The Pennsylvania State University
The Graduate School
Department of Mechanical and Nuclear Engineering

OPTIMAL ACTUATOR PLACEMENT AND ACTIVE STRUCTURE DESIGN FOR CONTROL OF HELICOPTER AIRFRAME VIBRATIONS

A Thesis in
Mechanical Engineering
by
David E. Heverly II

© 2002 David E. Heverly II

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

August 2002

We approve the thesis of David E. Heverly II.

Date of Signature

Kon-Well Wang
William E. Diefenderfer Chaired Professor in
Mechanical Engineering
Thesis Co-Advisor
Co-Chair of Committee

Edward C. Smith
Associate Professor of Aerospace Engineering
Thesis Co-Advisor
Co-Chair of Committee

Farhan Gandhi
Associate Professor of Aerospace Engineering

Panagiotis Michaleris
Assistant Professor of Mechanical Engineering

Richard C. Benson
Professor and Head
Department of Mechanical and Nuclear Engineering

Abstract

A comprehensive research program on active control of rotorcraft airframe vibration is detailed in this thesis. A systematic design methodology, to realize an active vibration control system, is proposed and studied. The methodology is a four-part design cycle and relies heavily on numerical computation, modeling, and analysis. The various analytical tools, models, and processes required to execute the methodology are described. Two dynamic models of the helicopter airframe and an optimization procedure for actuator placement are utilized within the methodology. The optimization procedure simultaneously determines the type of actuation, the locations to apply actuation, and the corresponding active control actions.

A feasibility study is conducted to examine the effectiveness of helicopter vibration control by distributing actuators at optimal locations within the airframe, rather than confining actuation to a centralized region. Results indicate that distributed actuation is capable of greater vibration suppression and requires less control effort than a centralized actuation configuration.

An analytical and experimental investigation is conducted on a scaled model of a helicopter tailboom. The scaled tailboom model is used to study the actuation design and realization issues associated with integrating dual-point actuation into a semi-monocoque airframe structure. A piezoelectric stack actuator configuration is designed and installed
within the tailboom model. Experimental tests indicate the stack actuator configuration is able to produce a bending moment within the structure to suppress vibration without causing excessive localized stress in the structure.

TABLE OF CONTENTS

LIST OF FIGURES viii
LIST OF TABLES xii
ACKNOWLEDGMENTS xiii
Chapter 1 INTRODUCTION 1
1.1 Background 1
1.1.1 Helicopter Vibration Sources 2
1.1.2 Vibration Control Methods 4
1.1.2.1 Passive Control Methods 5
1.1.2.2 Active Control Methods 7
1.2 Problem Statement and Research Objectives 10
1.3 Literature Review 13
1.3.1 Helicopter Airframe Dynamic Models 14
1.3.2 Active Vibration Control of Helicopter Airframe 15
1.3.3 Actuator Placement Methods 28
1.4 Summary and Thesis Outline 37
Chapter 2 OPTIMALLY DISTRIBUTED ACTUATION REALIZATION METHODOLOGY 40
2.1 Introduction 40
2.2 Optimally Distributed Actuation Realization Methodology 41
Chapter 3 AIRFRAME MODEL, EXCITATION LOADS, AND OPTIMIZATION PROCESS 46
3.1 Airframe Structural Dynamic Model 46
3.2 Excitation Loads 50
3.3 Actuation Modeling 52
3.4 System Modeling 57
3.5 Hybrid Active/Passive Optimization Process 60
3.5.1 Active Control Law 60
3.5.2 Simultaneous Controller Design and Actuator Placement Method 61
Chapter 4 OPTIMAL ACTUATION PLACEMENT RESULTS 67
4.1 Uncontrolled Airframe Response 67
4.2 Baseline Active Control 70
4.3 Active Control with Optimally Placed Actuation 72
4.4 Multi-objective Optimization Analysis 82
4.5 Simplified Actuator Placement Method 89
4.6 Parametric Study on Number of Actuators 91
4.7 Summary and Conclusions 92
Chapter 5 ANALYTICAL REALIZATION OF DISTRIBUTED ACTUATION 96
5.1 Introduction 96
5.2 NASTRAN Finite Element Airframe Model 97
5.3 Airframe Models Response Comparison 98
5.4 Distributed Actuation Analytical Realization 102
5.5 Airframe Dynamic Stress 109
5.6 Summary and Conclusion 114
Chapter 6 SCALED TAILBOOM MODEL STRUCTURE AND EXPERIMENTAL STUDY 116
6.1 Introduction 116
6.2 Tailboom Construction and Design 118
6.3 Experimental Setup 123
6.4 Actuation Design and Installation 124
6.4.1 Actuation Concept 124
6.4.2 Predicted Actuation Parameters 125
6.4.3 Actuator Selection 126
6.4.4 Stack Actuator Installation 132
6.5 Static Deflection Analysis 134
6.6 Dynamic Analysis and Vibration Control. 136
6.7 Summary and Conclusion 143
Chapter 7 CONCLUSION AND FUTURE RESEARCH 145
7.1 Thesis Summary and Conclusions 145
7.2 Future Research Recommendations 153
BIBLIOGRAPHY 156
Appendix A HELICOPTER AIRFRAME MODEL AND COMPUTER SOURCE CODES 162
Appendix B ADDITIONAL ACTUATION PLACEMENT RESULTS 210
Appendix C DISTRIBUTED ACTUATION REALIZATION ANALYSIS RESULTS 218
Appendix D SCALED TAILBOOM MODEL SPECIFICATIONS AND
ANALYSIS RESULTS 253

LIST OF FIGURES

Figure 1.1: Principal sources of airframe excitation. [3] 3
Figure 1.2: Vibration levels in forward flight 4
Figure 1.3: ACSR actuator installation on Westland 30 helicopter. [7] 18
Figure 1.4: S-76 helicopter main gearbox supports and ACSR actuator locations [9] 20
Figure 1.5: Sikorsky UH-60 Servo Inertial Force Generator (SIFG) [22] 22
Figure 2.1: Optimally Distributed Actuation Realization Methodology (ODARM) 42
Figure 3.1: Apache AH-64 Reduced Order Elastic Line Model. 49
Figure 3.2: Reduced order airframe model node numbering 50
Figure 3.3: Airframe model excitations 51
Figure 3.4: Centralized Actuation Configuration (CAC). 53
Figure 3.5: Force Actuation Unit (FAU). 54
Figure 3.6: Moment Actuation Unit (MAU). 54
Figure 3.7: Single-point actuation concept 55
Figure 3.8: Simulated annealing optimization algorithm. 64
Figure 3.9: Hybrid active/passive optimization process. 66
Figure 4.1: Modal participation of uncontrolled response to external excitation 68
Figure 4.2: Nodes selected for vibration suppression 69
Figure 4.3: Uncontrolled airframe response to hub and tail excitation 69
Figure 4.4: Uncontrolled vibration at target nodes 70
Figure 4.5: CAC controlled airframe response to hub and tail excitation. 71
Figure 4.6: CAC controlled vibration at target nodes 71
Figure 4.7: DAUC controlled airframe response to hub and tail excitation 73
Figure 4.8: DAUC controlled vibration at target nodes 73
Figure 4.9: Optimized DAUC emphasizing vibration reduction 76
Figure 4.10: Optimized DAUC emphasizing control effort reduction. 76
Figure 4.11: Optimized DAUC emphasizing both control effort and vibration reduction 76
Figure 4.12: Vibration reduction of multi-objective optimized DAUC 88
Figure 4.13: Control effort reduction of multi-objective optimized DAUC. 88
Figure 4.14: Evaluation indices for various actuation configurations. 91
Figure 4.15: Optimization objective function and vibration index versus number of Actuation Units 92
Figure 4.16: Evaluation indices of CAC and 4 optimally distributed Actuation Unit configuration 92
Figure 5.1: Apache helicopter NASTRAN Finite Element model 98
Figure 5.2: Reduced Order Model, uncontrolled vibration response to hub and tail excitation 100
Figure 5.3: NASTRAN model, uncontrolled vibration response to hub and tail excitation 100
Figure 5.4: Reduced Order Model: Uncontrolled vibration at target nodes 101
Figure 5.5: NASTRAN model: Uncontrolled vibration at target nodes 101
Figure 5.6: Dual-point actuation concept applied to semi-monocoque structure 103
Figure 5.7: Reduced Order Model: Centralized actuation, Controlled vibration at target nodes 105
Figure 5.8: NASTRAN model: Centralized actuation, Controlled vibration at target nodes 105
Figure 5.9: Reduced Order Model: Distributed actuation, Controlled vibration at target nodes 105
Figure 5.10: NASTRAN model: Distributed actuation, Controlled vibration at target nodes 105
Figure 5.11: Reduced Order Model: Comparison of performance indices 106
Figure 5.12: NASTRAN Model: Comparison of performance indices 106
Figure 5.13: NASTRAN Model: Comparison of performance indices, re- optimized locations 108
Figure 5.14: Finite Element dynamic stress from hub and tail excitation (uncontrolled) 109
Figure 5.15: Finite Element dynamic stress, Centralized control of hub and tail excitation 110
Figure 5.16: Change of element stress from uncontrolled to centralized control 111
Figure 5.17: Finite Element dynamic stress, Distributed control of hub and tail excitation 111
Figure 5.18: Change of element stress from uncontrolled to distributed control 112
Figure 5.19: Dynamic stress levels for distributed control of hub and tail excitation 113
Figure 6.1: Tailboom model, 0.3 scale semi-monocoque structure 118
Figure 6.2: Scaled tailboom Beam Equivalent Model (BEM). 120
Figure 6.3: Cantilevered ROM and BEM mode shape comparison 121
Figure 6.4: Scaled tailboom Finite Element Model (FEM) 123
Figure 6.5: Tailboom model and experimental setup 123
Figure 6.6: APC Pst 150/14/100 piezoelectric stack actuator 126
Figure 6.7: Piezoelectric stack element 127
Figure 6.8: Stack actuator force and displacement relation 130

