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Abstract—Optical wireless, also known as free-space optics, has
received much attention in recent years as a cost-effective, license-
free and wide-bandwidth access technique for high data rates
applications. The performance of free-space optical (FSO) com-
munication, however, severely suffers from turbulence-induced
fading caused by atmospheric conditions. Multiple laser trans-
mitters and/or receivers can be placed at both ends to mitigate
the turbulence fading and exploit the advantages of spatial
diversity. Spatial diversity is particularly crucial for strong
turbulence channels in which single-input single-output (SISO)
link performs extremely poor. Atmospheric-induced strong tur-
bulence fading in outdoor FSO systems can be modeled as a
multiplicative random process which follows the K distribution.
In this paper, we investigate the error rate performance of FSO
systems for K-distributed atmospheric turbulence channels and
discuss potential advantages of spatial diversity deployments
at the transmitter and/or receiver. We further present efficient
approximated closed-form expressions for the average bit-error
rate (BER) of single-input multiple-output (SIMO) FSO systems.
These analytical tools are reliable alternatives to time-consuming
Monte Carlo simulation of FSO systems where BER targets as
low as 10−9 are typically aimed to achieve.

Index Terms—Atmospheric turbulence, bit-error rate (BER),
free-space optical communication, K distribution, optical wire-
less, spatial diversity.

I. INTRODUCTION

FREE-SPACE OPTICAL (FSO) communication is a
license-free and cost-effective access technique, which

has attracted significant attention recently for a variety of
applications [1], [2]. Channels in FSO systems have wider
bandwidth and therefore are able to support more users com-
pared to radio frequency (RF) counterparts. Through relaying
techniques, outdoor FSO optical transceivers can also cover
large distances [3], [4]. With its high-data-rate capacity and
wide bandwidth on unregulated spectrum, FSO communi-
cation is a promising solution for the “last mile" problem,
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however its performance is highly vulnerable to adverse atmo-
spheric conditions. Atmospheric turbulence occurs as a result
of the variations in the refractive index due to inhomogeneities
in temperature and pressure changes. This results in rapid
fluctuations at the received signal, i.e. known as fading or
scintillation, impairing the system performance particulary for
link ranges for 1 km and above.

Over the years, a number of statistical channel models have
been proposed to describe weak or strong atmospheric-induced
turbulence fading [1]. For strong turbulence conditions, the
K distribution has been found to be a suitable model since
it provides an excellent agreement between theoretical and
experimental data [5]. In [6], Uysal and Li have used this
channel model to evaluate the performance of coded FSO
systems in terms of the pairwise error probability and bit-
error rate (BER). In [7], they have extended their results
for a correlated K turbulence model where an exponential
correlation profile is adopted. In [8], Kiasaleh has studied
the BER performance of a FSO heterodyne system over the
K channel. The results in these papers demonstrate that the
performance of single-input single-output (SISO) FSO links
severely suffers from strong turbulence and is far away from
satisfying the typical BER targets for FSO applications within
the practical ranges of signal-to-noise ratio. This necessitates
the deployment of powerful fading-mitigation techniques. In
the existing literature on FSO communication, two techniques
have been proposed to mitigate the degrading effects of
atmospheric turbulence: Error control coding in conjunction
with interleaving [7], [9] and maximum likelihood sequence
detection (MLSD) [10]. However, both approaches come with
some practical limitations. The first one requires large-size
interleavers whereas the later suffers from high computational
complexity.

Another promising solution is the use of spatial diversity,
a well known diversity technique in RF systems. By using
multiple apertures at the transmitter and/or the receiver, the
inherent redundancy of spatial diversity has the potential to
significantly enhance the performance. The possibility for
temporal blockage of the laser beams by obstructions is
further reduced and longer distances can be covered through
heavier weather conditions. The use of space diversity in
FSO systems has been first proposed in [11]. In [12], [13],
Shin and Chan have investigated the outage probability of
multiple-input multiple-output (MIMO) FSO systems over
log-normal turbulence channels. In [14], [15] Wilson et.
al have studied MIMO FSO transmissions assuming pulse-
position-modulation (PPM) [14] and Q-ary PPM [15] both in
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log-normal and Rayleigh fading regimes. In [16], Navidpour
et.al. have studied the BER performance of MIMO FSO links
for both independent and correlated log-normal atmospheric
turbulence channels.

