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We report on the generation of mono- and polychromatic optical phase singularities from micron-sized

birefringent droplets. This is done experimentally by using liquid crystal droplets whose three dimensional

architecture of the optical axis is controlled within the bulk by surfactant agents. Because of its

microscopic size these optical vortex generators are optically trapped and manipulated at will, thus

realizing a robust self-aligned micro-optical device for orbital angular momentum conversion.

Experimental observations are supported by a simple model of optical spin-orbit coupling in uniaxial

dielectrics that emphasizes the prominent role of the transverse optical anisotropy with respect to the beam

propagation direction.
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Wave singularities in intensity, phase, or polarization,

are ubiquitous in nature, being produced when three or

more plane waves interfere [1]. Phase singularities are

defined as points in space where the phase of the wave is

ill-defined and the wave amplitude vanishes—a common

feature to all waves [2]. Examples abound in hydrodynam-

ics, low temperature physics and optics. In optics, phase

singularities are described by a local azimuthal phase

dependence of the electric field of the form expði‘�Þwhere
‘ is called the topological charge and � is the azimuthal

angle. Light beams carrying phase singularities possess a

nonzero azimuthal energy flow [3] and are known as

optical vortices. Such beams carry nonzero orbital angular

momentum [4] and have many applications, which include

micromanipulation [5–7], microscopy [8,9], quantum in-

formation [10], or astronomical imaging [11].

Optical vortex generation relies on the discontinuous

azimuthal reshaping of an initially smooth wave front

profile. Optical vortices have been demonstrated for elec-

tromagnetic radiation with wavelengths ranging from the

millimeter range [12] through to x rays [13], with much

work being performed using visible radiation. Several

methods for generating optical vortex beams have been

developed. These methods involve physical mechanisms

such as refraction [14], diffraction [15], anisotropic Gouy

phase manipulation [4] and natural [16,17] or form bire-

fringence [18]. Nowadays, spatial light modulators, which

are generally two-dimensional (2D) pixelated liquid crys-

tal (LC) arrays provide an efficient tool for generating

vortex beams. Recently, continuously patterned [19–21],

2D liquid crystal devices have also been proposed.

However, these millimeter-scale devices are relatively

bulky and have a small acceptance angle, preventing wide-

spread use in integrated optics. Approach based on

straightforward downsizing of spiral phase plates has

been proposed [22], however preventing from handy and

versatile uses. The concept of using a spherically symmet-

ric device to generate an optical vortex initially appears

somewhat counterintuitive, but, by exploiting the polariza-

tion of the incident light and choosing a radially symmetric

birefringence, we show that this is possible with a micron

scale, self-aligned, omnidirectional optical vortex genera-

tor based on a single liquid crystal droplet.

Nematic LCs are uniaxial mesophases having a local

orientational order defined by a unit vector n known as the

director. Its orientation can be controlled externally

through electrical bias, optical fields, or surface interac-

tions. In this work, we prepared spherical droplets of a

controlled micron-order diameter by dispersing the ne-

matic liquid crystal 5CB (4’-n-pentyl-4-cyanobiphenyl,

Aldrich) in water. By adding a surfactant (CTAB, cetyl-

trimethyl-ammonium bromide), the director, and hence the

local optical axis, adopt a spherically symmetric 3D spatial

distribution in a droplet of a few micrometers in diameter

(Fig. 1). This spatial conformation of the optical axis

defines an inhomogeneous birefringence that exhibits a

defect in the center of the droplet around which the director

orientation winds by 2�. When these ‘‘radial droplets’’ are

optically trapped in tightly focused circularly polarized

Gaussian laser tweezers (operating at wavelength � ¼
1:06 �m), (Fig. 1) their natural on-axis positioning in the

focal region leads the trapping beam to ‘‘read out’’ the

radial birefringence distribution. The generation of a spi-

raling wave front is thus expected from a geometric

Pancharatnam-Berry phase, which arises from the continu-

ous transverse changes of the radial distribution of the

optical axis with identical initial and final state all around

the center of the droplet [18].

