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Optimal Accuracy-Privacy Trade-Off for
Secure Computations

Patrick Ah-Fat and Michael Huth

Abstract— The purpose of secure multi-party computation is
to enable protocol participants to compute a public function of
their private inputs while keeping their inputs secret, without
resorting to any trusted third party. However, opening the public
output of such computations inevitably reveals some information
about the private inputs. We propose a measure generalizing both
Rényi entropy and g-entropy so as to quantify this information
leakage. In order to control and restrain such information flows,
we introduce the notion of function substitution, which replaces
the computation of a function that reveals sensitive information
with that of an approximate function. We exhibit theoretical
bounds for the privacy gains that this approach provides and
experimentally show that this enhances the confidentiality of the
inputs while controlling the distortion of computed output values.
Finally, we investigate the inherent compromise between accuracy
of computation and privacy of inputs and we demonstrate how
to realize such optimal trade-offs.

Index Terms— Computational privacy, g-entropy, information
flow, non-linear optimization, Rényi entropy.

I. INTRODUCTION

WE STUDY the setting of functions f that map n integral
inputs x1, . . . , xn into one integral output. Each input

xi is controlled by some agent i and its value is considered
private to agent i . The computation of function f is secure

if its evaluation protects the privacy of the inputs, so that
agent j cannot learn more from this computation about the
other values xi than what agent j is able to infer from
knowledge of her own input x j and the publicly observable
output f (x1, . . . , xn).

Secure Multi-party Computation (SMC) is a domain of
cryptography that can implement such a black-box function-
ality: it enables protocol participants to compute a public
function of their private inputs, such that no trusted third
party is required, and that the confidentiality of the inputs is
protected [1]–[6]. Recent advances in SMC have given birth
to a variety of efficient protocols that achieve computational
and information-theoretic security against passive and active
adversaries [7]–[10].
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SMC therefore gives strong security guarantees, but it does
allow inferences about other agents’ input values based on the
publicly observable output and one’s own private input. This
is referred to as the acceptable information flow in the SMC
literature, in which this is therefore largely ignored. In fact,
this so called acceptable information flow is oblivious to the
manner in which a protocol realizes the aims of SMC.

Consequently, such information flows would also occur in
the setting of outsourced computation. In this case, a trusted
third party or a central authority (e.g. a national health agency)
holds some records from different parties (e.g. some medical
insurance companies), computes a function of those records
and informs the parties of the result of the computation, such
that no information leaks about the parties’ inputs apart from
the public output.

But we believe that such information flow is not always
acceptable, e.g., in the medical domain with its strict privacy
regulations. Moreover, we think that it is important to under-
stand and quantify such information flow in order to

• better understand potential risks of using SMC in a spe-
cific application, say, a health-care consortium of insurers
and hospitals

• devise methods that can mitigate or prevent such infor-
mation flow.

The latter aim contains within it an inherent friction. The infor-
mation flow whose existence only depends on knowledge of
some private inputs and the public output can neither be miti-
gated against nor prevented by an SMC protocol that computed
that function f . Rather, for such measures to be effective,
we will need to modify the actual behavior of function f : we
will instead use another function f 0 for which the acceptable
information flow is absent, less pronounced or optimal accord-
ing to some risk measure. The aforementioned friction consists
of the need to shield against such undesired information
flow for function f by replacing the latter with function f 0.
This substitution naturally introduces some inaccuracy in
the value of the computed output, which will need to be
controlled.

The notions of security developed for SMC are not directly
helpful in understanding this friction and its inherent trade-
off. SMC security neither reflects the amount of information
that leaks from a computation once the public output is
revealed, nor does it account for the ability of an attacker to
influence such leakage before entering a protocol [11]–[14].
We therefore develop, in this paper, bespoke methods for
understanding this better. Specifically:
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1) We generalize a model of such information flow, devel-
oped in [15], to an entire family of conditional entropies.
This subsumes the Shannon and min entropies as well
as the notion of g-leakage in Computer Security.

2) We devise a method of distorting the output of a func-
tion f with so called virtual inputs so that the distorted
function f 0 may be computed through standard means,
such as SMC protocols.

3) We express a trade-off between privacy preservation
of agents’ inputs and output accuracy as a non-linear
optimization problem, whose solution computes optimal
virtual inputs.

4) We demonstrate that these optimizations can be solved
for a large class of our conditional entropies, including
the aforementioned ones.

5) We also offer theoretical insights that relate and char-
acterize the relationship between the accuracy of the
distorted function and the level of privacy that such
distortions offer.

This work is motivated by, and applicable to, but not
restricted to SMC. Our methods do not rely on the particular
protocols used for SMC, but only on the abstract setting of a
black-box function f to which parties i submit a private input
xi and all then learn the public output of f . We will therefore
present the core of our technical development in this abstract
setting, to stress that these results are orthogonal to the choice
of an SMC protocol.

Naturally, the application context of an SMC may con-
strain or inform our approach. In a voting protocol, e.g., a mere
deviation from the original function f would hardly be toler-
able. But our approach may be used to enhance the privacy
in less restrictive scenarios such as in the computation of
statistical measures or financial audits.

Outline of Paper: We discuss related work in Section II.
We present an intuitive idea of our approach and discuss its
premisses in Section III. Needed technical background from
information theory is covered in Section IV. Our develop-
ment of a generalized conditional entropy is the subject of
Section V. The development of our model for information
flow for black-box functions and the attacker’s entropy for
that are described in Section VI. The method by which one
can randomize black-box functions through virtual inputs
is developed in Section VII and its theory is presented in
Section VIII. Our approach to optimization of the trade-off
between privacy and accuracy of black-box functions, and its
contributions, are developed in Section IX. A discussion of
our work is contained in Section X and Section XI concludes
the paper.

II. RELATED WORKS

A. Information Flow in Programs

Information flow analysis in imperative programs has been
explored with many different approaches. One of the fun-
damental concepts is that of security classes, introduced by
Denning [16], which enables one to classify the variables of a
program with respect to their level of confidentiality in order
to form a lattice of information. Based on this classification,

type systems [17] and semantic approaches [18] have been
implemented in order to define the security of instructions
involving such variables. The most basic model considers only
two security classes L and H separating the variables with a
low and high level of confidentiality respectively [16]. The
security of a program is then expressed with the notion of
non-interference between both classes [17], [19], [20]. How-
ever, as programs in practice may contain some interference,
other quantitative approaches [21]–[26] have been proposed in
order to measure the information flow that can arise between
variables from different security classes. The computation of
such quantitative information flows also includes the use of
probabilistic instructions [18], [19], [27] that can randomize
the algorithms and make programs non-deterministic and
thus in some cases protect the confidentiality of information
processed by variables in H .

B. Information Flow in SMC

The security of SMC protocols ensures by definition that
the participants can compute the public output of a public
function of their private inputs without learning anything about
the other parties’ input, apart from what is inferable from the
so called acceptable information flow we already discussed.

In [15], we introduced a model of deceitful adversaries
which enabled us to reason about the acceptable leakage, and
to quantify, based on Shannon entropy, the information that
such attackers can deduce from public outputs and their own
private inputs. We also extended our model to a theoretic game
that allows an attacker to evaluate the influence that he can
have, depending on the input he provides to the SMC protocol.
In this present work, we build on this model to develop
an approach that can mitigate or prevent this information
leakage. We are able to do this for a large class of conditional
entropies, which subsumes both the notions of Rényi entropy
and g-entropy. We then introduce the notion of an approximate
function, a corresponding non-linear optimization problem,
and we show how solving such optimization problems can
address certain privacy concerns raised in [15].

C. Quantitative Information Flow and Differential Privacy

The aim of Quantitative Information Flow (QIF) [25], [28]
is to provide frameworks and techniques based on information
theory and probability theory for measuring the amount of
information that leaks from a secret.

The principle of randomizing the output of a computation in
order to protect the privacy of the data on which some calcu-
lations are performed is related to the concept of Differential
Privacy (DP) [29], [30]. DP formalizes privacy concerns and
introduces techniques that provide users of a database with the
assurance that their personal details will not have a significant
impact on the output of the queries performed on the database.
More precisely, it proposes mechanisms which ensure that the
outcome of the queries performed on two databases differing
in at most one element will be statistically indistinguishable.
Moreover, minimizing the distortion of the outcome of the
queries while ensuring privacy is an important trade-off that
governs DP.



AH-FAT AND HUTH: OPTIMAL ACCURACY-PRIVACY TRADE-OFF FOR SECURE COMPUTATIONS 3167

To this extent, our approach resonates with the aims and
concerns of DP. However, we identify two main differences
between our work and DP which lie in the interpretation of
privacy and utility. First, the privacy guarantee that DP offers is
to make the outputs statistically indistinguishable whereas we
are interested in minimizing the information flow of outputs.
However, both ends are tightly related and recent works
have shown that it is possible to determine an explicit upper
bound on the information flow of an ε-differentially private
mechanism which satisfies certain symmetry conditions [31].
On the other hand, our work and DP have different utility
purposes. The accuracy of a query in DP is dependent on the
mechanism that is used to achieve ε-DP, and the distortion on
the output may be arbitrarily large — although with a small
probability. In contrast, our work explicitly imposes a bound
on the range of the additive noise. This divergence with DP
may be crucial in a variety of scenarios which involve sensitive
outputs with little or no tolerance of larger inaccuracies – such
as auctions, e-voting or financial audits [32], [33].

Moreover, applying certain DP techniques directly, such
as the Laplace mechanism [34], would not be sensible in
our case: we need to work with integer values in order to
align with the requirements of cryptographic protocols whose
security relies on finite field theory. Other DP techniques,
to mention the exponential mechanism [35], would technically
be applicable to our case. However, their use would still neither
allow us to restrict the noise to a given range, nor could
we ensure that these techniques produce minimal information
flow – which is the objective of our work.

In conclusion, our work differs from DP in regard to both
privacy and utility: DP focuses on producing statistically
indistinguishable outputs without imposing explicit bounds on
the distortion whereas our mechanisms aim at minimizing
the information flow given a certain range for the additive
noise. It would certainly be interesting to investigate potential
mechanisms on discrete domains that achieve ε-DP while
restraining the distortion to a given range, to derive a bound
on the information flow of such mechanisms courtesy of [31],
and to then compare the results with the optimal information
flow that the methods presented in our present work achieve.
Such work is beyond the scope of this paper.

As an aside, we note that other recent works have explored
new paradigms for unifying SMC and DP so as to propose
more efficient protocols [36].

