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Optical wave-packet with nearly-programmable
group velocities
Zhaoyang Li 1✉ & Junji Kawanaka 1

During the process of Bessel beam generation in free space, spatiotemporal optical wave-

packets with tunable group velocities and accelerations can be created by deforming pulse-

fronts of injected pulsed beams. So far, only one determined motion form (superluminal or

luminal or subluminal for the case of group velocity; and accelerating or uniform-motion or

decelerating for the case of acceleration) could be achieved in a single propagation path. Here

we show that deformed pulse-fronts with well-designed axisymmetric distributions (unlike

conical and spherical pulse-fronts used in previous studies) allow us to obtain nearly-

programmable group velocities with several different motion forms in a single propagation

path. Our simulation shows that this unusual optical wave-packet can propagate at alter-

nating superluminal and subluminal group velocities along a straight-line trajectory with

corresponding instantaneous accelerations that vary periodically between positive (accel-

eration) and negative (deceleration) values, almost encompassing all motion forms of the

group velocity in a single propagation path. Such unusual optical wave-packets with nearly-

programmable group velocities may offer new opportunities for optical and physical

applications.
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R
ecent studies of non-diffraction beams include the Bessel,
X, Y, Airy, and parabolic waves in linear mediums1–6, the
self-trapping, self-focusing, and nonlinear X wave in non-

linear mediums7–11, and multidimensional solitons in complex
systems12–15. Based on these studies, three-dimensional (3D)
localized spatiotemporal optical wave-packets with long propa-
gation distances and nearly-invariant intensity profiles have been
widely demonstrated in both linear16–18 and nonlinear19–22

mediums. Applications of such wave-packets range from particle-
manipulation to bio-imaging and plasma-physics. Beside the
well-known properties of long-distance self-similarity and/or self-
healing of these localized spatiotemporal optical wave-packets,
tunable group velocity is another degree of freedom relevant to
some novel applications. In nonlinear optics, the group velocity
υg= c/ng (ng is the group refractive index and c is the speed of
light) of an optical wave-packet can be well controlled by crafting
the wavelength-dependent refractive index nλ 23. However, some
very special materials or systems are required24–30, challenging
the application of this principle to linear systems where the
controllability of ng is very limited.

The Bessel beam is a famous family of diffraction-free beams
resulting from conical superposition, which usually propagates
with a constant superluminal group velocity in free space31–39. By
phase-modulating the incident cross-section, it is possible to
produce self-accelerating Bessel-like beams having arbitrary
curved trajectories40–43. In this case, the combination of a Bessel
beam and a pulse can produce a superluminal and/or self-
accelerating optical wave-packet18,44,45. For example, directly
combining a Bessel beam with an Airy pulse can create a self-
accelerating optical wave-packet in transmission materials18;
however, the accelerating value is limited within the short pulse
duration range. The X wave, demonstrated in both linear and
nonlinear mediums, is another important limited diffraction
beam46–48. In linear optics, broadband superposition of slightly
distorted Bessel beams can create Bessel-X spatiotemporal optical
wave-packets49,50, and in nonlinear optics pulsed beams with
nonlinear material responses can generate X-shaped light bul-
lets51. However, the controllability of group velocities of these X-
shaped optical wave-packets is not high. The Airy beam also is a
well-studied diffraction-free beam in which main intensity max-
ima and lobes tend to propagate52–57. By combing an Airy beam
with a pulse, the resulting self-accelerating optical wave-packets
can propagate at superluminal group velocities along parabolic
trajectories in free space. In the above methods, group velocity-
variable optical wave-packets in free space usually correspond to
curved or bended propagation trajectories, allowing for novel
applications that include particles guiding/trapping along curved
paths and self-bending plasma channels generation58–60. In some
other applications instead, straight-line propagation optical wave-
packets with tunable group velocities have irreplaceable
advantages.

In linear optics, it has recently been shown that spatiotemporal
coupling permits high controllability of the group velocity and/or
the acceleration of spatiotemporal optical wave-packets. Saari
et al. and Abouraddy et al. invented a new type 2D spatio-
temporal optical wave-packet by manipulating the spatial and
temporal degrees of freedom jointly, where both diffractive
spreading and pulse broadening are eliminated61,62. This optical
wave-packet can be described by a spectral trajectory resulting
from the intersection of the light-cone (kx, kz, ω/c) with a tilt
plane (kz, ω/c) in spectral-space, where kx and kz are the trans-
verse and longitudinal wavenumbers, respectively, x and z are the
transverse and longitudinal coordinates, respectively, and ω is the
angular frequency. By adjusting the tilt angle of the plane (kz,
ω/c), the group velocity of the optical wave-packet in free space or
in transmission materials can be controlled, including all motion