For the purpose of a qualitative demonstration, two

droplets were prepared to be close to one another using
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laser manipulation. The c
out
� -polarized images of the twin

droplets were obtained under spectrally filtered (at 532 nm)

c
in
�-polarized incident white light condenser illumination,

where the units vectors c� ¼ ðx� iyÞ=
ffiffiffi

2
p

refer to the cir-

cular polarization basis. Therefore, the droplets pair, which

behave as twin sources with the same polarization state,

give rise to intensity fringes, as shown in Fig. 2. Straight

fringes are obtained when the output polarization state is

parallel to the input one, c
in � cout ¼ 1, see Fig. 2(a),

whereas curved fringes are evidenced when c
in � cout ¼

0, as shown in Figs. 2(b) and 2(c). This, respectively,

manifests an azimuthally invariant wave front profile

[Fig. 2(a)] and a spin-dependent azimuthally varying phase

[Figs. 2(b) and 2(c)]. In the latter case, the intensity pattern

locally resembles the tilted Young patterns observed in

double-slit interferences using optical vortices [23], as

shown in the insets of Fig. 2 that display the corresponding

table-top double-slit experiments.

It is known that the coherent superposition of two or-

thogonally polarized light fields produces a total field with

space varying polarization. Moreover, the polarization of a

beam at any point is determined by the phase difference

between the c� components. Assuming the incident polar-

ization to be cinþ, the absolute azimuthal phase structure of

the cout� -polarized output field, �ð�Þ, is therefore quantita-
tively retrieved from a spatially resolved polarimetric

analysis of the output beam [24]. For this purpose, we

evaluated the four Stokes parameters S0 ¼ jExj2 þ jEyj2,
S1 ¼ jExj2 � jEyj2, S2 ¼ 2ReðE�

xEyÞ and S3 ¼
2 ImðE�

xEyÞ of the output beam. Their reduced values si ¼
Si=S0 (i ¼ 1, 2, 3), which all range between �1 and 1, are

shown in Figs. 3(a)–3(c), respectively. By construction,

�ð�Þ is equal to twice the azimuthal angle of the polariza-

tion ellipse of the total output field, c ¼ ð1=2Þ�
arctanðs2=s1Þ, hence � ¼ 2c . The results are shown in

Fig. 4(a) (see markers), which exhibits a uniformly spira-

ling phase that accumulates a 4� phase over a full turn

irrespective of the distance from the center of the droplet.

Hence, we conclude to the generation of a phase singular-

ity with a topological charge ‘ ¼ 2. To understand the

observation of a charge two vortex, one notes that the

freely suspended optically trapped droplet is at rest, hence

the total light angular momentum (spinþ orbital) is con-

served. Consequently, the spin angular momentum flipping

is associated to the appearance of a 2@ orbital angular

momentum per photon.

The same system can be used to generate polychromatic

vortices by using white light. Panel 1 in Fig. 4(b), shows

the characteristic polychromatic doughnut intensity pro-

file. The reddish (blueish) outer (inner) part of the white

light doughnut indicates a wavelength-dependent angular

momentum conversion process, which merely results from

material dispersion [25]. This is emphasized in panels 2, 3,

and 4 of Fig. 4(b) where the red, green, and blue compo-

nents of the vortex exhibit a broader angular spreading at

larger wavelengths [26].

The trapping beam itself can be used for in situ and on-

demand vortex generation. A unique feature of the pro-

posed technique is that the beam traps the droplets on-axis,

and preserves their radial symmetry. Therefore this system

enables the generation of on-axis optical vortices without

need for the sensitive optical alignment associated with

other techniques. For the purpose of demonstration, we

trapped droplets with various diameters using beams with

various intensities. We then measured the power in each of

the circular components of the output beam, and calculated

the normalized powers P�=P0, where P� refers to the

output circularly polarized components that are parallel

FIG. 2. Twin droplets interferences. Insets: table-top double-

slit Young experiment using a Gaussian beam (a) and a charge

two optical vortex [(b) and (c)]. Scale bar is 5 �m.

FIG. 3 (color online). Experimental spatially resolved Stokes

polarimetry analysis of a single tweezed radial droplet with

diameter ’ 7 �m for quasimonochromatic condenser illumina-

tion. (a) s1, (b) s2, (c) s3.