III. METHODOLOGY

In this section, we introduce an intuitive idea of our
approach. We also articulate and discuss the premisses and
the main contributions of our work.

We consider the scenario where several parties holding
sensitive inputs wish to learn the result of a public function f

of their private inputs. We assume that the public function f

can be computed securely, i.e. that the output o of f can
be computed without revealing any other information to the
parties, apart from o itself. Such a secure functionality can
be achieved e.g. by appealing to an SMC protocol, by using
a trusted hardware, or by sending all the private inputs to a

trusted third party who would compute and output the result
of f . We will qualify such functions as black-boxes since
our work will be orthogonal to the protocols used to compute
those functions securely. In particular, the technicalities of our
paper will not have any interaction with the domain of SMC,
although the latter may benefit from our results.

In our setting, some attackers holding fixed inputs xA

wish to learn as much information as possible on some
targeted inputs XT while the other inputs of the computation,
called spectators’ inputs, will be denoted as XS. We call
O = f (xA, XT, XS) the output of the function and we
measure the information that the attackers have on XT via
H(XT | O, xA) for a certain entropy measure H. The first
contribution of our work is to introduce a general notion of
such an entropy H that generalizes the families of g-entropy
and Rényi entropy, which we discuss next. Our second contri-
bution is to propose a mechanism that enhances the inputs’
privacy by introducing some random noise 8, which we
call virtual input, to the output of f . Intuitively, we build
a function f 0 as f 0(xA, XT, XS,8) = h( f (xA, XT, XS),8)

for a suitable function h, and we denote the output of f 0 as
O 0 = f 0(xA, XT, XS,8). We prove that this mechanism can
only enhance the targets’ privacy, i.e. that H(XT | O 0, xA) ≥

H(XT | O, xA) for the generalized entropy measure that
we introduced, and we experimentally show the privacy gain
that this method offers, which we further characterize when
the functions o 7−→ h(o, ϕ) are injective. Our last main
contribution is to propose some methods for computing an
optimal distribution for the virtual input 8 so as to maximize
H(XT | O 0, xA) averaged over all attackers’ inputs xA given
some bounds on the range of 8. The aforementioned quantities
H(XT | O, xA) and H(XT | O 0, xA) parameterized with
bespoke attributes introduced in later sections will respectively
be denoted as awae

f
α,g(xA) and awae

f 0,π8
α,g (xA).

We compared our second contribution with some related
works in Paragraph c of Section II and we now discuss our first
contribution. Introducing a notion of entropy that generalizes
both g-entropy and Rényi entropy presents two advantages.
First, it enables us to formulate general and unifying theorems
and to elaborate generic proofs in Section VIII. This also
enables us, in Section IX, to approximate some optimal
distributions for 8 which maximizes H(XT | O 0, xA) when
H is non-differentiable, particularly when H is a g-entropy.

On the other hand, we are able to develop some results
that are valid for a large range of entropies, and may thus
benefit, in particular, the domains where Rényi entropy is
used, which we quickly discuss in this paragraph. Rényi
entropy has a major importance in privacy amplification [37],
where Rényi entropy of order 2 is used to capture the fact
that an attacker may have a statistical knowledge about a
secret that any constraint based on Shannon entropy cannot
convey [38]. This result was then generalized in [39], which
derives a bound on the smooth entropy [40] using Rényi
entropy of any order α greater than 1; this yields more
precise bounds on the smooth entropy for large alphabets.
The use of Rényi entropy in this result thus benefits the field
of privacy amplification and some cryptographic techniques
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where it can be applied such as key agreement from common
information [41] and oblivious transfer [42]. Rényi entropy
has also been used to quantify the randomness produced by
universal hashing in the context of pseudo-random number
generation [43].

Generalizing g-entropy and Rényi entropy may thus yield
interesting results in some particular security scenarios, and
may be beneficial in future research investigations that require
Rényi entropy to characterize a given uncertainty prop-
erty, such as in [38]. Although other more general notions
of entropy have been proposed in different contexts such
as relative perfect secrecy [44], a mathematical discussion
on the natural properties that an entropy measure should
satisfy [45] shows that our generalized entropy cannot both
satisfy the data-processing inequality and be an expectation
of its prior version. The definition of our general entropy
thus violates the averaging property which does not have any
operational significance for us, whereas the data-processing
inequality, which we prove for our entropy in Theorem 1,
is a fundamental result that supports our randomization
mechanism.

IV. BACKGROUND AND NOTATIONS

We recall different notions of entropy used for quantifying
information.

Notations: Let D be a discrete set. We write P(D) for the
power set of D, and |D| for the cardinality of set D. Let
�(D) be the set of all probability distributions whose support
is contained in D. Throughout, we present distributions as
Python dictionaries with domain values as keys and associated
probabilities as values. For example, {4 : 1/2, 8 : 1/2} represents
the uniform distribution over {4, 8}. For any integers a and b,
we will write �a, b� for the set of consecutive integers ranging
from a to b, namely {a, a+1, · · · , b}. The set of positive inte-
gers will be denoted by N>0 while R≥0 and R>0 will denote
the set of non-negative and positive real numbers respectively.
Let n be in N>0. A linear distribution over �1, n� will refer to
the triangular distribution with mode n, i.e. to the distribution
{k : 2k

n(n+1) | 1 ≤ k ≤ n} where 2
n(n+1) is a normalizing factor.

Given random variable X and value x , the event “X = x”
will be abbreviated by “x” when there is no ambiguity, and
its probability will be denoted by p(x). Similarly, we will
abbreviate

∑

x∈D by
∑

x when the domain D is obvious from
context.

We denote by hxii1≤i≤n the n-dimensional vector in Rn

whose coordinates are x1, · · · , xn ; we abbreviate this by hxi ii

when there is no ambiguity. For all vector v in Rn and all
p in R≥0, the usual p-norm of v is denoted by kvkp. Let
log denote the logarithm in base 2 and let µ be the function
defined for all non-negative real x as:

µ(x) =

{

−x · log(x) if x > 0

0 if x = 0
(1)

Shannon and min-entropy: Recall that for two random
variables X and Y taking values in X and Y , respectively,
the Shannon entropy H1(X) [46] of X and the Shannon

entropy H1(X | Y ) of X given Y are given as:

H1(X) = −
∑

x

p(x) log p(x)

H1(X | Y ) =
∑

y

p(y) H1(X | y)

where H1(X | y) = −
∑

x p(x | y) log p(x | y). On the
other hand, the Bayes vulnerability V∞(X) [26], [28], [40]
expresses the probability of guessing a secret in one try.
Similarly, the conditional Bayes vulnerability [47] V∞(X | Y )

of X given Y reflects the average probability of guessing the
secret X in one try. They are defined as:

V∞(X) = max
x

p(x)

V∞(X | Y ) =
∑

y

p(y) V∞(X | y)

where V∞(X | y) = maxx p(x | y). The min-entropy of X

and conditional min-entropy of X given Y are defined as:

H∞(X) = − log V∞(X)

H∞(X | Y ) = − log V∞(X | Y )

Rényi Entropy: A more general notion of entropy, called
Rényi entropy [48], generalizes both notions of Shannon
entropy and min-entropy. For sake of notational convenience,
let us first define the α-vulnerability of X , for all positive real
α 6= 1, as: Vα(X) =

∥

∥hp(x)ix

∥

∥

α
Using this notion, we may

express the Rényi entropy Hα(X) of X as:

Hα(X) =
α

1 − α
log Vα(X)

It is well-known and easily shown that the Rényi entropy
Hα(X) converges towards the min-entropy H∞(X) as α tends
towards infinity. Moreover, an application of L’Hôpital’s rule
ensures that the Rényi entropy Hα(X) converges towards the
Shannon entropy H1(X) as α tends towards 1.

However, although different notions of conditional Rényi
entropy have been proposed, none of them has yet been
commonly accepted as the conditional Rényi entropy [49].
Yet, one candidate seems to be particularly suitable for our
needs: Arimoto’s [50] notion of conditional Rényi entropy not
only satisfies the natural properties of chain rule (Hα(X |

Y ) ≥ Hα(XY ) − log |Y|, where Hα(XY ) denotes the joint
entropy of X and Y ) and monotonicity (Hα(X | Y ) ≤ Hα(X)).
But it is also compatible with both the Shannon entropy and
the min-entropy in that we have the convergences Hα(X |

Y ) −−−→
α→1

H1(X | Y ) and Hα(X | Y ) −−−→
α→∞

H∞(X | Y ).

Therefore, we will introduce and work with the notion of
conditional Rényi entropy due to Arimoto [50]. For sake of
notational consistency, let us define the α-vulnerability of
X given Y as: Vα(X | Y ) =

∑

y p(y) Vα(X | y) where
Vα(X | y) =

∥

∥hp(x | y)ix

∥

∥

α
. For α 6= 1, we may now define

the conditional Rényi entropy of X given Y as:

Hα(X | Y ) =
α

1 − α
log Vα(X | Y )

g-Entropy: The g-entropy [51] measures the gain that some-
one might get from guessing a secret — in our case, the private
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inputs of other parties. Since this is a relevant way of measur-
ing risk of privacy violations, we wish that our approach and
developed methods also support use of this notion of entropy.

Let X be the domain of X , where random variable X models
a secret. Let W be the set of possible guesses for the value
of X . A function g of type W × X → [0, 1] is then called
a gain function. This function assigns to each guess w in W

and possible value x of the secret in X a reward g(w, x) that
an attacker would gain by guessing w when the secret value
actually is x . Set W may be designed so that its elements
refer to properties of secrets, values that are “close” to the
secret or other means of expressing aspects of the secret.

For such a gain function g, the g-vulnerability of X ,
Vg(X), is the expected reward that an attacker would gain by
selecting his best guess. It, and the conditional g-vulnerability
Vg(X | Y ) of X given Y are defined as:

Vg(X) = max
w

∑

x

p(x)g(w, x)

Vg(X | Y ) =
∑

y

p(y) Vg(X | y)

where Vg(X | y) = maxw

∑

x p(x | y)g(w, x). The g-entropy

and conditional g-entropy are then defined as follows:

Hg(X) = − log Vg(X)

Hg(X | Y ) = − log Vg(X | Y )

The g-entropy generalizes the min-entropy: for W = X and
gain function id : X × X → [0, 1] — where id(w, x) = 0 if
w is not equal to x , and id(x, x) = 1 for all x in X , then
Hid(X) equals H∞(X) and Hid(X | Y ) equals H∞(X | Y ).