forms, i.e. superluminal, subluminal, accelerating, decelerating,
and backward-propagation63–68. Another spatiotemporal cou-
pling method is to control the group velocity of the intensity peak
of a focused ultra-short pulse within the extended Rayleigh length
(named as sliding focus or flying focus) by combining temporal
chirp and longitudinal chromatism. This method was indepen-
dently demonstrated by Quéré et al. in theory69,70 and Froula
et al. in experiments71. In this method, the longitudinal chro-
matism separates wavelength-dependent focuses along the pro-
pagation axis and the temporal chirp controls the appearance
times of these focuses, so that the sliding/flying focus possesses a
tunable effective group velocity, also achieving all motion forms
(superluminal, subluminal, accelerating, decelerating, and back-
ward-propagation). More recently, we theoretically demonstrated
a third spatiotemporal coupling method to generate group velo-
city and acceleration tunable 3D optical wave-packets in free
space72. The pulsed beam used for the Bessel beam generation is
deformed to have an axisymmetric pulse-front which deviates
from its plane phase-front. In the generation of the Gauss−Bessel
optical wave-packet, the plane phase-front determines the Bessel
beam generation in space, while the deformed pulse-front
determines the optical wave-packet propagation in time. Conse-
quently, the group velocity and acceleration of the optical wave-
packet can be adjusted by changing the pulse-front deformation,
also including all motion forms of superluminal, subluminal,
accelerating, decelerating, and backward-propagation group
velocities. In all these spatiotemporal coupling methods however,
by controlling one degree of freedom it is possible to achieve only
one determined motion form (superluminal or luminal or sub-
luminal for the case of group velocity; and accelerating or
uniform-motion or decelerating for the case of acceleration) in a
single propagation path.

In this article, by combining well-designed complex axisym-
metric pulse-front deformations with our recently reported
method72, we achieve a nearly programmable group velocity with
several different motion forms in a single propagation path. The
created optical wave-packet can fly with superluminal and sub-
luminal group velocities alternately, and the corresponding
instantaneous acceleration varies between positive (accelerating)
and negative (decelerating) values. For example, when periodi-
cally distributed axisymmetric pulse-front deformations are
introduced, the group velocity and acceleration of optical wave-
packets display periodical variations during propagation, showing
an alternate appearance of superluminal−subliminal group
velocities and accelerating−decelerating accelerations. This unu-
sual optical wave-packet presenting different group velocity
motion forms in a single propagation path may provide new
opportunities for applications.

Results
Setup of the method. The schematic diagram of the method is
shown in Fig. 1a. A collimated pulsed beam is reflected by a
deformable mirror (DM) (or a free-surface mirror) to shape its
pulse- and phase-fronts from a flat surface to a required axi-
symmetric surface. A transmission spatial light modulator (SLM)
is positioned just behind DM to correct the phase-front back to
the original flat surface for long-distance propagation while
keeping the shaped axisymmetric pulse-front unchanged73. A
beam splitter (BS) samples the shaped pulsed beam into a para-
bola telescope, which is used for three purposes: first, to image the
shaped pulsed beam into the Bessel beam generation region
formed by an axicon for suppressing propagation diffraction;
second, to enhance the spatial resolution of the phase-front
correction that is limited by the pixel size of SLM by beam
reduction (ten times in this article); and third, to increase the

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00481-4

2 COMMUNICATIONS PHYSICS |           (2020) 3:211 | https://doi.org/10.1038/s42005-020-00481-4 | www.nature.com/commsphys

www.nature.com/commsphys


instantaneous pulse-front variation across the beam aperture also
by beam reduction. Finally, an ideal thin axicon is used to gen-
erate a Bessel beam in the conical superposition region.

Using the Simulation model and parameters given in the
“Methods” section, the optical fields at different locations are
calculated. Because the optical fields are always axisymmetric
about the propagation axis, only the 2D distributions in the lateral
plane of the r−z plane, where r and z are the transverse and
longitudinal coordinates, are given. Figure 1b shows the input
pulsed beam, and the carrier frequency is multiplied by 0.1 to
avoid too fast oscillations for observation. Figure 1c shows the
optical field, when only DM (or a free-surface mirror) is
considered, both pulse- and phase-fronts are deformed, and
Fig. 1f gives the corresponding surface of DM. Figure 1d shows
the optical field, when SLM is considered, which has a deformed

pulse-front and an unchanged (plane) phase-front, and Fig. 1g
gives the corresponding phase-front correction of SLM. Figure 1e
shows the optical field after 5-m free propagation, and some
diffraction distortions can be found, showing the necessity of the
image relay telescope. In Fig. 1c–e, g, a small range is enlarged for
observation. The continuous surface of DM won’t change the
smooth pulse- and phase-fronts in Fig. 1c, while the segmented
phase-front-correction of SLM (limited by the SLM pixel size
shown in Fig. 1g) generates fine structure modulations in Fig. 1d.
The pixel−pixel gap of SLM introduces net-like spatial amplitude
modulation, and the pixel size of SLM keeps a very small phase-
front tilt within each segment spatial range. In real cases, these
two high spatial-frequency modulations can be reduced by
suitable propagation diffraction in Fig. 1e. All in all, SLM
introduces optimized (−π, π) phase-corrections across the beam

