. �erefore, to con�ne nanoparticles against the 
destabilizing e�ects of thermal �uctuations, a signi�cantly higher 
optical power is required: whereas a micrometre-sized polystyrene 
sphere can be stably trapped with a fraction of a milliwatt in a stand-
ard optical tweezers set-up (Fig.  2a,b), a 100-nm sphere requires 
15 mW (ref. 12). �is implies that for a 10-nm sphere ~1.5 W would 
be needed. �e plasmonic nature95 of MNPs can enhance the opti-
cal forces, so that stable trapping can be achieved at a much lower 
power (~2–3 mW; refs 26,29,71). On the one hand, far from plas-
mon resonances the optical response of small (<100-nm) spherical 
MNPs is (mainly) the optical response of the free-electron plasma95 
yielding a large near-infrared (NIR) polarizability95. On the other 
hand, MNPs are resonant systems95 and their optical properties 
(polarizability, cross-sections) are regulated by plasmon resonances 
that can be tuned by changing size, shapes or aggregation95.

Svoboda and Block19 compared 36.2-nm Au spheres with 38-nm 
polystyrene ones, �nding a maximum trapping force nearly seven 
times as great for Au spheres, as a result of the (seven times) greater 
polarizability at the 1,064-nm trapping wavelength19. Both Au nan-
oparticles (AuNPs, diameters 9.5–254 nm)20 and Ag nanoparticles 
(AgNPs, diameters 20–275  nm)21 have been optically trapped in 
three dimensions. In both cases a maximum trapping force pro-
portional to the third power of the particle radius was observed for 
diameters <100 nm, with a crossover to a lower exponent for larger 
radii20,21. �is size-scaling behaviour was interpreted by accounting 
for local heating96,97 of the surroundings, and modelling the MNPs 
as enclosed in a small steam bubble88,29.

Non-spherical MNPs, including Au nanorods (NRs)22,24 (that 
is, nanocylinders with an aspect ratio <10), Ag nanowires98 and 
aggregates of AuNPs29, can sustain plasmon resonances in a broad 
spectral region in the visible/NIR. �ese play a crucial role in 
the enhancement of radiation forces and torques in optical twee-
zers22–24,26–29. More speci�cally, elongated plasmonic nanostructures 
(such as nanowires and NRs) are usually trapped with their axis par-
allel to the electric �eld vector of the trapping laser, and orthogonal 

to the propagation axis22,24,84. �e strength of this aligning torque is 
increased by tuning the laser close to the plasmon resonance22. �is 
provides a means to control their orientation by rotating the laser 
polarization26. Plasmonic nanostructures with lengths from tens of 
nanometres to several micrometres were aligned and rotated using 
a single beam of linearly polarized NIR light27. Dienerowitz et al.25 
drew on elements of atom trapping11, changing the sign of the gradi-
ent force by blue-detuning the laser wavelength with respect to the 
MNP plasmon resonance. �us, particle con�nement was achieved 
in the dark spot of an optical vortex beam. �e frequency depend-
ence of the plasmon-enhanced radiation force was also used in a 
system of two counterpropagating evanescent waves at di�erent 
wavelengths to selectively guide MNPs of di�erent sizes in opposite 
directions30. Cylindrical vector beams with radial polarization were 
also suggested to trap plasmonic NPs, because for these structured 
beams the second term in equation (3) (that is, the radiation pres-
sure that pushes particles out of the trap) is zero on the beam axis99. 
Such structured beams trapped both dielectric microparticles100,101 
and single-walled nanotubes (SWNTs)102. Further analysis of the 
optical forces103 revealed, however, that in this case the polarization 
gradient contribution to the optical force (the third term in equa-
tion (3)) can be signi�cant103 and may eliminate the advantage of 
such structured beams.

Resonant illumination of plasmonic NPs gives rise to strong 
heating e�ects because of light absorption104. Temperature increases 
of hundreds of kelvin were observed by trapping AuNPs adjacent 
to �uorophore-containing lipid vesicles with permeability sensitive 
to temperature97. When heated above the gel-transition tempera-
ture, �uorophores di�used out of the vesicle97. Further experiments 
made use of the di�ering longitudinal and transverse plasmon reso-
nances of AuNRs to control the local heating through the orienta-
tion of the AuNRs with respect to the electric �eld vector of the 
trapping laser105. It was suggested105 that this would make AuNRs 
sensitive and switchable remote-controlled heat transducers to 
small-volume samples105.

