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In the present paper we have derived the analytical expressions for the modes of twisted elliptical fibers 
with torsional mechanical stress at various relationships of the fiber parameters. It was shown that 
circularly polarized optical vortices with the topological charges �1 can propagate in elliptical fibers 
as generic modes if ellipticity and the twist induced circular birefringence suppress the spin orbit inter
action. A comparison of the obtained results with the corresponding results for spun elliptical fibers is 
made.

OCIS codes: 060.2400, 060.2310, 260.6042.

1. Introduction

Optical fibers with the torsional mechanical stress 
induced by twisting a fiber around its axis hold a spe-
cial place among other types of optical fibers due to 
their unique property of significant reduction of the 
polarization mode dispersion [1–4], which is one of 
the main causes of pulse lengthening in fiber systems 
and decreasing of sensitivity of the various transdu-
cers [5–7]. To date, such fibers have been comprehen-
sively studied in a number of papers. In particular, it 
was theoretically and experimentally demonstrated 
that the fundamental modes are the circularly 
polarized fields propagating with different phase ve-
locities, that is, the twist induces circular birefrin-
gence in an optical fiber [5]. This leads to an easily 
experimentally detectable effect of the rotation of 
the linearly polarized light launched into the twisted 
fiber. In the case of the presence of some kinds of op-
tical perturbation (such as anisotropy of the material 
or anisotropy of the shape of the cross section), the 
corresponding fundamental modes are found to be 
elliptically polarized in the local frame tracing the 

direction of the anisotropy axis [8]. Efforts have been
made to investigate the structure of the higher-order
modes of twisted fibers, as well. It was shown [9] that
the modes with l � 1 (l being the azimuthal mode
number) of ideal twisted fibers are represented
by two circularly polarized optical vortices (OVs)–
the fields with the helical structure of their
wavefronts—with unity topological charge (the sign
of which coincides with the one of polarization) and
the conventional TE0;n and TM0;n modes (n being the
radial mode number). The corresponding propaga-
tion constants were also obtained. Moreover, the cou-
pling of the modes with different azimuthal numbers
induced by twisting has been studied [10] and it was
demonstrated that the coupled modes obey a kind of
selection rule—they must have the same total angu-
lar momentum in the direction of propagation. Quite
recently, the effect of small anisotropy on the modes
of twisted fibers near the points of instability (the
points, in which the degeneracy of the propagation
constants takes place) was considered [11]. It was
theoretically shown that such fibers can be used for
highly effective and stable generation of radially and
azimuthally polarized vector beams.

Meanwhile, as far as we know, the effect of aniso-
tropy, in particular the elliptic shape of the fiber’s
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cross section, on the structure of the higher-order
modes of twisted fiber at arbitrary fiber parameters
has not yet been studied. At the same time, apart
from the obvious importance of considering such a
problem from the fundamental point of view, a purely
practical interest in this question is connected with
the problem of OV propagation in optical fibers. OVs
have a number of unique properties that make them
the very promising tools for encoding and transmit-
ting information [12–13], for trapping and manipu-
lating microparticles [14], for astronomy purposes
[15–16], etc. To transmit OVs over distance, various
types of optical fiber have been proposed [17–21].
However, the mutual influence of torsional mechan-
ical stress (twisting) and anisotropy on the propaga-
tion of OVs in optical fibers have not been considered.
Thus, in this paper, we pursue two main goals. The
first one is to establish and analyze the higher-order
l � 1 modes of twisted elliptical fibers allowing for
the vectorial nature of light. The second one is to
study whether OVs can propagate in such fibers
without changing their form, i.e., as the generic
modes.

