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Abstract

When thermoluminescence (TL) and optically stimulated luminescence (OSL) are utilized for dosimetry and for dating of
archaeological and geological samples, one hopes that the dependence of the measured signal on the dose is linear, and that
no dose-rate e2ects occur. In TL measurements, however, several cases of superlinear dose dependence have been reported
and also some dose-rate e2ects have been found. It has been shown theoretically that such superlinearity can result from a
simple model of trapping states and recombination centers, provided that a disconnected competing trap or center is involved.
Similar circumstances were shown to cause a dose-rate dependence of the measured TL. More recently, some results of OSL
superlinearity have been reported. The present work provides a theoretical account of this e2ect. A distinction is made between
OSL due to relatively short pulses of stimulating light and the integral over a long illumination. It is shown that in the former,
one can expect a quadratic dose dependence of the e2ect provided one starts with empty trapping states and recombination
centers. In the latter, superlinearity can be found only in the presence of competitors, in a similar way to the TL behavior.
Also, the possibility of dose-rate dependence of OSL, which has not been reported in the literature is predicted and should be
checked in future OSL measurements. c© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The utilization of thermoluminescence (TL) and opti-
cally stimulated luminescence (OSL) for the evaluation
of irradiation dose either for dosimetry or for the dating
of archaeological or geological specimens is based on the
possibility of comparing the results following the unknown
dose to those resulting from a calibrated radiation source.
In order to get reliable results, the nature of the trapping
levels in the dosimetric material should be such that the in-
terpretation of the measured luminescence signal should be
as simple as possible. Thus, in an ideal dosimetric material
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one hopes that the dose dependence of the signal is linear
with the excitation dose, which makes the interpolation or
extrapolation performed while evaluating the unknown dose
very simple. Also, if it is the total dose that is to be eval-
uated, the question should be asked whether the measured
signal is independent of the dose rate. Many of the works in
the literature in this Aeld either assumed linear dose depen-
dence and dose-rate independence or, in cases where non-
linearities occurred, some corrections were o2ered so that
the deduced dose (or the date derived thereof) is as accurate
as possible. A quick look at the rate equations governing
the kinetics of the process taking place during the excitation
and the heating of the sample (in TL), or the exposure to
stimulating light (in OSL) reveals that they are not linear
in the relevant quantities such as the occupation of trapping
states and luminescence centers. Linearity of the measured
luminescence signal with the excitation dose is expected in
a strictly Arst order kinetics, but it is recognized that such a
simple situation is rather a rare occurrence. In other cases,
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the question of dose-dependence linearity should be more
thoroughly considered.

Di2erent kinds of nonlinear TL dose dependence were de-
scribed in the literature. Cameron et al. (1968), summing up
results by their group, described the dose dependence of TL
in LiF (TLD-100) which is linear at doses up to ∼10 Gy,
goes superlinear at higher doses and then approaches satu-
ration at ∼104 Gy. Zimmerman and Cameron (1968) pre-
sented a model that had to do with Alling of existing traps
in the presence of a disconnected trap (or nonradiative cen-
ter) which is active during the excitation. Aitken (1974)
gave a summary of dose dependence of TL from pottery
quartz, found by the Oxford Group. This is superlinear up to
∼2:5 Gy and continues linearly up to at least 6 Gy of � irra-
diation. Rodine and Land (1971) reported a dose dependence
of approximately D2 in one peak out of a series of TL peaks
in UV irradiated ThO2. They suggested a model which was
related to the occurrence of competition during the heating
phase. This model was further developed by Kristianpoller
et al. (1974) and the same model was later utilized by Chen
et al. (1988) to explain their Anding of strong superlinear-
ity (up to approximately D3) in the 110◦C peak in synthetic
quartz under � irradiation. Chen and Fogel (1993) argued
that in every situation where a competitor is involved, the
processes both during excitation and heating should be con-
sidered. For further discussion on this subject see Chen and
McKeever (1997). It should be noted that similar consider-
ations have been made independently by Jaek et al. (1974).