Optical binding forces. Optical binding forces emerge from 
multiple scattering between several objects, and can result in the 
formation of regular, ordered structures106–108. �is o�ers a path 
towards large-scale NP assembly and organization in one109, two110 
and three dimensions111. For example, one-dimensional chains of 
MNPs were suggested as an ‘optical sail’112 to achieve a high driv-
ing force on an attached nanoscopic object, taking advantage of 
the huge extinction cross-section of the collective plasmon reso-
nance. Pairs of 200-nm AuNPs were optically bound perpendic-
ular to the direction of light propagation in an optical ‘line trap’ 
formed by re�ection of a line-shaped focused beam, with particle 
separations multiples of the optical wavelength109, consistent with 
predictions based on light scattering from Rayleigh (dipolar) parti-
cles113. Yan et al.110 used 40-nm-diameter AgNPs, a size well within 
the dipole approximation, with both a line trap and a cylindrically 
symmetric Bessel beam trap, and observed dimers, chains and 
‘photonic clusters’110.

Optical binding interactions can also trap and organize one-
dimensional carbon nanostructures. In Fig.  2c, we show SWNT 
bundles illuminated in aqueous suspension114 by counterpropagat-
ing evanescent �elds formed by total internal re�ection at a glass/
water interface. We observe their self-organization into optically 
bound chains, where the bundle axes align parallel to the chain axis 
and to the direction of propagation of the incident beams. �ese 
chains break as soon as the evanescent �eld is switched o�.

Experimental designs and techniques
In this section, we review the most common experimental imple-
mentations relevant for optical tweezers, with an emphasis on those 
used for trapping and manipulation of NPs and nanostructures.
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Optical tweezers. In the simplest con�guration (Fig.  2a), optical 
tweezers can be generated by focusing a laser beam to a di�rac-
tion-limited spot using a high numerical aperture (NA) objective 
lens4,115,116. �is serves the dual purpose of focusing the trapping 
light and imaging the trapped object. Samples are o�en placed in 
small (few microlitres) micro�uidic chambers held on a motorized 
or piezo-driven microscope stage with nanometre position resolu-
tion116. Generally, optical tweezers require little power (down to a 
few milliwatts115,116): carbon and silicon nanostructures have been 
trapped with as little as 1–2  mW NIR light34,35,38,46,117. �e optical 
tweezer position can be controlled using two steerable mirrors118,119. 
It is also possible to generate multiple optical tweezers by de�ecting 
a single beam in various positions using, for example, an acousto-
optic de�ector — that is, a device where intensity and frequency of 
an acoustic wave spatially controls the optical beam115,120.

Holographic optical tweezers. �e range of optical tweezer 
applications has been greatly expanded by the use of advanced 
beam-shaping techniques, where the shape of a light beam is altered 
by di�ractive optical elements (DOEs) to produce multiple optical 
traps at de�nite positions13,14. Figure 2d shows a schematic of a holo-
graphic optical tweezer (HOT) set-up, where the DOE is placed in a 
plane conjugate to the objective focal plane so that the complex �eld 
distribution in the trapping plane is the Fourier transform of that in 
the DOE plane121,122. O�en the DOE is a liquid-crystal spatial light 
modulator (SLM) used to modulate the phase of the incoming beam, 
because any modulation of the amplitude of the beam would entail a 
loss of optical power121,122. �erefore, various techniques have been 
developed to determine the optimal phase modulation, for example 
the Gerchberg–Saxton algorithm, based on iterative optimization of 
the phase pro�le at the SLM in order to obtain the desired optical 
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Figure 2 | Basic experimental designs. a, Optical tweezers are obtained by focusing a laser beam to a di�raction-limited spot, using a high-numerical-

aperture objective lens (OBJ). Additional optics is needed to steer the optical tweezer position (beam-steering mirror and telescope formed by lenses L1, 