In this paper, we investigate the performance of MIMO
FSO links over independent and not necessarily identically
distributed (i.n.i.d.) K turbulence channels. We assume inten-
sity modulation/direct-detection (IM/DD) with on-off keying
(OOK). First, as a benchmark, we derive a closed-form
expression for the BER of SISO case. Then, we present
highly accurate approximated closed-form BER expressions
for FSO links with multiple apertures at the receiver. All
the derived expressions are given in terms of the well-known
Meijer G-functions which are available as built-in functions
of many commercial mathematical software packages. These
expressions are highly efficient analytical tools and stand
out as reliable alternatives to time-consuming Monte Carlo
simulation of FSO systems where very low BER targets (from
10−6 to 10−9) are aimed to achieve.

The remainder of the paper is organized as follows. In
Section II, the system model is introduced and the K distri-
bution atmospheric turbulence is described. In Section III, we
present a closed-form BER expression for SISO FSO links
while in Section IV multiple transmit or receive apertures
deployments are investigated for optimal combining1 (OC),
equal-gain combining (EGC) and selection combining (SC)
diversity receivers. In Section V, a number of numerical
examples are presented to confirm the accuracy of the derived
expressions and the advantages of using spatial diversity on the
FSO links are discussed. Finally, useful concluding remarks
are provided in Section VI.

II. SYSTEM AND CHANNEL MODEL

A. System Model

An FSO system is considered where the information signal
is transmitted via M apertures and received by N apertures
over a discrete-time ergodic channel with additive white Gaus-
sian noise (AWGN). We assume binary-input and continuous
output and IM/DD with OOK. The received signal at the nth
receive aperture is given by

rn = xη
M∑

m=1

Imn + vn, n = 1, ..., N (1)

where x ∈ {0, 1} represents the information bits, η is the
optical-to-electrical conversion coefficient, Imn denotes the
irradiance from the mth transmitter to the nth receiver, and
vn is the AWGN with zero mean and variance σv = N0/2.
Under the Gaussian noise approximation, it has been implicitly
assumed that the presence of ambient light in photodetectors
can be ignored. Although it is a major source of interference
particularly during daylight, it can be significantly reduced
using infrared filters over the photodiodes in practical FSO
implementations. Considering that the coherence length of
the optical beams is of the order of centimeters, the channel

1In this paper we use the term OC instead of maximal-ratio combining
(MRC) which is common in the wireless communications literature. However,
there are papers in optics literature where the term MRC is used, e.g. [17],
[18].

fades can be assumed as independent if the transmitters and/or
receivers are placed a few centimeters apart.

B. Channel Statistics

Strong atmospheric turbulence is modeled using a widely
accepted distribution, the K distribution [5]. K turbulence
model can be considered as a product of two independent mod-
els [7], (i.e., exponential distribution ∗ gamma distribution)
and its probability density function (pdf) of the normalized
irradiance is given by

fImn (Imn)

=
2α

(αmn+1)
2

mn

Γ (αmn)
I

(αmn−1)
2

mn Kαmn−1

(
2
√

αmnImn

)
, Imn > 0

(2)

where αmn is a channel parameter related to the effective
number of discrete scatterers, Γ (·) is the Gamma function
[19, eq. (8.310.1)], and Kν(·) is the νth-order modified Bessel
function of the second kind [19, eq. (8.432.2)]. When αmn →
∞, (2) approaches the negative exponential (NE) distribution.
By writing the Kν(·) in terms of the Meijer G-function given
in [20, eq. (8.4.23.1)] as