Figure 6.9: Stack actuator operating conditions
 131

Figure 6.10: Piezoelectric stack actuator installation 133
Figure 6.11: Stack actuator attachment and installation hardware 133
Figure 6.12: FEM analytical transfer function between actuator inputs andvertical response at tip of vertical tail139
Figure 6.13: Experimental transfer function between actuator inputs and vertical response at tip of vertical tail 140
Figure 6.14: Tailboom active vibration control demonstration 141
Figure 6.15: Comparison of tailboom dynamic stress levels, before and afteractuator installation143
Figure 7.1: Active frame member actuation concept (future research) 154

LIST OF TABLES

Table 3.1: Modal correlation of large FEM versus Reduced Order Model. [15] 48
Table 3.2: Airframe model 4/rev excitation loads 52
Table 4.1: Centralized Actuation Configuration indices 75
Table 4.2: Actuation Unit locations for hub and tail excitation, emphasizing vibration reduction. 78
Table 4.3: Actuation Unit locations for hub excitation, emphasizing vibration reduction 78
Table 4.4: Top five AU authorities to control a single airframe structural mode 82
Table 4.5: Actuator locations for multi-objective optimization 88
Table 4.6: Top eight Actuation Units for the Sequential design method. 90
Table 6.1: Cantilevered ROM and scaled BEM natural frequencies 122
Table 6.2: Stack actuator specifications 126
Table 6.3: Static deflection at free end of tailboom 135
Table 6.4: Actuator induced static deflection of tailboom free end 136
Table 6.5: Tailboom natural frequencies 137
Table 6.6: Tailboom natural frequencies before and after actuator installation. 138

ACKNOWLEDGMENTS

I wish to express sincere appreciation to my thesis advisors, Dr. Kon-Well Wang and Dr. Edward Smith, for their support, encouragement, guidance, and genuine commitment to this research project. I am also grateful to Dr. Farhan Gandhi and Dr. Panagiotis Michaleris for serving on my committee and providing insightful guidance.

Support for this research by the National Rotorcraft Technology Center and Dr. Yung Yu, Technical Monitor, is gratefully acknowledged. Thank you to The Boeing Company for providing helicopter airframe models. In addition, I would like to thank engineers Dr. M. Toossi, Dr. M. Meyyappa, and Dr. V. Anand of Boeing Mesa for providing data, technical assistance, and valuable guidance for this project.

A special thanks goes out to my fellow students at the Penn State Structural Dynamics and Controls Laboratory for their friendship, and support. In addition, I would like to thank American Piezo Ceramics for their technical assistance.

Finally, I would like to most sincerely thank my wife, Maria, for her patience, understanding, encouragement, and unconditional support throughout this program. I am also grateful to my parents and family for their encouragement and support.

Chapter 1

INTRODUCTION

1.1 Background

Helicopter fuselage vibration has been a long-standing problem from the earliest days of rotorcraft development. Oscillatory motion of the airframe is a serious concern from many viewpoints [1]. The oscillatory strains of the airframe necessitate consideration for the fatigue of structural components. Airframe vibrations influence production costs and maintenance costs. Vibrations constitute a hostile environment for all kinds of equipment. Instruments are difficult to read, sights hard to point, weapons hard to point, and vibrations add to the fatigue of pilots, crew, and passengers [1].

Understandably, helicopter vibration is a serious concern and numerous control approaches have been devised to help alleviate vibration. The principal sources and nature of helicopter airframe vibration are explained in the following to provide insight and understanding of the various vibration control approaches. Then, many of the vibration control approaches are summarized, highlighting the advantages and disadvantages.

1.1.1 Helicopter Vibration Sources

Airframe vibrations are caused by several important excitation sources, but the more prominent sources are the main rotor hub forces and moments [2, 3]. In steady-state forward flight, the main rotor blades experience an asymmetric airflow. There is a larger velocity of airflow on the advancing side of the rotor as compared to the retreating side, which results in a periodic variation of air loads on the rotor blades. The air load variations cause periodic motion of the rotor blades, which in turn, generate periodic forces and moments at the root of each rotor blade. These blade loads are transmitted to the main rotor hub, and the net effects are periodic hub loads that excite the helicopter airframe. If all rotor blades are identical, the main rotor system acts as a filter and transmits only $p N /$ rev harmonics to the airframe, where p is an integer and N is the number of blades, and all other harmonics cancel at the rotor hub. The most dominant hub loads occur at the $\boldsymbol{N} \boldsymbol{\Omega}$ frequency, where $\boldsymbol{\Omega}$ is the main rotor speed. Thus, helicopter fuselage vibration is primarily characterized by harmonic excitation from the main rotor hub at N / rev. Another excitation at the hub can result from small dissimilarities in structural and aerodynamic properties of the rotor blades, which produce $1 / \mathrm{rev}$ periodic hub forces and moments.

The helicopter fuselage is also excited by sources entering the airframe through load paths other than the main rotor hub. Important excitations result from the aerodynamic interaction between the main rotor wake and the airframe surfaces [3]. Main rotor vortices interact with the horizontal and vertical tail surfaces creating $p \mathrm{~N} / \mathrm{rev}$
excitation at the tail of the aircraft. The airframe is also excited by $p \boldsymbol{N} /$ rev pressure pulses resulting from the rotor blades passing within close proximity to the upper fuselage surfaces. In addition, $p \boldsymbol{N} /$ rev harmonic loads enter the airframe through the primary flight control system. Airframe excitations are created by the engines, transmission, tail rotor, and tail rotor shafting, however, these excitations typically occur at frequencies much higher than $N \mathbf{\Omega}$. The principal airframe excitation sources and the areas at which they enter the airframe are displayed in Figure 1.1 [3].

Figure 1.1: Principal sources of airframe excitation. [3]

Airframe vibration is generally low in hover and increases with forward flight speed to highest vibration levels at the maximum forward speed of the aircraft [2]. Increased
vibration levels also occur in transition from hover to forward flight, because of the main rotor wake influence on the rotor blade loading, Figure 1.2.

Figure 1.2: Vibration levels in forward flight

1.1.2 Vibration Control Methods

Considerable progress has been made over the years in designing helicopters, which have lower vibration levels. However, the trends of increased forward speed, prolonged mission duration, greater passenger comfort, and increased component life result in ever more stringent vibration specifications. Thus, the helicopter vibration problem is not likely to be solved in an absolute sense, and there will be continued efforts to strive for more effective vibration control measures with reduced penalties in terms of weight, complexity, and reliability.

Helicopter vibration control devices can be broadly categorized as either passive or active devices. Isolation systems, dynamic absorbers, and pendulum absorbers are examples of passive vibration control devices that do not require an external energy source. Actively tunable dynamic absorbers, Higher Harmonic Control (HHC), Individual Blade Control (IBC), Trailing Edge Flap (TEF) control, and Active Control of Structural

Response (ACSR) are active vibration control devices or methods that require an external energy source. Passive vibration control methods are summarized in the next section and active control methods in the following section.

1.1.2.1 Passive Control Methods

In a passive isolation system, the isolated object is mounted on a structure through springs that are tuned to minimize the transmission of loads. Isolation has been used for seats, equipment, cargo floors, and the main rotor. A number of rotor isolation systems have been successfully flown on a variety of helicopters [1]. Systems have been designed to isolate the rotor from the fuselage at the $N /$ rev frequency in all directions of excitation except yaw, and the motions that could affect control and drive system components have been kept to acceptable levels [1]. One difficulty with rotor isolation is that steady state loads and loads resulting from maneuvers and wind gusts must be carried over the same load path along which isolation is desired.

A dynamic absorber is composed of a small mass on a spring with the natural frequency tuned to the excitation frequency. The dynamic absorber vibrates in resonance and generates an opposing force to reduce vibration amplitudes at a particular point in the structure. One successful application of the dynamic absorber, which reduces vibration at the pilot seat, is to use a battery located under the pilot seat as the absorber mass [1]. One
drawback of the dynamic absorber is the tuned natural frequency is fixed and must match the excitation frequency for optimum effectiveness.

Another common dynamic absorber on helicopters is the pendulum absorber. A typical pendulum absorber is a small cantilever beam with a tip mass, and the absorber can be mounted on the hub or each rotor blade. Hub mounted pendulum absorbers are capable, in theory, of generating forces and moments in all directions and all harmonics. However, in practice the absorber is mostly used to generate forces in the plane of rotation at the blade passage frequency [1]. Blade mounted pendulum absorbers produce forces that are transmitted to the hub at the blade root, and the ideal absorber causes the net force at the blade root to be zero. Blade mounted absorbers are difficult to design because analytical blade root load predictions are not highly accurate [1]. One advantage of pendulum absorbers is their natural frequencies are proportional to the rotor speed; therefore, they tend to remain properly tuned regardless of rotor speed. An undesirable aspect of pendulum absorbers is the added physical volume that increases the aerodynamic drag of the rotor hub.

Passive vibration control devices have demonstrated a significant degree of vibration suppression, which is why most production rotorcraft are equipped with one or more passive devices [1]. Passive control methods are based on fundamental concepts and straightforward to design, but they are not immune to problems. Some passive devises are tuned for a particular frequency and unable to adapt to frequency variations
that may result from changes in flight condition or payload. Typically, there is a weight penalty associated with passive devices because components are added to the helicopter. Both isolation systems and dynamic absorbers must have low friction and displacement amplitudes must remain small to stay in the linear range of the mounting springs. Pendulum absorbers can become detuned when oscillation amplitudes are excessive and the added physical volume increases aerodynamic drag [1].