V. GENERALIZED CONDITIONAL ENTROPY

To get a very general definition of information leakage in
Secure Multi-Party Computations (SMC), we define a more
general notion of entropy that subsumes both Rényi entropy
and g-entropy. For random variables X and Y with finite
domain X and Y , and a finite set W of possible guesses
for X , we adapt the existing notions, such as the Bayesian
vulnerability, to the presence of a gain function g and its set of
guesses W . We indicate that dependency by writing Vα,g and
so forth, subsequently. We define properties of gain functions
that are pertinent to our technical development.

Definition 1: Let g : W × X → [0, 1] be a gain function.

1) Then g is positive iff ∀x ∈ X :
∑

w g(w, x) > 0 .

2) Let β be in R>0. The gain function g is β-positive iff

∀x ∈ X :
∑

w g(w, x) ≥ β .

3) Function g is unitary iff ∀x ∈ X :
∑

w g(w, x) = 1 .

We will only consider positive gain functions: a gain func-
tion that is not positive is the constant 0 function, and can only
produce 0 vulnerabilities — as mentioned in [51]; β-positive
gain functions will be useful in later sections. Note that, since
X is finite, all positive gain function g have some β > 0 such
that g is β-positive.

Let g : W ×X → [0, 1] be a gain function and 0 < α 6= 1.
The (α, g)-vulnerability Vα,g(X) of X and the conditional

(α, g)-vulnerability Vα,g(X | Y ) of X given Y are defined as:

Vα,g(X) :=

∥

∥

∥

∥

∥

〈

∑

x

p(x)g(w, x)

〉

w

∥

∥

∥

∥

∥

α

(2)

Vα,g(X | Y ) :=
∑

y

p(y) Vα,g(X | y) (3)

where Vα,g(X | y) :=
∥

∥

〈∑

x p(x | y)g(w, x)
〉

w

∥

∥

α
. We now

define the (α, g)-entropy of X and the conditional (α, g)-
entropy of X as:

Hα,g(X) :=
α

1 − α
log Vα,g(X) (4)

Hα,g(X | Y ) :=
α

1 − α
log Vα,g(X | Y ) (5)

Again, we can easily verify that the (α, g)-entropies
Hα,g(X) and Hα,g(X | Y ) both converge towards their respec-
tive g-entropies as α tends towards infinity. We may thus
define:

H∞,g(X) := Hg(X)

H∞,g(X | Y ) := Hg(X | Y )

We now focus on the case when α tends towards 1 and we
define, where µ is as in (1):

H1,g(X) :=
∑

w

µ

(

∑

x

p(x)g(w, x)

)

H1,g(X | Y ) :=
∑

w

µ

(

∑

x

p(x | y)g(w, x)

)

For unitary gain functions g, it is easy to see that the
(α, g)-entropies Hα,g(X) and Hα,g(X | Y ) converge towards
H1,g(X) and H1,g(X | Y ), respectively, when α tends
towards 1. The reason for this is that, when g is unitary,
the (α, g)-vulnerabilities Vα,g(X) and Vα,g(X | Y ) converge
towards 1 as α tends towards 1. And then the claimed results
follow from the application of L’Hôpital’s rule, in a similar
fashion as done for Rényi entropies. Let us formalize this:

Lemma 1: 1) Let g : W×X → [0, 1] be a gain function.

Then Hα,g(X) and Hα,g(X | Y ) converge for α → ∞:

lim
α→∞

Hα,g(X) = H∞,g(X)

lim
α→∞

Hα,g(X | Y ) = H∞,g(X | Y )

2) Moreover, if g is unitary, then Hα,g(X) and Hα,g(X | Y )

converge when α tends towards 1, and we then have:

lim
α→1

Hα,g(X) = H1,g(X)

lim
α→1

Hα,g(X | Y ) = H1,g(X | Y )

When the gain function g is id with W = X as above,
we obtain that for all positive reals α, the (α, id)-entropies
agree with the Rényi entropies:

Hα,id(X) = Hα(X)

Hα,id(X | Y ) = Hα(X | Y )

This result is immediate for all values of α different from
1. When α is equal to 1, this follows from the fact that
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Fig. 1. Summary of the different notions of entropy that our generalized
measure of information flow Hα,g subsumes.

id is a unitary gain function and that we can apply the
previous result ensuring that when α tends towards 1, the
(α, id)-entropies Hα,id(X) and Hα,id(X | Y ), respectively,
converge towards H1,id(X) (the Shannon entropy) and H1,id

(X | Y ) (the conditional Shannon entropy), respectively.
We summarize those results and our discussion in Figure 1.

In conclusion, our new notion of entropy subsumes both the
g-entropy and the whole family of Rényi entropies, including
the Shannon entropy and the min-entropy. Therefore, all results
that we develop in this paper will also be valid for all the
different entropies mentioned earlier.

VI. INFORMATION FLOW FOR SECURE

MULTI-PARTY COMPUTATION

A. Model for Information Flow

Let us recall the technical setting and the assumptions intro-
duced in [15] for studying and quantifying the information
flow produced by public outputs in SMC, as this constitutes a
basis for the remaining technical developments in this paper.
Throughout this paper, we consider a set of n > 1 parties
P = {P1, · · · , Pn} holding the respective inputs x1, · · · , xn ,
each of them belonging to Z. Let f : Zn → Z be a function.
Let o denote the output of the function applied with the parties’
inputs, i.e. o = f (x1, · · · , xn). Both o and f are public and so
known to all parties in P. In order to study the aforementioned
acceptable information leakage of this situation, we introduce
the following model. Let A and T be two non-empty subsets of
P and S be a possibly empty subset of P such that (A, T, S)

forms a partition of P. Our attack models assumes that all
parties in A are willing to collaborate between each other in
order to maximize information leakage on inputs of the parties
in T. The sets A, T and S will thus respectively be referred
to as the sets of attackers, targets and spectators, respectively.
We now define the attackers’ input xA = hxi ii∈A, the targets’
input xT = hxi ii∈T and the spectators’ input xS = hxi ii∈S.
By abuse of notation (or a reordering of arguments for f ),
we will also refer to the output specification of f as o =

f (xA, xT, xS).
Let a = |A|, t = |T| and s = |S| denote the cardinality

of the respective sets. Let DA be an element of P(Za) and
let us assume that the input vector of the parties in A is
ranged in DA. Similarly, let DT in P(Zt ) and DS in P(Zs)

be the domain of the input vectors of the parties in T and S

respectively. In other words, we assume that:

xA ∈ DA, xT ∈ DT, xS ∈ DS

However, as those inputs are private, their exact value is not
known to the other parties. In order to quantify the information

leaks that output o produces, we model the parties’ inputs as
random variables XA, XT and XS respectively, following the
respective probability distributions:

πA ∈ �(DA), πT ∈ �(DT), πS ∈ �(DS)

where �(X) is the set of discrete probability distributions over
a finite set X . These probability distributions will model the
beliefs that each set of parties has on the other parties’ inputs.
More precisely, the parties in A and T believe that random
variable XS is governed by πS, the parties in A and S believe
that XT follows πT, whereas the parties in T and S believe
that XA follows πA. We articulate the assumptions we make
about these distributions:

Assumption 1: We assume that the parties’ beliefs πA, πT

and πS are public and are part of the common knowledge

amongst all parties in P. Moreover, our model assumes that

the three groups of parties will not collaborate between each

other and that their inputs are thus independent.

The independence of XA, XT and XS will play an important
role in the proofs of the Theorems in Section VIII. The
assumption that their probability distributions are public and
part of the common knowledge ensures that all the parties will
be able to access the same data produced by our measure of
information flow in Section VI-B and Section VII, and will
be able to reach a consensus regarding how to best protect
the targeted inputs’ privacy, as discussed in Section IX. These
probability distributions can express a variety of beliefs from
uniform to point mass distributions.

Lastly, let DO in P(Z) be the output domain, defined as
DO = { f (xA, xT, xS) | xA ∈ DA, xT ∈ DT, xS ∈ DS}. As a
function of random variables, the output o = f (xA, xT, xS)

will therefore be modeled by the random variable:

O f = f (XA, XT, XS) (6)

ranged in DO . We sometimes write O when f is clear from
context. In order to quantify the information that the attackers
would learn about XT when inputting a particular input xA,
we introduced in [15] the attackers’ weighted average entropy
awaeA

T
defined for all xA in DA as the conditional Shannon

entropy of XT given O and xA, i.e.:

awae
A

T
(xA) =

∑

o

p(o | xA)
∑

xT

µ(p(xT | o, xA)) (7)

where µ was defined in (1).
A deceitful attacker, i.e. an attacker who is willing to lie

about his honest and intended input in order to learn more
information on the private inputs of his targets, will now be
able to take advantage of this indicator in (7) in order to
shape his input so as to maximize his information gain. Since
the notion of awaeA

T
in (7) is an instance of the conditional

Shannon entropy, we need to widen the approach and analyses
of [15] to make them compatible with more general notions
of entropy. We develop this next.

B. General Attackers’ Entropy

Function awaeA

T
for measuring information leakage is

dependent on some implicit parameters, namely the func-
tion f , the partition (A, T, S) of P and the distributions πT
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and πS of the targets and spectators’ inputs. Our technical
development needs to make those parameters explicit, and we
wish to integrate the generalized entropy notion presented in
Section V. Therefore, we now define a higher-order function
Awae which fulfills those requirements. Subsequently, we will
work with a set of allowable guesses W for the targeted
input xT.

Definition 2: Let α be in R>0 ∪ {∞} and g : W × DT →

[0, 1] be a gain function. We introduce the higher-order

function Awaeα,g of type:

Awaeα,g : (Zn → Z) × P(P)3 × �(Z)2 → (DA → R≥0)

that takes as arguments a function f of type Zn → Z, three

disjoint sets of participants (A, T, S) that form a partition

of P, the probability distribution (πT, πS) of the respec-

tive targets’ and spectators’ inputs, and returns a function

Awaeα,g( f, (A, T, S), (πT, πS)) of type DA → R≥0, denoted

as awae
f
α,g and defined for all xA in DA as the conditional

(α, g)-entropy of XT given O f as in (6) and xA:

awae
f
α,g(xA) = Hα,g(XT | O f , xA)

For subsequent theorems and proofs, we note that
for 0 < α 6= 1 we have:

awae
f
α,g(xA) =

α

1 − α
· log Vα,g(XT | O f , xA) (8)

where the (α, g)-vulnerability Vα,g(XT | O f , xA) can be
written as:

Vα,g(XT | O, xA)

=
∑

o

p(o | xA) ·

∥

∥

∥

∥

∥

∥

〈

∑

xT

p(xT | o, xA) · g(w, xT)

〉

w

∥

∥

∥

∥

∥

∥

α

=
∑

o

∥

∥

∥

∥

∥

∥

〈

∑

xT

p(xT) · p(o | xT, xA) · g(w, xT)

〉

w

∥

∥

∥

∥

∥

∥

α

(9)

This is so since the α-norm is homogeneous, even for α < 1,
and since xA and xT are independent random variables.