L2), to image the sample (illumination, dichroic mirrors DM, and camera) and to track it (condenser, lens L3 and quadrant photodiode QPD). The resulting 

traces allow tracking of the Brownian motion (BM) and the calibration of the optical tweezer sti�ness. Inset: Bright-field image of (top) optically trapped 

and (bottom) free SWNT bundle. b, Evanescent optical waves can be excited by total internal reflection at an interface between a high- and a low-refractive-

index medium, often a glass–water interface. The excited evanescent waves can be used to manipulate dielectric and metallic particles. A microscope 

objective images the sample. c, The optical forces resulting from a standing evanescent wave created by the interference of two counterpropagating 

evanescent fields (arrows) align SWNT bundles end-to-end (top). When the evanescent wave is switched o�, the bundles are released from the locked 

position and undergo thermal motion (bottom). Scale bar, 5 μm. d, HOTs rely on a programmable di�ractive optical element (SLM) for the creation, shaping 

and control of multiple independent optical tweezers. Inset: (top) dark-field and (bottom) scanning electron microscope images of a 5 × 5 pattern of 80-nm 

AuNPs deposited by HOTs on a glass substrate. Figure reproduced with permission from: a, ref. 35, © 2008 ACS: inset in d, ref. 144, © 2011 ACS.
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tweezer con�guration at the trapping plane123–125. Over the past few 
years, HOTs have been used to manipulate and assemble nanostruc-
tures. For example, semiconducting nanowires have been translated, 
rotated, cut and fused into complex structures (Fig. 3)42,126.

Plasmonic tweezers. In the 1990s and early 2000s, various groups 
theoretically suggested harnessing the enhancement associated with 
a plasmonic resonance to realize nanoscopic optical tweezers, for 
example by using the extremity of a sharp metallic tip127,128, the light 
transmitted through a nanohole in a metallic �lm129 or metallic pat-
terns to create multiple trapping positions at the nanoscale50.

In 2006, Volpe et al.51 showed that surface plasmon polaritons at 
a glass/Au/water interface produce a 40-times increase in the optical 
forces on micrometre-sized dielectric particles (Fig. 4a), so that col-
lections of such particles could self-organize in large crystals130. But 
a �at metal �lm features a homogeneous optical potential51, whereas 
controlled trapping of single nano-objects requires patterning of the 
surface to create three-dimensional con�ning optical potentials50. 
�is is achieved by using properly designed metal nanostructures 
such as pads52,53, antennas54,55 or nanoapertures56,58. A typical optical 
set-up to excite plasmons is based on the Kretschmann con�gura-
tion shown in Fig.  2b. With similar schemes it is also possible to 
arrange microscopic particles in complex con�gurations corre-
sponding to the locations of metallic micropads, where a plasmonic 
resonance can be excited (Fig. 4d), and also to integrate such plas-
monic traps with a micro�uidic environment131. Other con�gura-
tions based on nanoantennas allow one to localize the �eld intensity 
in hotspots54,55 (Fig.  4c). Fractal plasmonic structures132 can allow 
tight foci below the di�raction limit far away (hundreds of nanome-
tres) from the metallic structures (Fig. 4d).

Plasmonic interactions can also be harnessed by using the active 
feedback from the interaction between the optical tweezer beam 
and the trapped particle. It is possible to overcome the scaling of the 
optical forces with the third power of the object size, as well as the 
increase in Brownian �uctuation, by making use of an optical trap 
realized with a nanoaperture in a metal �lm (Fig. 4e) in which the 
particle itself has a strong in�uence on the local electric �eld. �e 
particle thus has an active role in the trapping mechanism, increas-
ing the sti�ness of the trap only when the particle tries to escape58. 
Plasmonic double nanoapertures were also used for optical trapping 
of single proteins, paving the way to direct optical manipulation of 
smaller objects56. Note that whenever plasmonic nanostructures are 

involved, the problem of heating must be faced. Wang et al.57 have 
described a method of reducing heat in a plasmonic trap by using a 
heat sink integrated with the optical structure.

Photonic force microscopy. A photonic force microscope 
(PFM)133–135 is a scanning probe technique based on optical tweezers 
(Fig. 5). �is concept was originally developed when scanning a die-
lectric particle trapped on a surface and observing how its Brownian 
motion in the trap was modi�ed by the probe–sample interaction133. 
In this way, it was possible to measure extremely small forces down 
to femtonewtons, as well as image surface features below the trap-
ping light di�raction limit133,134,136,137.