2. Model and Perturbation Theory Approach

The refractive index of the model under considera-
tion is

n̂2�r;ϕ� � n2�r�1̂ − 2n2
coΔδrf 0r cos 2ϕ1̂

� qp44n
4
cor

0
@

0 0 sinϕ
0 0 − cosϕ

sinϕ − cosϕ 0

1
A: (1)

Here the first term describes the axially symmetric
distribution of the refractive index in the ideal fibers,

n2�r� � n2
co�1 − 2Δ · f �r��, Δ � �n2

co − n2
cl�∕2n2

co is the
height of the refractive index profile, nco and ncl

are the values of the refractive indices in the core
and cladding, respectively, and, for a fiber with
step-like distribution of the refractive index, the pro-
file function reads as f �r� � θ�r∕r0 − 1�, θ being the
unity step. The second term in Eq. (1) is connected
with the ellipticity of the fiber’s cross section [22].
Indeed, the most simple way of introducing the
ellipticity is to make the scale transformation:
x → x�1� δ�, y → y�1 − δ�, where the ellipticity
parameter δ ≪ 1, and then expand the refractive

index in δ. The prime stands for derivative with
respect to r. The last term in Eq. (1) appears due to
the mechanical stress through the photoelastic
effect and p44 � 0.5�p11 − p12�, wherep11 and p12 are
the photoelastic constants, and q � 2π∕H (H being
the pitch of twist). Cylindrical polar coordinates
�r;ϕ; z� are implied and the axis z is the fiber’s axis.
Note that the tensor in Eq. (1) is represented in the
Cartesian basis: E � col�Ex;Ey;Ez�, where E is the

electric field.
To get the modes of twisted elliptic fibers, let us

consider the vector wave equation for nonmagnetic
anisotropic media in the case of the refractive index
in Eq. (1) [18]:

�∇2 � k2n̂2�r;ϕ��E�r;ϕ; z� � −∇

�
�E ·∇ ln n2�r��

� qp44n
4
cor

�
sin ϕ

∂Ex

∂z
− cos ϕ

∂Ey

∂z

��
; (2)

where ∇ � �∂∕∂x; ∂∕∂y; ∂∕∂z�, k � 2π∕λ, andλ is the
wavelength in vacuum. The second term in the
right-hand side of Eq. (2) emerges due to the tensor-
ial nature of Eq. (1) and it was taken into account
that the refractive index can be presented in the form
n̂2�r;ϕ� � ε1̂� δε̂. In addition, we have disregarded
the influence of ellipticity in the gradient term.
It is worth noting that the gradient term ∇�E ·
∇ ln n2�r�� describes the spin-orbit interaction (SOI)
of light in an ideal fiber.

Due to the translation invariance of Eq. (1) in the z
direction, it is possible to seek a solution in the fac-
torized form: E � e�r;ϕ�eiβz, where β is the propaga-
tion constant. Substituting this into Eq. (2), we can
bring this equation to the form of the eigenvalue
equation:

�Ĥ0 � V̂ell � V̂ tw�jψi � β2jψi; (3)

where the ket-vector jψi � col�ex; ey; ez�, the operator
Ĥ0 is responsible for the formation of the modes of
ideal optical fibers with accounting the gradient term
[22], V̂ell � −2k2n2

coΔδrf 0r cos 2ϕ1̂ describes the effect
of ellipticity on the light propagation, and

V̂tw � k2qp44n
4
cor

0 0 sin ϕ
0 0 − cos ϕ

sin ϕ − cos ϕ 0

0
@

1
A�

�iqp44n
2
coβ

0
@

0.5 sin 2ϕr∇r − sin2 ϕ∇ϕ −1 − cos2 ϕr∇r � 0.5 sin 2ϕ∇ϕ 0

1� sin2 ϕr∇r � 0.5 sin 2ϕ∇ϕ −0.5 sin 2ϕr∇r − cos2 ϕ∇ϕ 0

irβ sin ϕ −irβ cos ϕ 0

1
A

is aroused due to twisting.
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Taking into consideration that the operators in

Eq. (3) have the following orders: Ĥ0 ∝ k2n2
co,

V̂ell ∝ k2n2
coΔδ, V̂ tw ∝ k2qp44n

4
cor0 (r0 being the core’s

radius) and that typically nco � 1.5, Δ � 10 1 − 10 3

(for weakly guiding fibers), δ � 10 1 − 10 2, p44 �
−0.075 (for silica), and H > 10 3 m, it is easy to
see that, for solving Eq. (3) one can use the perturba-

tion theory approach, treating Ĥ0 as a zero-order

operator and the operator V̂ � V̂ell � V̂ tw as a pertur-
bation. As is well known [23], the key point of this
method is that the system could be described with
the so-called perturbation matrix, which has to be