Fig. 1 Setup for variable-group velocity optical wave-packet. a In the setup, input Gaussian pulsed beam experiences reflection by a deformable mirror

(DM) (or free-surface mirror), phase-front correction by a spatial light modulator (SLM), reflection by a beam splitter (BS), image relay and beam

reduction by a parabola telescope, and finally Gauss−Bessel optical wave-packet (OWP) generation by an ideal thin axicon. b Optical field of the input

pulsed beam has plane phase- and pulse-fronts. c Optical field with DM (without SLM) has deformed phase- and pulse-fronts. d Optical field with SLM has

deformed pulse-front but near-plane phase-front. e Optical field after 5-m free propagation shows slight diffraction distortions. Insets in (c–e) illustrate fine

structures in a small regions of 200 μm× 60 fs. Inset in (c) shows smooth phase- and pulse-fronts, inset in (d) shows spatial amplitude modulation and

residual small phase-front tilt induced by SLM pixel-pixel gap and pixel size, respectively, and inset in (e) shows smearing effect by propagation diffraction.

f Surface deformation of DM. g Phase-front correction of SLM, and a small range is enlarged for observing the pixel effect. For observation, the carrier

frequency in (b–e) is multiplied by 0.1 to avoid too fast oscillations.
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aperture (like a Fresnel lens) and then collimates propagation
directions (or wave vectors) at different transverse positions. In
this case, after the ideal thin axicon, a Gauss−Bessel optical wave-
packet can be created in the superposition region. Due to the
pulse-front deformation, the created optical wave-packet does not
possess a constant superluminal group velocity governed by υb=
c/cos α anymore39, and the detail is going to be introduced in the
following section.

Variable-group velocity and acceleration. Figure 2 shows the
simulated intensity distributions (illustrated by red−yellow dis-
tributions) in 2D x−z/t and 3D x–y−z/t spatiotemporal domains.
Because of the axisymmetric profiles about the propagation axis,
here we only discuss the results in the 2D lateral plane x−z/t
containing the propagation axis. The axicon spatially divides the
input pulsed beam into two and changes their traveling directions
(illustrated by green dash-line arrows) with (half) conical angles

of α= ±0.5°. The plane phase-fronts (illustrated by white solid
lines) of two pulsed beams are always perpendicular to the tra-
veling directions. In the superposition region, a Gauss−Bessel
spatiotemporal optical wave-packet is generated at the core
position resulting from conical superposition. We keep the same
definitions as that in our previous article72: in space, the propa-
gation axis of the optical wave-packet (or Bessel beam) is defined
as the z-axis and the geometrical center of the superposition
region is defined as the spatial origin of (x= y= z= 0) (see
Fig. 1a); in time, the moment when the intersection of two phase-
fronts (the intersection of two white solid lines) arriving at z= 0
is defined as the temporal origin of t= 0.

When the deformed pulse-front has a cosine-function-like
axisymmetric distribution, Fig. 2a shows at the very beginning the
generated optical wave-packet (the core of red−yellow distribu-
tions) has the same location with the intersection of the phase-
fronts (the intersection of two white solid lines); however, during

Fig. 2 Propagation of variable-group velocity optical wave-packet. a After the ideal thin axicon, in 2D lateral plane the divided two half beams have

symmetrical propagation directions (green dash-line arrows) with an angle of 2α. When deformed pulse-front (red−yellow distributions) has an

axisymmetric cosine-function-like distribution, longitudinal gap Δz between the intersection of phase-fronts (white solid lines) and optical wave-packet

(core of red-yellow distributions) increases and decreases in the first- and second-half propagations, showing subluminal and superluminal group

velocities, respectively. b Isosurface plots (10 and 80% of the maximum intensity) show dynamics of optical wave-packet in the entire pulsed beam at

different propagating times of −100 ps, −50 ps and 0 in (a). c When deformed pulse-front has an opposite axisymmetric cosine-function-like distribution,

longitudinal gap Δz between the intersection of phase-fronts and optical wave-packet decreases and increases in the first- and second-half propagations,

showing superluminal and subluminal group velocities, respectively. The (half) conical angle generated by the axicon is α= 0.5°, and then the intersection