1.1.2.2 Active Control Methods

The active vibration control methods (HHC, IBC, TEF, and ACSR) can be further divided into two distinct categories. The first category applies control actions on the main rotor system and is designated a rotor-based approach. This approach involves modification of the unsteady loads being generated by the main rotor system and reduces the vibratory loads transmitted through the hub to the airframe. Higher Harmonic Control (HHC), Individual Blade Control (IBC), and Trailing Edge Flap (TEF) control are rotorbased approaches that reduce airframe vibrations by reducing the dominant excitation source. The second category, designated as airframe-based, applies control actions directly on the airframe. Airframe-based approaches do not attempt to alleviate the excitation sources; instead, the vibration caused by external sources is cancelled by superposition of an actuator induced airframe response. Actively tunable dynamic absorbers and Active Control of Structural Response (ACSR) are airframe-based approaches.

The Higher Harmonic Control (HHC) method actuates the swashplate to superimpose small perturbations at $N-1 / \mathrm{rev}, N / \mathrm{rev}$, and $N+1 / \mathrm{rev}$ with the $1 / \mathrm{rev}$ cyclic pitch control. The higher harmonic perturbations are commanded to alter the blade aerodynamics such that the periodic hub loads are reduced. A significant amount of research has been devoted to HHC over the past two decades. HHC feasibility and effectiveness has been demonstrated analytically, in the wind tunnel, and by flight tests; however, it has yet to be implemented on a production aircraft [4]. The HHC control method has demonstrated an 80% to 90% reduction of airframe cockpit vibrations. Some drawbacks that hinder HHC implementation are: degraded rotor performance, airworthiness issues associated with modifying the primary flight control system, reduced effectiveness for stiff hingeless rotors, and the large power requirements approaching 0.2% to 1.4% of the total rotor power [4].

Individual Blade Control (IBC) operates on similar aerodynamic principles as HHC; however, each blade is actuated individually rather than actuating the swashplate to achieve periodic blade pitch perturbations. Independent control of each rotor blade provides greater flexibility, and IBC can be used to alleviate undesirable dynamic phenomena that go beyond vibration reduction [4]. IBC research and development has not reached the same level of maturity as HHC. Implementation of IBC on a production helicopter may require the replacement of the conventional swashplate by an electronic equivalent [4].

Trailing Edge Flap (TEF) control also alters the blade aerodynamics to reduce the oscillatory hub loads. A small flap device located on the trailing edge of each rotor blade alters the blade aerodynamics. The flap is actuated to produce small oscillatory flap deflections at integer harmonics of the blade passage frequency. Advantages of this approach are lower power consumption and enhanced airworthiness, as compared to HHC or IBC. Trailing Edge Flap control feasibility and effectiveness has been demonstrated analytically and experimentally. Friedmann and Millott have analytically studied the TEF, and predicted an 80% reduction in the $N /$ rev hub loads and predicted the power consumption to be 10 to 20 times less than conventional IBC. One of the major obstacles to TEF control is the flap actuation. A significant amount of research is currently being devoted to the development of a small, lightweight, and energy efficient blade mounted actuating device to produce the flap deflections [4].

The actively tunable dynamic absorber generates an opposing force to reduce vibration amplitudes at a particular frequency at a particular point in the structure. An oscillating spring/mass assembly with an active natural frequency tuning mechanism generates the absorber force, or possibly a pair of counter-rotating eccentric weights generates the absorber force. Such active dynamic absorbers have the advantage that their frequency can be keyed to the main rotor speed to maintain proper tuning [1]. An actively controlled dynamic absorber has been successfully demonstrated on a CH-47D Chinook helicopter [5]. A self-tuning vibration absorber was placed under the pilot's seat to reduce
vibration at the aircraft's blade passage frequency. Ground shake testing and closed loop control revealed an average vibration reduction of 93.6 percent at four cockpit locations.

The Active Control of Structural Response (ACSR) principle consists of a number of actuators between points in the airframe, control system hardware, and an active control algorithm [6]. The actuators apply forces to the airframe structure, and the magnitude and phase of the applied loads are chosen to minimize vibration at a number of locations in the fuselage. The ACSR method has been demonstrated on a Westland 30 helicopter. Flight tests demonstrated an average vibration reduction of 80% at 10 sensor locations. The principle advantages of ACSR over HHC are improved performance, lower power requirements, ease of installation, and minimal airworthiness impact [7]. Additional details and results of the ACSR method will be presented in the literature review section.

1.2 Problem Statement and Research Objectives

Airframe-based active vibration control approaches are being seriously considered and investigated because they have advantages over the rotor-based approaches. Study and flight-testing of airframe-based approaches have demonstrated enough promise to begin appearing on production rotorcraft, such as the EH-101 [7] and the Sikorsky S-92 [8]. Unlike rotor-based approaches, the airframe-based schemes should have minimal
impact on the airworthiness of the helicopter, since the main rotor system and primary flight control system are not being altered directly. Airframe-based systems could also avoid the complexities associated with transmitting data or control actions from the fixedframe (airframe) to the rotating-frame (rotor). System installation is greatly simplified as compared to installing a rotor-based system. Power consumption of airframe-based systems has been estimated to be an order of magnitude lower than HHC systems [9]. Rotor-based active control methods reduce the oscillatory hub loads, but may not be capable or efficient at controlling excitations that do not enter the airframe through the main rotor hub. That is, the airframe would continue to be excited by other harmonic sources, even if the vibratory hub loads are completely eliminated. Therefore, some type of airframe-based control system is required, unless all problematic excitation sources can be eliminated.

Even though current airframe-based active control approaches are effective, the system performance can be greatly improved with technological advances and design innovations. The characteristics and limitations of present systems are summarized as follows. The current control strategies tend to focus on disturbances coming from the main rotor, or they target localized areas for vibration suppression. In general, the actuators are centrally located in the cockpit area or near the main rotor gearbox. Actuator placement is based largely upon engineering experience and limitations imposed by retrofitting the existing airframe structure. The helicopter airframe is a complex structure, and it has a complex dynamic response; therefore, determining the best actuator
locations is not a simple task. A systematic and comprehensive design approach is needed to explore the vast multitude of potential active control configurations and determine which is best. It is not clear that actuators centralized near the main rotor gearbox will be effective at suppressing vibration over a broad area or effectively address disturbance sources away from the main rotor hub. The current systems also require substantial control effort and use relatively heavy actuators.

To overcome the limitations of present systems and advance the state-of-the-art, a new actuator placement and active structure design methodology is proposed and explored in this research. There are two overall goals of this investigation. First, develop a systematic and comprehensive design methodology for realizing an airframe-based active vibration control system. This design methodology is termed the Optimally Distributed Actuation Realization Methodology (ODARM). The methodology is a fourpart design cycle and relies heavily on numerical computation, modeling, and analysis. The second overall goal is to examine the feasibility and effectiveness of helicopter vibration control by distributing actuators at optimal locations within the airframe. An optimization procedure is developed that simultaneously determines the type of actuation, location of actuation, and the corresponding active control actions. System analysis and comparison studies are performed to provide insight and evaluate the merits of distributing actuation throughout the airframe.

With optimized actuator locations and active structure designs, the following benefits may be obtained. The multiple excitations, which occur throughout the airframe, could be more effectively controlled by an appropriate distribution of actuator locations. Optimally distributed actuators could be more effective at reducing vibration throughout the entire airframe or in localized areas. With optimized actuator locations, the proposed system could also require significantly less control effort to achieve similar or better vibration reduction than present systems. Because control effort requirements are reduced, smaller and lighter actuators can be used. Thus, the weight penalty and control power of the active system can be reduced. Also, with reduced control effort requirements, smart material-based actuator technology may become suitable for designing an active airframe structure.

1.3 Literature Review

A literature survey is conducted that focuses primarily on three topics relevant to this research study. The first topic is helicopter airframe structural dynamic models to determine what types of model have been generated and how the models have been used. The second topic is the state-of-the-art in airframe-based active vibration control methods. The intent is to acquire an understanding of the state-of-the-art configurations, their vibration control effectiveness, and their limitations. The third topic of the literature survey is actuator placement methods for active structural control. Actuator placement methods are reviewed to gain an understanding of what techniques have been used and to investigate the influence of actuator placement on active vibration control.

1.3.1 Helicopter Airframe Dynamic Models

A literature review of helicopter structural dynamic models was conducted and a primary source was the Design Analysis Methods for VIBrationS (DAMVIBS) program. DAMVIBS was a ten-year joint government and industry research program to develop a technology base for advanced finite element dynamic analysis $[10,11,12,13,14]$. Contracts were awarded to the four major helicopter airframe manufacturers, Bell, Boeing, McDonnell Douglas, and Sikorsky. Several finite element models, with up to 25000 degrees-of-freedom, were developed by the companies for various helicopter airframes. Correlation studies were conducted comparing vibration shake tests to the finite element model predictions of frequency response. In general, all airframes studied indicated good agreement up through 10 Hz , partially satisfactory agreement from 10-20 Hz , and generally unsatisfactory agreement above 20 Hz . The DAMVIBS program showed that considerably improved correlation could be obtained if modeling details, which have been historically regarded as secondary in importance, are taken into account. Several areas were identified to improve the finite element model predictions; such as, modeling of secondary structural panels, sealed canopy glass, nonproportional structural damping, nonlinear effects of elastomeric mounts, and modeling of the suspension system for shake testing.

Reduced order models and model reduction techniques also resulted from the DAMVIBS program. The reduced order airframe models are appealing for optimization applications, because the efficiency of numerical computation is greatly improved.

Structural optimization has been applied, utilizing a reduced order airframe model, to tune the natural frequencies and modes of a helicopter airframe [15]. Two dynamic models of the helicopter airframe are utilized in this study, and the details of each model are covered in later chapters.