Dose-rate dependence of TL has also been reported in the
literature. Groom et al. (1978) reported a decrease of TL by
up to a factor of 5 while the dose rate increased in powdered
samples of Brazilian quartz irradiated by 60Co �-rays rang-
ing from 1:4× 10−3 to 3:3 Gy s−1. A smaller e2ect of the
same sort was reported by Hsu and Weng (1980). An op-
posite e2ect of higher TL for larger dose rate was reported
by KvasniJcka (1983) who found the e2ect in Brazilian and
milky quartz excited by 60Co �-ray, using dose-rates from
2×10−5 to 2×10−2 Gy s−1. The apparent discrepancy be-
tween the two sets of results is probably due to the di2erent
ranges of applied dose. Valladas and Ferreira (1980) distin-
guished between three components in the emission of TL
in quartz, namely, UV, blue and green, and found di2erent
behaviors for the three components.

Theoretical work by McKeever et al. (1980) and Chen
et al. (1981) demonstrated that using rather simple models
of trapping states and recombination centers, one can obtain
a dose-rate dependency of trap Alling. Chen et al. (1981)
also showed that, as far as the center Alling is concerned,
when two centers exist in the same material, it is possible
for the population of one of them to increase and that of the
other to decrease with the dose rate for a given total dose. In
a recent work, Chen and Leung (2000) took into considera-
tion also the heating stage which follows the excitation. For
a model with one trapping state and two kinds of recombi-
nation centers, they solved the relevant sets of simultaneous
di2erential equations for the three stages of excitation, re-

laxation and heating. They found di2erent dose-rate depen-
dencies for two TL spectral components, in accord with the
experimental results by Valladas and Ferreira (1980).

In recent years, optically stimulated luminescence has
started to replace TL in some of the dosimetry and dat-
ing applications. This began with a pioneering work by
Huntley et al. (1985) on the optical dating of sediments.
The method has more recently also been utilized for archae-
ological dating and dosimetry. The advantages of OSL over
TL are rather obvious. There is no need to heat the sam-
ple, thus avoiding the black-body radiation occurring at rel-
atively high temperature. Also, possible thermal quenching
of luminescence is avoided.

In nearly all the reports on OSL it is assumed, and some-
times shown (see e.g. McKeever and Akselrod, 1999) that
the initial dose dependence is linear, followed by an ap-
proach to saturation. It is also assumed that there are no
dose-rate e2ects and therefore, one can calibrate the sam-
ple at high dose-rates and deduce the archaeological dose
imparted at a much lower rate. There are, however, some
reports in the literature on superlinear dose dependence of
OSL. In the study of OSL of quartz and mixed feldspars from
sediments, Godfrey-Smith (1994) found linear dependence
on the dose of the unheated samples. However, following a
preheat at 225◦C, the samples showed a clear superlinear-
ity of the OSL signal at low excitation doses of � irradi-
ation. Roberts et al. (1994) have also found superlinearity
of quartz OSL in several samples. For samples preheated at
160◦C, they reported a quadratic equation, y=aD2+bD+c,
which describes the dose dependence where D is the dose
and a; b and c are positive numbers.

Banerjee (2001) has also seen superlinear dose depen-
dence of OSL on the excitation dose in annealed quartz in
the dose range of 0–5 Gy and explained it using arguments
previously employed by Kristianpoller et al. (1974), and
by Chen and McKeever (1997) for accounting for di2erent
kinds of TL superlinearity. The possibility of using argu-
ments applicable for TL in explaining OSL results will be
elaborated upon below. In the present work, we discuss the
similarities and dissimilarities between TL and OSL as far as
the dose dependence and dose-rate behavior are concerned.
Also, the distinction is made between short pulse OSL and
integral OSL taken over a long illumination of a previously
irradiated sample. It is to be noted in this respect that in
his book, Aitken (1998) considers the use of the “total light
sum” in certain samples or, alternatively, a “short shine” for
bright samples. He adds that this can be made short enough
for the depletion of trapped electrons to be negligibly small
(e.g. a fraction of 1%), allowing repeated measurements to
be made on the same aliquot. We are going to argue here
that using the total light sum and the “short shine” may not
yield the same results since the dose dependencies of these
two measured quantities are not necessarily the same.

The comparison between TL and OSL as far as their dose
dependence and dose-rate dependence are concerned is for
the simplest situation of one-trap one-center situation as well
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as for the cases in which a disconnected trapping state or a
radiationless recombination center take part in the process.

