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Optically Tunable Photonic Stop Bands in Homogeneous Absorbing Media
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Resonantly absorbing media supporting electromagnetically induced transparency may give rise to
specific periodic patterns where a light probe is found to experience a fully developed photonic band gap
yet with negligible absorption everywhere. In ultracold atomic samples the gap is found to arise from
spatial regions where Autler-Townes splitting and electromagnetically induced transparency alternate with
one another and detailed calculations show that accurate and efficient coherent optical control of the gap
can be accomplished. The remarkable experimental simplicity of the control scheme would ease quantum
nonlinear optics applications.
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The ability to mold the flow of light in complex photonic
structures, of which photonic crystals [1] are the most
familiar ones, is a fundamental issue of scientific and
practical importance. Photonic crystals are naturally or
artificially structured inhomogeneous materials in which
the refractive index varies periodically over a length scale
comparable to optical wavelengths. Because their periodic
structure leads to Bragg scattering of an incident probe
light beam, lightwave propagation in such crystals be-
comes best described in terms of a photonic band structure
[2,3] with band gaps where light does not propagate, akin
to the electronic band gaps in crystalline solids.

The specific spatial dependence of the optical response
in typical photonic crystals and the corresponding photonic
band structure are determined once and for all by the way
the material periodic structure is grown [1]. The need to
design and make photonic crystals with predetermined
energy bands could, however, be avoided if one could
change their band structure by independent means. Some
schemes to tune the band gap structure, e.g., have so far
relied on slow electro- and thermo-optics effects of infil-
trated liquid crystals [4] or on fast resonant and nonreso-
nant optical nonlinearities in semiconductors [5]. In both
instances, modifications do not affect the Brillouin zone
while the gross features of the photonic bands remain set
by the preassembled periodic structure.

We here follow a different approach and show that for a
certain class of materials a periodic modulation of the
medium optical response can actually be created through
externally induced optical nonlinearities. Our specific
scheme requires highly effective quantum coherence and
interference effects to occur as those commonly observed
in multilevel configurations leading to electromagnetically
induced transparency [6]. In its simplest form such a trans-
parency is exhibited in a three-level ‘‘lambda’’ configura-
tion by a probe in the presence of a plane-wave pump beam
[7]. The possibility of using instead a standing-wave pump
beam anticipated in Ref. [8] is here exploited to generate
photonic periodic structures where regions of weak and
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strong normal dispersion periodically alternate with one
another. The Brillouin zone structure and the band proper-
ties are in this case fully determined by the external pump
control parameters, namely, its polarization, intensity, and
detuning.

Although optically induced photonic lattices have been
examined in a variety of situations including applied mi-
croscopy [9], soliton dynamics [10], quantum transport
effects [11,12], and trapping potential for Bose-Einstein
condensates [13], just to mention a few, one-dimensional
lattices that involve periodically modulated electromag-
netically induced transparency have been only recently
explored [14]. These are sought after as a promising ave-
nue, e.g., toward deterministic photon-photon entangle-
ment [15] or the enhancement of nonlinear interactions
between weak light pulses [16]. These lattices may also be
used to reversibly convert a light pulse into a stationary
excitation inside a dilute volume of atoms [17] where,
however, resonant probe absorption still takes place at
the pump nodes preventing [18] the full development of a
photonic band gap. In spite of absorption, we anticipate
that our specific standing-wave pump configuration leads
to a full band gap, completely overcoming the detrimental
effects of absorption. Because the underlying physical
process is quite general the scheme may well be used for
both atomic and solid media.