of phase-fronts travels at a constant velocity of 1.00004c.
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the propagation, the optical wave-packet will be temporally
delayed along the z-axis. From left to right in Fig. 2a, the detailed
distributions of the pulse-fronts (red−yellow distributions), the
phase-fronts (white solid lines), and the optical wave-packet (the
core of red−yellow distributions) at different propagating times
of t=−150, −100, −50, 0, 50, 100 and 150 ps are illustrated. The
intersection of the phase-fronts travels at a constant velocity of
1.00004c governed by υg= c/cos α, while the optical wave-packet
has a variable-group velocity. In the first half propagation from
t=−150 ps to t= 0, the longitudinal gap Δz between the
intersection of the phase-fronts and the optical wave-packet
increases from zero to the maximum with the propagating time t,
while in the second-half propagation from t= 0 to t= 150 ps, it
gradually decreases from the maximum to zero again. Figure 3a
shows the variation of the longitudinal gap Δz with the
propagating time t (or position z), which has a cosine-function-
like distribution about the propagating time t (or position z). The
blue curve in Fig. 3b shows the instantaneously variable
subluminal group velocities in the first half propagation, reaching
the minimum at around t=−100 ps, and the red curve illustrates
the instantaneously variable superluminal group velocities in the
second-half propagation, reaching the maximum at around t=
100 ps. Figure 3c shows the variation of the instantaneous
acceleration during the entire propagation, and the optical wave-
packet experiences decelerating, then accelerating and finally
decelerating motions in three temporal periods of from the
appearance time to around t=−100 ps, from around t=−100
ps to around t= 100 ps, and from around t= 100 ps to the
disappearance time, respectively. Figure 2b illustrates three

isosurface plots at 10% and 80% of the maximum intensity
showing the dynamics at three different propagating times of t=
−100 ps, −50 ps, and 0. It is clear that at different propagating
times the relative temporal (or z-axis) locations of the optical
wave-packet in the entire pulsed beam are different. At the
moment of the perfect overlap (i.e. t= 0), a Bessel beam with a
central core and a series of concentric rings appears; however,
while comparing with the traditional Bessel beam, the central core
and the concentric rings have different temporal (or z-axis)
locations, which is dominated by the pulse-front deformation.

Next, when the deformed pulse-front has an opposite cosine-
function-like axisymmetric distribution (or with a π phase-shift),
Fig. 2c shows the simulated distributions of the pulse-fronts, the
phase-fronts, and the optical wave-packet at different propagating
times of t=−150, −100, −50, 0, 50, 100 and 150 ps. At the very
beginning, the optical wave-packet has the maximum temporal
delay along the z-axis relative to the intersection of the phase-
fronts, i.e., the maximum longitudinal gap Δz. In the first half
propagation from t=−150 ps to t= 0, the longitudinal gap Δz
decreases to zero with the propagating time t, and in the second-
half propagation from t= 0 to t= 150 ps, it increases back to the
maximum again. Figure 3d shows the variation of the long-
itudinal gap Δz with the propagating time t (or position z). The
red curve in Fig. 3e shows the instantaneously variable super-
luminal group velocities in the first half propagation, reaching the
maximum at around t=−100 ps, and the blue curve shows the
instantaneously variable subluminal group velocities in the
second-half propagation, reaching the minimum at around t=
100 ps. Figure 3f shows the variation of the instantaneous

Fig. 3 Variation of location, group velocity and acceleration of optical wave-packet during propagation. Corresponding to axisymmetric cosine-function-

like pulse-front deformations a–c without and d–f with temporally delayed beam centers, variations of a, d longitudinal gap Δz (between the intersection of

phase-fronts and optical wave-packet), b, e instantaneous group velocity υb, and c, f instantaneous acceleration a of optical wave-packet during

propagation. Group velocity υb and acceleration a is normalized by c and c2, respectively. t and z are propagating time and position centered at the

geometrical center of conical superposition region.
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acceleration, and the optical wave-packet experiences accelerat-
ing, then decelerating and finally accelerating motions in three
temporal periods of from the appearance time to around t=
−100 ps, from around t=−100 ps to around t= 100 ps, and
from around t= 100 ps to the disappearance time, respectively.

By comparing Figs. 2a with 2c or 3a–c with 3d–f, the motions
of the optical wave-packet in two cases are opposite, which is
determined by the two opposite pulse-front deformations.
Figure 3a, d shows the variation value of the longitudinal gap
Δz (between the intersection of the phase-fronts and the optical
wave-packet) is dominated by that of the pulse-front deforma-
tion. Because the intersection of the phase-fronts has a constant
velocity of c/cos α (for an ideal thin axicon), the instantaneous
group velocity of the optical wave-packet can be calculated by the
derivative operation of υb= c/cos α− d(Δz)/dt, and the instanta-
neous acceleration of the optical wave-packet can be obtained by
a= dυb/dt. In this case, by controlling the value of the pulse-front
deformation, the instantaneous longitudinal gap Δz, and accord-
ingly the instantaneous group velocity and acceleration of the
optical wave-packet, in theory, can be well controlled. Further-
more, by introducing some unusual shapes of the pulse-front
deformations, optical wave-packets with unusual motion forms
(e.g., periodically variable-group velocity and—acceleration here)
can also be created.

Moreover, in Fig. 2a, c, the best image relay position by the
parabola telescope is at z= 0 (or t= 0), and when the pulsed
beam propagates at z= ±45mm (or t= ±150 ps) the
propagation-diffraction-induced slight distortions can be found.
In this case, when reducing the conical angle α to increase the
propagation distance, the propagation diffraction should be
considered, and the details are going to be discussed in the
“Discussion” section.