1.3.2 Active Vibration Control of Helicopter Airframe

Friedmann, Chiu, and Cribbs have analytically studied the ACSR approach with a coupled rotor/fuselage aeroelastic response model [16, 17, 18]. The rotor model represented a hingeless rotor with each blade undergoing coupled flap-lag-torsion elastic deformation. The researchers created a three-dimensional flexible fuselage model with 966 global degrees of freedom. The fuselage model, which resembles a MBB BO-105 helicopter, was assembled from Euler-Bernoulli beam, truss, and non-structural mass elements. The ACSR system modeled a rigid rectangular plate, four linear spring elements, and four high force/small displacement actuators. The ACSR system was configured by mounting the rotor system on the rigid plate and connecting the plate to the fuselage at each corner with a spring element in parallel with an actuator. Chiu and Friedmann developed the coupled rotor/fuselage model. Cribbs added a free wake model and rotor/fuselage interactional aerodynamic effects. The ACSR control scheme was capable of reducing vertical and longitudinal vibrations at the pilot seat by at least 45% for advance ratios ranging from 0.15 to 0.4 . ACSR was not as effective at reducing vibration in the lateral direction. The actuator tip displacement was small, below 0.00022
inches, but the actuator control forces were quite large with maximums near 12000 lb . ACSR actuator power was estimated to be 1% to 1.5% of the total rotor power.

Hanagud and Babu have analytically investigated the feasibility of using piezoceramic sensors and actuators for vibration reduction in the helicopter airframe [19]. A simple beam finite-element-model with concentrated masses was used to model the airframe. The single-axis beam model consisted of 10 elements, 11 nodes, and 33 degrees-of-freedom. The beam model was excited with harmonic loads at a location representing the rotor hub. Using a collocated piezoceramic actuator and sensor, along with an H -infinity controller, vibration in the vertical direction was reduced 60% at the sensor location. They concluded that future work should include a more sophisticated airframe and actuator model.

The Active Control of Structural Response (ACSR) system, developed by King and Staple at Westland, actively controls the airframe by the superposition of an actuatorinduced response with the response due to oscillatory hub loads [6]. The ACSR system consists of airframe mounted accelerometers, a digital control computer, and a set of electro-hydraulic force actuators mounted across the airframe/main transmission interface. An Independent Modal Space Control algorithm and a Frequency Domain Control algorithm were investigated for the ACSR implementation. Through extensive simulation, the frequency domain control algorithm was selected because it proved to be robust, simple to realize, and produced better vibration reduction. The Frequency Domain

Control algorithm can be expressed as the minimization of a quadratic performance index, comprising the weighted sum of the vibration measurements and the weighted sum of the actuator efforts. Simulation studies were conducted utilizing a NASTRAN finite element model of a Westland 30 airframe. Ten sensor locations in the main cabin were targeted for vibration suppression, and simulations were conducted for forward flight speeds ranging from 100 to 140 knots. The simulations predicted a 90% vibration reduction in the cabin, and the maximum actuator control loads were 2250 lbs .

Ground vibration shake tests and flight tests have also been conducted on a Westland 30 helicopter equipped with an Active Control of Structural Response system [7]. The ACSR control unit received airframe vibration signals from 24 accelerometers located around the airframe, 17 in the cabin and cockpit areas, 4 on the engines, and 3 on the tail rotor gearbox. The control algorithm to compute the actuator commands used only 10 accelerometer signals from the 24 available. On the Westland 30 helicopter, the main rotor and gearbox are mounted on a rectangular raft that is attached to the airframe at each corner with an elastomeric mount. Four electro-hydraulic actuators were incorporated into the gearbox/fuselage interface at the four elastomeric mount locations, see Figure 1.3. The actuation devices were designed to produce a maximum of $+/-2023$

Figure 1.3: ACSR actuator installation on Westland 30 helicopter. [7]
lbs at the blade passage frequency (22 Hz) with a maximum displacement of 0.01 inches. The shake test was conducted on a demonstration aircraft with a standard flight configuration. The aircraft was suspended by soft springs through a dummy rotor head, and $N /$ rev loads representative of the flight environment were applied to the rotor head through electro-magnetic shakers. Results from the shake tests indicated an average vibration reduction of 80% at the 10 control sensor locations. Average vibration reduction at all 24 sensor locations was 67% from 0.12 g to 0.04 g .

Flight tests were also conducted on the Westland 30 Helicopter for two aircraft loading conditions: the baseline aircraft loading at 11800 lbs take-off weight, and a higher loading of 12800 lbs [7]. Flight trials were conducted to evaluate ACSR under steady flight conditions at forward speeds from 40 to 124 knots, and flight trials were
conducted for various maneuver conditions. The flight trials of the baseline aircraft loading at steady forward speeds indicated an average vibration reduction of at least 80% at the 10 control sensor locations, and average reductions between 55% and 60% for all 24 sensor locations. The robustness of the ACSR control approach to changes in aircraft loading was demonstrated. When the aircraft take-off weight was increased to 12800 lbs , the uncontrolled vibration levels increased by 25%; however, ACSR reduced vibrations to levels very near the controlled vibrations of the 11800 lbs aircraft. Throughout the complete range of flight trials incorporating various maneuvers, the ACSR system provided substantial vibration reductions. From an airframe vibration perspective, the transition to hover maneuver is one of the most severe cases. Results from the transition to hover maneuver indicated that ACSR maintained vibrations below 0.45 g throughout the entire maneuver, while the uncontrolled vibration levels were at least 0.2 g greater and peaked at 1.6 g . The weight penalty of any vibration control system is always a concern. On the Westland 30 helicopter, it was estimated that a production ACSR installation would weigh approximately 80 lbs , as compared to 122 lbs for the passive rotor mounted absorber currently fitted on the aircraft. An added benefit of ACSR reported by the pilot and flight crew was the pronounced reduction of interior noise levels.

The Active Control of Structural Response approach has also been demonstrated on a Sikorsky S-76B helicopter [9]. The main rotor gearbox attachments were modified to incorporate six electro-hydraulic actuators in parallel with four stiff spring mounts, as
shown in Figure 1.4. Accelerometers were distributed throughout the airframe to monitor sixty sensor signals. The ACSR controller accommodated up to ten accelerometer signals and up to four control actuators. Ground shake testing was conducted with the aircraft suspended from soft springs at the main and tail rotor hubs. To evaluate ACSR effectiveness in suppressing multi-harmonic response, the aircraft was subjected to hub loads composed of representative $1 / \mathrm{rev}, N-1 / \mathrm{rev}, N / \mathrm{rev}$, and $2 N / \mathrm{rev}$ loads. The ACSR system was optimized for the Aeronautical Design Standard 27 (ADS27) vibration requirements that have been adopted by the U.S. Army. ADS-27 vibration requirements are more stringent than previous requirements, and ADS-27 uses an intrusion index as the

Figure 1.4: S-76 helicopter main gearbox supports and ACSR actuator locations [9]
performance metric $[9,20,21]$. The intrusion index is a weighted sum of the four largest vibration harmonics at specific locations in the helicopter. Ground shake testing indicated that $N /$ rev cockpit vibration could be reduced by 86% and 50% reductions were realized for the $N-1 /$ rev and $2 N /$ rev responses. Closed loop tests were examined for simulated flight at forward speeds from 60 to 162 knots. Throughout the entire speed range the ACSR control system effectively suppressed vibration at the pilot and copilot stations and kept the intrusion index well below the ADS-27 limit. Simulated in-flight actuator loads and power were predicted. The maximum actuator load range was from 2000 lbs to 3200 lbs over the forward speed range. A maximum power of 9.5 horsepower was required to operate four actuators.

Welsh and others demonstrated an ACSR like active vibration control system on a Sikorsky UH-60 Black Hawk helicopter [22]. The adaptive vibration control system consisted of ten accelerometer sensors, a control computer, and two inertial force generating units. Four of the accelerometer sensors were located in the cockpit area near the copilot and pilot seats. The six remaining sensors were located in the forward, middle, and rear of the helicopter cabin area. The control computer used a common frequency domain algorithm to compute actuator commands that cancel vibration at the $\mathrm{N} / \mathrm{rev}$ frequency. Actuators of the control system are inertial-type force generators that apply control forces at a single point of the fuselage. The inertial force generator, shown in Figure 1.5, is a hybrid resonant device that integrates the UH-60 passive vibration absorber with a hydraulic servo actuator and internal feedback sensors.

Figure 1.5: Sikorsky UH-60 Servo Inertial Force Generator (SIFG) [22]

Thus, the force generator could be used in a passive mode like the original equipment vibration absorber, or in an active mode to generate commanded actuation forces. The inertial mass of each force generator weighed 40 lbs and had a maximum travel distance of 2.0 inches. Each force generator was capable of producing a 1200 lb force at the $\mathrm{N} / \mathrm{rev}$ frequency of 17.2 Hz . The actuators were installed on the left and right side of the cabin overhead just forward of the main rotor gearbox, which correspond to the original equipment locations of the UH-60 passive vibration absorbers. Vibration data was collected and compared for a baseline no vibration control configuration, a passive vibration absorber configuration, and the active vibration control configuration. All three
configurations were evaluated for various flight conditions; steady level flight at increasing forward speeds, variations of nominal rotor speed, and a transient approach to hover maneuver. The active vibration control system achieved significant vibration suppression at most of the sensor locations; however, small vibration increases were observed at some of the sensor locations. The active system consistently outperformed the passive vibration control system at all forward speeds. At a forward speed of 145 knots, the active vibration control system suppressed vibration by 65% as compared to 45% for the passive system. Unlike the passive system, the active control system was insensitive to rotor speed variations. Maximum hydraulic power required to operate the two force generators was in the 1.0 to 8.0 horsepower range, depending upon the flight condition and main rotor speed. Vibration comparisons for the transition to hover maneuver were not impressive, and the authors concluded that the active system performance was limited by the quasi-steady assumption of the controller algorithm. Two additional conclusions of the authors are related to actuator location and actuator size. The installed force generator locations were near a nodal point and unable to effectively control a torsional mode of the helicopter airframe. Therefore, other actuator locations may yield a more effective active vibration control system. They also concluded that a larger number of small force generators may be more effective than a fewer number of large force generating units. Thus, smaller actuator devices could be placed at more locations in the airframe and avoid the unfortunate circumstance of placing all actuators near modal nodes.

