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L Introduction Studies of the properties of single optical vortices in

optical fibers have been started quite recently due to devel-
Defects of the radiation wavefront in a multimode fiber arepment of low mode fiber applications, techniques of selec-
usually associated with a distortion of the field structurgive excitation [9] and radiation field isolation from a fiber
Thus, it can be concluded that such effects hinder the usgxd, 11]. There is certain difference between optical vorti-
multimode fibers in optical communication lines and serees in a fiber and in the free space. First of all, it applies to
sors. However, a thorough study of the nature of wave defhe relation between the light wave polarizatmrand its
ciency makes us take a new look on the problem of datspological charge The helicityo, characterizes the direc-
transmission through a multimode optical fiber, where waveidn of vector rotation of the electric (magnetic) field of a
with wavefront defects play the main role. light beam ¢,= +1 is right ands, = —1 is left circular polari-

Defects of a scalar wave field structure were explicitlyation).

studied in [1] by J. Nay and M. Berry. They classify such For a paraxial Gaussian beam in the free space, it is pos-
defects by dividing them into purely screw, purely edge argible to change the values and signs of the topological charge
mixed screw-edge dislocations of the wavefront. This clasand helicityo, independently [11].
sification is based on the fact that the real and imaginary Amazing properties of optical vortices in the free space
parts of the field strength should be simultaneously equali@re presented in [12, 13]. It was shown that an optical vor-
zero tex transmits the angular momentum which can be calcu-

Reex,y,2] =0, Im[ex,Y, 2)]=0. 1) lated as

The problem of light beams in the free space deals mai:ll% 1
with the issues of generation of wavefront dislocations in-~ =~ .2
side laser resonators [2], on phase optical holograms [3, 4]
or on an astigmatic mode converter [5]. Sometimes a ligivherer is the radius-vectoR is the Painting vector, S is the
field with a purely screw dislocation is called an opticahrea of beam’s cross section. When passing through the mode
vortex [2]. converter, the angular momentwhis able to change its
Wavefront dislocations in a multimode fiber field werevalue and sign [14].
first described in [6], and a correlation was found to exist Moreover, the remarkable experiments recently reported
between the average number of dislocations and the numlel5] have shown that an optical vortex can trap and screw
of fiber eigenmodes. Purely screw dislocations are expenticroscopic particles. Change of the polarizatmrof a
mentally observed in the form of «forks» in the interferenc@aussian beam may change the state of these particles [15].
pattern. Changes of external conditions result in a mov€ontrary to optical vortices in the free space, guided vorti-
ment, birth, and death of random dislocations in the optica¢s in an optical fiber are rigidly defined by the pair of num-
fiber [7, 8]. bers: the topological chargand helicityo,. Values of and

. J;rXPdS, (2)
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o, cannot be changed independently from one another.thre polarization correction. From equations (4) and (6) it is
addition, the requirement for an optical vortex to be stabjmssible to obtain
is determined by the selection ruite g,# 0 [18]. 3
Thus, a question arises about the possibility to use fields, (20)% ,
in optical fibers for practical purposes. In an optical fiber, aF ~ 2p,V ¢ I (pth Eét){yt (o th}de/e{c@n e, (7
set of spatially distributed optical vortices may exist simul-
taneously. Furthemore, by means of an optical fiber a lighfh€red,, is the cross section area. o
vortex can be placed in locations where it would be impos- T he solution of equation (6) can be obtained in the form:
sible to use conventional optical devices. . , ,
The objective of this paper is to study the properties of = & GXP{“—“ ll¢}Fz(R)eXp{lBZ} ; (8)

optical vortices and their angular momenta in the field of a . . :
multimode optical fiber. where é* is the unit vector of the right (+) or left (<) circu-

In the second section we, consider eigenfields of an ai@ Polarizationg is the azimuth coordinates the azimuth
ally symmetric low-mode fiber presented in a circularly pol"deX ( =0, 1, 2, ...). The radial functidf(R) is obtained
larized basis. The angular momentum flow, the contlnung/om equation [16]
equation for the angular momentum flow, and correlatiop ;2 1 4 2
with that in the free space are analyzed in the third, fourtﬂfli2 t————
and fifth sections of this paper. MR* RdR R

O
U* -V*fF(R)=0 ©)

O
whereU is the waveguide mode parameter in the fiber core,
determined from the boundary conditions.