Controllability of variable-group velocity. The above result
shows that the shape and the value of the pulse-front deformation
dominates the motion form and the group velocity value of the
optical wave-packet, respectively. In our previous article72 with
the simplest form of pulse-front tilt (PFT), i.e., a linearly tilt
pulse-front, the optical wave-packet has a constant group velocity
governed by

υg ¼
cos β

cos αþ βð Þ
c; ð1Þ

where α is the (half) conical angle formed by the ideal thin axicon,
and β is the tilt angle between pulse- and phase-fronts.

For a complex pulse-front deformation, for example the
cosine-function-like profile here, Fig. 4a shows the instantaneous
PFT can be obtained by calculating the tangent angle β of the
tangent line at the intersection of two pulse-fronts. Figure 4b
shows the dependence of the optical wave-packet group velocity
υb on PFT for three different (half) conical angles α. The tunable
(or variation) range of the group velocity υb increases with
increasing PFT, and the capability can be further enhanced by
choosing a larger (half) conical angle α. If PFT is enlarged, the
difficulty of generating the required phase-correction by SLM will
increase. Figure 4c shows when the pulse-front deformations have
the same cosine-function-like shape but different peak-valley
(PV) values, the required phase-corrections by SLM are quite
different. When the PV value is enlarged, the instantaneous PFT
changes drastically along the transverse axis, accordingly the
variable range of the group velocity υb increases; however, a high
spatial-frequency phase-correction is also required, challenging
the SLM resolution. Figure 4d shows the number of the phase-
correction periods (−π, π) within 1 mm increases linearly with
increasing PFT. If one modulation period (−π, π) contains at

least five pixels, the required SLM pixel size has a negative
exponential function distribution with respect to PFT. For
example, with reference to an available 4 μm pixel size, when
the absolute value of PFT is larger than 280 fs mm−1, beam
reduction by the image relay telescope becomes necessary. This is
another reason why a parabola telescope with ten times beam
reduction is used in Fig. 1a. And the third reason is to reduce the
beam size to increase the instantaneous PFT across the beam
aperture and, accordingly, increase the variation range of the
group velocity υb.

The variation range of the (propagating time/position
dependent) group velocity υb is dominated by that of PFT across
the deformed pulse-front. For the case of a cosine-function-like
pulse-front deformation used in this article, the pulse-front is z=
L/2·cos(r/D·2π), where L and D are the longitudinal PV value and
the transverse period, respectively. The tangent angle can be
obtained β=−L/D·π·sin(r/D·2π), and the extremum is
βmax/min= ±L/D·π. Based on an available commercial DM with
a 100 μm PV value and a 20 mm diameter74, i.e., L= 100 μm and
D= 10 mm for an axisymmetric cosine-function-like pulse-front
deformation, the extremum is βmax/min ≈ ±31.41 mrad (or PFT ≈
±104.7 fs mm−1). When the ten times beam reduction by the
parabola telescope is considered, the extremum is increased to
βmax/min ≈ ±314.1 mrad (or PFT ≈ ±1047 fs mm−1). By the sub-
stitution of Eq. (1) with the calculated extremum, for different
(half) conical angles of α= 0.5°, 5°, and 10°, the variation range of
the group velocity υb is (0.997c, 1.003c), (0.976c, 1.033c), and
(0.96c, 1.077c), respectively. We can find that the overall variation
range of the group velocity is limited, and if required, which can
be slightly increased by replacing DM with a free-surface mirror
and/or increasing the magnification of the beam reduction
telescope.

Discussion
The pulse-front deformation would shorten the propagation
distance of a pulsed beam due to propagation diffraction,
although the phase-front is corrected. When keeping all simula-
tion parameters given in the “Methods” section and the setup
shown in Fig. 1a unchanged, we remove the axicon and simulate
the propagation of the pulsed beam around the image relay
position. Figure 5a shows the optical fields at different positions
of z= 0, 0.005ZR, 0.01ZR, and 0.015ZR (where z= 0 is the image
relay position and ZR= 4 m is the Rayleigh length of the corre-
sponding monochromatic Gaussian beam) and no serious dif-
fraction distortion is found. When the Gaussian pulse bandwidth
(FWHM) is increased from 10 to 20 nm, Fig. 5b shows after z=
0.005ZR the propagation diffraction seriously distorts the pulsed
beam. Keeping the 10 nm bandwidth unchanged, when the PV
value of the pulse-front deformation is enlarged from 300 to 600
fs, Fig. 5c shows that also after z= 0.005ZR the propagation dif-
fraction seriously distorts the pulsed beam. In this case, for a
broadband pulsed beam or a large-value pulse-front deformation,
the propagation distance is limited by propagation diffraction. In
this article, the length of the superposition region is around 115
mm (i.e., the beam waist 1 mm divided by the (half) conical angle
0.5°). If the pulse-front deformed pulsed beam is imaged into the
center of the superposition region of z= 0, as shown in Fig. 5a,
within the propagation range of (−0.015ZR, 0.015ZR) the spa-
tiotemporal distribution has no serious distortion, which can
cover the whole superposition range. However, if the pulse
bandwidth or the pulse-front deformation is enhanced, the flying
length of the optical wave-packet is reduced. If the (half) conical
angle α is enlarged to increase the variation range of the group
velocity υg (see Fig. 4b), the length of the superposition region is
dramatically reduced, which relaxes the limitation induced by the
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propagation diffraction. We should also emphasize that in theory,
the ideal Bessel beam can propagate over an infinite distance
without any spread. However, in a real experiment, due to a finite
beam aperture, the propagation invariant length is restricted. In
this article, the pulse-front deformation is added onto the input
pulsed beam, which enhances the propagation diffraction and
accordingly shortens the propagation invariant length. In this
case, the optical wave-packet slightly diverges during propagation,
although both the quantitative analysis in this paragraph and the
simulations in Figs. 2a, c and 5a show that the diffraction dis-
tortion within the conical superposition region is small.