Sikorsky Aircraft Corporation has designed and flight-tested an active vibration control system for the S-92 helicopter [8]. The Active Vibration Control (AVC) system acquires vibration measurements at 10 sensor locations in the cockpit and cabin, and a control computer provides commands to inertial force generating devices mounted on the airframe. The control computer uses a common frequency domain algorithm to compute actuator commands. Actuators are single point devices that generate controlled vibratory loads to reduce fuselage vibration at the $N /$ rev frequency. Each inertial force generator is able to produce a 1000 lb sinusoidal force from a pair of counter-rotating eccentric disks. A finite element model of the S-92 airframe was utilized for an extensive parameter study to determine the appropriate number of force generator devices and their airframe attachment locations. Actuator locations were restricted to 15 candidate airframe locations in the cockpit and cabin areas with each location having three possible force directions. Three actuators combined with 45 candidate location/direction sets resulted in 14190 control configurations to be evaluated. The first flight test of a S-92 prototype aircraft with the AVC system took place in December of 1998. The AVC system demonstrated substantial vibration suppression over a broad range of flight conditions and ballast configurations. Average cockpit and cabin vibration was reduced by at least 50% (below 0.15 g) from hover to forward speeds of 150 knots.

The Total Vibration Reduction (TVR) system is an active vibration control system developed by Kawasaki Heavy Industries of Japan to reduce helicopter vibrations at $1 / \mathrm{rev}, N / \mathrm{rev}$, and $2 N / \mathrm{rev}[23,24]$. The complete TVR system consists of two separate
and independent active control systems. One system (Automatic Adjustable Pitch Link - AAPL) incorporates actively adjustable pitch links for automatic tracking and balancing of the main rotor by adjusting the length of pitch links to reduce $1 / \mathrm{rev}$ vibrations. The other active system (Active Vibration Reduction - AVR) is an ACSR like system that incorporates hydraulic actuators in parallel with the main gearbox mounts to reduce vibrations at N / rev and $2 N / \mathrm{rev}$. Stiffness of the main gearbox mounts was optimized for maximum AVR effectiveness. The AVR system was put into series production on the Kawasaki BK117 helicopter in 1997. Both active control systems use a frequency domain control algorithm and feedback sensors located in the cockpit and cabin of the aircraft. Flight tests of the TVR system on a series production model BK117 helicopter were conducted to evaluate the concept at forward speeds from hover to 150 knots. The AAPL system reduced $1 /$ rev vertical vibrations at the pilot seat below 0.01 g throughout the entire forward speed range and achieved a 50% reduction at 150 knots. The AVS system reduced $N /$ rev and $2 N /$ rev vertical vibrations at the pilot seat below 0.1 g throughout the entire forward speed range and achieved at least a 45% reduction of $N /$ rev vibrations at all forward speeds.

The Multipoint Adaptive Vibration Suppression System (MAVSS), developed by Bell Helicopter, is an active control system to reduce rotor-induced vibrations over a broad area of the airframe [25]. In general, the MAVSS system consists of airframe mounted sensors, a digital control computer, and a set of force actuators. MAVSS uses the property of superposition of vibratory responses to reduce or cancel vibration. The
control algorithm computes the actuator commands by minimizing a performance index, which is a weighted sum of the measured response data and the weighted actuator commands. Aircraft structural dynamics are self-identified by sending known signals to the control actuator and measuring the resulting change in the system vibrations produced by each actuator. The MAVSS system has been laboratory tested on a lumped-mass bench-top stick model of the Cobra helicopter, and a non-flying Model 412 Bell helicopter. Ground shake testing of the Model 412 was conducted with four hydraulic control actuators placed in parallel with elastomeric gearbox mounts. Testing of the MAVSS system on the Model 412 helicopter demonstrated an average vibration reduction of 94% at six sensor locations. MAVSS has also been tested on a V-22 0.2scale aeroelastic semispan tiltrotor model. The testing revealed an aerodynamic control surface (aileron) could produce the forces required for vibration suppression. This testing also revealed the limitations of utilizing only one actuator (aileron) for the control of multiple responses. It was demonstrated that three vibratory moments (wing bending, chord bending, and wing torsion) at the wing root could be suppressed individually; however, all three vibratory moments could not be reduced simultaneously.

Boeing Helicopter's Active Vibration Suppression (AVS) uses electromagnetic resonant actuators placed in the cockpit to cancel vibration at N / rev and $2 N / \mathrm{rev}$ [5]. The AVS system consists of electromechanical actuators, a digital controller, multiple accelerometers, and a rotor RPM sensor. The AVS control system is synchronized with the rotor RPM, and the actuators produce structural forces to attenuate vibration at the
sensor locations. Each actuator unit contains a pair of electromagnetically controlled spring/mass assemblies that are tuned to the N / rev and $2 N / \mathrm{rev}$ frequencies. Actuator commands were computed using a frequency domain control algorithm. The AVS system, with one $N /$ rev actuator under the pilot seat, was installed on a CH-47D helicopter, and ground shake testing demonstrated a 97% reduction of $N /$ rev vibrations at the pilot seat. Peak actuator force outputs were 2600 lbs at N / rev and 1500 lbs at $2 \boldsymbol{N} / \mathrm{rev}$.

In summary, the airframe-based active vibration control systems effectively suppressed vibration throughout the entire forward speed range. Most of the systems were able to reduce cabin vibrations by at least 50 percent. Dual point actuation systems utilized hydraulic actuators located at the interface of the airframe and the main rotor support structure. Control forces of the single point actuation systems were generated by inertial devices. The maximum control loads were between 1000 and 3200 pounds. The weight of a production ACSR system installed on a Sikorsky S-76 was estimated to be less than a hub mounted pendulum absorber. On the Sikorsky S-76 system 9.5 horsepower was required to operate four actuators. A maximum of 8.0 horsepower was required to operate two inertial force generators in the UH-60 active vibration control system. Friedmann analytically predicted the ACSR control power to be 1% to 1.5% of the total rotor power.

1.3.3 Actuator Placement Methods

Various placement techniques have been formulated to determine actuator locations for the control of flexible structures. The actuator placement problem is typically solved by an optimization technique to maximize or minimize a cost function. The optimization problem has been solved with gradient-based techniques and nongradient techniques. Various performance metrics have been formulated for the optimization cost function, such as; metrics based on the entries of the actuator influence matrix, metrics formed from the controllability grammian, metrics to maximize the energy dissipation, and metrics to minimize the system energy. An extensive review has been conducted on this topic; however, only a representative sampling of the various approaches will be presented.

Lim at the NASA Langley Research Center devised an optimal actuator and sensor placement method for large flexible structures [26]. The method is based on the combined degree of controllability and observability of each structural mode to be controlled. A set of actuator and sensor locations was deemed most suitable if the set was capable of simultaneously controlling and observing all significant structural modes to a high degree. The structure's dynamic model was transformed to a state space representation using a set of significant structural modes that are to be controlled. The controllability grammian was computed and the controllable subspace for each actuator location was derived. The observability grammian was also calculated and the observable subspace for each sensor location was determined. An intersection subspace was formed
from the controllable and observable subspaces of each actuator/sensor pair. The optimization cost function was based on the weighted projection of structural modes into the intersection subspaces. The problem reduced to choosing for each structural mode a pair of actuator and sensor locations that maximize the cost function. The design method was computationally efficient because the problem size and design space are proportional to the number of actuators, unlike other methods where the design space is factorially related to the number of actuators. The optimization cost functional did not incorporate closed-loop control; therefore, any control method could be applied after the actuator positions are determined. One disadvantage of the method is that a priori knowledge of which modes are to be controlled is required.

Xu, Warnitchai, and Igusa developed an optimal actuator placement method that uses a performance function including both the structural response and the control effort [27]. Their method was an extension of an energy dissipation method developed by Schultz and Heimbold [28]. The optimization problem was solved by a gradient-based nonlinear programming technique. A direct output velocity feedback control law was used. A quadratic cost function was formulated that includes both the structural response and the control effort. To avoid dependence on initial conditions for the disturbances, the trace of the cost function was used. The resulting cost function was an average over all initial conditions that can be represented by a unit vector in the state space. Thus, the method is useful for structures that may have a wide variety of external disturbances, but it may not be appropriate for structures with specific disturbances. Analytical expressions
were derived for the gradients of the cost function. The computational effort required to evaluate the analytical gradient expressions is far less than that required in finite differences. The actuator placement methodology was demonstrated on a twodimensional membrane structure. The cost function had multiple local minima; therefore, randomly generated initial actuator locations were used to obtain a set of solutions.

DeLorenzo devised a sensor and actuator selection algorithm for regulation of large-scale, linear, stochastic systems [29]. The algorithm uses an LQG controller and an efficient selection technique, based upon successive approximation, for determining the LQG weighting matrices. Metrics were developed to identify the individual effectiveness of each sensor and actuator in the presence of LQG control. The first step of DeLorenzo's algorithm is solving the LQG control configuration with actuators and sensors located at all candidate locations on the structure. Next, effectiveness metrics were computed for each actuator and sensor position, and the metrics were ranked according to their algebraic values. Then, elimination of the lowest ranking actuators and sensors produced a modified control configuration. LQG control was computed for the modified actuator/sensor configuration, and the process was repeated until the final actuator/sensor configuration enabled the closed-loop system to meet output specifications with minimal power. The algorithm does not involve complex gradient calculations and has proven numerically tractable for large linear models. One advantageous feature of the algorithm is that the solution sequence provides the controls engineer with information for actuator sizing and optimal number.