�e motion of a trapped particle subject to thermal �uc-
tuations can be modelled in one dimension by the overdamped 
Langevin equation115:

 =
dx(t)

x(t)− + 2DW(t)
γ

Kx

d(t)
 (6)

where x(t) is the particle position, Kx the sti�ness of the optical trap, 
γ the friction coe�cient, D the Stokes–Einstein di�usion coe�cient 
and W(t) a white noise. When dealing with quantitative force meas-
urements, it is crucial to calibrate the optical trap sti�ness, Kx. �is 
calibration can be obtained by measuring the Brownian trajectory 
of the optically trapped particle using the de�ection of the trapping 
beam onto a quadrant photodiode136, a device that allows one to map 
the particle trajectory135. �ese trajectories are typically analysed by 
�tting the autocorrelation function of x(t) to an exponential138: the 
characteristic decay relaxation time of the autocorrelation function 
is τ = γ/Kx. Deriving the value of γ from hydrodynamics, it is then 
possible to measure Kx. Alternatively, it is possible to perform this 
analysis in the frequency domain using the power spectral density 
of x(t) (ref. 136), which can be �tted to a Lorentzian lineshape139. 
When dealing with force measurements in the presence of di�usion 
gradients on the probe, such as close to boundaries or objects, some 
correction terms are necessary18, and these are more signi�cant for 
a nanometre-sized probe140.

Using an optically trapped particle as a PFM probe may be 
advantageous in imaging of so� structures135, because the trap sti�-
ness is low (10–3 to 1 pN nm–1)15 compared with that of an atomic 
force microscope cantilever (10 to 105 pN nm–1)15, and in volumet-
ric imaging137 at high temporal resolution (tens of kilohertz sam-
pling rates137), which can be achieved by three-dimensional particle 
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Figure 3 | Optical manipulation and placement of nanowires. a, Semiconductor nanowires can be manipulated and assembled with optical forces. 
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electron micrograph of the fused junction. b, Assembly of a rhombus constructed from semiconductor CdS-nanowires using HOTs. This entails nanowire 

translation, cutting and fusion with the substrate. c, Optical tweezing of a In2O3 nanowire (top) and placement by scanning optical tweezers, to connect 

two branches of a circuit (bottom). Figure reproduced with permission from: a, ref. 43, © 2006 NPG; b, ref. 42, © 2005 OSA; c, ref. 119, © 2009 OSA.
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tracking, instead of the two-dimensional video-rate projection on a 
camera135. �e combination of sensitive position detection and low 
spring constant leads to a force resolution of few femtonewtons, far 
surpassing other scanning probe techniques15. Spatial resolution, 
however, may be limited by particle size and thermal �uctuations. 
�e use of linear nanostructures as probes is therefore crucial to 
increase resolution62–64, as the combination of their nanometric 
transverse size and micrometric length is key to allow stable opti-
cal tweezing (even at very low laser power) while maintaining high 
lateral resolution34,59–61. Light-emitting or light-guiding nanostruc-
tures (Fig. 5a), such as potassium niobate nanowires44 or polymer 
nano�bres41, o�er tunable nanoscale light sources that could permit 
subwavelength microscopy44. 

In the case of low-dimensional structures, for example CNTs, 
nanowires, graphene or other two-dimensional crystals, the reduced 
symmetry means that the optical torque is crucial in determining 
their alignment and orientation with respect to the beam propaga-
tion or polarization directions89,91,93. Similarly, whereas for spherical 
nanostructures the detector signals are combined so that they are 
proportional to the centre-of-mass displacements20,31, non-spherical 
ones also contain angular information35,38,141. In particular, in linear 
nanostructures, length is the key parameter that regulates forces, 

torques and hydrodynamics46,47. �ese combined force and torque 
measurements allow optical tweezer calibration when using non-
spherical particles as femtonewton force-sensing probes35,60 (Fig. 5).