built by averaging the operator ^H � Ĥ0 � V̂ over

the eigenstates jψ �0�
l;n ii of the zero-order operator

Ĥ0jψ �0�
l;n ii � β�0�

2

i jψ �0�
l;n ii. Since we are interested in

modes with l � 1, it is somewhat convenient to
choose as the zero-order modes the following
fields:

jψ �0�
1;ni1 �

0
BBBBB@

F1;n�r�
iF1;n�r�

i
~β1;nr

�rF0
1;n − F1;n�eiϕ

1
CCCCCA
eiϕ;

jψ �0�
1;ni2 �

0
BBBBB@

F1;n�r�
−iF1;n�r�

i
~β1;nr

�rF0
1;n − F1;n�e iϕ

1
CCCCCA
e iϕ;

jψ �0�
1;ni3 �

0
BB@

−F1;n�r� sin ϕ

F1;n�r� cos ϕ

0

1
CCA;

jψ �0�
1;ni4 �

0
BBB@

F1;n�r� cos ϕ

F1;n�r� sin ϕ

i
β1;nr

�rF0
1;n � F1;n�

1
CCCA; (4)

where the radial function for the step-index fibers is

Fl;n�r� �

8
><
>:

Jl� ~UnR�
Jl�Un�

;R ≤ 1;

K l� ~WnR�
K l� ~Wn�

;R ≥ 1;

and R � r
r0

[24]. The modes jψ �0�
1;ni1 ≡ j1; 1;ni and

jψ �0�
1;ni2 ≡ j − 1;−1;ni are right and left circularly po-

larized OVs, where the first index describes the sign
of polarization, while the second one specifies topolo-

gical charge; the mode jψ �0�
1;ni3 ≡ jTE0;ni represents

the standard transverse electric mode and the mode

jψ �0�
1;ni4 ≡ jTM0;ni is the transverse magnetic mode.

The perturbation matrix is:

Hij � i
hψ �0�

l;n j
^Hjψ �0�

l;n ij; (5)

where the standard definition of the scalar product is
implied:

hΦjΨi �
Z

∞

0

Z
2π

0

�Φ�
x Φ�

y Φ�
z �

0
B@
Ψx

Ψy

Ψz

1
CArdrdϕ:

Using Eqs. (3)–(5), we obtain the perturbation
operator for l � 1 modes:

^H �

0
BBB@

~β2n � An � Cn 0 iDn −Dn

0 ~β2n � An − Cn −iDn −Dn

−iDn iDn
eβ2n 0

−Dn −Dn 0 ~β2n � 2Bn

1
CCCA; (6)

where the SOI constants for the step-index fibers are

An � Δ
Qnr

2
0

�FnF
0
n − F2

n�R�1, Bn � Δ
Qnr

2
0

�F2
n � FnF

0
n�R�1,

Qn �
R
∞
0 RF2

n�R�dR, ~βl;n is the well-known scalar pro-

pagation constant [22], Cn � −2�Σn �Θβ − Θβ2

βn
� is

proportional to the twist, Σn � k2qjp44jn4
co

βn
, and

Θ � qjp44jn2
co, Dn � −k2n2

coΔδ∕Qn is the ellipticity
constant. Here and in what follows the azimuthal
number is omitted and assumed to be unity.

The structure of modes of the fiber and the corre-
sponding propagation constants can be obtained by
solving the eigenvalue equation:

Ĥx � 0. (7)

Here Ĥ � ^H − β2 and the vectors xk have the compo-
nents ak

i , which are the coefficients of the decomposi-
tion of the desired modes over the zero-order fiber
modes: jψik �

P
ia

k
i jψ

�0�
n ii. Strictly speaking, solving

Eq. (7)with thematrix inEq. (6)would give themodes
of twisted elliptic fibers at arbitrary reasonable
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values of ellipticity, the twist pitch, and the SOI.How-
ever, it seems that such a solution would be cumber-
some for further analysis. To avoid such a problem, it
seems reasonable to consider some particular cases
that could be of practical relevance.