This new function awae
f
α,g provides us with a generic

way of measuring information flow. Indeed, it subsumes some
notions of entropy that are widely used in cryptography. For
example, when g equals id, this function corresponds to the
conditional Rényi entropy. When α equals ∞, it corresponds
to the conditional g-entropy. We also observe that when α

equals 1 and g equals id, our new function awae
f

1,id
is

identical to the function awaeA

T
introduced in [15].

We now illustrate how our general measure of information
flow in Secure Multi-Party Computations enables us to quan-
tify the information that attackers can gain on their targets’
inputs. In doing so, we also raise interesting concerns that
will further motivate our present work. Let us consider an
example.

Example 1: Let us consider 3 parties X, Y and Z holding

the respective inputs x, y and z, and where A = {X} is

attacking T = {Y } under spectator S = {Z}. Let DA = DT =

DS = �1, 30� and let us assume that XT and XS are uniformly

Fig. 2. Illustration of awae
f

∞,id
in the computation of function f (x, y, z) =

x(2y+z)+2z with πT and πS uniform over �1, 30�, when X attacks Y under
spectator Z .

distributed over this domain. Let f : Z3 → Z be defined by

f (x, y, z) = x(2y + z) + 2z.

In this example, we will study the behavior of the conditional

min-entropy of the targeted inputs. In other words, we will

instantiate α with ∞ and g with id in order to study the

function awae
f

∞,id
which we plot in Figure 2. This plot clearly

shows that some values of xA are more advantageous for

attacker X in that they produce lower conditional entropies

for his targeted input Y . For instance, inputting x = 2 would

produce a high entropy and would not reveal much information

about y. In contrast, input x = 15 would produce entropy 0,

which means that X would learn the exact value of y from the

output. Indeed, as X knows his own input, he knows that in this

case, the output equals o = f (15, y, z) = 30y + 17z. We can

check that for all z in DS the function fz : y 7→ f (15, y, z) is

bijective from DT to fz(DT) as both sets have size 30. This

thus ensures that attacker X can deduce the exact value of y

when learning the output value.

We just saw that the choice of the attackers’ input xA

can have a dramatic influence on the entropy of the targeted
input xT. In particular, the attackers can harm the privacy of
their targets by choosing some judicious inputs xA. In order to
mitigate against this privacy concern, we next introduce and
study the notion of approximate function.

VII. FUNCTION RANDOMIZATION VIA VIRTUAL INPUTS

We now consider the case where revealing the exact value
of the output of f , namely o = f (xA, xT, xS), would be
likely to jeopardize the privacy of the targeted input xT. Thus,
we would like to be able to replace the computation of f by
the computation of an approximate function f 0, whose output
should not only be a decent indicator of o, but should also
enhance the privacy of T’s input. This presents an inherent
trade-off between the accuracy of the output and the privacy
of the inputs. We will understand this trade-off in detail in
Section IX.

In order to randomize the observed output, the function f 0

will take an additional argument ϕ, that may consist of a
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Fig. 3. Comparison of the black-box model for secure function f (top)
with that of its approximation f 0 (bottom), as introduced in Definition 3. The
virtual inputs ϕ and the output o of f are fed into function h within the black
box to produce approximate output o0.

number of integer inputs, and that will act as a source of
randomness that can distort the output to protect privacy of
targeted inputs. Let us next formalize this notion of approxi-
mate function.

Definition 3: Let n be in N>0, v be in N and f : Zn → Z

be an n-ary function.
1) Function f 0 : Zn × Zv → Z is an approximation of

f or that f 0 approximates f iff there exists a function

h : Z × Zv → Z such that:

∀x ∈ Z
n,∀ϕ ∈ Z

v : f 0(x, ϕ) = h( f (x), ϕ) (10)

2) An approximation f 0 of f is a close approximation of

f — or f 0 closely approximates f — iff for all ϕ in

Zv , the function hϕ : Z → Z is injective, where hϕ is

defined for all ϕ in Zv as ∀o ∈ Z : hϕ(o) = h(o, ϕ).

3) We define f + : Zn+1 → Z, the additive approximation
of f , for all x in Zn and ϕ in Z as f +(x, ϕ) = f (x)+ϕ.

We illustrate the notion of approximate function f 0 for
a function f in Figure 3. Function f 0 has all inputs of f

and additional virtual inputs ϕ; and its black box contains
“internal wirings” so that ϕ and the output o of f are fed
into function h within that black box to produce approximate
output o0. A close approximation f 0 of f requires all the
functions hϕ to be injective, which makes sense for SMC
as it enforces a correlation between the output of f and
that of its approximation f 0. Indeed, knowledge of o0 and ϕ

determine that of o, which prevents o0 from being independent
from o. We also note that the additive approximation f + of a
function f closely approximates the latter.

The use of a substitute function f 0 aims to contain and limit
the information that would flow from the computation of f

by randomizing the output of f with an additional variable ϕ.
Therefore, we need to understand and quantify the information
flow that the computation of such an approximate function f 0

produces, and we need to study and represent the behavior of
the additional variable ϕ that f 0 uses to randomize the output
of f . To ensure the security of such approximations, variable ϕ

is not held by any physical party; it is a virtual input, a concept
we formalize next.

Definition 4: Let n and v be in N>0. A v-dimensional

virtual input ϕ is a vector in Zv , independent of the other
inputs, and not held by any party in P. As such, its value

ϕ is kept secret and appears to all the parties in P as a

random variable 8 on domain D8 following a probability

distribution π8, referred to as the virtual distribution. A set of

virtual parties V is deemed to be the (virtual) owner of ϕ.

In other words, the probability distribution π8 can be regarded
as the prior belief that all the parties in P have on input ϕ.
Note that all those parties in P will have the same public prior
belief on ϕ, in the spirit of Assumption 1, and that P and V

are mutually disjoint.
The set of parties P0 for function f 0 is P0 = P ∪ V.

We now study the privacy that targeted parties gain when
the computation of a function f is replaced by that of an
approximation f 0, randomized by a virtual input ϕ.

Definition 5: Let n > 1 and v in N>0. Let f : Zn → Z be a

function and let f 0 : Zn×Zv → Z approximate f . Let a virtual

input ϕ be in Zv and let π8 be its probability distribution.

Finally, let α be in R ∪ {∞} and g be a gain function of type

W × DT → [0, 1]. Using the joint probability distribution

defined by (πS ·π8)(xS, ϕ) := πS(xS) ·π8(ϕ) for all xS in DS

and ϕ in D8, function awae
f 0,π8
α,g : DA → R≥0 is given as:

awae
f 0,π8
α,g := Awaeα,g( f 0, (A, T, S ∪ V), (πT, πS · π8))

This function awae
f 0,π8
α,g measures the privacy of the tar-

gets, given a certain approximate function and virtual input
distribution. It will be particularly useful, for studying how
privacy changes for different virtual input distributions. The
assumption that for f 0 and f , the sets A and T are unchanged,
does not compromise the security of our approach: an attacker
for function f 0 could not really learn anything useful about
the input of parties in V, since these inputs are randomly
drawn according to π8. Let us illustrate the benefits offered
by function substitution.

Example 2: Let us re-consider the scenario of Example 1,

but now with the additive approximation f + of f . We will

study the behavior of the conditional min-entropy of the

targeted inputs when we approximate f with f +. In other

words, we will study the function awae
f +,π8 i

∞,id
for the following

distributions π8i :

π81 = {−2 : 1/4, 0 : 1/4, 2 : 1/4, 4 : 1/4}

π82 = {−1 : 1/4, 0 : 1/4, 1 : 1/4, 2 : 1/4}

π83 = {−3 : 1/8,−2 : 1/8,−1 : 1/8, 0 : 1/4,

1 : 1/8, 2 : 1/8, 3 : 1/8}

As seen in Figure 4, for all 1 ≤ i ≤ 3, function awae
f +,π8i

∞,id

is above awae
f

∞,id
. This suggests that randomizing a compu-

tation effectively enhances the privacy of the targeted inputs.

The latter example indicates that function randomization
indeed contributes to improving the privacy of the targets.
In the next section, we want to formally investigate the
privacy gains offered by function randomization. In particular,
we would like to understand why substituting the compu-
tation of a function f by that of an approximation f 0 can
only enhance the privacy of the targets, and we will further
characterize this privacy gain for close approximations.
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Fig. 4. Benefits of replacing the computation of f by that of its approximation
f + in the computation of f (x, y, z) = x(2y+z)+2z with πT and πS uniform

over �1, 30�. For all 1 ≤ i ≤ 3, the function awae
f +,π8 i
∞,id

is above awae
f

∞,id
.

VIII. THEORY OF VIRTUAL INPUT RANDOMIZATION

We first summarize the mathematical setting we study in
the remainder of this paper:

Assumption 2: In the remainder of this paper, including

lemmas and theorems, f 0 is an approximation of f , where

ϕ is a virtual input with domain D8. Moreover, g : W ×

DT → [0, 1] is a positive gain function, and β is a positive

real.

The following theorem states that the computation of any
approximate function f 0 will not produce a lower privacy for
the targeted inputs than that produced by the computation
of f .