2. The model

The considerations made by Banerjee (2001) are, on Arst
sight, somewhat questionable due to the following reasons.
In the Arst place, he takes the arguments previously made
for TL and adopts them to OSL. One may ask whether the
use of this analogy is fully justiAed. Also, the considerations
made by Kristianpoller et al. (1974) include a large number
of simplifying assumptions. The previously published work
on TL showed, using computations and without simplifying
assumptions, that at least for certain choices of sets of para-
meters, the expected TL superlinearity indeed resulted. It is
of interest to compare the TL results to the analogous case
in OSL. In particular, the question of whether the important
magnitude to be measured is the area under the relevant
curve or an instantaneous intensity, say in the maximum of
the TL peak or somewhere along the OSL decay curve, is
of great importance both for TL and OSL. With the use of
new numerical simulations, we would like to answer some
of these questions.

We shall discuss here the models of OSL dose dependence
with and without a competing disconnected trapping state or
a nonradiative center. Fig. 1 depicts an energy level model
with one recombination center M and two trapping states,
N1 and N2. At Arst, we will consider the situation where the
competitor N2 does not exist, and will refer to N1, the re-
maining trapping state as N (N being also its concentration
in m−3); its occupancy will be denoted here by n (m−3).M
is the concentration (m−3) of hole centers and m (m−3) is
its instantaneous occupancy. B (m3 s−1) is the probability
coeOcient for free holes to be captured in the recombination
center during excitation. An1; An2 (m3 s−1) are the proba-
bility coeOcients for retrapping into N1 and N2, respectively
(again, as long as we deal with one trapping state only, N ,

Fig. 1. Energy level scheme for excitation and stimulation of OSL.
An active level, N1 and a center, M , are involved, as well as a
disconnected competing trapping state, N2. For the case of only
one trapping state, N replaces N1.

we denote the retrapping coeOcient by An). Am (m3 s−1) is
the recombination coeOcient. nc (m−3) and nv (m−3) are
the concentrations of free electrons in the conduction band
and free holes in the valence band, respectively, x and f
represent, respectively, the intensity of excitation by the
irradiation and the intensity of the light stimulation. The
di2erence between the meaning of these two magnitudes
will be explained below.

The set of simultaneous di2erential equations governing
the process during excitation is given by

dnv=dt = x − B(M − m)nv ; (1)

dm=dt =−Ammnc + B(M − m)nv ; (2)

dn=dt = An(N − n)nc; (3)

dnc=dt = dm=dt + dnv=dt − dn=dt: (4)

x appearing in Eq. (1) has the dimensions of m−3 s−1 and is
the rate of production of electron–hole pairs per second per
m3, by the excitation irradiation. The intensity of irradiation
in the appropriate units (say, Gy s−1) is proportional to x.
In order to simulate the experimental conditions properly,

we take the Anal values of n; m; nc and nv at the end of
the excitation stage as initial values for the next stage of
relaxation. This is done by setting x to zero and solving the
same set of equations for a further period of time until both
nc and nv get negligibly small.

For the next stage of light stimulation we take the Anal
values of the functions n; m; nc and nv at the end of relax-
ation and solve the following equations:

−dm=dt = Ammnc; (5)

dn=dt =−fn+ An(N − n)nc; (6)

dnc=dt = dm=dt − dn=dt: (7)

It is quite obvious that the dimension of f here is per
second. In this sense, fn is analogous to x in Eq. (1). How-
ever, whereas x is a constant, fn is not. For constant stimu-
lation intensity, f is a constant which is proportional to the
stimulating light intensity. We associate the intensity of the
OSL signal with the recombination rate, and therefore can
write the OSL intensity as

I =−dm=dt: (8)

In fact, a dimensional proportionality factor should have
been inserted into the right-hand side of Eq. (8), which
would determine the dimensions of the intensity I . Usually
this is not done, and therefore the intensity in Eq. (8) is in
“arbitrary units”. It is to be noted here that the I appearing
on the left-hand side is an instantaneous intensity. In the
treatment below we will distinguish between this intensity
in response to a relatively short pulse of light and an integral
of the intensity over a long period of time, preferably all the
way to the depletion of all the traps and=or centers involved.
Some computational results are given in the next section.
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We will describe here the changes made in the relevant
sets of di2erential equations in the case where a trapping
competitor exists, as shown in Fig. 1. Eqs. (1) and (2) remain
the same, but instead of Eqs. (3) and (4) we now have for
the excitation phase

dn1=dt = An1(N1 − n1)nc; (9)

dn2=dt = An2(N2 − n2)nc; (10)

dnc=dt = dm=dt + dnv=dt − dn1=dt − dn2=dt: (11)

