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We report on a proof of principle demonstration of an optically driven micromachine element.

Optical angular momentum is transferred from a circularly polarized laser beam to a birefringent

particle confined in an optical tweezers trap. The optical torque causes the particle to spin at up to

350 Hz, and this torque is harnessed to drive an optically trapped microfabricated structure. We

describe a photolithographic method for producing the microstructures and show how a light driven

motor could be used in a micromachine system. © 2001 American Institute of Physics.

@DOI: 10.1063/1.1339995#

In recent years, the trend toward micronization in re-

search and development has turned toward production of mi-

cromachines and molecular motors, which have potential

mobility, information transfer and energy efficiency advan-

tages over macromachines. The best known micromachines

are the microelectromechanical systems ~MEMS!, which in-

corporate mechanics together with electronics on a micro-

scopic scale. Microscopic electromagnetic motors and piezo-

electric and electrostatic actuators have been incorporated

into MEMS.1 Other novel driving mechanisms suggested for

micromachines include a dielectric fluid motor based on

convection,2 an opto-microengine relying on the same prin-

ciples as a Crookes’ radiometer,3 and optical angular mo-

mentum from a highly focused laser beam.4 In this letter we

use optical torque to drive the rotation of a microfabricated

machine element that is confined in an optical tweezers trap.

The torque produced by piezoelectric inchworm motors

with diameter of several millimeters can be of the order of

1023 Nm.5 Here we describe an experiment to harness opti-

cal torque to drive the rotation of a micron-sized element,

which can be driven with optical torque of the order of 10215

Nm. Recently, controllable rotary motion was observed on a

molecular level,6 where the required torque will be smaller

still.

Using optical torque allows rotation of an element with-

out mechanical contact, so the device can be rotated while in

a sealed environment. We outline a photolithographic

method for producing transparent ‘‘machine elements’’ with

features on the order of 1 mm, which are then trapped on an

optical ‘‘axle’’ and caused to rotate about this axle by a

nearby spinning particle driven by optical torque.7 A dual

beam optical tweezers trap, steerable in two dimensions as

well as having a movable focus,8 allows the microfabricated

element and a birefringent particle to be confined in separate

traps and then moved relative to each other. The polarization

of the trapping laser beam is responsible for transferring op-

tical torque to the birefringent particle, and when circularly

polarized can result in the particle spinning.7 The spinning of

the birefringent particle can induce rotation of the machine

element when the spinning particle is brought near the mi-

crofabricated structure.

The microfabrication process we describe here is de-

signed to produce large numbers of identical structures for

use in our optical torque experiments, where optical tweezers

are used to trap and rotate objects with characteristic dimen-

sions of the order of microns. Using optical tweezers places

some restrictions on the structure size, shape, and optical

properties.

The shapes we produce must be transparent to the trap-

ping laser beam to avoid optical damage, and must have

refractive index higher than the surrounding medium ~water

in our experiments! in order to be optically trapped three

dimensionally. We used amorphous SiO2 ~silicon dioxide! as

it meets these requirements, being transparent in the visible

spectrum with index of refraction 1.46.

A photolithographic double liftoff technique, similar to

techniques developed for electron-beam lithography,9 was

developed to fabricate the structures. It was possible to use

photolithography rather than electron beam lithography be-

cause of the large feature size and overall large size. The first

step in the fabrication process is to make a glass photolithog-

raphy mask for the structures using electron-beam lithogra-

phy. The double liftoff technique is then used to produce free

structures in solution.