Theorem 1: Let α be a positive real different from 1. Then,

we have:

∀π8 ∈ �(D8),∀xA ∈ DA : awae
f 0,π8
α,g (xA) ≥ awae

f
α,g(xA)

(11)

Proof: Let D := DA × DT × DS and X := (XA, XT, XS).
By definition, since f 0 approximates f , there is a function
h such that f 0(x, ϕ) = h( f (x), ϕ) for all x in D and all ϕ

in D8. The random variable representing the output of f ,
namely O = f (X) has domain DO . Similarly, let DO 0 be
the domain of the output of f 0, namely O 0 = f 0(X,8) =

h( f (X),8) = h(O,8). Let π8 be in �(D8) and xA be
in DA. We recall that we have:

awae
f 0,π8
α,g (xA) =

α

1 − α
· log Vα,g(XT | O 0, xA)

where:

Vα,g(XT | O 0, xA)

=
∑

o0

∥

∥

∥

∥

∥

∥

〈

∑

xT

p(xT) · p(o0 | xT, xA) · g(w, xT)

〉

w

∥

∥

∥

∥

∥

∥

α

(12)

Applying Bayes Theorem twice, and as 8 is independent
from XA, XT and O, we obtain that:

p(o0 | xT, xA) =
∑

ϕ

p(ϕ) · p(o0 | xA, xT, ϕ)

=
∑

ϕ

p(ϕ) ·
∑

o∈h−1
ϕ (o0)

p(o | xA, xT)

· p(o0 | xA, xT, ϕ, o) (13)

since p(o0 | xA, xT, ϕ, o) 6= 0 only when hϕ(o) = o0.
Moreover, p(o0 | xA, xT, ϕ, o) = 1 when hϕ(o) = o0.

Case α > 1: We can apply the triangular inequality twice
from Equation (12) in order to obtain:

Vα,g(XT | O 0, xA) ≤
∑

o0

∑

ϕ

p(ϕ)

·
∑

o∈h−1
ϕ (o0)

∥

∥

∥

∥

∥

∥

〈

∑

xT

p(xT)· p(o | xA, xT)·g(w, xT)

〉

w

∥

∥

∥

∥

∥

∥

α

(14)

For any ϕ in D8, the collection of sets (h−1
ϕ (o0))o0∈DO0

constitutes a partition of DO . So there exists a unique o0 in
DO 0 such that hϕ(o) = o0. We can thus simplify the double
summation over o0 and o as a single sum over o:

Vα,g(XT | O 0, xA) ≤
∑

ϕ

p(ϕ)

·
∑

o

∥

∥

∥

∥

∥

∥

〈

∑

xT

p(xT) · p(o | xA, xT) · g(w, xT)

〉

w

∥

∥

∥

∥

∥

∥

α

Since α is greater than 1, the expression α
1−α

is negative and
we get:

awae
f 0,π8
α,g (xA) ≥ awae

f
α,g(xA) (15)

Case α < 1: We can show that for all n in N>0, for all
x and y in (R≥0)

n , we have kx + ykα ≥ kxkα + kykα . This
follows from Minkowski inequality in the case where α is
lower than 1, since x 7→ xα is then concave on R≥0. This
reversed triangular inequality reverses the inequality obtained
in (14) and as α

1−α
is now positive, we find the same result as

in (15).
The proof of the previous theorem is based on the analysis

of the formal expressions of awae
f 0,π8
α,g (xA) and awae

f
α,g(xA)

when 0 < α 6= 1. However, we can extend this result to α = 1
and α = ∞, by appealing to that result for positive α 6= 1 and
the continuity of inequalities under limits:

Corollary 1: 1) We have that: ∀π8 ∈ �(D8),∀xA ∈

DA : awae
f 0,π8
∞,g (xA) ≥ awae

f
∞,g(xA).

2) Moreover, if g is unitary, then we have: ∀π8 ∈

�(D8),∀xA ∈ DA : awae
f 0,π8

1,g (xA) ≥ awae
f
1,g(xA).

Proof: By virtue of Lemma 1, we know that letting α

tend towards ∞ in Theorem 1 yields the result stated in
item 1) above. Similarly, if g is unitary, Lemma 1 ensures
that Theorem 1 implies the result stated in item 2) as
α → 1.

Concretely, the theorem states that learning a function of
the output of f cannot leak more information on the inputs
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of f than the output of f may leak already. This can be
seen as a generalization of the data-processing inequality (DPI)
and Item 1 of Corollary 1 enables us to recover the known
DPI for g-entropy [51]. On the other hand, we are able to
estimate an upper bound for the privacy of the inputs of the
targeted parties, once a computation has been randomized. The
next theorem states that, when replacing the computation of a
function f by that of a close approximation f 0, the entropy
gain provided by a virtual input cannot exceed the entropy of
the distribution for the virtual inputs.

Theorem 2: Let f 0 be a close approximation of f and 0 <

α 6= 1. Then, we have:

∀π8 ∈ �(D8),∀xA ∈ DA :

awae
f 0,π8
α,g (xA) ≤ awae

f
α,g(xA) + Hα(π8) (16)

where Hα(π8) refers to the Rényi entropy of order α of the

distribution π8.

Proof: By definition, since f 0 closely approximates f ,
there exists some function h such that f 0(x, ϕ) = h( f (x), ϕ)

for all x in D and ϕ in D8. Let π8 be in �(D8) and xA be
in DA. For sake of readability, we set V 0 = Vα,g(XT | O 0, xA)

and use V 0 in the arguments below. From Equation (13),
we recall that:

V0 =
∑

o0

(

∑

w

[

∑

xT

p(xT) ·
∑

ϕ

p(ϕ)

·p(o0 | xA, xT, ϕ) · g(w, xT)

]α)
1
α

Case α > 1: We know that x 7→ xα is convex on R≥0 and
equals 0 at 0. We also know that x 7→ x

1
α is increasing on

R≥0 and thus:

V0 ≥
∑

o0

(

∑

w

∑

ϕ

[

∑

xT

p(xT) · p(ϕ)

· p(o0 | xA, xT, ϕ) · g(w, xT)

]α)
1
α

≥
∑

o0

(

∑

w

∑

ϕ

p(ϕ)α

·

[

∑

xT

p(xT) · p(o0 | xA, xT, ϕ) · g(w, xT)

]α)
1
α

(17)

Let us denote
∑

ϕ p(ϕ)α by σ . For any ϕ, we have p(ϕ)α =

σ ·
p(ϕ)α

σ . But also
∑

ϕ
p(ϕ)α

σ equals 1. We also know that

x 7→ x
1
α is concave. Therefore, Jensen’s inequality yields:

V0 ≥ σ
1
α

∑

ϕ

p(ϕ)α

σ

∑

o0

(

∑

w

[

∑

xT

p(xT)

· p(o0 | xA, xT, ϕ) · g(w, xT)

]α)
1
α

(18)

Moreover, we have p(o0 | xA, xT, ϕ) = p(O ∈ h−1
ϕ (o0) |

xA, xT) since O and 8 are independent. Furthermore, for all

ϕ in D8, we know that hϕ is injective. Thus, from (18) we
get that:

V0 ≥ σ
1
α

∑

ϕ

p(ϕ)α

σ

∑

o

(

∑

w

[

∑

xT

p(xT) · p(o | xA, xT)

· g(w, xT)

]α)
1
α

≥ σ
1
α

∑

o

∥

∥

∥

∥

∥

∥

〈

∑

xT

p(xT) · p(o | xA, xT) · g(w, xT)

〉

w

∥

∥

∥

∥

∥

∥

α

and as α
1−α

is negative, the claim follows:

awae
f 0,π8
α,g (xA) ≤ awae

f
α,g(xA) + Hα(π8) (19)

Case α < 1: This is dual: x 7→ xα is concave, the inequality
of (17) is reversed, x 7→ x

1
α is convex, and the inequality

in (18) is reversed, too. However, term α
1−α is now positive.

Thus, a dual argument shows that (19) holds.
We can also extend the result of Theorem 2 to the limiting

cases, i.e. to when α equals 1 or ∞.
Corollary 2: 1) We have that: ∀π8 ∈ �(D8),∀xA ∈

DA : awae
f 0,π8
∞,g (xA) ≤ awae

f
∞,g(xA) + H∞(π8).

2) Moreover, if g is unitary, then we have: ∀π8 ∈

�(D8),∀xA ∈ DA : awae
f 0,π8

1,g (xA) ≤ awae
f
1,g(xA) +

H1(π8).

Proof: Lemma 1 ensures the convergence of awae
f 0,π8
α,g

(xA) and of awae
f
α,g(xA) towards their respective limiting

values awae
f 0,π8
∞,g (xA) and awae

f
∞,g(xA) when α tends to ∞.

Moreover, it is known that the Rényi entropy Hα(π8) of
order α converges to the min-entropy H∞(π8) as α tends
towards ∞. Thus, the result stated in item 1) follows from The-
orem 2 by letting α tend towards ∞. A similar argument con-
cludes the proof for α tending towards 1, in the case that g is
unitary.

Although one could have proved Corollaries 1 and 2 with
bespoke and somewhat different arguments, it is pleasing
to see that our generalized conditional entropy makes such
arguments uniform and reasonably simple. Given a close
approximation f 0 of a function f , Theorems 1 and 2 and
Corollaries 1 and 2 give us a lower bound and an upper
bound for the entropy gain that a given virtual distribution
provides. We can formalize this through a gain function 0α,g ,
which indicates how much entropy we gain by adding a virtual
input to the secure computation — as a function of the chosen
probability distribution of this virtual input:

Definition 6: Let f 0 be a close approximation of a func-

tion f . Let α be in R>0 ∪ {∞}. Let us further assume that

either α is different from 1 or g is unitary. Then, we define

the function 0α,g for all π8 in �(D8) and xA in DA by:

0α,g(π8, xA) := awae
f 0,π8
α,g (xA) − awae

f
α,g(xA) (20)

Then, under the assumptions of Theorem 2, we can sum-
marize our above results as follows:

Corollary 3: Let f 0 be a close approximation of f . Let α be

in R>0 ∪ {∞}. Let us further assume that either α is different
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from 1 or g is unitary. Then, we have:

∀π8 ∈ �(D8), ∀xA ∈ �(DA) :

0 ≤ 0α,g(π8, xA) ≤ Hα(π8) (21)

Proof: This result is a direct consequence of Theorems 1
and 2 and Corollaries 1 and 2.

Let us now illustrate Theorems 1 and 2 by means of a
worked example.

Example 3: Let us re-consider the scenario in Example 5

with the additive approximation f + of f ; in particular,

f 0 is a close approximation of f . We study the behavior of

the conditional min-entropy of the targeted inputs when we

approximate f with f +. In other words, we study the function

awae
f +,π8

∞,id
for different distributions π8. Since f + is a close

approximation of f , Theorems 1 and 2 apply, and thus for all

π8 in �(Z) and for all xA in DA, we have:

awae
f

∞,id
(xA) ≤ awae

f +,π8

∞,id
(xA)

≤ awae
f

∞,id
(xA) + H∞(π8) (22)

In order to illustrate this property, we choose different

distributions for ϕ that all have equal min-entropy:

π81 = {−2 : 1/4, 0 : 1/4, 2 : 1/4, 4 : 1/4}

π82 = {−1 : 1/4, 0 : 1/4, 1 : 1/4, 2 : 1/4}

π83 = {−3 : 1/8,−2 : 1/8,−1 : 1/8, 0 : 1/4,

1 : 1/8, 2 : 1/8, 3 : 1/8}

All those distributions have the same min-entropy which

equals − log(1/4) = 2. In Figure 5, we plot the functions

awae
f

∞,id
, awae

f

∞,id
+2, and awae

f +,π8 i

∞,id
for all 1 ≤ i ≤ 3.