As for the stimulation stage, we assume that the stimulating
light raises electrons only from N1, so that N2 acts only as a
competitor. Eqs. (5) and (8) remain the same, and Eqs. (6)
and (7) are replaced by

dn1=dt =−fn1 + An1(N1 − n1)nc; (12)

dn2=dt = An2(N2 − n2)nc; (13)

dnc=dt = dm=dt − dn1=dt − dn2=dt: (14)

Here too, the computational results are given in the following
section.

As pointed out above, in the study of TL dose depen-
dence, a signiAcant di2erence has been found between a
model including a competition with a disconnected trap and
one where competition takes place with a nonradiative cen-
ter. As compared with Fig. 1, the model here has one trap-
ping state N with occupancy n, a retrapping coeOcient An,
and two recombination centers, M1 and M2 with occupan-
cies m1 and m2, and recombination coeOcients Am1 and Am2,
respectively. Also, the two coeOcients B1 and B2 for trap-
ping holes in M1 and M2 are to be considered. We assume
here that the measured OSL results from transitions into M1

whereas the transitions into M2 are radiationless. The gov-
erning set of equations for the excitation stage here is

dnv=dt = x − B1(M1 − m1)nv − B2(M2 − m2)nv ; (15)

dm1=dt =−Am1m1nc + B1(M1 − m1)nv ; (16)

dm2=dt =−Am2m2nc + B2(M2 − m2)nv ; (17)

dn=dt = An(N − n)nc; (18)

dnc=dt = dm1=dt + dm2=dt + dnv=dt − dn=dt: (19)

Finally, the set of equations for the stimulation stage under
these circumstances can be written as

I =−dm1=dt = Am1m1nc; (20)

−dm2=dt = Am2m2nc; (21)

dn=dt =−fn+ An(N − n)nc; (22)

dnc=dt = dm1=dt + dm2=dt − dn=dt: (23)

Fig. 2. Dose dependence of pulse OSL when only one trapping state
and one kind of recombination center are involved. (+) represents
the results when the excitation starts with empty traps and (◦) the
results when n0 = 0:9N . The values of the chosen parameters are
given in the text.

3. Numerical results

In order to demonstrate the dose behavior of OSL with a
short pulse of stimulation, the following set of parameters
has been chosen. Am = 10−17 m3 s−1; B = 10−18 m3 s−1;
N = 1017 m−3; M = 1019m−3 and An = 10−19 m3 s−1. The
value of f was taken as 1 s−1 and x was varied between
1012 and 1014 m3s−1. The standard ode23 solver in the Mat-
lab package has been used to solve Eqs. (1)–(4) with the
given value of x, then the same set has been solved with x=0
for a further period of time to simulate relaxation. Finally,
Eqs. (5)–(7) were solved with the given value of f. The
results are shown in Fig. 2, on a log–log scale. The (+)
points show the dependence of the simulated OSL signal on
the total dose, changed here by changing the intensity of ex-
citation x in the mentioned range, starting each simulation
with empty traps and centers and keeping the length of ex-
citation time at 1 s. The length of light stimulation was also
chosen as 1 s. It has been found that with this set of chosen
parameters, this indeed was a “short shine” in the sense that
only a small fraction of the trapped electrons and holes was
depleted by the light during the stimulation time. On this
log–log scale, the results are seen as a straight line with a
slope of 2, meaning quadratic dependence of the pulse OSL
on the excitation dose. The (◦) points show the dose de-
pendence where n0 = 0:9N , and the straight line with slope
∼= 1 represents a linear dose dependence.

Following this study of pulse OSL, we have now moved
to the solution of the equations of integral OSL in the case
of one trapping state and one kind of recombination center.
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Fig. 3. Simulated dose dependence of integrated OSL for the case
of two trapping states and one kind of recombination center. The
parameters are given in the text.