The first step in the double liftoff technique is the spin-

ning and baking of two resist layers onto a silicon wafer. The

resists used were PMMA 4% ~bottom layer, 180 nm! and

Shipley S-1813 ~top layer, 1500 nm!. This process is fol-

lowed by an UV contact exposure of the mask pattern, and

the pattern for the desired shape is exposed and developed in

the upper resist layer only. The exposed pattern is then de-

veloped away, leaving pattern-shaped depressions the depth

of the top layer. A SiO2 layer is deposited onto the patterned

resist layers through electron beam evaporation under

vacuum. The top resist layer is then completely removed

along with the SiO2 layer lying on it, leaving the shapes on

the bottom resist. Slightly dissolving the bottom resist will

then release the structures into a liquid suspension.a!Electronic mail: friese@physics.uq.edu.au
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The torque transfer experiments require structures that

are disk-like and as small as possible in overall size. Using

photolithography it is possible to fabricate structures of di-

ameter 10 mm with features on the order of 1 mm. We found

that stable trapping of SiO2 shapes of diameter 10 mm was

not possible for thickness less than 0.5 mm, which is the

upper limit of thickness achievable with the photolitho-

graphic double liftoff method.

The shape of the SiO2 structures is disk-like. This shape

is not the most suitable for optical trapping, rather it is the

most suitable shape for this demonstration. We chose to fab-

ricate shapes with six ‘‘teeth,’’ to facilitate observation and

measurement of rotation.

Optical torque has been transferred to microscopic par-

ticles due to photon absorption10–12 and due to transmission

through birefringent materials,7,13 leading to light induced

rotation of the particles. The rotation rates achieved in ex-

periments involving birefringence were much higher than

those using photon absorption, as overheating and unwanted

radiation pressure forces are avoided, making this type of

optical torque more suitable for exploring driving mecha-

nisms for micromachines. Spin rates of up to 350 Hz were

achieved for calcite (CaCO3) fragments around 1 mm in size

using 300 mW of 1064 nm laser light.

The angular momentum of light is changed on passing

through a birefringent material, and by conservation of an-

gular momentum the difference is transferred to the material,

resulting in torque being exerted on the material by light.

The effects of optical torque on birefringent materials are

easily observed using extremely intense light sources and

very small particles, as is the case in an optical tweezers trap.

When the birefringent particles are confined on the beam

axis, linearly polarized light exerts an angle-dependent

torque that is minimized when the optic axis of the birefrin-

gent material is aligned with the plane of polarization. Cir-

cularly polarized light exerts constant torque that causes ro-

tation at constant speed and frequency when the particle is

trapped within a viscous medium.11 Elliptically polarized

light results in rotation with constant frequency but position

dependent speed, as the ‘‘alignment ’’ and ‘‘rotation’’

torques act simultaneously. These effects have been observed

using naturally occurring birefringent material ~calcite

fragments!1 and synthetically produced birefringent objects

~fluorinated polyimide!13.

In our experiments we trapped calcite fragments in cir-

cularly polarized light, resulting in torque on the calcite

given by

t56

c«

2v
E0

2$12cos@~n02ne!#%. ~1!

Here c is the speed of light, « is the permittivity of the

medium, v is the optical frequency, E0 is the electric field

strength, k is the free space wave number, d is the thickness

of the material, and no and ne are the ordinary and extraor-

dinary refractive indices of the material, respectively. The

maximum torque that can be exerted by circularly polarized

light occurs when the birefringent material is the correct

thickness to be a l/2 plate for the wavelength used, corre-

sponding to kd(no2ne)5p ,3p . . . , for example, a calcite

particle 1.4 mm thick is a l/2 plate for l5488nm light. In

this case the optical torque is given by t52P/v . The maxi-

mum optical torque available is not large ~for example, a 1W

beam of 488 nm light would in this case provide torque of

approximately 6.1310216 Nm!, however this can still result

in very high rotation speeds when the torque is exerted on

microscopic particles.

In this letter we report an experiment where optical

torque is transferred to an optically trapped birefringent ele-

ment, which is then used to drive the rotation of a nearby

microfabricated element ~a ‘‘cog ’’!, also optically trapped.

Two optical tweezer traps, both steerable in three dimen-

sions, are used to trap and move a calcite fragment and a

microfabricated SiO2 structure relative to each other.