We can verify that Equation (22) indeed holds: for all

1 ≤ i ≤ 3, the function awae
f +,π8i

∞,id
is contained between

the functions awae
f

∞,id
and awae

f

∞,id
+ H∞(π8i ).

Finally, note that although the three virtual distributions

π8i have equal min-entropy, they produce different values for

awae
f +,π8 i

∞,id
. From the plots we can clearly see, e.g., that

π81 produces higher entropy values than π82 in general. This

observation motivates us to seek optimal virtual distributions,

which we focus on in the next section.

IX. OPTIMAL TRADE-OFF BETWEEN

ACCURACY AND PRIVACY

So far, we developed a means of replacing a function f

by an approximating function f 0 which resorts to additional,
virtual inputs governed by some distribution. We showed
that such approximations enable us to protect the privacy of
the targeted inputs. These benefits are hampered by the fact
that the approach introduces a distortion on the output for
function f when computing with f 0 instead. The participants
of the SMC computation from set P are either eager to learn
the actual output of function f or they would tolerate only a
certain difference between the outputs of f and f 0, and these
demands would typically be informed by the use-context of
the SMC computation.

Therefore, we need to have methods by which we can
control the support and the distribution of the virtual input,

Fig. 5. Illustration of the bounds of awae
f +,π8i
∞,id

in the computation of
f (x, y, z) = x(2y + z) + 2z with πT and πS uniform over �1, 30�. For all

i in �1, 3�, the function awae
f +,π8i
∞,id

is contained between awae
f

∞,id
and

awae
f

∞,id
+ H∞(π8i ).

in order to measure and control both the distortion that f 0

and π8 introduce, and the privacy gain that it offers over
using f for SMC instead. We therefore develop now the
formalism needed for studying the inherent trade-off between
the accuracy of the output and the privacy of supplied inputs.
We also recall that Assumption 1 ensures that any of the parties
can perform the methods we introduce next and compute
optimal virtual distributions. When replacing the computation
of a function f by an approximation f 0, the output accuracy
is directly influenced by the choice of f 0. A function f 0 that is
the constant 0 function, e.g., would not reveal anything about
the inputs, but be very inaccurate.

Assumption 3: In the remaining paper, we will focus on

additive approximations f + of f .

This is a natural assumption to make: it simplifies our
problem, as shown in (24), and enables us to characterize opti-
mal virtual distributions. We will also propose some practical
methods from optimization for discovering virtual distributions
that realize this trade-off in an optimal manner. We now make
an assumption on the adversarial power.

Assumption 4: In this section, we will consider that the

parties in A are passive attackers.

In particular, we assume that the attackers A will not be
deceitful and will provide their honest and intended inputs
to the SMC protocol. This is a rational assumption: in this
section, we are studying the trade-off between privacy of
inputs and accuracy of outputs. However, if the attackers are
deceitful, their inputs xA might be far different from their
intended inputs, which might lead the output to be devoid
of any significance. In this case, it would be hopeless to
control the accuracy of such an output. The approach and
the results presented in this section are thus only sensible in
the presence of passive attackers. However, all the theoretical
results that have been developed in the previous sections
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are still relevant in the presence of passive and deceitful
adversaries. Indeed, the functions awae

f
α,g and awae

f 0,π8
α,g

convey the amount of information that the attackers get when
inputting a value xA regardless of their adversarial power. The
study of these functions thus still informs us of the influence
that a deceitful attacker may have in a computation. Finally,
Assumption 4 will be critical for introducing the objective
function of Definition 7.

A. Maximal and Optimal Distortion

We want to contain the distortion introduced by computing
f + instead of f . Formally, for a given virtual input ϕ with
distribution π8, we will tolerate a certain distortion threshold
1 in N>0 that serves as upper bound for the maximal
absolute difference ξ( f, f +) between the output of f and f +,
i.e. ξ( f, f +) ≤ 1 where:

ξ( f, f +) := max
ϕ∈supp(π8)

x∈D

| f (x) − f +(x, ϕ)| (23)

and where supp(π8) := {ϕ ∈ D8 | π8(ϕ) > 0} denotes
the support of π8. For the additive approximation f + of f ,
we can see that ξ( f, f +) equals max{|ϕ| | ϕ ∈ supp(π8)}.
Thus, we have:

ξ( f, f +) ≤ 1 ⇐⇒ supp(π8) ⊆ �−1,+1� (24)

For such additive approximation f +, our examples sug-
gested that different distributions π8 for a virtual input ϕ can
yield different privacy gains for the targeted inputs. We are
thus interested in studying the influence of the distribution π8

of the virtual input on the behavior of the leakage measure
awae

f +,π8
α,g . To that end, we first want to evaluate how much

privacy is being protected by f + and π8 within a distortion
threshold 1. We can do this through a metric, our objective
function for optimization, which we define next. In accordance
with Assumption 4, we consider that the attackers A are pas-
sive, and their inputs xA will thus be considered as a random
variable following distribution πA introduced in Assumption 1.
Our objective function will thus be the weighted average of

awae
f +,π8
α,g over all xA.

Definition 7: Let α be in R>0 ∪ {∞}. The function

objα,g : �(D8) → R≥0 is defined, for all π8 in �(D8), as:

objα,g(π8) =
∑

xA∈DA

p(xA) · awae
f +,π8
α,g (xA) (25)

We observe that the information gained by a
deceitful attacker would have been better conveyed by

minxA
awae

f +,π8
α,g (xA) since such attackers could select the

most informative xA, but Assumption 4 ensures that the
attackers A are passive.

The targeted parties in T — and perhaps others — now
want to find a distribution π8 that will be optimal for this
given metric, under the constraint that the distortion should
remain below the threshold 1. Entropies, as mathematical
functions, are such that the larger their output is, the less do we
actually know. Therefore, we mean to find a global maximum

of the above metric, subject to the distortion-bound constraint.

This ensures that an attacker has, on average, the least informa-
tion gain for this from all possible virtual distributions. Using
the equivalence in Equation (24), this naturally leads us to the
following optimization problem.

Definition 8: Let 1 be in N>0, let α be in R>0 ∪{∞}. Then

we denote by OPα,g(1) the optimization problem:

maximise
π8∈�(�−1,+1�)

objα,g(π8) (26)

We write ωα,g for the optimal objective value in (26).

Note that this optimization problem can equivalently be
expressed as optimizing the 21+ 1 values of distribution π8:

maximise
(π8(i))−1≤i≤+1

objα,g(π8)

subject to
∑

i∈�−1,+1�

π8(i) = 1

and ∀i ∈ �−1,+1� : 0 ≤ π8(i) ≤ 1 (27)

B. Computing Optimal Virtual Distributions

We now discuss methods for solving this optimization prob-
lem and computing optimal virtual distributions, where we dis-
tinguish between the cases in which α is ∞ or greater or equal
to 1.

Optimal Virtual Input Randomization When 1 ≤ α < ∞:

For a gain function g : W × DT → [0, 1], let us study the
objective function of OPα,g(1). We recall that for all xA in
DA and for Vα,g as defined in (9), we have:

awae
f +,π8
α,g (xA) =

α

1 − α
· log

(

Vα,g(XT | O 0, xA)
)

and where, for all xT in DT, the term p(o0 | xT, xA) is a linear
function of π8, namely:

p(o0 | xT, xA) =
∑

xS,ϕ
f +(xA,xT,xS,ϕ)=o0

p(xS) · p(ϕ)

Below, we may write p(o0, | xT, xA)[π8] for p(o0, | xT, xA)

in order to make this linear dependency on π8 explicit.
We thus have a non-linear and non-convex optimization

problem with linear constraints and where the objective func-
tion is twice continuously differentiable almost everywhere.
Sequential Quadratic Programming (SQP) [52], [53] would
thus seem like an adequate and simple solution for finding
a local optimum for our optimization problem. However,
SQP requires the constraints and the objective function to
be twice continuously differentiable, which is not the case of
our objective function: for all α > 1 and all integer n > 1,
the function y 7→ kykα is not differentiable at the origin
even when restricted to (R≥0)

n → R≥0. Consequently, our
objective function is not differentiable at the points π80 in
�(D8) such that π80 makes p(o0, | xT, xA) be 0 but where
p(o0, | xT, xA) is not always 0, i.e., when:
(

p(o0, | xT, xA)[π80] = 0
)

∧
(

∃π81 ∈ �(D8) : p(o0, | xT, xA)[π81] > 0
)

We will address this by smoothening the objective function
in (25) through a non-zero offset vector δ in (R≥0)

|DT| that
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is added to the argument of the α-norm — the expression
in (9) with O 0 instead of O. This approximation is then twice
continuously differentiable everywhere. We introduce some
definitions for formalizing this:

Definition 9: Let α be in ]1,∞[. Let δ 6= 0 be in (R≥0)
|DT|.

1) Let π8 be in �(D8). For all xA in DA, we define:

Vδ

α,g(XT | O 0, xA)

:=
∑

o0

∥

∥

∥

∥

∥

∥

δ+

〈

∑

xT

p(xT)· p(o0 | xT, xA) · g(w, xT)

〉

w

∥

∥

∥

∥

∥

∥

α

(28)

awae
f +,π8,δ
α,g (xA)

:=
α

1 − α
· log

(

Vδ
α,g(XT | O 0, xA)

)

(29)

2) We define the function objδα,g : �(D8) → R≥0 for all

π8 in �(D8) as:

objδα,g(π8) :=
∑

xA∈DA

p(xA) · awae
f +,π8,δ
α,g (xA) (30)

For 1 in N>0, we define OP
δ

α,g(1) as the following

optimization problem:

maximise
π8∈�(�−1,+1�)

objδα,g(π8) (31)

We write ωδ
α,g for the global maximum of the optimiza-

tion problem OP
δ

α,g(1).

