
Optim: A mathematical optimization package for Julia
Patrick K Mogensen1 and Asbjørn N Riseth2

1 University of Copenhagen 2 University of OxfordDOI: 10.21105/joss.00615

Software
• Review
• Repository
• Archive

Submitted: 09 March 2018
Published: 04 April 2018

Licence
Authors of papers retain copyright
and release the work under a Cre-
ative Commons Attribution 4.0 In-
ternational License (CC-BY).

Summary

Optim provides a range of optimization capabilities written in the Julia programming
language (Bezanson et al. 2017). Our aim is to enable researchers, users, and other
Julia packages to solve optimization problems without writing such algorithms themselves.
The package supports optimization on manifolds, functions of complex numbers, and
input types such as arbitrary precision vectors and matrices. We have implemented
routines for derivative free, first-order, and second-order optimization methods. The user
can provide derivatives themselves, or request that they are calculated using automatic
differentiation or finite difference methods. The main focus of the package has currently
been on unconstrained optimization, however, box-constrained optimization is supported,
and a more comprehensive support for constraints is underway.
Similar to Optim, the C library NLopt (Johnson 2008) contains a collection of nonlinear
optimization routines. In Python, scipy.optimize supports many of the same algorithms
as Optim does, and Pymanopt (Townsend, Niklas, and Weichwald 2016) is a toolbox for
manifold optimization. Within the Julia community, the packages BlackBoxOptim.jl and
Optimize.jl provide optimization capabilities focusing on derivative-free and large-scale
smooth problems respectively. The packages Convex.jl and JuMP.jl (Dunning, Huchette,
and Lubin 2017) define modelling languages for which users can formulate optimization
problems. In contrast to the previously mentioned optimization codes, Convex and JuMP
work as abstraction layers between the user and solvers from a other packages.

Optimization routines

As of version 0.14, the following optimization routines are available.
• Second-order methods

– Newton
– Newton with trust region
– Hessian-vector with trust region

• First-order methods
– BFGS
– L-BFGS (with linear preconditioning)
– Conjugate gradient (with linear preconditioning)
– Gradient descent (with linear preconditioning)

• Acceleration methods
– Nonlinear GMRES
– Objective acceleration

• Derivative-free methods
– Nelder–Mead
– Simulated annealing
– Particle swarm

• Interval bound univariate methods

Mogensen et al., (2018). Optim: A mathematical optimization package for Julia. Journal of Open Source Software, 3(24), 615.
https://doi.org/10.21105/joss.00615

1

https://doi.org/10.21105/joss.00615
https://github.com/openjournals/joss-reviews/issues/615
https://github.com/JuliaNLSolvers/Optim.jl
http://dx.doi.org/10.5281/zenodo.1211551
http://creativecommons.org/licenses/by/4.0/
https://github.com/JuliaNLSolvers/Optim.jl/
http://ab-initio.mit.edu/nlopt
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://pymanopt.github.io/
https://github.com/robertfeldt/BlackBoxOptim.jl
https://github.com/JuliaSmoothOptimizers/Optimize.jl
https://github.com/JuliaOpt/Convex.jl
https://github.com/JuliaOpt/JuMP.jl
https://doi.org/10.21105/joss.00615


– Brent’s method
– Golden-section search

The derivative based methods use line searches to assist convergence. Multiple line search
algorithms are available, including interpolating backtracking and methods that aim to
satisfy the Wolfe conditions.

Usage in research and industry

The optimization routines in this package have been used in both industrial and academic
contexts. For example, parts of the internal work in the company Ternary Intelligence
Inc. (Paramonov 2017) rely on the package. Notably, an upcoming book on optimization
(Kochenderfer and Wheeler Forthcoming, 2018) uses Optim for its examples. Optim has
been used for a wide range of applications in academic research, including optimal con-
trol (Riseth, Dewynne, and Farmer 2017; Riseth 2017a), parameter estimation (Riseth
and Taylor-King 2017; Rackauckas and Nie 2017; and Dony, He, and Stumpf 2018), quan-
tum physics (Damle, Levitt, and Lin 2018), crystalline modelling (Chen and Ortner 2017;
Braun, Buze, and Ortner 2017), and the large-scale astronomical cataloguing project Ce-
leste (Regier et al. 2015; Regier et al. 2016). A new acceleration scheme for optimization
(Riseth 2017b), and a preconditioning scheme for geometry optimisation (Packwood et al.
2016) have also been tested within the Optim framework.

Acknowledgements

John Myles White initiated the development of the Optim code base in 2012. We owe
much to him and Timothy Holy for creating a solid package for optimization that the
rest of the Julia community could further improve upon. We would also like to thank
everyone who has contributed with code and discussions to help improve the package. In
particular, Antoine Levitt, Christoph Ortner, and Chris Rackauckas have been helpful
in providing suggestions and code contributions towards more modularity and greater
support for non-trivial inputs and decision spaces.