Using the spatiotemporal coupling to control the group velo-
city and acceleration of an optical wave-packet or a focused
intensity peak recently is an interesting and valuable technology.
The spatiotemporal spectrum method invented by Abouraddy
et al.65 can change the group velocity of the optical wave-packet
in a very large range by changing the tilt angle of the plane (kz,
ω/c) with respect to the light-cone (kx, kz, ω/c) in spectral-space.
Group velocities varying from −4c (in the backward direction) to
30c (in the forward direction) were measured, and in theory,
arbitrary group velocities can be generated. The spatiotemporal
dispersion method simultaneously demonstrated by Quéré et al.
and Froula et al. can also adjust the group velocity of the focused
intensity peak within a large range by changing the longitudinal
chromatism and the temporal chirp69–71, and −0.09c to 39c flying

focuses were measured in experiments. This work of the pulse-
front deformed Bessel beam generation provides a third spatio-
temporal coupling method to control the group velocity and
acceleration72. Compared with the previous two methods, it
provides an opportunity to precisely control the variations of
both the group velocity and the acceleration of the optical wave-
packet, although the tunable range of the group velocity is limited
by the amount of the pulse-front deformation. Because the
diversity of the pulse-front deformation makes the diversity of the
group velocity (also the acceleration) possible, we can create some
optical wave-packets with unusual motion forms, for example, the
optical wave-packet with a nearly programmable group velocity
(or acceleration) theoretically demonstrated in this article.

In conclusion, we have theoretically demonstrated an optical
wave-packet having a nearly programmable group velocity by
introducing a complex axisymmetric pulse-front deformation
into the traditional Bessel beam generation. Different from the
previous results of optical wave-packets displaying only a single
motion form (superluminal or luminal or subluminal for the case
of group velocity; and accelerating or uniform-motion or decel-
erating for the case of acceleration), the optical wave-packets here
can propagate with nearly programmable motion forms during a
single propagation path (e.g., superluminal followed by sub-
luminal for the case of group velocity; and accelerating followed
by decelerating for the case of acceleration). In this article, due to

Fig. 4 Controllability of instantaneous group velocity and required SLM. a Pulse-front tilt (PFT) or tangent angle β at the intersection of two pulse-fronts

during conical superposition. b Dependence of instantaneous group velocity υb on PFT for (half) conical angles of α= 0.5°, 5° and 10°, and group velocity

υb is normalized by c. c Three different pulse-fronts of DM and required phase-corrections of SLM. d Dependence of modulation period number (within 1

mm) and required pixel size (five pixels within one modulation period) of SLM phase-correction on PFT. For a 4 μm SLM pixel size, when PFT is larger than

280 fs mm−1, beam reduction by telescope is required. DM deformable mirror and SLM spatial light modulator.
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a periodically distributed pulse-front deformation along the
transverse axis, the optical wave-packet propagates with super-
luminal and subluminal group velocities periodically along the
longitudinal axis, and the corresponding instantaneous accelera-
tion also varies between negative and positive values periodically.
In this case, the propagating time-dependent motions can be well
controlled by carefully optimizing the shape of the pulse-front
deformation, creating optical wave-packets with unusual motion
forms. As regards applications, we believe it can be used in some
propagating velocity matched experiments, such as bio-imaging,
particle-manipulation, particle acceleration, and radiation gen-
eration75–77, and the high spatiotemporal controllability could
also offer new opportunities for fundamental studies in optics and
physics.