Using the above optimization problems, we are now able to
approximate the result of the original problem in (26) with an
arbitrary accuracy by choosing the value of δ. We formalize
this next:

Theorem 3: Let α be in ]1,∞[. Let g be a β-positive gain

function (as defined in Definition 1). Let 1 be in N>0 and

let δ be the vector in (R>0)
|DT| whose |DT| components all

equal δ in R>0. Then, for all ε in R>0, we have:
(

δ ≤ (1 −
1

α
) ·

ε · β · ln(2)

|DO 0 | · |W|

)

H⇒
(

|ωα,g − ωδ

α,g | ≤ ε
)

(32)

where ln(2) refers to the natural logarithm of 2.

Proof: Let π8 be in �(D8), let o0 be in DO 0 , and let xA

be in DA For sake of convenience, let us define the vector:

W o0

xA
:=

〈

∑

xT

p(xT) · p(o0 | xT, xA) · g(w, xT)

〉

w

First, as all the components of the vectors are non-negative,
we have:

∥

∥

∥W o0

xA
+ δ

∥

∥

∥

α
≥

∥

∥

∥W o0

xA

∥

∥

∥

α

Since α is greater than 1, we know that α
1−α

is negative, and
thus:

awae
f +,π8,δ
α,g (xA) ≤ awae

f +,π8
α,g (xA)

Moreover, application of the triangular inequality yields:
∑

o0

∥

∥

∥W o0

xA
+ δ

∥

∥

∥

α
≤

∑

o0

∥

∥

∥W o0

xA

∥

∥

∥

α
+

∑

o0

kδkα

Applying logarithm and multiplying by α
1−α

on both sides,
we obtain:

awae
f +,π8,δ
α,g (xA) ≥

α

1 − α
· log

(

∑

o0

∥

∥

∥W o0

xA

∥

∥

∥

α
+

∑

o0

kδkα

)

However, for all a and b in R>0, we have log(a+b) = log(a)+

log(1 + b
a
). Therefore, we conclude that:

awae
f +,π8,δ
α,g (xA)

≥ awae
f +,π8
α,g (xA) +

α

1 − α
· log

(

1 +

∑

o0 kδkα
∑

o0

∥

∥W o0

xA

∥

∥

α

)

Rearranging the terms and summing over xA gives us:

objα,g(π8) − objδα,g(π8)

≤
∑

xA

p(xA) ·
α

α − 1
· log

(

1 +

∑

o0 kδkα
∑

o0

∥

∥W o0

xA

∥

∥

α

)

Moreover, for all x in R>0, we know that log(1 + x) ≤

x/ ln(2). Thus, we infer:

objα,g(π8) − objδα,g(π8)

≤
∑

xA

p(xA) ·
α

α − 1
·

∑

o0 kδkα

ln(2) ·
∑

o0

∥

∥W o0

xA

∥

∥

α

(33)

Furthermore, for all p in [1,∞] and n in N>0, we get from
the topological equivalence of the norms in finite dimension

that for all x in Rn , we have kxkp ≥ kxk1 · n
1
p
−1. Therefore:

∥

∥

∥W o0

xA

∥

∥

∥

α
≥

∥

∥

∥W o0

xA

∥

∥

∥

1
· |W|

1
α −1

Now, we know that:
∥

∥

∥W o0

xA

∥

∥

∥

1
=

∑

w

∑

xT

p(xT) · p(o0 | xT, xA) · g(w, xT)

=
∑

xT

p(xT) · p(o0 | xT, xA) ·

(

∑

w

g(w, xT)

)

Since g is β-positive, we obtain:
∑

o0

∥

∥

∥W o0

xA

∥

∥

∥

α
≥ β · |W|

1
α −1

On the other hand, by definition of δ we have:
∑

o0

kδkα = δ · |DO 0 | · |W|
1
α

and thus Equation (33) becomes:

objα,g(π8) − objδα,g(π8) ≤
∑

xA

p(xA) ·
α

α − 1

·
δ · |DO 0 | · |W|

1
α

ln(2) · β · |W|
1
α −1

≤
α

α − 1
·
δ · |DO 0 | · |W|

ln 2 · β
(34)

Consider now any ε in R>0. In order for obj[α,g](π8) −

objδα,g(π8) not to exceed ε, Equation (34) ensures that it
suffices to have:

δ ≤ (1 −
1

α
) ·

ε · β · ln(2)

|DO 0 | · |W|
(35)
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Finally, the reverse triangle inequality applied on functions
objα,g and objδα,g with the uniform norm yields:

|ωα,g − ωδ

α,g | ≤ max
π8

| objα,g(π8) − objδα,g(π8)|

and thus the condition in (35) implies |ωα,g − ωδ
α,g | < ε.

The last theorem states that, if we are able to solve the
optimization problem OP

δ

α,g(1) for any non-zero offset vector

δ in R
|DT|
≥0 , then we are able to approximate the optimal

outcome of the original optimization problem OPα,g(1) with
arbitrary precision. We now present a method for solving the
approximate optimization problems OP

δ

α,g(1).
Method 1: Let us consider the optimization problem

OP
δ

α,g(1) of (31) where α is in ]1,∞[ The objective function

objδα,g is twice differentiable and the constraints are linear.

Thus, we may apply SQP [52], [53] to find a local optimum

for OP
δ

α,g(1). However, as the objective function objδα,g is

non-convex, we will use a globalization technique known as the

basin-hopping algorithm [54]. In order to respect the linear

constraints of this problem, the starting points of this algo-

rithm will be drawn from a symmetric Dirichlet distribution.

This computational method lets us solve optimization prob-
lems of the form OP

δ

α,g(1). Consequently, Theorem 3 enables
us to build a method for solving our original optimization
problem OPα,g(1) with an arbitrary precision ε, which we
formalize in the next method:

Method 2: We seek a solution of the optimization problem

OPα,g(1) where α is in [1,∞[ and g is a β-positive gain

function.

Case α > 1: We will solve OPα,g(1) with a given

accuracy ε > 0. In other words, a solution π8 should satisfy

| objα,g(π8) − ωα,g| ≤ ε. First, let us choose δ in R>0 such

that:

δ ≤ (1 −
1

α
) ·

ε · β

|DO 0 | · |W|

Let δ be the vector in R|DT| whose components all equal δ.

We apply Method 1 in order to solve the optimization problem

OP
δ

α,g(1) . Let π8 be the solution output by Method 1.

By virtue of Theorem 3, we have | objα,g(π8) − ωα,g | ≤ ε.

Case α = 1: Let g be unitary. We can solve OP1,g(1) using

the same procedure as that of Method 1 since the objective

function obj1,g and the constraints of the problem are twice

continuously differentiable.

Now that we are able to solve the optimization problem
OPα,g(1) when α ≥ 1 is finite, we now turn our attention to
the case of α = ∞. In the same way as Method 2 builds on
Method 1 to approximate a solution, our next idea will be to
approximate the optimal result of OP∞,g(1) with a multiple
of that of OPα,g(1) for a sufficiently large α.

First, we introduce OPα,g(1), a slightly modified version
of OPα,g(1) whose objective function is a multiple of objα,g .
Then, we prove that the solutions of OPα,g(1) converge
towards a solution of OP∞,g(1). Moreover, we make the con-
vergence rate explicit for computational purposes. We define
OPα,g(1) next:

Definition 10: Let α be in ]1,∞[.

1) We define the function objα,g : �(D8) → R≥0 for all

π8 in �(D8) as:

objα,g(π8) :=
α − 1

α
· objα,g(π8) (36)

2) For 1 in N>0, the optimization problem OPα,g(1) is:

maximise
π8∈�(�−1,+1�)

objα,g(π8) (37)

We write ωα,g denote the optimal objective value for

OPα,g(1).

From this definition it is clear that OPα,g(1) and OPα,g(1)

are equivalent optimization problems, in that:

ωα,g =
α − 1

α
· ωα,g (38)

More precisely, the optimal values of OPα,g(1)

under-approximate that of OP∞,g(1), with an error
rate dominated by 1

α
:

Theorem 4: Let the functions τ, θ : ]1,+∞[→ R≥0 be

defined as τ (α) = ωα,g and θ(α) = |ω∞,g − ωα,g|. Then,

for all α > 1, we have τ (α) ≤ ω∞,g , limα→∞ τ (α) = ω∞,g ,

and θ(α) = O( 1
α ).

Proof: Let π8 be in �(Z). To simplify notation, we define
the vector Y o0

xA
for all xA in DA and o0 in DO 0 as:

Y o0

xA
:=

〈

∑

xT

p(xT | o0, xA) · g(w, xT)

〉

w

For all α in ]1,∞] and π8 in D8, we have by definition
that objα,g(π8) equals:

objα,g(π8) = −
∑

xA

p(xA) · log

(

∑

o0

p(o0 | xA) ·

∥

∥

∥
Y o0

xA

∥

∥

∥

α

)

We know that in finite dimension, all the norms are topo-
logically equivalent. In particular, for all n in N>0, x in Rn ,
and p in ]1,∞[, we have:

kxk∞ ≤ kxkp ≤ kxk∞ · n
1
p

Let α be in ]1,∞[. We thus have:
∥

∥

∥Y o0

xA

∥

∥

∥

∞
≤

∥

∥

∥Y o0

xA

∥

∥

∥

α
≤

∥

∥

∥Y o0

xA

∥

∥

∥

∞
· |W|

1
α

and thus:

obj∞,g(π8) −
1

α
· log(|W|) ≤ objα,g(π8) ≤ obj∞,g(π8)

From this inequality, we can see that τ (α) ≤ ω∞,g for all
α > 1. Moreover:

θ(α) ≤ obj∞,g(π8) −

(

obj∞,g(π8) −
1

α
· log(|W|)

)

≤
1

α
· log(|W|)

and thus θ(α) = O( 1
α ). In particular, θ converges to 0 as

α goes to infinity, which ensures that τ converges at infinity
such that limτ→∞ τ (α) = ω∞,g . Moreover, for any ε in R>0,
in order to have θ(α) ≤ ε, it suffices to have:

α ≥
1

ε
log(|W|)
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From this theorem, we can build a method for solving the
optimization problems of the form OP∞,g(1). Indeed, even
though the objective function obj∞,g is not twice differen-
tiable, we can approximate the solution of that optimization
problem with that of OPα,g(1) for a sufficiently large α.
We recall that, by (38), the optimal value of the latter problem
is a multiple of that of OPα,g(1), which we can solve
with Method 2. However, Method 2 also requires a non-zero
accuracy threshold. Thus, for a given ε in R>0, we will invoke
Method 2 in order to solve OPα,g(1) with accuracy α

α−1 · ε
2 ,

and we will take advantage of Theorem 4 to ensure that
the output of our method indeed approximates the optimal
objective value with precision ε. We formalize this idea next:

Method 3: Let ε be in R>0 and let us assume that we wish

to solve OP∞,g(1) with accuracy ε, i.e. that the solution π8

we get satisfies | obj∞,g(π8)−ω∞,g | ≤ ε. First, we take some

α > 1 which satisfies:

α ≥
2

ε
· log(|W|) (39)

Then, we invoke Method 2 in order to solve OPα,g(1) with

accuracy α
α−1 · ε

2 . Let π8 be an optimal solution for this

produced by Method 2. Then, π8 is an optimal solution of

OP∞,g(1) with accuracy ε.