Choe and Baruh devised an actuator placement method for structural control problems [30]. The method utilizes a modal space representation of the structure to be controlled. Four actuator types, a point force, a piecewise continuous force, a point torque, and a piecewise continuous torque, were analyzed in the study. Optimization studies were conducted to minimize objective functions based on the entries of the actuator influence matrix, which give general measures of controllability. Two objective functions were formulated with the assumption that specific modes of the structure are to be controlled, and the objective functions could be used in conjunction with any control law. Two additional objective functions were formulated for modal control laws. The study analyzed a pinned-pinned beam structure for actuator placement and control. Their study indicated that relatively even distributions of actuators gave satisfactory performance, whereas very closely spaced actuators lead to excessive energy use. As the number of actuators was increased, the actuators became less sensitive to their placement. The performance of the torque actuators was more sensitive to placement than force actuators.

Singiresu and Tzong-Shii solved the actuator placement problem using Genetic Algorithms [31]. The discrete optimal actuator location selection problem in actively controlled structures was cast in the framework of a zero-one optimization problem. A Linear Quadratic Regulator (LQR) control approach was used. The dissipation energy of the active controller was used as the objective function for maximization by the
optimizer. A two-bay planar truss structure was analyzed for the placement of three actuators. Several cases were run using different probability function values in the Genetic algorithm. Most of the optimization runs found the global optimal solution, and a small number found the second optimal solution.

Kirby, Matic, and Lindner examined the use of Genetic algorithms to place and size piezoceramic actuators for active damping of a vibrating cantilevered beam [32]. Optimal solutions were determined for centralized (global) control and decentralized (local) control. The effects of actuator mass and stiffening were considered and compared with optimization solutions for which the actuator mass and stiffening was negligible. State variable feedback and Linear Quadratic Regulator (LQR) design were used for the centralized control. Collocated negative rate feedback was used for the local control studies. The optimization objective functions minimized the kinetic and potential energy of the system for centralized control, and maximized the dissipation energy for decentralized control. Their optimization results showed that significant actuator mass and localized stiffening alters the optimal size and placement of bonded piezoceramic actuators. The type of control law, global or local, influenced the optimal actuator locations. Genetic algorithms were effective tools for determining actuator size and location and effective for locating near optimal solutions from solution spaces that contain multiple numbers of local maximums. With the guidance of genetic algorithms, it was possible to obtain a nearly optimal solution by evaluating less than 0.5% of the total solution space.

Sepulveda, Jin, and Schmit presented a methodology for a combined passive structural design and active control synthesis in which the optimal location of active members was treated as $(0,1)$ variables [33]. The passive structural member sizes, active control gains, and $(0,1)$ placement variables were treated simultaneously as design variables. The optimization problem was formulated as a mixed nonlinear mathematical programming problem involving both continuous and discrete $(0,1)$ variables. A direct output feedback control law was adopted for the voltage applied to active members, and displacement and velocity gains for each active member were treated as design variables. The combinatorial aspects of the mixed discrete and continuous optimization problem were dealt with using a strategy that combines approximation concepts and a branch and bound technique. An eighteen bar truss structure was analyzed to test the proposed synthesis methodology. Their results demonstrated the effectiveness of the design methodology, as well as, the computational efficiency of the branch and bound technique combined with approximation concepts. The final designs were obtained with relatively small number of iterations; however, the presence of local minima presented some difficulty and clearly indicated the need for improvements in the design method to deal with nonconvexity.

Maghami and Joshi developed an optimization approach for sensor and actuator placement in the control of flexible space structures [34]. The approach reduces the sensor/actuator positioning problem to a solution of a nonlinear programming problem.

The discrete control forces and discrete output measurements are approximated by spatially continuous functions in order to avoid discontinuity problems. The space structure was divided into sections with each section allocated a fixed number of actuators and sensors. A nonlinear programming problem, with the actuator/sensor locations as design variables, was posed to minimize a performance metric. Two different criteria were chosen for the performance metric. The first performance metric was formulated from the transmission zeros of the system such that the transmission zeros are moved farther to the left of the imaginary axis by the optimization process. In the second criterion, a performance metric related to the singular values of the Hankel matrix was formulated. The optimization process places actuators and sensors such that the singular values of the Hankel matrix increase in value. The Hankel matrix includes both measures of controllability and observability; therefore, the second criterion was maximizing the controllability and observability of the system. The effect of actuator dynamics on the actuator/sensor placement was also investigated. It was shown that actuator dynamics could have considerable influence on the optimal actuator/sensor locations, particularly when the actuator bandwidth is near the operational closed-loop bandwidth.

Lindberg and Longman developed a new design technique, based on Independent Modal Space Control (IMSC), for actuator placement and controller design [35]. The IMSC method determines the optimal control action by minimizing a quadratic cost functional comprised of the system states and the generalized control forces. A primary advantage of IMSC for large systems is the significant reduction of computational effort.

The standard IMSC approach requires the solution of n decoupled 2×2 Riccati equations, rather than a single ($2 n \times 2 n$) Riccati equation, where n is the number of structural modes used in the modal reduction. However, in order to implement the standard IMSC method, one actuator must be used for each structural mode to be controlled. Lindberg and Longman developed a new formulation of Independent Modal Space Control (IMSC), which relaxes the restriction on the number of actuators by synthesizing an approximation to the optimal feedback. Their approximation allows one to reduce the number of actuators required by the IMSC method and maintains computational efficiency, but compromises other features of the IMSC method. The quadratic cost functional no longer contains the usual adjustable parameters, which have a one-to-one correspondence to each actuator's control effort. The state penalty in the quadratic cost functional does not directly dictate the state performance. These two characteristics of the new formulation complicate the cost functional tuning to generate the desired system performance. A third limitation is that closed-loop system stability is not assured and system stability must be checked after obtaining the optimized design.

Venkatesan and Udayasankar devised a method for selecting sensor locations to be used for active vibration control of helicopter fuselages [36]. Their procedure uses the Fisher information matrix and the Effective Independence Distribution Vector (EIDV) to sequentially eliminate the redundant sensor locations from an initial set of many candidate locations. Within their procedure, the system equations of motion are transformed to a modal representation. A potentially limiting feature of the method is that
the minimum number of required sensors is equal to the number of modes used in the modal transformation. Venkatesan applied the sensor placement method to a simplified model of a helicopter fuselage. The optimal sensor location results were then utilized in an active vibration control study. He concluded that vibration control using measurements from the optimal sensor locations yields maximum vibration suppression, as compared to vibration control using measurements from a non-optimal sensor set. Although the proposed method was not devised for actuator placement, it is included here because the approach has a number of similarities with the reviewed actuator placement methods. In addition, this study indicates that sensor location can have a significant impact on active vibration control effectiveness.

The majority of present day helicopter airframes are of semi-monocoque construction; therefore, actuator placement within an airframe is most likely relegated to a finite number of distinct locations. Unlike simple continuous beam or plate structures, the actuator placement in helicopter airframes is discrete in nature, and non-gradient optimization algorithms are well suited for the discrete actuator placement problem. In addition, the non-gradient approaches are less likely to converge to a local minimum solution. Most of the approaches incorporating simultaneous controller design are designing the active system to address excitations over a broad frequency range, rather than discrete known excitation frequencies. Some of the approaches attempted to control specific structural modes; however, such an approach requires a priori knowledge of which modes are significant or which modes are to be controlled. Other approaches
solved the problem without consideration of the active control law, but researchers have demonstrated the influence of control laws and performance objectives on the actuator placement. Drawing on the knowledge acquired from previous research, a systematic actuator placement methodology will be formulated for the unique characteristics of helicopter airframe vibration control.

1.4 Summary and Thesis Outline

Reducing helicopter airframe vibrations has numerous payoffs with regard to passenger comfort, weapons sighting, structural fatigue, production costs, and maintenance costs. Airframe vibrations are caused by several important excitation sources; however, the dominant sources are the main rotor hub forces and moments. Historically, helicopter vibrations have been addressed with passive control methods, and considerable progress has been made in designing rotorcraft with lower vibration levels. However, vibration specifications continue to be ever more stringent, and there will be continued efforts to strive for more effective vibration control measures. Thus, active vibration control methods are receiving considerable attention and study. One of the more promising airframe-based active control approaches is commonly referred to as Active Control of Structural Response (ACSR). In general terms, an ACSR system consists of airframe mounted sensors, a control computer, and a set of force actuators mounted on the airframe. Vibration control is achieved by the superposition of an actuator-induced airframe response with the response caused by external loads. Numerous analytical and experimental studies have been conducted on variations of the ACSR control approach.

Study and flight-testing of airframe-based approaches have demonstrated significant vibration suppression and enough promise to begin appearing on production rotorcraft. Actuator placement, in the airframe-based systems, is based largely upon engineering experience and limitations imposed by retrofitting an existing airframe structure. Some researchers have concluded that actuator locations, different from their selected locations, may yield a more effective active vibration control system. They also concluded that a larger number of small actuators may be more effective than a fewer number of large actuator devices. Thus, smaller actuators could be placed at more locations in the airframe and avoid the unfortunate circumstance of placing all actuators near modal nodes. The helicopter airframe is a complex structure, and it has a complex dynamic response; therefore, determining the best actuator locations is not a simple task. Distributing actuators at optimal locations in the airframe needs to be studied to investigate feasibility and examine the potential for improving vibration suppression. The design and realization issues associated with integrating actuation into a semi-monocoque airframe structure needs to be investigated. In addition, a need exists for a formal design methodology and optimization procedure to realize an active airframe with optimally distributed actuators. The main objectives of this research project are to address these needs, and advance the state-of-the-art of airframe-based active vibration control systems.