Methods
Simulation model. The ideal thin axicon transfers a plane wave into a conical wave
and generates the Bessel beam in the superposition region. Due to the axisym-
metric distribution, the description is carried out in the 2D lateral plane containing
the propagation axis for simplification, for example the x−z or y−z plane shown in
Fig. 1a, and the divided half beams have individual traveling directions symme-
trically bout the propagation axis. Both the input beam and the generated Bessel
beam are described in the coordinate system of r−z, where r is the radial axis and z
is the propagation axis. The divided half beam after the axicon is described in its
own propagation (rotated) coordinate system of rα−zα, where rα is the radial axis
and zα is the propagation axis. The origins of two coordinate systems have the same
location at the geometrical center of the superposition region. When the clockwise
rotation of the (half) conical angle α induced by the axicon is defined as the
positive, and two coordinate systems of r−z and rα−zα satisfy the rotation rela-
tionship

rα

zα

� �

¼
cos α sin α

� sin α cos α

� �

r

z

� �

: ð2Þ

Under the paraxial approximation and the plane wave approximation, at the
center of the superposition region (or the coordinate origin), the spectral optical

field of a divided half beam is described in its rotated coordinate system of rα−zα
and given by

E rα; zα ¼ 0;ωð Þ ¼ A rαð ÞA ωð ÞASLM rαð Þ exp i ϕDM rαð Þ þ ϕSLM rαð Þ
� �

; ð3Þ

where A(rα) and A(ω) are the spatial and spectral profiles of the amplitude,
respectively, ASLM(rα) is the spatial amplitude modulation by SLM, ϕDM(rα) and
ϕSLM(rα) are the phase-modulations by DM and SLM, respectively. In this article,
because of the image relay by the parabola telescope, we assume the shaped pulsed
beam appears at the image relay position of zα= 0. The spatial amplitude
modulation ASLM(rα) by SLM is due to the net-like pixel−pixel gaps, which is
described as

ASLM rαð Þ ¼
X

N

rect
rα � Np

p� d

� �

; ð4Þ

where N is integer, rect() is the rectangular-function, d is the SLM pixel−pixel gap,
p is the overall size of the SLM pixel (including the gap d), and then p−d is the
effective size of the SLM pixel. Because DM has a continuous surface, it has no
spatial amplitude modulation and only introduces a continuous phase modulation
across the beam aperture. In this article, two axisymmetric cosine-function-like
phase-modulations ϕDM(rα) by DM are used, respectively, and given by

ϕDM rαð Þ ¼ k
L

2
� cos

rα
D
2π

� 	

þ 1
h i

; ð5Þ

where k is the wavenumber, and L and D are the longitudinal PV value and the
transverse period of the modulation, respectively. SLM in theory needs to introduce
a conjugated [0, 2π) phase-correction for restoring a plane phase-front. However,
the influence of the spatial resolution limited by the pixel size should be considered,
and then the phase-front correction ϕSLM(rα) by SLM is described as

ϕSLM rαð Þ ¼ π �mod ϕDM
rα
p


 �

p

� �

k0
k

; 2π

� �

; ð6Þ

where ⌊⌋ is the floor-function that gives as output the greatest integer less than or
equal to the input, mod() is the modulo-function to return the positive remainder
of a division, and k0 is the wavenumber for the center wavelength (corresponding
to SLM). The floor-function describes the spatially discrete phase induced by the
SLM pixel size p, the modulo-function describes the [0, 2π) phase-variation by
SLM, and finally the conjugated phase-correction is produced and moved to the
region of (−π, π].

Fig. 5 Propagation diffraction of pulse-front deformed pulsed beam. After the parabola telescope (ten times beam reduction) and if without the axicon,

optical fields from the image relay position of z= 0 to different propagation distances of z= 0.005ZR, 0.01ZR, and 0.015ZR, where ZR= 4m is the Rayleigh

length of corresponding monochromatic Gaussian beam. a Gaussian pulse bandwidth is 10 nm, and PV value of pulse-front deformation is 300 fs. b

Gaussian pulse bandwidth is increased to 20 nm. c PV value of pulse-front deformation is increased to 600 fs. Modulations induced by SLM pixel-pixel gap

and pixel size are considered. For observation, the carrier frequency is multiplied by 0.1 to avoid too fast oscillations. PV peak-valley and SLM spatial light

modulator.
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The angular spectrum method is used for modeling the propagation diffraction,
and the optical field after zα propagation is given by

E rα; zα;ωð Þ ¼

Z

A frα ; zα ¼ 0;ω
� 	

exp ikzα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� λ2f 2rα

q
� 	

exp i2πfrα rα

� 	

dfrα ; ð7Þ

where, at the initial position of zα= 0, the plane-wave angular spectrum and the
corresponding optical field satisfy the Fourier-transform relationship

A frα ; zα ¼ 0;ω
� 	

¼

Z

E rα; zα ¼ 0;ωð Þ exp �i2πfrα rα

� 	

drα: ð8Þ

After propagation, by using Eq. (2), the spectral optical fields of two divided half
beams are described in the non-rotated coordinate system of r−z, and the coherent
superposition (or interference) is given by

EOWP r; z;ωð Þ ¼ E r; z;ω; αð Þ þ E r; z;ω;�αð Þ: ð9Þ

The temporal optical field is obtained by the Fourier-transform in spectrum and
given by

EOWP r; z; tð Þ ¼
1

2π

Z

EOWP r; z;ωð Þ exp iωtð Þdω: ð10Þ

Finally, because the pulsed beam is axisymmetric about the propagation axis
(z-axis), the 3D distribution is achieved by rotating the 2D result about the z-axis
with r2= x2+ y2.