Kν(x) =
1
2
G2,0

0,2

[
x2/4
∣∣ −

ν
2 ,− ν

2

]
, (3)

the cumulative distribution function (cdf) of I can be easily
derived from (2) with the help of [20, eq. (2.24.2.2)] as

FImn(Imn) =
1

Γ(αmn)
G2,1

1,3

[
αmnImn

∣∣∣∣ 1
αmn, 1, 0

]
. (4)

Note that Meijer G-function [19, eq. (9.30)] is a standard
built-in function in most of the well-known mathematical soft-
ware packages such as Mathematica and Maple. Additionally,
using [19, eq. (9.303)], the Meijer G-function can be written
in terms of the more familiar generalized hypergeometric
functions [19, eq. (9.14.1)].

The n-th order moment represented by
μImn(n) =

∫∞
0

In
mnf Imn

(Imn)dImn is given in a
closed form using [21, eq. (24)] as

μImn(n) =
Γ(n + 1)Γ(n + αmn)

αn
mnΓ(αmn)

. (5)

Using (5) we can calculate the scintillation index (SI) as

SI �
E
[
I2
mn

]− E2 [Imn]
E2 [Imn]

=
αmn + 2

αmn
(6)

where E[·] denotes the expected value of the enclosed. Since
SI depends only on the parameter αmn, one can see that the
turbulence is stronger (SI is high) for lower values of αmn

and gets weaker as αmn increases.

C. Electrical SNR Statistics

The instantaneous electrical signal-to-noise ratio (SNR) can
be defined as γmn = (ηImn)2 /N0. The average electrical
SNR is defined as, 2μmn = (ηE [Imn])2 /N0[22]. After a

2Note that E[I] = 1 since Imn is normalized. Also μ is different than
γ = E[γ] since the latter quantity is defined as γ = η2E

[
I2
]
/N0.
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simple power transformation of the random variable (rv) Imn,
the pdf of the electrical SNR, γmn, can be derived as

fγmn (γmn)

=
α

αmn+1
2

mn γ
αmn−3

4
mn

Γ (αmn)μ
αmn+1

4
mn

Kαmn−1

(
2

√
αmn

√
γmn

μmn

)
, γmn > 0.

(7)

The cumulative distribution function (CDF) of γmn is then

Fγmn(γmn) =
1

Γ(αmn)
G2,1

1,3

[
αmn

√
γmn

μmn

∣∣∣∣ 1
αmn, 1, 0

]
.

(8)

III. SISO FSO LINKS

The BER of IM/DD with OOK in the presence of AWGN
and perfect CSI at the receiver side is given by Pe =
P (1)P (e|1)+P (0)P (e|0) where P (1) and P (0) are the prob-
abilities of sending 1 and 0 bits, respectively, and P (e|1) and
P (e|0) denote the conditional bit-error probabilities when the
transmitted bit is 1 and 0. Due to the symmetry of the problem,
we consider that P (1) = P (0) =0.5 and P (e|1) = P (e|0). It
is easy to show that conditioned on I (the indexes m, n are
omitted for brevity), we have [16]

P (e|I) = P (e|1, I) = P (e|0, I) = Q

(
ηI√
2N0

)
(9)

where Q(·) is the Gaussian Q-function defined as
Q(x) =

(
1/

√
2π
) ∫∞

x exp
(−t2/2

)
dt and also related to the

complementary error function erfc(·) by erfc(x) = 2Q(
√

2x).
The average BER, Pb(e), over the K channel can be

obtained by averaging (9) over the fading coefficient I , i.e.,

Pe =
∫ ∞

0

fI(I)
[
1
2
erfc

(
ηI

2
√

N0

)]
dI. (10)

The above integral can be evaluated by expressing the Kν(·)
and the erfc(·) integrands as Meijer G-functions (erfc (

√
x) =

1√
π
G2,0

1,2

[
x| 1

0,1/2

]
[20, eq. (8.4.14.2)]) and using [21, eq. (21)].