The idea is presented in the following for a homoge-
neous sample of cold atoms having a ground (g), excited
(e), and metastable level (m) in a standard three-level
lambda configuration [7]. The transitions e–g and e–m
are electric dipole allowed where g is essentially the only
populated level. Our results will be appropriate to the D2

line of cold rubidium atoms in which case g and m are
long-lived hyperfine sublevels of the electronic ground
state S1=2, while e corresponds to the excited P3=2 state.
A weak probe beam of frequency ! and propagating in the
x direction is nearly resonant with the e–g transition, while
a strong pump or coupling beam of frequency !c and Rabi
frequency �o drives the e–m transition. Unlike in typical
5-1 © 2006 The American Physical Society
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FIG. 1. Band gap structure for a probe in a homogeneous
sample of ultracold 87Rb (n � 1012 cm�3) in the presence of a
periodic modulation induced by a perfect (upper panel � � 0)
and modified (lower panel � � 0:05) standing-wave pattern with
�o � 5�. Both real (dashed line) and imaginary (solid line)
parts of the probe Bloch wave vector are shown. The insets show
the corresponding optically induced lattice intensity profiles.
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lambda configurations leading to electromagnetically in-
duced transparency [6,7] where a cw pump beam is used,
the pump is here retro-reflected upon impinging on a
mirror of reflectivity Rm forming a standing-wave pattern
within the sample [19]. The resulting Rabi frequency
varies periodically along x,
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with a spatial periodicity a which is half the pump beam
wavelength �c. For a perfect (Rm � 1) standing wave
�2
c�x� varies periodically between 0 and 4 �2

o and van-
ishes at the nodal positions where the medium is absorb-
ing. By slightly reducing the mirror reflectivity the pump
intensity can, however, be made to vanish nowhere, as
shown in the inset of the lower panel of Fig. 1, and the
nodes will be replaced by quasinodes. In terms of the
parameter ���1�
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�, where 0 � �� 1,
the minimum value of �2

c�x� at a quasinode is approxi-
mately 4�2�2

o. Because the probe is weak, levels m and e
remain empty regardless of the pump intensity. As a con-
sequence, the standing-wave intensity profile and its space
periodicity do not alter the atoms space distribution, which
then remains homogeneous within the sample. Conversely,
the strong pump intensity pattern modifies in a periodic
fashion the probe absorption and dispersion as one moves
along x from quasinodes to antinodes. In particular, at the
quasinodes nearly complete suppression of the probe ab-
sorption with a concomitant steep dispersion occurs and
within a very narrow window centered around the e–g
transition frequency !o.

The refractive index experienced by the probe can be
described by a dressed dielectric function [6] which, for a
resonant pump, can be written as

��!; x� � 1� 3�N
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Here � � !�!o is the probe detuning, N � �3
0n is the

scaled average atomic density and �o � 780:792=2� nm
the reduced probe resonant wavelength. The excited and
metastable levels’ overall dephasings for ultracold 87Rb
atoms are �=2� ’ 6 MHz and �m=2� ’ 1 kHz, respec-
tively. Owing to the induced periodic modulation (2) a
probe with frequency! ’ !o propagates as in a multilayer
periodic structure with periodicity a � �c=2 where �c �
�o. A photonic stop band is expected to occur at Brillouin
zone boundary �=a.

To see this a 2	 2 unimodular transfer matrix M�!�
describing probe propagation through a single period of
length a is first calculated numerically [20]. Then, by
requiring translational invariance, Bloch conditions [21]
must be imposed on the photonic eigenstates, i.e.,
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where E
 are the electric field amplitudes for the forward
and backward Bragg reflected probe while its Bloch wave
vector k � k0 � ik00 in (3) is, in general, complex. The
photonic band structure is then obtained from solutions
of the equation e2ika � Tr�M�!��eika � 1 � 0 with
detM � 1; noting that if k is a solution so is �k, one
obtains

ka � 
cos�1

�
TrM�!�

2

�
: (4)

We compare in Fig. 1 the band structure around the
lowest photonic gap at the X symmetry point for a perfect
standing wave (� � 0) and that for a modified one (� �
0:05). In the latter case, dissipation is negligible and a
forbidden gap opens up in the frequency range for which
k0 � �=a and k00 � 0 while k00 ’ 0 in the band. In the
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FIG. 2. Induced band-gap reflectivities in a sample of length
L ’ 2:5 cm. Upper and lower frames correspond, respectively, to
the upper and lower gap frequency regions in Fig. 1. The insets
show the corresponding transmissivities.
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former case, residual absorption at the pump nodal posi-
tions is instead appreciable and the gap structure becomes
barely defined [18]. In this case k0 deviates, in fact signifi-
cantly, from �=a while k00 becomes appreciable within the
allowed bands and asymmetric around the edges of the gap
due to the Bormann effect [22].