We performed the integration on the OSL curve up to a point
where ¡ 1% of the carriers remained in the traps. Under
the present circumstances, the area under the curve grew
linearly up to a point where it started to approach saturation.
The comparison between this result and the response to a
short light pulse described above will be discussed below.

The next step has been to solve the sets of equations
for the case of competition with a disconnected trapping
state. The sets of equations numerically solved have been
(1), (2), (9)–(11) for the excitation and relaxation stages,
and (6), (7), (12)–(14) for the optical stimulation stage.
The set of parameters chosen here was: Am=10−17 m3 s−1;
B = 10−16 m3 s−1; N1 = 1017 m−3; N2 = 1016 m−3; A1 =
10−16 m3 s−1; A2=10−15 m3 s−1;M=1018 m−3;f=1 s−1

and x varied from 1016 to 1019 m−3 s−1. The results are
shown on a log–log scale in Fig. 3. The initial slope of 2
indicates the initial quadratic dose dependence. At a higher
dose, the slope gets larger indicating more than quadratic
dose dependence, and at higher doses, a rather fast decline
of the slope is seen when the simulated OSL approaches
saturation. The signiAcance of this kind of behavior will be
discussed below.

With the same set of parameters, we have checked the
possibility of having dose-rate dependence of integral OSL.
Here, we choose a total dose of xt = 1017 m−3 in the range
of strong superlinear dose dependence, varying the dose rate
between 1015 and 1019 m−3 s−1 and varying inversely the
time of excitation between 100 and 0.01 s. The results are
shown in Fig. 4. The integral OSL is seen to increase in this
dose-rate range by a factor of ¿ 2.

Finally, the set of equations governing the process in
the case of one trapping state and two competing centers

Fig. 4. Dose-rate dependence of integral OSL in the case of two
trapping states and one kind of recombination center. The chosen
parameters are the same as in Fig. 3.

Fig. 5. Simulated dose dependence of integrated OSL on the dose
in the case of two kinds of recombination center and a single
trapping state. The parameters are given in the text.

has been numerically solved. These are Eqs. (15)–(19) for
the excitation and relaxation stages and (20)–(23) for the
stimulation stage. The parameters chosen here were: Am1 =
10−17 m3 s−1; Am2 = 10−16 m3 s−1; B1 = 10−14 m3 s−1;
B2 = 10−12 m3 s−1; N = 1020 m−3; M1 = 1016 m−3; M2 =
1015 m−3 and A= 10−16 m3 s−1. f was chosen here to be
1 s−1 and x varied between 1013 and 1017 m−3 s−1. The
results of the integral OSL are seen in Fig. 5. The initial
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dependence is linear, indicated by the slope being equal to 1.
At higher doses, the dependence becomes superlinear, and
at still higher doses, there is an approach to saturation.

4. Discussion and conclusions

In the present work, we have demonstrated, using numer-
ical simulation, that superlinearity in the dose dependence
of the OSL signal, recently reported to occur in some ma-
terials, is in accord with rather simple energy level models,
usually employed for the explanation of OSL and TL. It has
been shown that, as far as short pulses of OSL are used, the
simplest model of a single trapping state and one kind of re-
combination center can yield a quadratic dose dependence.
Under the same circumstances, the total area under the OSL
curve behaves linearly with dose before approaching satu-
ration, in a similar manner to the TL signal under similar
conditions. The similarities and dissimilarities between TL
and OSL under these conditions should be elaborated upon.
As far as the areas under the two curves are concerned, both
are dependent on min(n0; m0) where n0 and m0 are the All-
ings of the relevant trap and center at the end of irradiation
(see discussion by Chen and McKeever, 1997). As long as
the occupancies n0 and m0 are linear with the dose, which
obviously is the case in this simple model, the dependence
of the total areas under the TL curve and under the OSL
decay curve on the dose is expected to be linear. As far as
TL is concerned, the maximum intensity of TL was usually
found to be proportional to, or nearly proportional to the
total area. Therefore, the maximum intensity of TL is pro-
portional to the excitation dose in the simple case of one
trapping state and one kind of recombination center.