Therefore, a closed-form solution yields as

Pe,SISO =
2α−2

√
π3Γ(α)

G2,4
5,2

[
4η2

N0α2

∣∣∣∣ 1−α
2 , 2−α

2 , 0, 1
2 , 1

0, 1
2

]
.

(11)
Alternatively, if we express (9) in terms of γ, i.e.,
Q
(

nI√
2No

)
=Q
(√γ

2

)
= 1

2erfc
(√

γ

2

)
, and average over the pdf

of γ, the above average BER can be expressed as

Pe,SISO =
2α−2

√
π3Γ(α)

G2,4
5,2

[
4μ

α2

∣∣∣∣ 1−α
2 , 2−α

2 , 0, 1
2 , 1

0, 1
2

]
. (12)

IV. MIMO FSO LINKS

Since the BER performance of SISO FSO link is quite poor
(i.e., higher than 10−3 in the SNR range of 30-50 dB as it
will be later demonstrated through our numerical results) over
strong turbulence, the use of diversity techniques is absolutely
necessary. The use of spatial diversity can be implemented
either at the transmitter (MISO) or at the receiver (SIMO) or

at both of them (MIMO). The optimum decision metric for
OOK is given by [16, eq. (16)]

P (r|on,Imn)
on
≷
off

P (r|off,Imn) (13)

where r = (r1, r2, ...rn) is the received signal vector. By
following a similar analysis as in [16] for the conditional
probabilities of the received vector being in “on" or in “off"
state, the average error rate can be calculated from

Pe,MIMO

=
∫
I

fI (I)Q

⎛
⎜⎝ η

MN
√

2N0

√√√√ N∑
n=1

(
M∑

m=1

Imn

)2
⎞
⎟⎠ dI

(14)

where fI (I) is the joint pdf of vector I = (I11, I12, ...IMN )
of length MN . The average BER in (14) can be calculated
through multi-dimensional numerical integration and with the
help of mathematical software packages. In order to fairly
compare MIMO links with SISO one, the factor M is used in
(14) to ensure that the total transmit power of the MISO FSO
system is the same as the power of the SISO link. Moreover,
the factor N ensures that the area of the receive aperture in
SISO links has the same size with the sum of N receive
aperture areas of SIMO links [12]. To have further insight
into the performance of FSO links with spatial diversity, we
investigate the transmit and receive diversity as special cases.

A. MISO FSO Links

When transmit diversity is used, i.e., N = 1, (14) is written
as

Pe,MISO =
∫
I

fI (I)Q

(
η

M
√

2N0

M∑
m=1

Im

)
dI (15)

which requires M -dimensional integration. Specifically, the
multidimensional Gaussian quadrature rule (GQR) can be
efficiently applied, since it involves multiple averaging of a
Gaussian Q-function over the joint pdf vector fI (I). The cal-
culation of GQR provides a set of weights and abscissas [23,
eq. (25.4.45); p.923, table (25.9)] such that the approximation

∫ b

a

G(x)W (x)dx ≈
K∑

j=1

wjG (xj) (16)

is exact if G(X) is a polynomial of degree up to 2K − 1
[24]. The values of wj and xj depend on the weight function
and the integration interval, and can be computed by finding a
set of orthogonal polynomials over W (x) on [a, b]. From the
algorithm proposed in [25], if W (x) is the joint pdf of the rvs
Im, the K-point GQR can be computed using the first 2K−1
moments of Im, which are derived in closed-form in (5).

B. SIMO FSO Links

1) Optimal Combining: When receive diversity is applied,
the variance of the noise in each aperture is N times smaller
since the variance of the noise in each receiver is σ2

v = N0
2N .
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Therefore, for M = 1 and OC implementation at the receiver
with perfect CSI, (14) is written as

Pe,OC =
∫
I

fI (I) Q

⎛
⎝ η√

2N N0

√√√√ N∑
n=1

I2
n

⎞
⎠ dI. (17)

The integral presented in (17) is difficult if not impossible,
to be evaluated in closed form. For that reason we use the
approximation for the Q-function presented in [26, eq. (14)]
(i.e., Q(x) ≈ 1

12 e−
x2
2 + 1

4 e−
2x2
3 ) and thus the average BER

can be evaluated as

Pe,OC ≈ 1
12

N∏
n=1

∫ ∞

0

fIn(In)e−
η2

4NN0
I2

ndIn

+
1
4

N∏
n=1

∫ ∞

0

fIn(In)e−
η2

3NN0
I2

ndIn.