Consider the peculiarities of the propagation of circularly Taking into account in (8) particular solutions of equa-
polarized waves in a locally isotropic axially symmetricalions (7), its can be shown that there are three groups of

medium of a multimode optical fiber with the refractive in€igenmodes [17]:
dex: 1) Circularly polarized homogeneous optical CV vortices

forl =1, 2, 3... (“CV”is for circular vortex [9])

2. Guided vortices in an optical fiber

n'(R) = n 2(1 — 2M(R)),

wheren |s the refractive index along the fiber axis Ror EF =e* F(R)exp{+ 1l¢} g
=0,R=plp, pis the radial coordinatg, is the core radius, 5 0
. Eé 2267 (R)exp{£ it +1)¢} O

_ co M O

U n_ is the refractive index of clad(R) is O X exp) i,z
D 2"({) D ol a ) Dl n / F(R)exp{+ 1l¢} O p{ ' }(10)

the function of the refractive index profile. D m g
The stationary vector wave equation for the electric f|eI =n,, =G/ (R)e)(p + 1(1 + 1)¢}E

strength in an inhomogeneous medium can be written in fo

+i(-1)0}

lowing form:
2) Circularly polarized unhomogeneous optical CV vorti-
{o2 48202 -@le, = -0 fe,m, 2}, @) ces (> 1)
wherek is the wave number in vacuupiis the propagation
constant. e _ y
For weak guiding fibers with a low energy loss a real P = F(R)eXp{i ”¢} 0
value anch_= n_, then the profile parametdrcan be writ- U 1/2A g
enas = ° profiie p e {+it-Do} 0
N O
A= -n)n . ® 0 k) _ rxexp{iB,2}
co c  co t —lé+n % F(R)exp{i ll¢} O (11)
In this case, we can neglect the term in the right side af 0
g
g
U

equation (4) [16] and rewrite the wave equation in the for
=n, 7G (R)exp{

{07 4120 B, o0, (6)
3) Linearly polarized azimuth-symmetrical fields=(1)

where B is the propagation constant in scalar approxima-

%t = (ﬁcos(l) +§sin <|>)F1(R)

A2

1 % 1

tion, €, is the electric field in this approximation,

a
2 2 =
G -

ox? a .0
* Y . . - . . TMOm' th, = -n,,, s% (ﬁ sin ¢ —ycos¢)F1(R)
If the field distortione in a weak guiding fiber in the % Ho

limit A - O in equation (4) is assumed to be small, then
e=x , and the propagation const@t 3 + 43, wheredfis
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% (X sin ¢ - cos¢)F(R) 0 The transversal components of the JMind TE
! y B modessl(= 1) have azimuth-symmetrical dlstrlbutlon of the
B‘/’z =0 0 electrice and magnetit, fields (see (12), (13)).
At the fiber axis, these fields turn into zero. In accord-
—_ >4 il
TE %Zz = Moo / XCOS¢+YSIH¢)F(R)D eXp(lB“ ) (13) ance with the polarization singularities [19] we conclude
D ﬂ o that these fields have purely screw declinations of polariza-
= =G (R) @ tion.

om0 It should be noted that the electric (magnetic) field of a
whereV = —pnm«/ZA is the waveguide fiber parameter, Gaussian beam in a void has also a longitudinédr h)
component. For instance, teecomponent of the electric
Gy (R) = dFl( ) +K Fl(R)
YWWT4rR T R

B are the propagation con- field may be represented in the following form:

dR
stants of eigenmodes obtained from the dispersion equatlon 0 [De, . de, { ) }
[16], k = +1 is the spin-orbital interaction index. In scalar’ ~ qe "Hap ~ '~ a¢ HxP iof (14, a)

approximationd = 0, and3 of all eigen modes for a given

index| are degenerated with respect to the propagation cofparaxial approximation).