Force lithography and placement. �e combination of laser 
manipulation and photopolymerization allows one to build three-
dimensional structures using NPs142, and to place them on a sub-
strate142,143. For example, ref.  142 used an infrared trapping laser 
beam to collect, near its focus, NPs suspended in solution, and then 
applied a ultraviolet laser to induce photopolymerization of a mon-
omer, also present in solution, around the NPs. It is also possible to 
use optical tweezers to trap and position single NPs: for example to 
manipulate, assemble and fuse di�erent semiconductor nanowires43 
(Fig. 3a). Controlled deposition of optically trapped In2O3 nanow-
ires was realized by fast-scanning the trapping beam to rotate the 
nanowires and connect two branches of a circuit119 (Fig. 3c). Optical 
tweezers have also been used to trap and place AuNPs on a sub-
strate with a positioning error of ~100 nm (ref. 143), largely owing 
to Brownian �uctuations. �is technique can be parallelized using, 
for example, HOTs, as in ref. 144 where HOTs were used to deposit 
AuNPs on glass (Fig. 2d), and in ref. 145 where they were used to 
organize zeolite crystals.
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Another approach is optical-tweezers-assisted nanopatterning, 
where a micrometre-sized dielectric sphere is positioned close to a 
surface and acts as a near-�eld objective lens to focus the laser for 
pulsed laser processing146. With this technique, patterns with fea-
tures down to ~100 nm have been generated146. Surfaces with non-
constant height have also been patterned by taking advantage of the 
non-di�racting properties of Bessel beams147.

Spectroscopy of nanostructures in optical traps
Spectroscopic optical tweezers (SOTs) are obtained by integrat-
ing optical tweezers with spectroscopic functionalities. SOTs allow 
one to study the chemical properties of a single nanostructure by 
probing in situ its vibrational (Raman)33,36,38, electronic (photolumi-
nescence)45,49, plasmonic (scattering)68,148,149 or nonlinear (for exam-
ple two-photon photoluminescence48,72) properties. In this way, it 
is possible to select nanostructures with speci�c physicochemical 
properties, for example SWNTs with certain chiral indices36, out of 
an ensemble of NPs with di�erent properties. A typical SOT set-up 
incorporates two optical beams, as shown in Fig. 6a: one to trap the 
nanostructure and one to excite it. In some cases, it is possible to use 
a single beam for both tasks36,38. �e single-beam con�guration is, 
indeed, simpler and more stable, although the two-beam arrange-
ment o�ers more versatility to trap, manipulate and excite speci�c 
zones of the object, by displacing the trapping and excitation beams 
independently49. Trapping is o�en accomplished with a NIR laser to 
minimize photodamage of biomaterials150, whereas visible light is 
o�en used for excitation of the nanostructures45,72.

Photoluminescence tweezers. Photoluminescence spectroscopy is 
an optical method to probe the electronic and structural properties 
of nanomaterials, and has been successfully integrated into optical 
tweezers. For example, ref. 45 investigated the structural properties 
of single InP-nanowires in liquid by combining 1,064-nm optical 
tweezers with 514.5-nm photoluminescence excitation. Based on the 
energy maximum in the photoluminescence emission, it was possible 
to use the spectra of individually trapped nanowires to di�erentiate 
nanowires with di�erent structure (zincblende, wurtzite and mixed 
phases)45. Moreover, by implementing a HOT with a SLM, Wang 
et al.49 scanned the excitation spot along the trapped nanowires, 
mapping structural inhomogeneities and allowing sorting of spe-
ci�c nanowires before their incorporation into devices. Two-beam 
SOTs were also used to investigate the nonlinear photoexcitation in 
optically trapped InP-nanowires72. Under strong (~100 MW cm–2) 
excitation at 1,064 nm, second-harmonic generation at 532 nm was 
observed from individual nanowires, together with band-edge pho-
toluminescence emission at 890 nm due to two- and three-photon 
absorption72. From the redshi� between the two-photon absorption 
photoluminescence and the direct absorption photoluminescence 
(excited at 514.5  nm), it was possible to probe band-�lling at the 
single nanowire level72. Optical manipulation of semiconductor 
nanowires with such techniques o�ers an attractive route for the 
development of devices with engineered electronic properties, and 
for component-wise assembly of nanophotonic devices151.

Perovskite alkaline niobate nanowires have attracted much atten-
tion for their interesting nonlinear optical response44,48 and their use 
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as mechano-optical probes44. �e polarization-dependent second 
harmonic generation (SHG) from optically trapped nanowires has 
been studied with SOTs. �e nanowires showed waveguiding that 
enabled the SHG signal to propagate at the nanowire apex, thus act-
ing as a nanoscale light source for PFM44 (Fig. 5a).