Simulation parameters. Throughout this article, the parameters of the setup
shown in Fig. 1a are as follows: the input Gaussian pulse has a 800 nm center
wavelength and a 10 nm (FWHM) bandwidth; the beam diameter before and after
the parabola telescope is 20 and 2 mm, respectively; DM introduces a cosine-
function-like axisymmetric deformation with a 10 mm period and a 90 μm (300 fs)
PV value; SLM has [−π, π) (corresponding to the center wavelength) phase-
correction capability and a 40 μm pixel size including a 5 μm pixel−pixel gap; the
parabola telescope introduces perfect ten times beam reduction; and the ideal thin
axicon introduces a α= ±0.5° (half) conical angle. DM and SLM are positioned
much closed to each other, and the beam divergence after DM is neglected. The
parabola telescope images the pulse-front deformed pulsed beam into the geo-
metrical center of the superposition region formed by the ideal thin axicon, where
each divided half pulsed beam is assumed to have a six-order super-Gaussian beam
profile in the lateral plane. All simulations are accomplished in the time domain
with 1.2 ps window size and 1 fs accuracy (and the corresponding spectrum
domain satisfies the Fourier relationship) and in the space domain with 100 mm
window size and 2 μm accuracy (and the corresponding angular spectrum domain
satisfies the Fourier relationship).

Group velocity and acceleration calculation. Under the approximation with a
distortion-free pulse-front in a finite propagation length, the equations for the
instantaneous group velocity and acceleration of the optical wave-packet are

derived. Figure 6 shows, from the propagating time t0 to t, the propagation distance
along the zα-axis in the rotated coordinate system of rα−zα is given by

L1 tð Þ ¼ t � t0ð Þc; ð11Þ

where t0 is the initial time when the phase-fronts arrive at the back-surface of the
ideal thin axicon, and the propagation distance of the intersection of the phase-
fronts (or the intersection of the phase-front and the z-axis) along the z-axis in the
non-rotated coordinate system of z−r is given by

L2 tð Þ ¼
L1 tð Þ

cos α
:

ð12Þ

The propagation distance of the optical wave-packet along the z-axis in the
coordinate system of r−z is given by

L3 tð Þ ¼ L2 tð Þ þ
t0c

cos α
� ft0 0ð Þ

h i

� Δz tð Þ; ð13Þ

where Δz(t) is the instantaneous longitudinal gap between the intersection of the
phase-fronts and the optical wave-packet, satisfying

Δz tð Þ ¼ L1 tð Þ tan α sin αþ
t0c

cos α
� ft0 L1 tð Þ sin α½ �

� 	

: ð14Þ

The function z= ft0(r) is the distribution of the deformed pulse-front in the
coordinate system of r−z at the initial propagating time t0. In this article, the initial
pulse-front distribution in the rotated coordinate system of rα−zα can be obtained
by dividing Eq. (5) with the wavenumber k, and then, using Eq. (2), which in the
non-rotated coordinate system of r−z can be obtained conveniently.

The instantaneous group velocity of the optical wave-packet is given by

υg tð Þ ¼
d L3 tð Þ½ �

dt
;

ð15Þ

and by the substitution of Eq. (15) with Eq. (13), the instantaneous group velocity
can also be described as

υg tð Þ ¼
c

cos α
�
d Δz tð Þ½ �

dt
:

ð16Þ

Equation (16) shows the instantaneous group velocity is relevant to two terms: the
first term is the constant velocity of the intersection of the phase-fronts; the second
term is the variable velocity related to the change of the longitudinal gap Δz
(between the intersection of the phase-fronts and the optical wave-packet), which is
eventually dominated by the pulse-front deformation. This indicates why the pulse-
front deformation can change the group velocity of the optical wave-packet and
conforms to the phenomenon shown in Fig. 2.

By the substitution of Eq. (16) with Eq. (14), the instantaneous group velocity
can be re-described as

υg tð Þ ¼
c

cos α
� c tan α sin αþ f 0t0 t � t0ð Þc sin α½ �c sin α; ð17Þ

where ft0′(r) is the first-order derivative of the pulse-front function ft0(r). The
instantaneous acceleration of the optical wave-packet satisfies

a tð Þ ¼
d υg tð Þ
h i

dt
;

ð18Þ

and by the substitution of Eq. (18) with Eq. (17), it is described as

a tð Þ ¼ f 00t0 t � t0ð Þc sin α½ �c2 sin2 α; ð19Þ

where ft0″(r) is the second-order derivative of the pulse-front function ft0(r).
Equations (17) and (19) show, for a certain pulse-front deformation of z= ft0(r),
the instantaneous group velocity and acceleration of the optical wave-packet
produced by this method can be directly calculated and, more importantly, well
designed.
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