stantf . Excitation of optical fibers is performed in such a way
The expressions (10)—(13) form an orthogonal set ahat the entrance of a fiber is placed in the region of the

functions, describing fields of guided modes on the lengthgaussian beam necking, and the fiber axis and the beam

of the so-called stated regime, when the fields of radiategkis coincide. The curvature radius of the wavefront beam

and tunnelling modes are negligibly small [16]. in the necking iR — [0, and the transversal component of
Expression (10) fok= 0 describes the field of the fun- the CV field also has the curvature radius. .
damental circularly polarized HEmode [1]: The identical structure of the optical vortices in a void

and the guided CV vortices in a fiber permit the laser fields

Bb‘ =¢*F,(R) O and the eigen fiber fields to be aligned with a high precision

0 F g (fig. 2). _

e, =i {+ 1¢} O The transversal fields of the HEnode eand hdo not

g 0 { } have phase singularities. If the longitudieaandh, field

Ehf —— / £(R) ge’(p Bz 14 CGomponents are assumed to be a transversal wave propagat-
] D (14) ing along the azimuth coordinaie then this field has a

g ﬂ (R)expl + } purely screw dislocation of the wave front with the topo-
He. =7 \ u 7 GolR)expxit H logical charge = 1 atR = 0. It is evident from the fact that

all smooth values of the refractive index profitéR) for

Let us analyse the wavefront structure of fibethe functionG (R = 0) are equal to zero on the fiber axis.
eigenmodes and compare it with the wavefront structure in

a void. In the expression (10), the transversal electric field
component, of a homogeneous CV vortex has a circular
polarization and is characterised by the profile function
F(R). For axially symmetrical fibers, the val&gR) turns

into zero at the fiber axiRE= 0), and far away from the axis
(R - 0). For instance, for a fiber with a parabolic index,
the value of F(R) is F (R) = RIL_ "(R)exp(-1/Z/R) (V is

the waveguide parameter). It is shown in Fig. 1. Therefore,
in a homogeneous CV vortex field, the fad®exp(l ¢)

may be selected. However, the envelope of the optical vor-
tex wavefront in a void has a parabolic form Fu(R)
(Fig. 2, a), while the envelope of the transversal component
of a circular vortex has a quasiplanar form (Fig. 2, b). This
points to the fact that the transversal CV vortex field (10)
has a purely screw dislocation with a topological chhrge

The longitudinak, component of a CV vortex turns into
zero at the fiber axis (Fig.3; (R = 0) = 0. However, its
topological charge equalstte- 1.

The transversal component of the unhomogeneous CV
vortex (|| > 1) in expression (11) is also circularly polarized
and has a purely screw wavefront dislocation with index I
The longitudinal components of this vortex turns into zero
at the axis zg*(R=0) = 0,1 # 0, 1), but its topological
charge equals to- 1. Fig. 1. The field strength profile functioR (R).

Fo(R)
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¢ E(R)exp{-i¢} and e F(R)exp{+io}. The
superposition of the fields (16) and (17) is called [18, 20]
unstable inhomogeneous IV vortices (“IV” means “instabil-
ity vortex”). The topological charge and helicityin an IV
vortex are indefinite. However, in some cross sections of
the fiber the conversion of states,|l > : | + 1, -1 >~ |-1,

+1 > takes place. IV vortices are not eigenmodes of the op-
tical fiber.

3. Angular momentum flux of optical vortex
fields

We shall study the ability of an optical fiber to transport the
angular momentum when we generate an optical field of the
optical vortex type in it. To study whether radiation can trans-
port the angular momentum, one has to use the tensor of the
angular momentum flux density [21].

As shown in [11, 12, 22-24], in optical fields with axial
symmetry vortices may possess their own angular momen-
tum.

The vectoK of the total angular momentum flux through

Fig. 2. Wave surface matching of a CV vortex in a void (a) and surface S is given by the expression:
fiber (b) at the moment of excitation.

K; =[n,ds, , (18)
S
whereTl,; is the tensor of the angular momentum flux den-
sity:
Homogeneous and unhomogeneous vortices have dift; =¢€,,,7, 7 - (19)

ferent propagation constarfisandg,. Their fields should . bsolutel : is th
belong to different topological sets. Inside every set, the fiellji_gf,‘ere €, 1S an absolutely asymmetric tensay, is the

are transformed into each other with a simultaneous cha gxwell tension tensor
| - -, 0,~ —0,. Inside a set, CV vortices have similar
propagation constanfs

While exciting a fiber by a circularly polarized light,
fields at the input fiber end are matched according to the If Sis an arbitrary cross-section of the fiber, the flux