(18)

By applying (2), (3) in (18) and introduce also the exponential
function in terms of the Meijer G-function presented in [21,
eq. (11)] as

e−x = G1,0
0,1

[
x|−0
]
, (19)

the error rate of the OC diversity receiver can be evaluated
using [20, eq. (2.24.4.3)] as

Pe,OC ≈ 1

12

N∏
n=1

2αn−1

πΓ(αn)
G1,4

4,1

[
4η2

α2
nNN0

∣∣∣∣ 1−αn
2

, 2−αn
2

, 0, 1
2

0

]

+
1

4

N∏
n=1

2αn−1

πΓ(αn)
G1,4

4,1

[
16η2

3α2
nNN0

∣∣∣∣ 1−αn
2

, 2−αn
2

, 0, 1
2

0

]
.

(20)

Equation (20) can be rewritten also in terms of the average
electrical SNR as

Pe,OC ≈ 1
12

N∏
n=1

2αn−1

πΓ(αn)
G1,4

4,1

[
4μn

α2
nN

∣∣∣∣ 1−αn

2 , 2−αn

2 , 0, 1
2

0

]

+
1
4

N∏
n=1

2αn−1

πΓ(αn)
G1,4

4,1

[
16μn

3α2
nN

∣∣∣∣ 1−αn

2 , 2−αn

2 , 0, 1
2

0

]
.

(21)

where αn is the nth channel parameter and μn is the average
electrical SNR at the output of the nth diversity aperture.

2) Equal gain Combining (EGC): For the case where EGC
is implemented at the receiver side (i.e., the receiver adds the
receiver branches) the average error rate can be expressed as

Pe,EGC =
∫
I

fI (I)Q

(
η

N
√

2N0

N∑
n=1

In

)
dI. (22)

It should be emphasized here, that the resulting expression
is equivalent to the one obtained for the MISO FSO links
given by (15) assuming EGC at the receiver side. Also, it is
interesting to note that although EGC is used at the receiver,
the knowledge for CSI is still needed for threshold calculation
on the decision rule as discussed in [16, eqs. (31) and (32)].

Fig. 1. Average BER of SISO FSO links as a function of SI .

3) Selection Combining (SC): Among the considered com-
bining schemes, the SC is the least complicated since it pro-
cesses only one of the diversity apertures and specifically the
aperture with the maximum received irradiance (or electrical
SNR). Therefore, the selection is made according to

ISC = max (I1, I2, . . . , In) . (23)

The average BER at the output of SC receiver can be
expressed as

Pe,SC =
∫ ∞

0

fISC (ISC)Q
(

ηISC√
2NN0

)
dISC (24)

where fISC (ISC) is the pdf of the output which can be
evaluated as

fISC (ISC) =
d

dISC
FISC (ISC) =

d

dISC

N∏
j=1

FIj (ISC)

=
N∑

i=1

N∏
j=1,j �=i

fIi(ISC)FIj (ISC).

(25)

By applying (25) in (24) the average error can be calculated
via the sum of N semi-infinite integrals

Pe,SC =
N∑

i=1

N∏
j=1,j �=i

∫ ∞

0

fIi(ISC)

× FIj (ISC)Q
(

ηISC√
2NN0

)
dISC .

(26)

The integral in (26) can be also evaluated by GQR as presented
above for the MISO case.