3. Higher-Order l � 1 Modes: the Case of a Strong

Ellipticity

Let us first consider the case where the constant of
ellipticity is much greater than the constants of the
SOI and the twist-induced circular birefringence:
jDnj ≫ jAnj, jBnj, jCnj. Applying the perturbation ap-

proach to Eq. (7) and treating the operator Ĥ�An �
Bn � Cn � 0� as a zero-order one and the operator

V̂ � diag�An � Cn;An − Cn; 0; 2Bn� as a perturbation,
we arrive at the following expressions for the l � 1

modes of strongly elliptical fibers with torsional
stress:

jΨi1 � F1;n�r� cos ϕ

�
sin γ − cos γ

i�sin γ � cos γ�

�
;

jΨi2 � F1;n�r� cos ϕ

�
cos γ � sin γ

i�cos γ − sin γ�

�
;

jΨi3 � F1;n�r� sin ϕ

�
sin γ − cos γ

i�sin γ � cos γ�

�
;

jΨi4 � F1;n�r� sin ϕ

�
cos γ � sin γ

i�cos γ − sin γ�

�
; (8)

where tan 2γ � jBnjP
n

, 0 ≤ γ ≤ π
4
, and we have omitted

the small longitudinal component.
Let us briefly analyze the modes obtained in

Eq. (8). It is easy to see that, in the general case,
the modes are elliptically polarized and the state
of polarization is characterized by the parameter γ.
In turn, γ is determined by the ratio of the constants
of the SOI and the twist. Consequently, there are two
limiting cases. The first one takes place at
jBnj ≫ j

P
n j, sin γ, cos γ → 1∕ 2

p
, and the fields be-

come almost linearly polarized and describe the so-
called LP modes [24]. It is known that LP modes
are the eigenfields of straight strongly elliptical fi-
bers, so that we have got a correct limit for the mode
in Eq. (8) that can be considered as an indirect con-
firmation of the obtained result. The second limiting
case occurs when the twist-induced circular birefrin-
gence much exceeds the SOI: j

P
n j ≫ jBnj, sin γ → 0,

cos γ → 1, and the modes are almost circularly polar-
ized. This seems to be quite reasonable, if we keep in
mind that ellipticity by itself cannot affect the state
of polarization. As for the field’s dependence on the
polar angle through sine and cosine factors, it is
worthmentioning that its specific form is determined
exactly by the influence of large ellipticity. As a con-
sequence of such an angular dependence, the modes
in Eq. (8) do not posses the orbital angular momen-
tum (OAM) but bear only the spin angular momen-
tum (SAM), which can be easily calculated bymaking

use of the well-known formula [25]: Sz ∝ hΨj�0
i

i
0
�jΨi,

where the basis of linear polarization is implied. As
an example, the SAM for the mode jΨi2 reads as
Sz � cos 2γ.

We failed to provide compact analytical expres-
sions for the propagation constants and only the
numerical calculation of the spectrum. This is con-
nected with the fact that the perturbation matrix
Ĥ depends on its eigenvalue β through the coefficient
Cn. Figure 1 shows the dependence of the corrections
to the scalar propagation constant on the twist. It is
seen that the spectral curves corresponding to the
modes with the opposite parity of the angular func-
tion are strongly spaced by the influence of large
ellipticity. Additional repulsion of the propagation
constants corresponding to the fields with the ortho-
gonal states of polarization is provided by the mutual
influence of the twist-induced circular birefringence
and the SOI. Such a behavior of the propagation
constants qualitatively coincides with one of the ei-
genvalues of Eq. (6). This allows one to make a con-
clusion on the stability of the modes in Eq. (8) with
respect to external perturbations. It should be noted
that, in real optical fibers, the velocity of the energy
and information propagation through the fiber is
connected with the group velocity rather than with
the phase one, which is determined by propagation
constants. In our paper, we consider only the phase
velocities of the modes for two reasons. The first is
that we are strongly interested in the question of sta-
bility of OVs, which is connected with the behavior of
the propagation constants. The second reason is that
we believe that the problem of influence of twisting
and ellipticity of the fiber on the group velocity of
OVs is very nontrivial and deserves a separate com-
prehensive consideration.