Tlnk =EnDk+Han_%6nk(Em+Hm)- (20)

following boundary conditions: vector is given by the formula:
e=eand h =h . (15)
1w nioon2 . Ki =Hn3id53
These conditions permit to match smoothly the free space 3§ '

optical vortices and guided fiber vortices. The fields corre-
sponding to conditions (15) will be those of homogeneo
and inhomogeneous CV vortices represented by (10) afl
(11). However, for optical fields in the free space witl?
| =+1 ando,= -1 orl = -1 ando,= +1, this matching is not
valid. It is clear that the superposition of fields (12) an
(13) satisfies the condition (15) fox 0 which schematically

heredS,= dxdy. To obtain the time-averaged valuekof
e can use the following method of averaging the products
monochromatic fields:

§AB >:%ReAB * (21)

could be presented as: where < > means time-averaging.
+ ) The structure of homogeneous vortices may be presented
'V_ 1D ™ +iTE, (16) through the expressions (10).

3 i Direct calculations show thatI1,, > and<T1,, > are
|V+1D ™ -ITE . a7 proportional tosin¢ and cos¢ respectively, therefore

Forz= 0, fields (16) and (17) are homogeneously circiafter integrating by their contributions to K> disap-
larly polarized in a cross section, and have a purely scrégar. For<Tl;; > we have

dislocation of the wave front of the transversal field with J2n
Il =1. Since the propagation constant of TE and TM modesrl,, >= FpiRE(R)G, (R) Eo(n’+e), (22)
is B,# B, then, as it follows from expressions (12), (13), 14

(16), (17), such mode combinations are accompanied there e and m are constants of the material on the fiber
beatings between the fields of partial vorticesaXIs.
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To obtain a physically meaningful result, we have to di4. Ray surface of Gaussian beams
vide the total angular momentum flux through a cross-seand CV vortices
tion <T,, > by the total energy flux through the same

cross-sectionRz>. The density of the energy flux is given 1e field structure of optical vortices in a void is convenient

by the z-component of the Pointing veckr E X H. In 14 represent in a form of lines based on the Pointing vector

our case, for P; > we have: P = exh [12]. However, the vector P satisfies the continuity
equation:

<P, >=2a’n, \/:TOF,Z (R), (23) OP+ow/et=0, (29)
° where W(X, v, z) is the energy density.
wherea, is the magnitude of the transversal electric field. ~ The energy flowP is determined up to a vectaxA.
SinceF (R) rapidly vanishes wheR . « and is finite A vivid presentation of the energy floin an optical
atR =0, we have an evident relation: vortex and the actual physical picture of the field may be
adjusted with each other by means of the Erenfest theorem
° . S [26]. If aray setis characterised by a Pointing vector P, then
[REE(R)G] (R)AR = I + D[ RE (R)dR.. (24)  the possibility to find a ray of light at a given point of space,
according to the Erenfest theorem, is a module square of the
Using this relation and the fact that for optical fibersmormalised wavefront functio@p~|ef%. (In particular, this

u =1, we finally obtain the result: theorem is strictly observed in a void, in homogeneous and
parabolic media). Therefore, from the whole set of vector P
<K;> _ N [+1 ray lines only those are selected that are located at the dis-
=N, > (25)  tancer =r__ from the axis z and satisfy the condition

max )
lef= le, - We call the set of these lines a ray surface.

. _ Let us represent the electric (magnetic) field in the form:
where @ is the radiation frequency and

<N, >= j!< p>ds, e(x, Y, z) = %(x, v, z)exp{ik0 D(x, Y, z)} , (30)

The structure of unhomogeneous vortices may be prﬁ/herekoz 21, e(x, y, z) € [](x, y, Z) are slowly changing

sentgd by expressions (11). . L functions. Then, from the Maxwell equation we find
Since the result of calculations is similar to those de-
<K;> -1

scribed above, we finally obtain: 1 g, %2 i ( .. ) ( .. )]D
P=—— UH~ o [lele —e Lef+lexUxe —e x[xel|d
4\, O 2k O

=%

=N, > w (26) (31)

. . The equation[ ](X, ¥, z) = const characterises the shape
The resultis valid foy >1. of the wavefront, thereforg [](x, y, z) presents a set of
The structure of IV vorticed €& 1) has the form (12), nomas to the wavefront. If we denote the magnitude of the