FIG. 1 (color online). Optical vortex generation from a radial

nematic liquid crystal droplet. An incident light with circular

polarization c� having a smooth wave front profile (‘ ¼ 0) is
partly converted into the orthogonal polarization state c� that

bears a phase singularity (‘ � 0). Insets: (a) crossed polarizers

image identifying a cylindrically symmetric director distribution

and (b) radial structure of the director.
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(‘ ¼ 0) and orthogonal (‘ ¼ 2) to the laser tweezers po-

larization state and P0 is equal to the trapping power. We

found that the process is almost power independent up to

several hundreds of milliwatt but strongly varies with the

droplet diameter, as shown in Fig. 5(a). However, the

director structure inside the droplet clearly depends on

power; see Fig. 5(b). Indeed the droplet image under

crossed polarizers exhibits a Maltese cross that becomes

more twisted as P0 increases, but keeping the axial sym-

metry and preserving a uniform and continuous winding of

the optical axis around the z axis by 2� over a full turn.

The dependence of the efficiency of optical vortex gen-

eration as a function of droplet diameter is demonstrated in

Fig. 5(c). It is found that an increasing amount of the

incident Gaussian beam is converted into a vortex as d
increases. Although a rigorous theoretical description of

the process is expected to be rather complex due to (i) the

3D structure of the inhomogeneous anisotropic droplet and

(ii) tight focusing conditions, the observed experimental

trend can nevertheless be grasped from simple models in

the framework of the paraxial approximation of Gaussian

beams and of spin-to-orbital light angular momentum con-

version in uniaxial crystals.

For this purpose we first note that the radial droplets

possess, on the one hand, the axial symmetry of a z-cut
uniaxial crystal [16,17] (model 1) and, on the other hand,

the radial symmetry of a planar radially patterned birefrin-

gent plate [27] (model 2). Optical vortex generation occurs

in both geometries with different efficiencies that depend

on the material thickness and birefringence. Their respec-

tive contributions may, at least qualitatively, be inferred

from the knowledge of the averaged contributions of the

director along and perpendicular to z, P k ¼ hðn � ezÞ2iS
andP? ¼ hðn� ezÞ2iS , respectively, where ez is the z axis
unit vector and h½. . .�iS ¼ ð1=4�ÞR2�

0

R

�
0 ½. . .� sin�d�d�

is the averaging over the unit sphere S, with � and � the

spherical angles. We obtain P k ¼ 1=3 and P? ¼ 2=3.
Since these two contributions are of the same order of

magnitude we cannot a priori rule out the use of one model

rather than the other and we therefore test two models. The

first (second) model comprises an axially homogeneous

(radially inhomogeneous) uniaxial slab of thickness d, as
shown in Fig. 6. The effective birefringence of the slabs,

~nk � ~n?, with ~nk (~n?) being the effective refractive indices
parallel (perpendicular) to the local optical axis, are found

by fitting the experimental data presented in Fig. 5(c).

FIG. 5 (color online). Optical vortex generation for the trap-

ping beam. (a) Fraction of converted, P�=P0 (open symbols),

and unconverted, Pþ=P0 (filled symbols), photons vs the trap-

ping power P0 for different droplet sizes. Circles, squares,

triangles and diamonds refer to droplet diameter d ¼ 1:5, 2.1,
2.4, and 3:2 �m, respectively. (b) Crossed polarized images of

the progressively twisted trapped droplet with d ¼ 2:4 �m vs

power. (c) Power conversion vs d for the vortex (black color) and

nonvortex (red color). Markers : experimental data; curves:

theoretical prediction from models 1 and 2 (see text for details).

Insets: false color intensity distributions of the nonvortex and

vortex output beams fields.

FIG. 6 (color online). Illustration of the director distributions

that correspond to model 1 (axial symmetry) and model 2 (radial

symmetry).

FIG. 4 (color online). (a) Experimental azimuthal phase �ð�Þ
revealing a phase singularity with charge two (‘ ¼ 2). Markers

are experimental data and red curve is the theoretical prediction

�ð�Þ ¼ 2�. Inset: bright field droplet image, scale bar is 5 �m.