Photoluminescence spectroscopy is one of the most important 
tools for characterization of SWNTs152. Photoluminescence spectra 
allow the determination of the chiral indices152, as well as providing 
information on the bundling through the study of exciton energy 
transfer153 and the interaction with the local environment (dielec-
tric screening shi�s the photoluminescence 154). Spectroscopic 
optical tweezers allow one to perform single bundle analysis in 
solution. Figure 5b shows the photoluminescence of a single bun-
dle dispersed in a water/taurodeoxycholate solution114, optically 
trapped and probed in a single beam SOT (λ = 633 nm), enabling 
chirality assignment.

Raman tweezers. Raman tweezers are realized by coupling a 
Raman spectrometer with optical tweezers, thus allowing the chem-
ical and physical analysis of a trapped particle through its vibra-
tional �ngerprints. �ey were �rst introduced for the investigation 
of biological material150 and were shown to discriminate between 
living and dead yeast cells150. �e ability of Raman tweezers to trap 
and analyse individual nanostructures was further demonstrated on 
40-nm polystyrene beads66.

�e potential of Raman tweezers as a tool for analysis and 
manipulation of nanostructures in liquid has been demonstrated on 
carbon nanostructures33, and they have been used to selectively trap 
and aggregate SWNTs with speci�c chiralities36. �is was done by 
focusing a 633-nm beam on a solution containing dispersed tubes, 
and mapping the increase as a function of time of radial breathing 
modes related to SWNTs of speci�c chiralities36.

A very desirable step in graphene technology is the develop-
ment of techniques capable of manipulating individual �akes 
in solution, sorting them as a function of shape and number of 
layers, and accurately positioning them to design devices with 
controlled properties. Raman tweezers are well suited for this, 
as Raman spectroscopy allows one to extract structural and elec-
tronic information on individual �akes155,156, as �rst implemented 
in ref. 38 (Fig. 6c).

Rayleigh spectroscopy and SERS. Rayleigh spectroscopy measures 
the spectral dependence of the elastic light scattering cross-section 
and probes plasmon resonances in MNPs95. Metallic nanoparti-
cles are interesting as optically resonant nanoantennas, capable of 
spatially con�ning and enhancing the local electromagnetic �eld 
by orders of magnitude95. Nanoparticle dimers, trimers and fractal 
aggregates with new functionalities and higher �eld enhancement 
capabilities157 can, in principle, be created using optical forces. By 
combining Rayleigh scattering with optical tweezers, Prodan et al.158 
showed plasmon hybridization, caused by the close encounter 
between a trapped AgNP and an immobilized one148. �e plasmon 
resonance energy shi�157 can be used as a parameter to quantita-
tively study the interaction potential between colloidal NPs in opti-
cal tweezers28 and reconstruct the interparticle potential energy 
landscape as a function of distance, allowing one to tune the optical 
interaction between the NPs in the dimer. Optical forces were also 
shown to be strongly a�ected by near-�eld coupling among NPs 
simultaneously trapped149. �e coupling was found to strengthen 
the NP interaction with the trapping light, causing a gradual shi� 
of the plasmon resonance towards the laser wavelength149. �is 
resulted in a thermal destabilization of the system because of the 
enhanced light absorption and consequent overheating of the water 
layer around the NPs149.

Surface-enhanced Raman spectroscopy (SERS) takes advantage 
of the local �eld enhancement o�ered by optically resonant MNPs 

to amplify the Raman signal95 and allows in principle for high-sen-
sitivity label-free identi�cation of molecular species159. Optically 
coupled MNPs are among the most e�cient substrates for SERS 
of molecular adsorbates157. Optical tweezers have proven to be an 
e�ective tool to create SERS-active metal nanocolloid aggregates68. 
Spectroscopic optical tweezers therefore have great potential for 
ultrasensitive, label-free, molecular recognition in liquids67. Optical 
forces have been used68 to bring two AgNPs into near-�eld con-
tact in a liquid solution containing thiophenol (10 μM), creating a 
SERS-active dimer capable of strongly enhancing the Raman sig-
nal relative to the case of a single trapped AgNP. Repulsive optical 
forces have also been used to aggregate AgNPs on glass coated with 
3-aminopropyltrimethoxysilane, so to form SERS-active aggregates. 
�is has been used67 to detect Rhodamine 6G in solution down to 
0.1-μM concentration.