(13), (16), (17). _ _optical vortex ag) [4], then the Pointing vector components
These vortices consist of two TM and TE modes Wltf}nay be written in the form:

different propagation constans (,,, andf,. , respec- 5

tively. Therefore, the field of the vortices is subjected to B = —we || dargp)/or ,

mode dispersion and in this way they are unstable and their ) 5

angular momenta are zero (see (26)). P = —cwe Ir|Q| d(arg)/o¢ + we ad\p| /or, (32)
From the expressions (14), (18)—(20) it follows that the’ 0 ) 0 ,

HE,, mode field transports the angular momentum, and iEZ= —wsollpl d(argp)/oz + ak£0|qJ| .

value is: Itis obvious that the magnitude argument funcggiohar-

acterises the wavefront surface: grgé [] in expression

(k=+1). 27) (30). Then, comparing (32) with (31), we find that a devia-
’ tion of the vectorP from the direction normal to the
wavefront is basically determined by the second term in ex-
pression (32) for the Romponent. For a linearly polarised
light (o = 0), the vectoP is perpendicular to the wavefront
' (28) surface[]. The vectoP experiences the maximum devia-
w tion from the normal for a circularly polarised light
= +1).
Nevertheless, from expression (32) and equation
P,= dZ(rP,) we have

¢=tan'zz, (33)
R

In the general case, for all kinds of vortices we have

[+o
) =K——

wherek is a so-called spin-orbital interaction index [25].(0
This expression coincides with the expression presenteddgl
[11] where the only difference ks= 10, coefficient.
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b)

Fig. 3. Ray-surface matching of homogeneous (a) and inhomogeneous (b) CV vortices at the moment of fiber excitation.

(z;1s the Rayleigh length). It means that the azimuth evolyje signs of twisting. For an essentially multimodal fiber
tion of the anglep is determined by Gouy phase and doe(s\/ ~ 0), the radius of the inner cylind& - 0, the ray

not depend on the topological chalgand helicityo. A

surface is degenerated into a single cylinder with helical ray-

similar expression was obtained in the paper [27] for @ lifines. For an unstable IV vortex, the ray surface is degener-

early polarised Gaussian beam.

Fig. 3 shows the ray surface for optical vortices, build-
ing up at the radius 7%} =/I/2w(z) (w(2) is the halfwidth
of the beam), at which the magnitude ¢ is maximum. From
this picture, it is seen that the generatrices of the ray surface
are straight rays which do not cross axis z. To construct the
ray surfaces of homogeneous and inhomogeneous CV vor-
tices in a multimode fiber, the Pointing vector components
are found from expressions (10) and (11) in the following
form:

v
— 0P = « . P.=K-—— FFRE
Pr 0; P¢ KGI F|(R)’ op ! , (34)

wherek = +1 for a homogeneous akd —1 for an inhomo-

geneous vortexk = a? /(2¢* )n,, (g, / o )% (2a1v),
a, is the electric field amplitude.

ated into a cylinder with straight ray lines. It follows that the
angular momentum of an IV vortex is equal to zerg, (M
=0).

This behaviour of the ray surface of inhomogeneous CV
vortices is associated with the contribution of the spin and
orbital angular momentum to the total angular momentum:
the difference of signs fdandsresults in a decrease of the
total angular momentum.

The screw character of the generatrix lines of a CV vor-
tex ray surface is caused by the effect of the refractive index
inhomogeneity Nin?) curving the energy flow lines of vec-
torP.

Matching the Gaussian beam ray surfaces and a CV vor-
tex at the moment of fiber excitation assumes the equality of
the radii of the Gaussian beam ray surface=a0 and the
CV vortex ray surfacef/) = ) ).