Proof: As π8 is the output of Method 2, we know that
| objα,g(π8)−ωα,g | ≤ α

α−1 · ε
2 . Multiplying both sides by α−1

α
yields:

|objα,g(π8) − ωα,g | ≤
ε

2
Moreover, by virtue of Theorem 4 and as we have
Equation (39), we know that |ωα,g − ωα,g | ≤ ε

2 . Finally,
we know that:

objα,g(π8) ≤ obj∞,g(π8) ≤ ω∞,g

Appealing to the triangular inequality, we then get:

| obj∞,g(π8) − ω∞,g | ≤ |objα,g(π8) − ω∞,g |

≤ |objα,g(π8) − ωα,g|

+ |ωα,g − ω∞,g |

≤ ε

The following example illustrates how the solution of
OP∞,g(1) is approximated by the successive solutions of
OPα,g(1) for different values of α. It is worth noting that
the calculation of α-norms involves the exponentiation of real
numbers ranged in [0, 1] which can quickly be rounded to 0
for large values of α. In order to mitigate against the effects of
such numerical errors, results reports in this paper rely on use
of the mpmath Python library, which enables us to perform
arbitrary-precision floating-point arithmetic [55].

Example 4: Let us consider 3 parties X, Y and Z with

respective inputs x, y and z, and where A = {X} is attacking

T = {Y } under spectator S = {Z}. Let DA = DT =

DS = {1, 2}. Let πT and πS be linear distributions over their

domains and let πA = {1 : 1} be a point-mass distribution

centred in 1. Function f : Z3 → Z is defined by f (x, y, z) =

5xy − 2yz.

Fig. 6. Approximation of obj∞,id by objp,id for p in {3, 4, 10} while
computing f (x, y, z) = 5xy −2yz with linear distributions over {1, 2} for πT

and πS and πA = {1 : 1}.

We study the influence of distributions π8 for virtual

inputs over �({0, 1}) on obj∞,id produced by the output

randomization f +. Such two-dimensional distributions π8

will be represented by a single real r in [0, 1], which fully

characterizes π8 as {0 : r, 1 : 1 − r}. We evenly discretize

the interval [0, 1] into 201 values for r , and we plot the

values of obj∞,id in Figure 6. In order to see the influence

of our smoothing method, we also plot the values of objα,id

for different values of α. We can notice that, as suggested by

our previous discussion and by Theorem 4, the approximations

objα,id of obj∞,id are functions that are twice differentiable and

that also under-approximate obj∞,id. Moreover, larger values

of α produce more accurate approximations of the original

objective function.

Let us now illustrate how the methods we developed here
help us to find virtual distributions that protect the inputs’
privacy optimally, given some accuracy bound on the distorted
output.

Example 5: Let us consider 3 parties X, Y and Z with

respective inputs x, y and z, and where A = {X} is attacking

T = {Y } under spectator S = {Z}. Let DA = DT = DS =

�1, 30�. Let πT and πS be linear distributions over their

domains and for the sake of the example, let πA = {5 : 1}

be a point-mass distribution centred in 5. Let us consider the

function f : Z3 → Z defined by f (x, y, z) = x(3y − 5z)+ 2z.

Let W = {0, 1} be a set of allowable guesses and let

g : W × DT → [0, 1] be the gain function defined for all

w in W and xT in DT as:

g(w, xT) =

{

1 if w ≡ xT mod 2
0 otherwise

In other words, this gain function g measures the infor-

mation that an attacker has on the least significant bit of

the secret xT. More generally, we can consider other gain

functions that could gauge the information that an attacker
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Fig. 7. Influence of π8 in �(�−1,+1�) in the optimization problem
OP∞,g(1) in the computation of f (x, y, z) = x(3y − 5z) + 2z with linear
distributions over �1, 30� for πT and πS and πA = {5 : 1}.

learns on a particular property of a secret. We note that g is

β-positive with β = 1.

In comparison to Example 4, a distribution π8 in

�(�−1, 1�) will now be characterized by two variables π8(0)

and π8(1) since then π8(−1) = 1 − π8(0) − π8(1) will

be fixed. The first variable π8(0) will take its values in

[0, 1] while the second one π8(1) will take its values in

[0, 1−π8(0)]. We discretize the interval [0, 1] into 101 values

so that π8(0) was assigned these values consecutively. For

each of these values of π8(0), the interval [0, 1 − π8(0)]

is furthermore discretized into 101 values that π8(1) took

consecutively. For each pair (π8(0), π8(1)), we compute the

value of objg∞(π8) for the corresponding π8, and we plot the

resulting graph in Figure 7.

Let us now solve the optimization problem OP∞,g with

accuracy ε = 10−2 through Method 3. Here, |W| equals 2.

Let us then take α = 2
ε · log(|W|) = 200. We then invoke

Method 2 to solve OPα,g(1) with accuracy ε0 = α
α−1 · ε

2 =

5.0 · 10−3. Moreover, a combinatorial calculation gives us

|DO 0 | = 5656. We thus let:

β = (1 −
1

α
)

ε0µ · ln 2

|DO 0 | · |W|
= 3.0 · 10−7

and we let δ be the vector in R
2
>0 whose components

are all equal to β. Finally, we invoke Method 1 to solve

OP
δ

α,g(1). This produces a nearly optimal solution π8o =

{−1 : 0.30, 0 : 0.49, 1 : 0.21} for which obj∞,g(π8o) equals

0.77. This ensures that ω∞,g is in [0.77, 0.78] while a

uniform distribution π8u over {−1, 0, 1} would have only

obj∞,g(π8u) = 0.56.

X. DISCUSSION AND FUTURE WORKS

In this work, we proposed an approach for quantify-
ing the information that attackers can retrieve about private
inputs from public outputs in black-box computations of
a public function. We also developed concepts and methods
for mitigating against such information leakage, by distorting

the public function with virtual, private inputs: we introduced
some methods for maximizing the posterior entropy of the
targeted inputs, and developed non-linear optimization tech-
niques that can compute virtual inputs that optimally trade
off the privacy protection stemming from virtual inputs and
the accuracy of the distorted output in comparison with the
un-distorted output.

Our approach is generic in that, depending on the nature
of the inputs and on the use context of the secure com-
putation, the participants can agree on a particular type of
entropy to maximize before entering the optimization protocol.
Participants may also want their inputs to be protected with
respect to different kinds of entropy, and this could lead us
to study multi-objective optimization and Pareto optimality
— a topic for future work. The quantities and distortions
that our approach can compute may also inform the risk
management of using SMC for the same function repeatedly,
with potentially different but related inputs — such as the
logging of daily health data.

In a practical secure computation, once an optimal virtual
distribution π8 has been computed by our methods for a given
type of entropy, the participants of the SMC would have to
securely produce a virtual input drawn from distribution π8.
For example, the parties may enter an SMC protocol in order
to produce a value ϕ that is secret to all the participants,
and that follows distribution π8. To that end, parties may
generate locally shares of a virtual input such that the value
obtained by the combination of these shares follows the
specified distribution. Alternatively, it may also be practical
to let a central authority compute the virtual inputs — and
these virtual inputs could then be fed into SMC protocols in
addition to the xi as seen on the right of Figure 3. For example,
if parties are health insurance providers, then the computation
of virtual inputs by a central authority does not require any
proof of compliance with health and data regulations, since
the insurance providers would not share sensitive health data
with that central authority. Designing such secure protocols is
subject to future works.

Our work considered the prior beliefs on the inputs to be
public, constant, and part of the common knowledge. In SMC,
this would enable participants to come to a consensus in
order to agree on a common optimal virtual distribution π8

and to securely compute the output of f 0. In comparison
to the setting of SMC which assumes that participants have
agreed on an actively or passively secure protocol to use, our
setting assumes that participants will agree on an approximate
function f 0 and a virtual distribution π8 that protects the
targets’ privacy. In the case of outsourced computations, those
public distributions could simply be used by a trusted third
party in order to produce a virtual input drawn from π8 and
randomize the computation of f .

On the other hand, it would be of interest to relax
these assumptions. In particular, computing an optimal virtual
distribution π8 requires having a prior belief πA on the
attackers’ input. Distribution π8 would then maximize the
targeted inputs’ privacy given the prior belief πA. But as
the computation of π8 can be performed offline by any of the
parties, this could enable an attacker to substitute his input
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accordingly. This could thus update the belief πA and we
would require another computation of π8. The setting where
two attackers would try to learn information about each other’s
input could also lead to interesting game-theoretic situations
to be studied in future work.

We also assumed that the partition of the participants into
attackers, targets and spectators was given, but it would be of
interest to develop techniques that can protect the participants’
inputs when the set of potential attackers is not known. More-
over, we would like to further generalize our approach to the
secure computation of vector-valued functions, i.e. of functions
that compute several outputs, and where each of the outputs
can be opened to different sets of parties. Finally, scaling
our approach to large input spaces is also one of our future
research objectives.

XI. CONCLUSION

Although efficient SMC protocols have been designed,
information flow of outputs is inevitable, and has recently
been rigorously formalized and quantified [15]. In this work,
we first proposed a generalized notion of entropy that makes
our approach compatible with various widely used measures of
information flow. We then introduced the concepts of function
substitution and virtual input that aim at randomizing the
output of SMC computations in order to impede the influence
of deceitful attackers wishing to use input substitution to
gain maximal information about private inputs from opened
outputs. We have established some theoretical bounds for the
privacy gain that approximations and close approximations
provide. We then focused on additive approximations and
formalized an optimization problem that aims at maximizing
participants’ privacy while controlling the distortion intro-
duced on the output in the presence of passive adversaries.
We proposed different methods for solving such optimization
problems in practice and we experimentally showed that
additive approximations give rise to significant privacy gains
under specified distortion bounds.
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