The situation appears to be di2erent with OSL as seen in
Fig. 2 above. The Arst point to remember in this concern is
that in OSL, there is no obvious analog to the maximum of
TL. The short pulse response of OSL is more similar to the
intensity of TL in the initial rise region. Here we can dis-
cuss two extreme cases. If the kinetic order of the process
is Arst, the intensity at each temperature in the TL curve
is proportional to the initial Alling of the traps, n0. There-
fore, if the dose dependence is examined at any temperature
along the curve, it is expected to be linear. This is not the
case in second order kinetics. As pointed out by Chen et
al. (1983), in a second order kinetics TL peak, the dose de-
pendence is expected to be quadratic within the initial rise
range. Although the exact conditions for such a quadratic
behavior for cases beyond the strict second order kinetics
have not been speciAed, it is certainly possible that the dose
dependence in the initial rise range is superlinear. It seems
that there is a close analogy between the initial-rise range of
TL and short pulse OSL since in both we sample the spec-
imen, depleting only a negligible fraction of the carriers in
traps and centers. It seems quite obvious that the quadratic
dose dependence of pulse OSL seen in Fig. 2 is the correct
analog of the quadratic dose dependence of the mentioned
TL in the initial rise range.

It can be noted that the main condition for second order
kinetics is that the retrapping is relatively strong, namely,

Amm�An(N − n): (24)

Taking a look at the parameters chosen above, it is evident
that, at least at relatively low doses, wherem and n are small,
this condition is fulAlled. It can even be argued that strict
Arst order kinetics, a case in which TL is proportional to the
dose at any given temperature point, is almost impossible
to occur if irradiation starts with empty traps and centers.
Strict Arst order will take place when An is very small. How-
ever, if it is that small, the trapping state can hardly capture
carriers during the excitation stage. In other words, in prac-
tically all cases, there is an “element” of second order-like
situation due to which the quadratic behavior of the pulse
OSL dose dependence may be expected to happen quite of-
ten. As pointed out already, this is more likely to occur in
annealed samples, and is less likely to take place when we
start with a nearly full trapping state or center. A quick look
at condition (24) reveals that if n0 or m0 (or both) is large,
the direction of the inequality may easily be reversed, which
explains the linearity of the upper curve in Fig. 2.

The question may arise as to what happens when one uses,
under these conditions, a relatively long exposure which is
not long enough to cover the whole decaying OSL curve.
Roberts et al. (1994) describe their OSL signal which is
“integrated over the Arst 500 mJ of laser exposure”, which
Ats the y = aD2 + bD + c equation mentioned above. This
may be a good approximation to an intermediate case of a
long pulse which does not cover the whole area under the
decaying curve.

The situation concerning dose dependence and dose-rate
dependence is di2erent when the total area under the de-
caying OSL curve is considered. We have shown here that
under these circumstances, superlinearity is possible pro-
vided a competitor participates in the process. Fig. 3 shows
the expected dose dependence in the presence of a discon-
nected trap. Similar to the dose dependence of the maxi-
mum of TL (see Chen and McKeever, 1997, p. 179), the
dependence starts being quadratic and goes more strongly
superlinear before going to saturation. In Fig. 5, it is shown
that in the presence of a nonradiative competitor, the dose
dependence is linear at low doses, becomes superlinear at
high doses and Anally reaches saturation. This behavior
is very similar to that of the TL maximum under similar
conditions (see Chen and McKeever, 1997, p. 180). This
point has been suggested by Banerjee (2001) who made the
analogy with TL using the considerations by Kristianpoller
et al. (1974) and further by Chen and McKeever (1997)
made for TL. However, two points are to be borne in mind.
The Arst is that the maximum of TL is compared with the
area under the OSL curve. This should not pose a severe
problem since it has been pointed out that in practically all
cases, the TL maximum is proportional to the area under
the whole TL curve to a very good approximation. The sec-
ond point is that in Banerjee’s experimental results, the OSL
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intensity is deAned as the integrated OSL signal between 0
and 1 s, and it is not clear whether this is closer to the pulse
case or to the total area case discussed here. It appears, how-
ever, that Banerjee did have the correct intuition concerning
the analogy between TL and integral OSL.

Finally, in Fig. 4 we have shown that under these condi-
tions of measuring the total area under the OSL curve and
in the presence of a competitor, a dose-rate e2ect can be
expected. This e2ect has never been reported to the best of
our knowledge, and it is recommended that its possible oc-
currence will be checked in the future.
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