In general, the process of the propagation of a CV vor-
tex along an optical fiber may be schematically represented

The ray surface of a homogeneous CV vortex is pré? the form of two energy flows (fig. 4).
sented by fig. 3(a) wheter > 0. The ray surface presents a  The first circularly polarised light flow, is directed
set of helices wound on a circular cylinder. The radius @long the fiber axis. The second linearly polarised fl
this cylinder,!/) is equal to the radius of the Gaussian beafirculates in the directioré, , which is orthogonal to the

b
7,

max "

An inhomogeneous CV vortex, for which values | and s The presence of the azimuth fl

fiber axis.
is associated with

have opposite signs, has a more complicated shape of the appearance of a «surface» wave which propagates per-
ray surface (fig. 3(b)). The ray surface splits into two cylinPendicularly to the direction of the main flow (see, for ex-
ders. The generatrix helices of these cylinders have opggnple [28-30]).
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5. Continuity equation The continuity equation for the angular momentum in
inhomogeneous media has the following form:

There are two problems in the study of the angular momen-

tum of radiation. The first one is concerned with a questio®: +ar|7ik = i(rx Els) E2

whether radiation itself may accumulate an angular momen-0¢ ox, 2 i

tum. To answer it, one has to integrate the density of the

orbital angular momentum given by the expression (19) ovéheree is the dielectric permeability,k = 1, 2, 3.
the volumeQ. For monochromatic fields in axially sym-  For monochromatic field$M;) does not depend on t,
metrical fibers, the time-averaged densitydoes not de- and by averaging (36) we obtain:

pend orz and the averaged density of energy. Therefore

1 2
MdQ  [fMdS T%<nik>:5(rxms)i<E > (37)

L.} @)
E E Ela ' For systems with axial symmetry and a rapid decrease of
fields to the infinity from the axis it is equivalent to

(36)

whereL is the total angular momentum of radiati@nis
the radiation energy is the distance between two cross—ﬂ<|—| >dS = const
sections bounding the volun@e The nominator in (35) has 53' >/ ° ' (38)

the meaning of the linear density of energy, while the nu- . . .
merator acquires the form of a flux. However, though it jwheres,; is an arbitrary cross-section. It means that the flux

the flux of the vector of the angular momentum density, it i€ the angular momentum through a cross-section does not
not the flux of the angular momentum in an arbitrary situsd€Pend on the-coordinate of the cross-section. Thus, the
tion. This delusive similarity may lead to some mistake&Sults (22), (24) and (26) are to be regarded as consequences
since the true angular momentum flux is given by the e>9_—f the angular momentum conservation law in its differen-
pression (18). Moreover, for situations whit Hepends tial form (36).

onz, the last equality in (35) does not take place, and the !N @n arbitrary situation, there is an essential difference
between these two aspects of the problem of the angular

flux ijMdS has no physical sense. momentum of a field. For instance, a constant electric field
ppssesses no angular momentum, but still has a non-zero

The second problem arises when we study the ability . :
o . density of the angular momentum flux. However, in propa-
radiation to transport the angular momentum. In this case

one has to use the formalism based on the continuity eqL%étmg electromagnetic fields these differences are

tion and related concepts. This is the problem we study ;snmoothened to a certain extent. It turns out that for nonmag-

this paper. Let us demonstrate that our main result is in gogdtic weak-guided fiberg((=1) the ratio< L 7 ,, esti-
agreement with some predictions of the general theory. <E

. <K, >
mated with the help of (35) equals the ratio %N,& S

for all CV vortices.
The right side of (36) presents the change of the angular
2 momentum due to deformations of fiber’s cross-section or
N\ f\ f\ an anisotropy of the material caused by pseudosinks and
. / pseudosources of the angular momentum.

6. Conclussion

\ A form of existence of circularly polarized eigen modes of
\¥ \V V optical fibers is guided optical vortices. The field of a fun-
damental HE, mode (= 0) has only a purely screw disloca-

tion of the wavefront of the longitudinal component. All fields

with azimuth index # 0 form two sets of eigen modes: ho-

\e mogeneous CV vortices, inhomogeneous CV vortices
; (I #0,1), and TE, and TM,, modes consisting of a

U superposition of partial IV vortices. For optical fiber vorti-

ces, a selection rule is satisfied. If the sum of a topological
v charge and polarisatid®- g # 0, then the vortex in an opti-
cal fiber is structurally stable (CV vortices). If
Fig. 4. Axial P, and azimuthaP, energy flows of a CV vortex (a) | + o,= 0, then the vortex is structurally unstable (IV vorti-
and Pointing vector precession (b). ces).

88 ®KO, 1(1), 1998
500, 1(1), 1998



K. N. Alexeyev et al.: Optical vortices and angular momentum...

Fields of stable optical vortices are able to transmit af- V. Yu. Bazhenov, M. S. Soskin, M.V. Vasnetsov, Journ. of modern
gular momentum. The relation of the angular momentum ©pfics, 39, No.5, 985 (1992).