(b) Polychromatic vortex intensity distribution (panel 1) and its

RGB components (panels 1, 2, and 3).
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Following Refs. [17,25], which deal with circularly

polarized Gaussian beams normally incident on a uniaxial

crystal having its optical axis along the beam propagation

direction (i.e., the z axis), we get for model 1

P�
P0

�

�

�

�

�

�

�

�model 1

¼ 1

2

�

1� 1

1þ ðd=dcÞ2
�

; (1)

where dc ¼ k0w
2
0~n?~n

2
k=ð~n2k � ~n2?Þ is a characteristic power

conversion distance and k0 ¼ 2�=�,w0 ’ 1:22�=ð2NAÞ is
the beam waist of the trapping beam. For model 2, the

fraction of (un)converted power can be obtained in a

straightforward manner from the normally incident plane

wave situation investigated in Refs. [20,23]. According

to these references, the ratio of conversion for an inci-

dent plane wave is equal to ðP�=P0Þmodel 2 ¼ ð1=2Þ½1�
cosð2��~nd=�Þ�. This result can be expanded to yield the

intensity ratio for a Gaussian beam by averaging over the

obliquely incident plane waves that constitute the beam

and accounting for their individual intensity weights given

by fð�Þ ¼ expð�2tan2�=tan2�0Þ [28], where � refers to

the incident angle of a plane wave contribution and �0 is

the half-divergence angle of the beam, which is taken as

tan�0 � w0=z0, where z0 is the Rayleigh distance. We

explicitly obtain

P�
P0

�

�

�

�

�

�

�

�model 2

¼ 1

2

�

1�
�

cos

�

2��~nð�Þd
�

��

�

�

; (2)

where �~nð�Þ ¼ ~neð�Þ � ~n?, with ~neð�Þ ¼
~n?~nk=ð~n2?cos2�þ ~n2ksin

2�Þ1=2, is the effective anisotropy
for the incident angle �. Experimental data are indepen-

dently fitted to models 1 and 2 using Eqs. (1) and (2)

respectively with ~nk � ~n? being the only fitting parameter.

This is made possible by imposing the average effective

refractive index, ð~n? þ ~nkÞ=2 ¼ 1:6, which is the actual

average refractive index for the LC. We find ~nk � ~n? ’
0:91 for the model 1 and ~nk � ~n? ’ 0:08 for the model 2.

Although the predictions of model 1 qualitatively fit our

observations [see dotted curves, Fig. 5(c)] the unrealistic

value obtained for the effective birefringence, i.e., a few

times larger than the actual birefringence of the LC

(�nLC ’ 0:2), obviously invalidates its use. In contrast,

model 2 offers a satisfying agreement with experiments

[see solid curves, Fig. 5(c)]. However, the best fit birefrin-

gence value that this model yields is roughly twice lower

than �nLC. This result can be explained by noting that

~nk � ~n? (in model 2) should be associated with the aver-

age birefringence of the sphere perpendicular to the z axis,
namely ð1=4�ÞR2�

0

R

�
0 ½neð�Þ � n?�d�d� ’ 0:13, where

neð�Þ ¼ n?nk=ðn2?cos2�þ n2ksin
2�Þ1=2 and nk ’ 1:7

(n? ’ 1:5) are the LC refractive indices along and perpen-

dicular to n. Thus we conclude that the transverse optical

anisotropy with respect to the beam propagation direction

is the main feature governing the optical vortex generator

performance.

In this work, we have showed that a liquid droplet of a

few microns in diameter can become an optical vortex

generator for monochromatic and polychromatic light, by

engineering a radial optical axis distribution in a trapped

liquid crystal sphere. This offers a simple 3D alternative to

expensive 2D multisteps lithography, thus opening the way

to the production of dense optical vortex arrays in aniso-

tropic colloids. Together with the advantages of self-

alignment and omnidirectional optical incidence, this sys-

tem could possibly be extended to different spatial distri-

butions of the optical axis, hence permitting the generation

of vortices with different topological charges. Moreover,

the sensitivity of the liquid crystal molecular ordering to

external fields—be it electric, magnetic, thermal, chemical,

or the light itself—opens avenues in large-scale array

programming and reconfiguration.
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