The SiO2 structure and calcite particle are first trapped in

separate traps, then the position of the beam waist of the

optical trap is adjusted in the z axis so that the two elements

are trapped in the same plane, then when the polarization of

the trapping beam is made circular, the calcite begins to spin.

The SiO2 structure does not spin because it is transparent and

nonbirefringent, and thus does not absorb or alter the angular

momentum of the trapping beam. The two elements are then

brought close together, whereupon the SiO2 structure also

begins to rotate. Both elements rotate about their own centers

as the optical field of the laser tweezers trap provides an

‘‘optical axle.’’ The optical torque is transferred to the sec-

ond particle via the motion of the surrounding fluid. Figure 1

shows a pictorial representation of the process, and several

frames of a video recording of the experiment. In Fig. 2, the

spinning calcite is rotating clockwise, causing the SiO2 struc-

ture to rotate anticlockwise.

For this proof of principle demonstration we did not di-

rectly measure the rotation speed of the calcite, however by

considering the laser power at the beam focus and our pre-

vious experiments using calcite, we estimate the rotation

speed to be between 100 and 200 Hz. The SiO2 is rotating at

around 0.2 Hz. If we approximate the calcite fragment as a

sphere having drag coefficient D58pha3 ~where h is the

viscosity and a is the radius!, and the SiO2 element as a disc

with D5 32/3 ha3, we can obtain an estimate of the optical

FIG. 1. Pictorial representation of a SiO2 machine element being set into

rotation by a spinning calcite crystal. The rotation is performed in a sealed

cell. The details of the steerable double trap setup can be found in Ref. 8.
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torque and the efficiency. Using the viscosity of water at 300

K (h58.531024 Nsm22!, this corresponds to optical

torque on the calcite of around 2.0310217 Nm, and torque

on the 10 mm diameter SiO2 element of 1.1310217 Nm,

yielding an efficiency of the torque transfer between the two

elements of a little over 50%. We estimate the actual effi-

ciency to be somewhat lower due to the irregular shape of

the calcite fragment.

Several other possibilities exist for torque transfer be-

tween the two elements, and two of these were achieved.

With both elements confined in the same optical tweezers

trap ~calcite fragment on top!, the torque is transferred via

the fluid interface between the upper and lower surfaces of

the SiO2 and calcite, respectively. In this case both elements

rotate with the same sense. If on the other hand the SiO2

structure is not confined at all, it orbits the spinning calcite

fragment, at about 0.1 Hz. Consecutive frames from videos

of these two types of torque transfer are shown in Figs. 3~a!
and 3~b!.

In conclusion, we have developed a photolithography

method to produce large numbers of identical SiO2 structures

suitable for optical trapping experiments. These structures

have been used in a first principle demonstration of an opti-

cally driven motor. Future developments may improve and

extend upon the result in a number of ways. Microfabrication

of birefringent structures would enable machine elements to

be directly driven by light rather than indirectly by a calcite

fragment via a fluid interface. Simple birefringent structures

of similar size as our SiO2 structures have already been

produced,13 so production of more complicated shapes may

soon be possible. The use of a spinning particle to drive fluid

rotation in order to turn biological specimens has already

been demonstrated.14 Another potential use for the rotating

structures is a microscopic fluid pump. Mounting a micro-

fabricated birefringent cog onto a microscopic axle may be

the next step, allowing production of an optically powered

rotor for powering micromachines.
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FIG. 2. Nine consecutive frames 0.5 s apart from a video of the experiment,

showing the rotation of a SiO2 structure about its own axis, due to a nearby

spinning calcite fragment. The SiO2 structure is 10 mm in diameter, and the

calcite fragment is of the order of 1 mm in size.

FIG. 3. Other mechanisms for achieving optical torque transfer to a micro-

fabricated structure. ~a! The birefringent particle and SiO2 structure are

trapped in the same optical potential, and rotate with the same sense. Frames

are 0.2 s apart. ~b! The SiO2 structure is not confined, and orbits the spin-

ning calcite with opposite sense to the calcite. Frames are 1.0 s apart.
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