4. Higher-Order l � 1 Modes: Stable Circularly

Polarized Optical Vortices

Now we will consider the most important case where
the effect of the twist and ellipticity of the transverse
cross section on light’s propagation is much greater

Fig. 1. Dependence of the propagation constants βi on the twistH

in the case of twisted strongly elliptical optical fibers; the fiber

parameters are nco 1.48, Δ 0.001, r0 10λHe–Ne, δ 0.01,

andp44 0.075.
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that the one of the SOI: jDnj, jCnj ≫ jAnj, jBnj. This
means that, following the idea of applying the pertur-
bation method to Eq. (7), we should regard the opera-
tor Ĥ�An � Bn � 0� in Eq. (6) as a zero-order one and
the operator V̂ � diag�An;An; 0; 2Bn� as a small per-
turbation. After some algebra, the l � 1 modes of
strongly elliptical intensely twisted fibers are found
to be

jΦi1 � 1

2
p F1�R��sin θeiϕ − cos θe iϕ�

�
1

i

�
;

jΦi2 � 1

2
p F1�R��cos θeiϕ � sin θe iϕ�

�
1

i

�
;

jΦi3 � 1

2
p F1�R��sin eiϕ − cos θe iϕ�

�
1

−i

�
;

jΦi4 � 1

2
p F1�R��cos θeiϕ � sin θe iϕ�

�
1

−i

�
; (9)

where tan 2θ � jDnj
Σn

, 0 < θ <
π
4
. It may seem strange

that there are no constants of the SOI in these ex-
pressions. It turns out that the spectrum of the
zero-order operator Ĥ�An � Bn � 0� is not degener-
ate as long as Σn, Dn ≠ 0. Thus, one can disregard
the influence of the perturbation V̂ on the mode
structure. This is valid under the following two
conditions:

sin θ ≫
jBnj
2jDnj

;
4Σn

jBnj
≫ 1. (10)

Let us discuss the fields in Eq. (9). It is seen that
they are circularly polarized, which is obviously
connected with the influence of large twist-induced
birefringence against the background of small SOI.
The main feature of the modes in Eq. (9) is that they
are represented by a weighted superposition of two
OVs with the opposite signs of their topological
charges. It is well known that such a superposition
presents an OV with a well-defined topological
charge, which coincides with the charge of the partial
OV with the largest weight coefficient. Naturally,
this holds as long as weight coefficients in such a
superposition are different. It is easy to understand
that the topological charges of the modes in Eq. (9)
are l1;3 � −1, l2;4 � 1 and these values remain the
same as the parameter θ varies within its valid re-
gion. Such a behavior is an example of the topological
stability of OVs. Nevertheless, changing the para-
meter θ (through fiber parameters) manifests itself
in changing such a fundamental characteristic of
the field as the OAM. Indeed, it is known that, in
the general case, the OAM is not fully determined
by the topological charge as it takes place in the sim-
plest cases. Using the well-known expression Lz ∝

hΨj − i ∂

∂ϕ
jΨi [25], it is straightforward to show that

the modes in Eq. (9) have the following OAM:

L
1;3
z � − cos 2θ; L

2;4
z � cos 2θ; (11)

where the upper indices stand for the mode number.
Figure 2 presents the dependence of OAM [Eq. (11)]
on the twist. It is seen that, as the twist pitch H de-
creases, the curves tend to the maximal values �1.
Such a behavior can be easily understood if we con-
sider the corresponding limiting case for the modes

in Eq. (9). Indeed, as Σn ≫ jDnj (H ≪
2πkjp44jn3

co

jDnj ), θ → 0,

and the modes become almost ideal OVs with the
OAM (in relative units) coinciding with their topolo-
gical charges. Such a regime could be useful when
OVs are utilized as information carriers and should
have the well-defined OAM. Within this regime, one
has to be especially careful with meeting the condi-
tions in Eq. (10) under which the modes in Eq. (9)
are valid.