Chapter 1 summarized the helicopter vibration problem, vibration control methods, problem statement, research objectives, and the results of a literature review. In Chapter 2, a comprehensive design methodology is proposed and detailed for actuator
placement, active structure design, and realization of a helicopter active vibration control system. Chapter 3 presents the helicopter airframe models and excitation loads used in this study. Also presented in Chapter 3 is the hybrid optimization process for determining actuator placement and computing the active control actions. Chapter 4 presents the optimal actuator placement results and compares with a state-of-the-art active control configuration. Analytical results are presented to illustrate the benefit of applying the proposed design methodology, and results are presented to provide physical insight into the optimally distributed actuator placement. Chapter 5 describes an in-depth analytical study of optimally distributed actuation realization issues. A high fidelity helicopter airframe model is utilized to assess active structure designs, vibration control system effectiveness, and control system influences on airframe structural integrity. Chapter 6 presents an analysis and experimental demonstration of one particular active structure design concept applied to a scaled model of a semi-monocoque airframe structure. The scaled model structure design and fabrication is described along with the corresponding analytical models. Installation of piezoelectric stack actuation devices for vibration control is presented. Vibration control is studied analytically, and a physical demonstration is illustrated. Chapter 7 contains a summary and conclusions of the research project. In addition, recommendations for future research activities are presented.

Chapter 2

OPTIMALLY DISTRIBUTED ACTUATION REALIZATION METHODOLOGY

2.1 Introduction

Airframe-based active vibration control approaches are being seriously considered and investigated because they have advantages over the rotor-based approaches. Rotorbased active control methods reduce the oscillatory hub loads, but may not be capable or efficient at controlling excitations that do not enter the airframe through the main rotor hub. Until all problematic excitation sources are eliminated, some type of airframe-based control system is required to meet more stringent vibration specifications. Even though current airframe-based active control approaches have demonstrated substantial vibration reductions, the system performance can be greatly improved with technological advances and design innovations. An extensive literature search was conducted and the limitations of the current airframe-based active control approaches were identified. A systematic and comprehensive design approach is needed to explore the vast multitude of potential active control configurations and determine which is best. To overcome the limitations of present systems and advance the state-of-the-art, a new actuator placement and active structure design methodology is proposed and explored in this research. The design methodology, presented in this chapter, is termed the Optimally Distributed Actuation

Realization Methodology. This methodology is a four-part design cycle and each part of the method is explained in detail. The various analytical tools, models, and processes required to execute the methodology are described.

2.2 Optimally Distributed Actuation Realization Methodology

The Optimally Distributed Actuation Realization Methodology (ODARM), illustrated in Figure 2.1, is versatile enough to be applied to any rotorcraft. The methodology is a four-part design cycle. The first step is to create a detailed numerical (Finite Element, FE) model of the helicopter airframe. Creation of a detailed finite element model is an arduous and lengthy process, however, finite element models are part of the customary rotorcraft development process. These models are typically used for static and dynamic analysis of the airframe, and the very same models can be used in the ODARM for realizing a distributed actuator vibration control system. Thus, the first step of the methodology may simply be an adaptation of existing airframe models. The size and detail of typical airframe FE models range from 2000 to 25,000 degrees-of-freedom [10]. The necessary level of detail is dependent upon the intended use of the model. A general guideline, for selecting the degree of detail in the FE model for the ODARM, is to select enough detail in order to adequately capture localized dynamics in the vicinity of potential actuator locations. In other words, a high level of model detail is not required in areas of the airframe where actuator installation is not possible or practical.

Figure 2.1: Optimally Distributed Actuation Realization Methodology (ODARM)

The second step of the ODARM is to create a reduced order model of the airframe, which is utilized in the optimization procedure to determine actuation locations and control actions. The recommended airframe model reduction method and optimization procedure are detailed in later chapters. Model reduction is an essential part of the ODARM in order to condense the optimization problem to a manageable size by reducing the size of the design space. There are literally thousands of potential actuator locations within the actual helicopter airframe, as well as within the detailed FE airframe model. Utilizing the detailed FE model and incorporating all potential actuator locations into the optimization problem expands the design space immensely and greatly increases the computation time to find a solution. To illustrate this point, consider a detailed FE model that has one thousand $(n=1000)$ candidate actuator locations and a set of eight $(k$ $=8)$ actuators are to be distributed throughout the airframe. According to statistics and
probability counting techniques, there are 2.4115×10^{19} combinations (equation 2.1) of actuator configurations that define the design space [37]. Thus, conducting a parameter study to examine each of the potential actuator configurations or applying an optimization procedure to such a large design space is not practical or advisable.

$$
\begin{equation*}
C_{k, n}=\frac{n!}{k!(n-k)!}=\frac{1000!}{8!(1000-8)!}=2.4115 \times 10^{19} \tag{2.1}
\end{equation*}
$$

Applying the optimization procedure to a reduced order model is more efficient from a computational viewpoint, because the number of potential actuator locations can be constrained considerable. For instance, consider a reduced order airframe model with one hundred $(n=100)$ candidate actuator locations, equation 2.2. The number of possible actuator configurations $\left(1.8609 \times 10^{11}\right)$ remains large, but the number of possibilities is reduced by eight orders of magnitude. Examination of each possible actuator configuration is not practical, but applying an optimization procedure to the reduced design space is significantly more efficient.

$$
\begin{equation*}
C_{k, n}=\frac{n!}{k!(n-k)!}=\frac{100!}{8!(100-8)!}=1.8609 \times 10^{11} \tag{array}
\end{equation*}
$$

The third step of the ODARM is to utilize the optimization results and design a detailed actuator configuration that produces the desired control actions. The optimization procedure, which uses the reduced order airframe model, produces results
that indicate the actuation locations, type of actuation, and the necessary control effort. Actuation locations indicate the geometric regions of the airframe where active control is to be applied. Actuation type indicates the type of control action: single point force, dual point forces, or dual point bending moments. Actuation type definitions and descriptions are covered in a later section. Control effort is determined by an optimal control formulation and indicates the required active control input magnitude and phase. Actuation inputs to the reduced order model are not specific to a particular actuator device; but instead, they are conceptual force and moment inputs. Therefore, in the third step of the ODARM, design and analysis is applied to the high fidelity airframe model. Specific actuator configurations are analyzed using the detailed airframe FE model. At this point in the methodology, specific actuators (electromagnetic, hydraulic, piezoelectric, et al) are modeled and incorporated into the detailed airframe FE model. Various actuator configurations, that produce the control actions indicated by the optimization procedure, are designed and analyzed to refine the active control system. Structural modifications of the airframe to install the actuators are evaluated by using the detailed airframe model. In addition, the detailed airframe model can be used to evaluate localized structural dynamics. Localized structural integrity of the airframe near the actuator installation is evaluated with the detailed FE model. The final designs are evaluated for sufficient control authority and vibration suppression.

The fourth and final step of the Optimally Distributed Actuation Realization Methodology is to utilize the analytical knowledge acquired in the previous steps to
install the hardware and realize the active vibration control system in the actual helicopter structure. System specifications are defined by analyses of the previous steps and are used to purchase, install, and configure the necessary hardware and software. At the discretion of the designer, steps three and four may be reiterated multiple times to refine the final active vibration control system design.

A framework for realizing a distributed actuation control system has been formulated and explained. It should be noted; this research study has focused on demonstrating and validating steps two and three of the ODARM. Step one, creation of a detailed finite element model, is not covered because this subject is well established and well documented. Execution of step one was not necessary because pre-existing helicopter airframe models were generously provided by Boeing Company in Mesa, Arizona. Installing a distributed actuation control system in an actual helicopter, step four, is not economically feasible or within the scope of this research program.

Chapter 3

AIRFRAME MODEL, EXCITATION LOADS, AND OPTIMIZATION PROCESS

3.1 Airframe Structural Dynamic Model

Two dynamic models of the helicopter airframe are utilized within the ODARM methodology. One of the airframe models is a large degree-of-freedom finite element model that is detailed in a later chapter. The other is a reduced order model of the airframe, upon which the optimization procedure is applied for actuator placement. The reduced airframe model should not be overly complex nor require substantial numerical computations. However, the airframe model should be sophisticated enough to capture the global dynamic characteristics of a helicopter airframe. The selected model should have the flexibility to easily incorporate actuation loads and excitations at different locations. Airframe model reduction is an essential part of the ODARM methodology in order to reduce the optimization problem to a manageable size. Numerous model reduction techniques exist, however, one particular reduction method is recommended for the proposed design methodology. The recommended reduction procedure, developed by engineers at McDonnell Douglas, was found in the DAMVIBS literature [15]. This model reduction procedure creates the mass and stiffness matrices of a reduced order elastic line model representation from the mass and stiffness matrices of a much larger Finite

Element (FE) model of the helicopter airframe [15]. The reduced mass and stiffness matrices are produced by separate static condensation routines. Determination of the reduced mass matrix is based on a redistribution of the large FE model mass characteristics. A mass lumping volume is defined around each of the reduced model grid points, and a weighted distribution of each FE model mass item contained within the lumping volume is assigned to the reduced model grid point. The reduced order model stiffness matrix is created by application of a static influence coefficient method to the larger FE model stiffness matrix. The reduced mass and reduced stiffness matrices, along with an abridged set of model grid points, are the resultant representation of a reduced order elastic line airframe model. The reduction procedure is only summarized, because an airframe model in reduced form was directly obtained from McDonnell Douglas, and execution of the procedure was not necessary. A more detailed description of the reduction procedure can be found in reference 15 .