Biomolecules, such as proteins or nucleic acids, �nd in liq-
uid their natural, functional environment. �e rapid, ultrasensi-
tive, label-free detection of pathology biomarkers in body �uids 
is a �eld in which plasmonic nanosensors can �nd several appli-
cations160. Two di�erent concepts of SERS-based nanosensors 
for the detection of biomolecules in liquid have recently been 
demonstrated using SOTs70,71. In the �rst, a double-stranded 
deoxyribonucleic acid (DNA) molecule, tagged with biotin and 
dioxydenine at each end, was anchored between two optically 
trapped (λtrap = 1,064 nm) polystyrene beads coated with strepta-
vidin and anti-dioxydenine70. �e DNA was thus suspended in a 
solution containing SERS-active Ag nanocolloids and excited with 
a second laser beam (λexc = 785 nm) that allowed recovery of the 
enhanced signal of three vibrational bands of DNA. In the second 
concept (Fig. 6d), Au nanocolloidal aggregates optically trapped in 
a single-beam SOT (785 nm) were used to detect proteins adsorbed 
on their surface71.

A PFM can bene�t from the ability to fabricate SERS-active 
nanoprobes, paving the way for local enhanced spectroscopy of 
biological surfaces. A route to accomplish this is to design special 
SERS-active probes consisting of metal colloids (Ag and Au) tightly 
bound to micrometric silica beads69 or to nanowires (see, for exam-
ple, Fig. 5a), with reduced thermal �uctuations compared with indi-
vidual MNPs46. By optically manipulating and exciting such silica 
hybrid probes in close contact with the surface of cells incubated in 
emodin (concentration 2 μM) within a single beam optical tweezers 
(λlaser = 785 nm), it is possible to detect the SERS �ngerprint of mem-
brane emodin molecules69.

SERS-optical tweezers couple high molecular sensitivity with 
the contact-less, label-free, three-dimensional capability of opera-
tion in liquids. SERS-active probes can be highly speci�c because 
functionalized probes allow selective interaction with speci�c sam-
ple sites. �us, they represent a promising tool for the development 
of next-generation biosensors capable of detecting biomolecules 
and investigating biological samples in their natural environ-
ment. �e combination of optical tweezers and optical injection 
of NPs inside living cells has recently been demonstrated161. 
Photoporation162 — that is, the process of creating a transient pore 
on a cell membrane with a focused laser beam — was used for the 
targeted delivery of 100-nm AuNPs into a speci�c region of the 
interior of an individual mammalian cell161. �is provides a new 
all-optical methodology for internalizing nanobiosensors within 
speci�c intracellular regions.

Optomechanics with levitated nanostructures
Optomechanics is the study of mechanical motion induced by 
optical forces163. Recently, much e�ort has been devoted to the 
study of quantum phenomena at mesoscopic or macroscopic length 
scales, and to the development of techniques bridging the gap 
between laser cooling of atomic species and optical trapping of col-
loidal materials74. �e aim is to uncover and exploit quantum e�ects, 
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such as entanglement74, quantum superposition of motional states73, 
and long quantum coherence74 in systems larger than atoms or mol-
ecules. One technique suggested for reaching the quantum regime 
is NP optical levitation in a high-�nesse cavity73 (Fig. 7a). In this 
scheme, a subwavelength particle is held by optical tweezers inside 
the cavity. A second laser excites a cavity mode that couples with 
the trapped particle’s centre-of-mass motion. �is optomechanical 
coupling shi�s the cavity modes yielding a velocity-dependent force 
responsible for laser cooling74,75.

Experimentally, the �rst step towards this goal is the trapping 
and laser cooling of nanostructures in vacuum, extending the meth-
odologies used for neutral atoms and ions11 (Fig.  7b,c,d). Kane164 
has reported levitation of graphene �akes. Starting from a liquid 
suspension of graphene38,165, charged �akes were injected into an 
ion trap10,11 using electrospray ionization164. By monitoring the 
light scattering from the �akes (Fig. 7d) it was possible to infer the 

particle dynamics in the trap, the starting point for implementing 
laser cooling166.