Funding

Asbjørn Riseth is partially supported by the EPSRC research grant EP/L015803/1.

References

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. “Julia: A
Fresh Approach to Numerical Computing.” SIAM Review 59 (1). SIAM:65–98. https:
//doi.org/10.1137/141000671.
Braun, Julian, Maciej Buze, and Christoph Ortner. 2017. “The Effect of Crystal Symme-
tries on the Locality of Screw Dislocation Cores.” arXiv Preprint arXiv:1710.07708.
Chen, Huajie, and Christoph Ortner. 2017. “QM/Mm Methods for Crystalline Defects.
Part 2: Consistent Energy and Force-Mixing.” Multiscale Modeling & Simulation 15 (1).
SIAM:184–214. https://doi.org/10.1137/15M1041250.
Damle, A., A. Levitt, and L. Lin. 2018. “Variational formulation for Wannier functions
with entangled band structure.” ArXiv E-Prints, January.

Mogensen et al., (2018). Optim: A mathematical optimization package for Julia. Journal of Open Source Software, 3(24), 615.
https://doi.org/10.21105/joss.00615

2

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/15M1041250
https://doi.org/10.21105/joss.00615


Dony, Leander, Fei He, and Michael Stumpf. 2018. “Parametric and Non-Parametric
Gradient Matching for Network Inference.” bioRxiv. Cold Spring Harbor Laboratory.
https://doi.org/10.1101/254003.
Dunning, Iain, Joey Huchette, and Miles Lubin. 2017. “JuMP: A Modeling Language for
Mathematical Optimization.” SIAM Review 59 (2). SIAM:295–320. https://doi.org/10.
1137/15M1020575.
Johnson, Steven G. 2008. “The Nlopt Nonlinear-Optimization Package.” http://ab-initio.
mit.edu/nlopt.
Kochenderfer, Mykel J., and Tim A. Wheeler. Forthcoming, 2018. Algorithms for Opti-
mization. MIT Press.
Packwood, David, James Kermode, Letif Mones, Noam Bernstein, John Woolley, Nicholas
Gould, Christoph Ortner, and Gábor Csányi. 2016. “A Universal Preconditioner for
Simulating Condensed Phase Materials.” The Journal of Chemical Physics 144 (16). AIP
Publishing:164109. https://doi.org/10.1063/1.4947024.
Paramonov, Pavel. 2017. Private communication, Chief Science and Technology Officer;
Ternary Intelligence Inc.
Rackauckas, Christopher, and Qing Nie. 2017. “Differentialequations.jl – a Performant
and Feature-Rich Ecosystem for Solving Differential Equations in Julia.” Journal of Open
Research Software 5 (1). Ubiquity Press. https://doi.org/10.5334/jors.151.
Regier, J., K. Pamnany, R. Giordano, R. Thomas, D. Schlegel, J. McAuliffe, and Prab-
hat. 2016. “Learning an Astronomical Catalog of the Visible Universe through Scalable
Bayesian Inference.” ArXiv E-Prints, November.
Regier, Jeffrey, Andrew Miller, Jon McAuliffe, Ryan Adams, Matt Hoffman, Dustin Lang,
David Schlegel, and Mr Prabhat. 2015. “Celeste: Variational Inference for a Generative
Model of Astronomical Images.” In International Conference on Machine Learning, 2095–
2103.
Riseth, A. N. 2017a. “Dynamic pricing in retail with diffusion process demand.” ArXiv
E-Prints, September.
———. 2017b. “Objective acceleration for unconstrained optimization.” ArXiv E-Prints,
October.
Riseth, A. N., and J. P. Taylor-King. 2017. “Operator Fitting for Parameter Estimation
of Stochastic Differential Equations.” ArXiv E-Prints, September.
Riseth, A. N., J. N. Dewynne, and C. L. Farmer. 2017. “A comparison of control strategies
applied to a pricing problem in retail.” ArXiv E-Prints, October.
Townsend, James, Koep Niklas, and Sebastian Weichwald. 2016. “Pymanopt: A Python
Toolbox for Optimization on Manifolds Using Automatic Differentiation.” Journal of
Machine Learning Research 17 (137):1–5. http://jmlr.org/papers/v17/16-177.html.

Mogensen et al., (2018). Optim: A mathematical optimization package for Julia. Journal of Open Source Software, 3(24), 615.
https://doi.org/10.21105/joss.00615

3

https://doi.org/10.1101/254003
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
https://doi.org/10.1063/1.4947024
https://doi.org/10.5334/jors.151
http://jmlr.org/papers/v17/16-177.html
https://doi.org/10.21105/joss.00615

	Summary
	Optimization routines

	Usage in research and industry
	Acknowledgements
	References