V. NUMERICAL EXAMPLES & DISCUSSION

In this section, the error performance of MISO and SIMO
deployment of apertures is investigated.
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Fig. 2. Comparison of the average BER between SISO and MISO FSO links
assuming perfect CSI over i.i.d. turbulent channels

In Fig. 1, the average BER in terms of μ for various pa-
rameters of the scintillation index, is depicted. We particularly
examine the performance when SI takes values between 1 and
4. Note that the SI in (6) is invalid for SI ≤ 1. We observe
that as SI increases, the turbulence effect is getting stronger
and thus the BER increases. This is expected since α decreases
as it is inversely proportional to SI . In the limiting case of
SI = 1, α → ∞ and hence a low BER bound exists. It is
obvious that even for high values of average electrical SNR
(i.e, 30-50 dB) BER is not exceeding 10−3 dB which is not an
acceptable BER for practical FSO systems. This fully justifies
the use of spatial diversity.

In Fig. 2 the average BER performance of MISO FSO links
with M = 2, 3, 5, and 7 transmit apertures over independent
and identically distributed (i.i.d.) atmospheric turbulence chan-
nels with α=4 or α=40, is depicted. It is clearly depicted that
the average BER is significantly improved as the number of
transmit antennas increases compared to the SISO deployment
which is also depicted. Indeed, it can be easily derived that
with M = 3 transmit apertures and α = 40 it can be obtained
an SNR improvement of about 110 dB with respect to SISO
at a target BER=10−9.

In Fig. 3 the error performance of SIMO FSO links with
N = 2, 3 receive apertures employing EGC and OC over
i.n.i.d. atmospheric turbulence channels, is illustrated. It is
shown that the performance of EGC receivers is close to OC
receivers. Specifically, for N = 2 there is only a 1.2 dB
difference at BER=10−9. The difference in the performance
between EGC and OC receivers is expected to be similar
for more receive apertures, as also presented in [16] for
weak turbulence. However, it is not plotted here since the
results are difficult if not impossible to be extracted for EGC.
This result (i.e., similar error performance of EGC and OC
receive apertures) demonstrates the aperture averaging effect
i.e., a number of small receive apertures provide a similar

Fig. 3. Comparison of the OC and EGC receivers SIMO FSO links over
i.n.i.d. atmospheric turbulence channels for N = 2 (α1 = 4, α2 = 40, μ1 =
μ, μ2 = 2μ) and N = 3 (α1 = 4, α2 = 10, α3 = 50, μ1 = μ, μ2 =
2μ, μ3 = 4μ).

Fig. 4. Comparison of the OC and EGC receivers with SC receivers for
SIMO FSO links for N = 2 over i.i.d. turbulent channels.

performance with the deployment of a large receive aperture
whose area is the same as the total area of smaller ones’. Note
that Fig. 3 has been plotted using the approximation for the
Q-function for OC and the GQR method for EGC.

Finally, in Fig. 4 the error performance of SIMO FSO
links with M = 2 receive apertures employing EGC, OC and
SC over i.i.d. atmospheric turbulence channels, is depicted.
As expected, it is shown that the performance of EGC/OC
receivers outperforms SC ones. Therefore, the OC and EGC
diversity schemes remain the most desired diversity schemes
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to mitigate error in uncoded optical wireless systems despite
their circuitry complexity compared to SC receive aperture
schemes.

VI. CONCLUSIONS

In this paper, we have studied the error rate performance of
FSO communication systems using spatial diversity over K-
distributed atmospheric turbulence channels. We have obtained
accurate approximated closed-form expressions for the aver-
age BER of SIMO FSO systems in terms of Meijer G-function.
Our results demonstrate that the use of multiple apertures at
the transmitter and/or receiver enhance the quality of FSO
systems similar to RF ones. In comparison to SISO case, a
performance improvement of 110 dB is obtained at a target
BER rate of 10−9 by using 3 transmit apertures. Moreover, it is
shown that the required number of apertures over i.i.d. strong
turbulence channels for transmit/receive diversity FSO systems
in order to have a meaningful performance at a practical SNR
value is more than 5.
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