The numerically obtained propagation constants
corresponding to modes in Eq. (9) are shown in Fig. 3.
The main point here is that there exists a wide range
of the fiber parameters at which all propagation con-
stants (along with the eigenvalues of the operator
Ĥ�An � Bn � 0�) are well spaced. Thus, within such
a range, the propagation of OVs [Eq. (9)] appears to
be robust with respect to small (in comparison with
effect of ellipticity and twisting) external perturba-
tions. In other words, circularly polarized OVs are
the generic modes of the strongly elliptical intensely

Fig. 2. OAM in the direction of propagation (in relative units) Lz

of the vortex modes [Eq. (11)] versus the twist pitch H; the fiber

parameters are nco 1.48, Δ 0.001, r0 10λHe–Ne, δ 0.01,

p44 0.075.

Fig. 3. Dependence of the propagation constants βi on the twistH

in the case of intensely twisted strongly elliptical optical fibers;

the fiber parameters are nco 1.48, Δ 0.001, r0 10λHe–Ne,

δ 0.01, and p44 0.075.
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twisted optical fibers with torsional mechanical
stress. This is the main result of the paper.

5. Discussion

In the present paper we have derived the analytical
expressions for the modes of twisted elliptical fibers
with torsional mechanical stress at different rela-
tionships of the fiber parameters. It was shown that
OVs are not the modes of twisted elliptical fibers at
arbitrary relation of fibers parameters, which is the
case for twisted fibers without anisotropy. It was de-
monstrated that circularly polarized OVs with the
topological charges �1 can propagate in elliptical fi-
bers as generic modes when ellipticity and the twist-
induced circular birefringence suppress the SOI.

It is interesting to compare the obtained results
with the corresponding ones established for spun el-
liptical fibers [17]. The key difference between these
two models is connected with the z dependence of the
refractive index in the case of spun fibers provided by
the rotation of the ellipse in the fiber cross section
around the fiber’s axis. This gives rise to the violation
of the translation invariance in z coordinate in the
wave equation. To overcome this obstacle, as was
shown in [17], one has to rewrite the wave equation
in a local frame, which traces the rotation of the ani-
sotropy axis coinciding with one of the ellipse axes.
Such a procedure allows one to restore the corre-
sponding translation invariance and obtain the
modes in the local frame. From amathematical point
of view, to get the expressions for themodes in a global
frame, one should apply the z-dependent operator of
the inversion transformation to themodes in the local
frame. Along with shifting the angular variable
ϕ → ϕ − qz, this gives rise to the effect that each
component of the mode acquires its own z-dependent
phase factor in addition to the global phase of the
mode. Physically, it means that the modes of such
spun fibers are the analogue of the Bloch waves—
the waves of the following type: jψ�r;ϕ; z�i �
A�r;ϕ; z�eiβz, where A�r;ϕ; z� � A�r;ϕ; z�H� is the
periodic vector amplitude. Such a type of the solution
obviously reflects the periodicity property of the re-
fractive index of spun fibers:n2�x;y;z��n2�x;y;z�H�.

Meanwhile, from a dynamical point of view, it
turns out that the operators describing the rotation
of the anisotropy axis in spun fibers and the influence
of the mechanical stress in twisted fibers act on l � 1

modes qualitatively in the same manner – they pro-
duce a kind of circular birefringence, leading to the
coupling of exactly the same zero-order modes during
the construction of the perturbation matrices. This
results in the identical structure of the modes of
twisted and spun elliptical fibers (at the correspond-
ing fiber parameters), save for the ϕ − qz dependence
of the angular functions and the Bloch wave nature of
the latter.

These distinctions lead to two basic differences in
mode properties. The first one is that the intensity
distribution of the modes of spun elliptical fibers
rotates as light propagates through the fiber. The

second one takes place when the vortex-modes re-
gime for twisted and spun fibers is achieved. Indeed,
as was demonstrated in [17], at the condition
q~βn ≫ jDnj, all four modes of spun fibers, being repre-
sented by the circularly polarized OVs, propagate
with almost the same phase velocities, “…thus exhi-
biting one of the main features of propagation in va-
cuum.” As can be easily seen from Fig. 3, this is not
the case for twisted elliptical fibers.

Save for the above-mentioned difference in the
mode properties, the eigenfields of spun and twisted
elliptical fibers at the corresponding fiber para-
meters have much the same basic characteristics
as the state of polarization, topological charge of
the OVs, SAM, and OAM.
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