. . . . . L. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt.
flow in zdirection to the component of the Pointing vector Comm.. 103, 422 (1993),

of a multimode fiber field is equal ¢l + g,)/w. This ex- 5 E_Abramochkin, V. Volostnikov, Opt. Comm., 83, 12, 123 (1991).
pression is very similar to that for optical vortices in a free B. Ya. Zel’dovich, N. F. Pilipetskiy, V. V. Shkunov, Principles of phase
space. conjugation, Springer Series Optics Science, 42, Berlin, (1985).

Fields of unstable IV vortices, TE and TM modes do ndt 1/\%1' ‘3/ ‘]/‘;1;12’959-4“)'- Lapayeva, T. A. Fadeyeva, Techn. Phys. Lett., 20,

. 0.3, .
transmlt.any angu_lar mome”“,‘m- i . 8. A.V. Volyar, T. A. Fadeyeva, Lett. to Journ. Techn. Phys., 23, No.2,

The field of optical vortices is characterised by two kinds 29 (1997). (in Russian).
of surfaces: the wavefront surface of transversal components A. V. Volyar, T. A. Fadeyeva, Techn. Phys. Lett.,22,No.4,330 (1996).
of the electric vectog, has the shape of a straight helicoid 0. V- Yu. Bazhenov, M. 8. Soskin, M. V. Vasnetsov, Experimental and
both for optical vortices in a void and CV vortices in Theorethical Physics Journal Letters, 52, No.8, 1037 (1990).

It de fib The di b h ighb . 11. M. Ya. Darsht, B. Ya. Zel’dovich, I. V. Katayevskaya,
multimode fiber. e ISta_nce. _etween the neighbouring N. D. Kundikova, Journ. of Theor. and Experim. Phys. 1995. V.107.
leaves of the wavefront helicoid is equal to the wavelength No.s. P.1464-1472. (in Russian).

A =vlv, wherev is the phase velocity of the vortex. 12. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, J. P. Woerdman, Phys.
The ray surface is formed by Pointing ved®dines situ- " Rev. A., 45, No.11, 8185 (1992). cen it |
ated at the distanae_ from the energy flow maximum. " g’lr‘of' ;;;ezs;;;"lgg’(%;‘) Heckenberg, H. Rubinsztein-Dunlop,

The ray surface of optical vortices in a voidfoF 1 (Mis 14 s M. Bamett, L. Allen , Opt. Comm., 110, 670, (1994).

radial index) has a form of a rotation hyperboloid formeds. H. He, M. E. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, Phys.
by straight lines. The ray surface of CV vortices presents a Rev. Leit., 75, No.5, 826 (1995).

helix set wound around a circular cylinder. 16. A.W. Snyder, J. D. Love, Optical Waveguide Theory, Chapman and

. L . . . Hall, London, (1983).
. Up(_)n fiber ¢x0|tat|on, matChmg of an OptICB:| vortex in 7. A.V.Volyar, T. A. Fadeyeva, Singular optics of low-mode fiber fields:
void with a gUIded CV vortex aSSl.JmeS matChmg the wave I. The circular disclinations, Optics and Spectroscopy, (1998) (to be
and ray surfaces. The exact matching of wave surfaces meangublished), (in Russian).

that the vortex in a void excites only the given CV vortex ih8. A.V. Volyar, T. A. Fadeyeva,, Techn. Phys. Lett., 22, No.4, 333 (1996).
the fiber 19. J. F. Nye, Proc. R. Soc. Lond A., 387, 105 (1983).

In case of mismatch of the wave surfaces. other f.bé?. A. V. Volyar, T. A. Fadeyeva, H. M. Reshitova, Lett. to Journ. Techn.
! wave su ’ BT pjys., 23, No. 5,70 (1997) (in Russian).

eigeandeS could be excited. The matChing degree of the L.p. Landau, E. M. Lifshits, Theoretical physics V.2 Theory of field,

ray surfaces indicates the share of energy that was trans-Nauka, Moskow, 509, (1988). (in Russian).

ferred from a Gaussian beam to a guided CV vortex. 22 A4Vi9\’9071y?5 TRA' Fadeyeva, Lett. to Journ. Techn. Phys., 23, No.21,
. ; 7 in Russian).