The photonic band structure discussed in Fig. 1 refers to
Bloch modes for a probe in an infinite periodic stack, yet
typical experiments [1,17] focus on propagation through
samples of finite length. If one expresses the transfer
matrix M�N� of a sample of thickness L � Na in terms of
the single period transfer matrix M in (3) as

M�N� � MN �
sinNka
sinka

M�
sin�N � 1�ka

sinka
1; (5)

where 1 denotes the unit matrix and the frequency depen-
dencies are for simplicity omitted, the sample reflection r
and transmission t amplitudes can be given in terms of the
single period matrix elements Mij as
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These directly yield the probe reflection (R � jrj2) and
transmission (T � jtj2) spectra both shown in Fig. 2 for a
fairly thick sample. Unlike the case of a perfect (� � 0)
standing wave [23] where absorption is significant in the
spectral region of the gap, the use of a modified standing
wave (� � 0:05) leads to a fully developed stop band with
nearly [24] 100% reflectivity. The narrow band gap is all
contained within the transparency window at the quasin-
odes where the pump intensity is minimal [25]. These large
reflectivities arise from efficient constructive interference
of in-phase contributions from multiple reflections be-
tween adjacent atomic layers, a regime that is hard to reach
as in resonant absorbing media Bragg scattering becomes
strong only very close to resonance and where, however,
absorption limits coherent multiple reflections.

We further show in Fig. 3 how to tune gap position and
width by changing the lattice period and the pump Rabi
frequency �o, while keeping� fixed. By slightly misalign-
ing the retro-reflected pump beam one can, in fact, easily
change the spatial periodicity a into a= cos��=2� where �
is the two counter-propagating beams’ misalignment along
x. Very small values of � are enough to move the gap
across resonance and make it just twice as wide as the one
[26] shown in Fig. 2. The gap may instead be narrowed by
reducing the Rabi frequency �o and leaving all other
parameters otherwise fixed.

Besides a sizable degree of dynamic control, this pho-
tonic structure enables one to overcome fundamental diffi-
culties arising from fluctuations in the position and size of
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the periodic structure building blocks. In familiar photonic
crystals [1] as well as those obtained from atomic density
grating, where atoms are confined in optical lattices by
dipole forces [27], local disorder generally prevents one
from reaching the required fidelity over long ranges [28]
altering the Bragg reflectivity and ultimately the gap struc-
ture. Conversely, our samples behave much like an ideal
atomic Bragg-reflector as the induced optical lattice ex-
hibits an intrinsically perfect periodicity. This, together
with negligible dissipation, makes it particularly amenable
to the observation of well developed photonic structures
[29] which may be used, e.g., to investigate interesting
aspects of Bragg processes in cold atomic samples [30].
The accuracy and prompt tunability of these gap structures
may instead be employed for quantum light storage [31]
and fast optical switching applications [16]. They may, in
principle, prove to be useful also as ultralight macroscopic
oscillators in demonstrating macroscopic entanglement
arising from radiation pressure [32]. At last, extensions
from atomic to solid-state materials [33] are highly desir-
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FIG. 3. Tuning of the band-gap reflectivity for different pump
intensities with �o � 5� (dashed line) and �o � 2:5� (solid
line). The sample has length L ’ 6 mm and the two counter-
propagating beams creating the optical lattice are misaligned by
an angle � ’ 20 mrad. All other parameters are the same as in
Fig. 2 with � � 0:05.
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able and, in particular, to doped solids [34] whose level
scheme configurations based on impurity levels are shown
to work even at room temperature.
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