Gieseler et al.76 demonstrated laser cooling of a silica NP 
(Fig. 7b). In this case, optical tweezers were operated in vacuum, 
where motion of the particle in the trap is underdamped166. Light 
scattered by the particle was monitored with photodiodes to infer 
the particle motion, then used in a feedback loop that modi�ed the 
trapping light intensity76. �is was adjusted so that the trap sti�ness 
increased when the particle moved away from its equilibrium, and 
reduced otherwise. �e e�ective temperature (as low as ~50 mK) 
was then measured by observing residual thermal �uctuations166. In 
this feedback cooling scheme166 the particle internal structure has 
no role. But just as the internal structure of atoms enables sub-Dop-
pler cooling mechanisms11, the engineering of complex coupled or 
hybridized nanostructures enables the interaction with light to be 
modi�ed so that even lower temperatures (μK) can be achieved167.
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acquire the spectroscopy signal. b, Example of a photoluminescence spectrum of a SWNT bundle confined by optical tweezers (data from ref. 34). 

c, Raman spectrum of an optically trapped graphene flake with 633-nm trapping and excitation wavelength. d, SERS of bovine serum albumin (BSA) 

proteins performed in liquid by optically trapping Au colloidal aggregates on which the protein is adsorbed. The enhanced BSA peaks are indicated in 
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adapted with permission from: c, ref. 38, © 2010 ACS; d, ref. 71, © 2011 ACS.
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Perspective
In the context of the ongoing trend towards miniaturization of 
technology towards the nanoscale, optical trapping and manipula-
tion of nanostructures can open new and exciting possibilities for 
assembly, characterization and optical control of nanodevices and 
biomolecules. As discussed above, there have already been consid-
erable advances in this direction, for example with the development 
of techniques to perform spectroscopy on single molecules69–71, 
and to probe forces with femtonewton sensitivity34,60,63,64. Another 
goal within reach is coherent manipulation of a single levitated 
nanostructure, or entanglement on multiple nanoparticle sys-
tems, to gain a new perspective on the quantum regime applied to 
mesoscopic objects at room temperature. Optomechanical cooling 
schemes have already made progress towards the demonstration of 
quantized nanoparticle motional states76.

�e realization of these goals will require the development of 
new techniques to manipulate nanoparticles beyond those currently 
available. Several barriers will need to be overcome: nanoparticles 
will need to be manipulated with subnanometre accuracy in order, 
for example, to develop new integrated devices. But reducing the 
trapping volume to the nanoscale is just part of the challenge. �e 
ability to probe and control what happens in the trap is still missing. 
E�ects associated with heating of plasmonic structures must be mit-
igated by integration of cooling schemes. For optimal control and 
regulation of biomolecular interactions, speci�city in single-mol-
ecule trapping is required. It will be necessary to manipulate and 
assemble large numbers of particles to reach high-throughput and 
cost-e�cient production. �is could be achieved by self-assembly 

of elementary building blocks. �e development of autonomous 
nanodevices capable of their own locomotion and of exploring their 
environment can be envisaged. In this context, optical manipulation 
of individual nanoparticles will play a crucial role in the develop-
ment and characterization phase, but more powerful, and largely 
new, parallel optical manipulation techniques will also be essential. 
Ideally, these new trapping schemes for nanostructures should be as 
�exible and widely applicable as optical tweezers have proven to be 
for micrometre-scale material.
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Figure 7 | Nanoparticle levitation and laser cooling. a, Optomechanics with NPs trapped and cooled in a high-finesse optical cavity. Nanostructures are 

trapped by optical tweezers (red). Their centre-of-mass motion is confined by a harmonic potential with characteristic frequency ωtrap. The interaction with 

the cavity field (orange) generates an optical force cooling the particle motion to the trap ground-state73,74. b, Image of light scattered by a laser-cooled silica 

NP confined in optical tweezers. This light is detected to reconstruct the particle motion in the trap. A feedback cooling scheme, where the same beam is 

used for trapping and cooling, is then used to reach temperatures as low as 50 mK for the particle centre-of-mass motion. c, Scheme for ion trapping and 

laser cooling of nanostructures. Particles can be injected in vacuum by electrospraying164 a liquid suspension (such as that used to disperse graphene38,165 

or CNTs35,114), and confined using electrostatic trapping as for ions11,10. Radiation pressure can then laser-cool the centre-of-mass motion166, so as to reach 

the quantum ground-state of the trap. d, Image of light scattered by a graphene flake in an electric quadrupole ion trap. Graphene flakes were also put into 

rotation by shining circularly polarized light in the trap region. Figure reproduced with permission from: b, ref. 76, © 2012 APS; d, ref. 164, © 2010 APS.
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