. The ?Onservatlon Iaw f.or the angmar mome.ntum In g A. \(/ Vol;ar, T. A. Fad)eyeva, Lett. to Journ. Techn. Phys., 23, No.22,

fiber is given by the continuity equation. For an axially-sym-"" ¢ (1997) (in Russian).

metrical fiber cross-section the right side of the continuitys. A. v. Volyar, T. A. Fadeyeva, Lett. to Journ. Techn. Phys., 23, No.23,

equation is equal to zero. However, if the cross section of 59 (1997) (in Russian).

the fiber is changed due to a deformation, or there is &h A- V. Volyar, T. A. Fadeyeva, V. G. Shvedov, V. Z. Zhilaytis, Opt. and

anisotropy of the material, then the right side of (28) de; Spectr: (1998) (to be printed) (in Russian).

. . . D. Marcuse, Light Transmission Optics, van Nostrand Reinhold Com-
scribes pseudosinks or pseudosources of the angular MoO-p.,y New York, 570, (1972).

mentum. 27. M. J. Padgett . L. Allen, Opt. Comm., 121, 36 (1995).
28. C. Imbert, Phys Rev.D, 5, No.4, 767 (1972).
References 29. A. V. Volyar, Yu. N. Mitzay, S. N. Lapayeva, Techn. Phys. Lett., 20,
No.3, 190 (1994).
1. J. F. Nye, M. V. Berry, Proc. R. Soc. Lond. A, 336, 165 (1974). 30. A. V. Dooghin, N. D. Kundikova, V. S. Liberman,
2. M. Harris, C.A. Hill, J. M. Vaughan, Opt. Comm., 106, 161, (1994). B. Ya. Zel’dovich, Phys. Rev. 4., 45, No.11, 8204 (1992).

ONTHYHI BUXOPI TA MOTIK IXHHOI'O KYTOBOTO MOMEHTA B BATATOMOJOBHUX BOJIOKHAX
0. M. Anexcies, T. A. @aocesa, O. B. Bonap, M. C. Cockin®

Dizuunuit paxynomem Cimgpepononsckozo /leprcagnozo Yuieepcumemy, Yxkpaina

‘ITncmumym ¢hizsuku HAH Ykpainu

Pe3rome. PosmisiiaeTses mpodeMa po3moBCIOPKEHHS ONITHYHNX BUXOPIiB B 06araToMOIOBIX BOJIOKHaX. [10ka3aHO SKi CTPYKTHPHUX3MIH
Ni3HAIOTh XBMUJIbOBA 1 IPOMEHEBA MOBEPXHI MPH MEPEXoAi i3 BIIBHOTO MPOCTOPY B CEPENOBHUINE BOJOKHA. 3alucaHe PiBHSIHHS
HETIEPePBHOCTI JUIsl TOTOKY KyTOBOTO MOMEHTA BUXOPSI B HEOIXHOPITHOMY CEPEeJOBHIILI.

OIITUYECKHUE BUXPU U IIOTOK HUX YITIOBOI'O MOMEHTA B MHOI'OMOJOBBIX BOJIOKHAX

0. M. Anexcees, T. A. @aoeesa, O. B. Bonap, M. C. Cockun’*
Quzuueckuii paxynomem Cumgpepononwvckozo I'ocyoapcmeennozo Yuueepcumema, Ykpauna
‘Hucmumym uszuxu HAH Ykpaunwt

Pe3ome. PaCCManI/IBaeTCH Hp06J'IEMa PacpoCTpaHCHUS OTITHICCKUX BI/IXpCﬁ B MHOTOMOJIOBBIX BojIokHaX. [loka3aHo kakue CTPYKTYPHBIC
HU3MEHEHUS UCIBITHIBAIOT BOJIHOBAA U JIyU€Bas IIOBEPXHOCTU IIPU IEPEXOAC U3 CBO6OJIHOFO MPOCTpaHCTBa B CPEAY BOJIOKHA. 3anucaHo
YpaBHEHUE HETIPEPBIBHOCTH 1A IIOTOKA YITIOBOIO MOMEHTA BUXPA B HeOﬂHOpOHHOﬁ cpene.
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