The McDonnell Douglas model reduction technique is recommended because the method and resulting model have features that are beneficial to the ODARM. Most importantly, the reduced order model representation preserves the global dynamic characteristics of the larger FE model. Table 3.1 lists the results of a correlation study done by McDonnell Douglas that compares a large FE airframe model with the corresponding reduced order model representation [15]. Some of the localized airframe vibration modes are lost in the reduction process, but the global vibration modes retain a high degree of correlation. Another unique feature of the procedure and the resulting
model is the capability to apply actuation loads directly on the Reduced Order Model (ROM). This feature eliminates the need to reapply the reduction process for a new actuator location, which greatly reduces computational effort. Unlike modal based reduction techniques, this method retains a geometric relationship between the large FE model and the ROM. Each node point of the reduced order elastic line model geometrically corresponds to one particular node point of the large finite element model. Therefore, an actuator location in the ROM is easily translated to a geometric region in the large FE model. This geometric feature could provide valuable guidance when realizing the optimized actuator distribution in a large finite element model or in the actual airframe structure.

Table 3.1: Modal correlation of large FEM versus Reduced Order Model. [15]			
MODE	Frequency (Hz) Large FEM	Frequency (Hz) Reduced Order	Mode Shape Correlation
Tailboom Torsion	5.45	5.62	0.92
$1^{\text {st }}$ Vert. Bending	6.00	6.15	0.93
$1^{\text {st }}$ Lateral Bending	10.70	9.76	0.84
Engine Yaw \& Pitch	11.44	11.67	0.90
Tail Long. Bending	11.97	12.31	0.91
Mast Long. Bending	13.41	14.33	0.87
Antisym. Engine Yaw	14.16	16.43	0.70
Stabilator Yaw	20.63	19.60	0.81
			$1.0=$ Perfect Correlation $0.0=$ No Correlation

The Reduced Order Model (ROM) test bed selected for this study is an elastic line model of the Apache helicopter with 94 nodes and 564 degrees-of-freedom. The reduced order model and the larger finite element model that it was created from are shown in Figure 3.1. The mass and stiffness matrices of the ROM were generously supplied by Boeing Helicopters in Mesa, Arizona (formerly McDonnell Douglas). The ROM contains 94 node points and each node has six degrees-of-freedom, three translational and three rotational. Node point numbering for the model is displayed in Figure 3.2. Additional details of the reduced order model, geometry, natural frequencies, and mode shapes, are listed in Appendix A.

Apache Reduced Order Elastic Line Model Degrees-Of-Freedom = 564

Figure 3.1: Apache AH-64 Reduced Order Elastic Line Model.

Figure 3.2: Reduced order airframe model node numbering.

3.2 Excitation Loads

The Apache helicopter has a four-bladed main rotor; therefore, the primary airframe excitation frequency ($4 / \mathrm{rev}$) is four times the rotor speed of 289 rpm . Two sets of $4 / \mathrm{rev}$ loads are formulated to excite the airframe model, one set at the main rotor hub (3 shear and 2 moment), and a second set at the horizontal tail (1 vertical shear and 2 moment), shown in Figure 3.3.

The hub loads were obtained from Boeing Mesa for a steady level flight condition at 0.3 advance ratio. The unsteady hub loads were derived from in-flight vibration measurements, rotor models, and airframe structural dynamic models. The hub loads used in this study are not necessarily equivalent to unsteady loads measured on a production

Figure 3.3: Airframe model excitations.
aircraft; however, the hub loads do excite the reduced order model to produce vibration levels consistent with in-flight vibration measurements on a production aircraft.

The unsteady tail loads are estimated using a method developed by Gangwani [37]. This method determines the unsteady vibratory airloads produced by the interaction of the main rotor wake with the helicopter empennage. While this approach is a simplified treatment of a complex interactional aerodynamic environment, it is useful in the context of the present fundamental investigation. Listed in Table 3.2 are the applied loads. The load magnitude and phase is listed, and the airframe model node number where the load is applied.

Table 3.2: Airframe model 4/rev excitation loads			
Load Label	Magnitude [lb] or [in-lb]	Phase [deg]	Model Node Number
$\mathbf{F}_{\mathrm{X}-\mathrm{H}}$	185	0	5
$\mathbf{F}_{\mathrm{Y}-\mathrm{H}}$	185	90	5
$\mathbf{F}_{\mathrm{Z}-\mathrm{H}}$	920	90	5
$\mathbf{M}_{\mathrm{X}-\mathrm{H}}$	920	90	5
$\mathbf{M}_{\mathrm{Y}-\mathrm{H}}$	920	180	5
$\mathbf{F}_{\mathrm{Z}-\mathrm{T}}$	250	-90	89
$\mathbf{M}_{\mathrm{X}-\mathrm{T}}$	5400	195	89
$\mathbf{M}_{\mathrm{Y}-\mathrm{T}}$	1300	130	89

A rotor model is not incorporated into this study; therefore, the rotor loads are treated as inputs to the airframe model. Other researchers have demonstrated the coupled interaction of rotor and fuselage models [18, 38]. They have also demonstrated increased fuselage vibration levels with coupled rotor/fuselage models. The proposed optimization methodology could easily incorporate coupled rotor/fuselage models, but the additional complexity of coupled models was deemed unnecessary for synthesis of the methodology and a distributed actuation feasibility study. An important feature of our analysis is; the loads used to excite the airframe model do produce vibration levels that are consistent with measured in-flight vibrations.

3.3 Actuation Modeling

Three types of actuation are integrated with the airframe model. The first actuation type, designated Centralized Actuation (CA), emulates a state-of-the-art ACSR
type actuator configuration, where dualpoint actuators are placed between the main rotor support assembly and the airframe. The Apache helicopter's main rotor mast and gearbox are supported and attached to the airframe by eight strut members, as shown in Figure 3.4. Centralized Actuation (CA) is formulated to simulate a configuration with longitudinal force actuators in parallel with each support strut. Since each actuator is in parallel with a support strut, they are not required to carry static loads. The Centralized Actuation is incorporated into the airframe model at nodes $1,2,3,4$ on the mast base and nodes $27,28,51,52$ on the airframe.

Figure 3.4: Centralized Actuation Configuration (CAC).

The second actuation type, designated a Force Actuation Unit (FAU), applies forces between adjacent nodes of the airframe model, Figure 3.5. The applied forces are equal in magnitude, but in opposite directions. The force direction is aligned with the
elastic segment joining the model nodes. Each Force Actuation Unit is conceptualized as two parallel dualpoint force actuators that are equidistant from the model elastic segment. The two actuators of each FAU are commanded in-phase to produce a pure extension or contraction between model nodes.

The third actuation type, designated a Moment Actuation Unit (MAU), applies moments to adjacent nodes of the model, Figure 3.6. The

Figure 3.5: Force Actuation Unit (FAU).

Figure 3.6: Moment Actuation Unit (MAU). applied moments are equal in magnitude, but in opposite directions. Each Moment Actuation Unit is conceptualized as two parallel force actuators that are equidistant from the model elastic segment. The actuator offset from the elastic segment is dependent upon the actual airframe geometry at the node location. The two actuators of each MAU are commanded 180 degrees out-ofphase to produce pure bending between model nodes. The MAU can produce transverse or lateral bending between model nodes. The direction of bending depends upon the

MAU orientation with respect to the elastic segment. Transverse bending is in the airframe global $X-Z$ coordinate plane and lateral bending is in the global $X-Y$ plane.

All actuation types (CA, FAU, MAU) produce a resultant pair of forces or moments that are applied to adjacent nodes of the airframe model. The actuation types are formulated such that loads applied to the airframe model can be resolved into equivalent FAU, MAU, or CA actuator forces. Thus, different control configurations can be objectively compared using a single unit of measure, since all control actions are expressed as individual actuator forces. The CA configuration will be used as a baseline for comparison of optimally distributed actuation configurations. A table of Actuation Unit definitions is listed in Appendix A.

Single-point inertial actuation is not defined or included in the actuation modeling, but single-point actuation could easily be incorporated if so desired. A conceivable single-point actuation concept consistent with the above formulation is illustrated in Figure 3.7. Single point actuation is not included because of the expected weight penalty associated with inertial force generating devices. In addition,

single-point actuation may introduce excessive localized structural stresses at their attachment location. Inertial force generators produce an output force (F) by oscillating a mass (m) through a displacement (x) at a specific frequency (ω), shown in equation 3.1.

$$
\begin{equation*}
F=m x \omega^{2} \tag{3.1}
\end{equation*}
$$

The weight of the moving mass in an inertial force generator is related to the output force, mass displacement, and oscillation frequency according to equation 3.2.

$$
\begin{equation*}
W=m g=\frac{F g}{x \omega^{2}} \tag{3.2}
\end{equation*}
$$

Consider an inertial force generator that produces 1000 pounds with a 1.0 inch mass displacement and an oscillation frequency of $121 \mathrm{rad} / \mathrm{sec}$ (Apache $4 / \mathrm{rev}$). Not including the actuator housing and other components, the inertial mass alone weighs 26.4 pounds. In contrast, a commercially available dual-point hydraulic actuator weighing 4.8 pounds can produce a 1020 pound force with an operating pressure of 3000 psi . The specification sheet, listed in Appendix A, indicates the hydraulic actuator stroke is 1.13 inches, which is larger than required for active vibration control. A custom-made hydraulic actuator with smaller stroke would weigh even less. The weight penalty associated with an active vibration control system incorporating single-point actuators may be quite significant. Thus, in this research study, actuation is restricted to dual-point concepts (CA, FAU, MAU).

3.4 System Modeling

The airframe dynamic model, actuation loads, and airframe excitations described in the previous sections need to be cast in a compatible form for analysis. Since the airframe model is excited at a discrete frequency of $4 / \mathrm{rev}$, the forced airframe vibration response of interest is also at $4 / \mathrm{rev}$. The discrete frequency nature of the helicopter vibration problem is well posed for a frequency domain analysis; therefore, a frequency domain transfer function model of the airframe is formulated. Starting with the discretized equation of motion expressed as:

$$
\begin{equation*}
[M]\{\ddot{x}\}+[K]\{x\}=\{v\}+[E]\{u\} \tag{3.3}
\end{equation*}
$$

where $\{x\}$ is the global displacement vector (3 translations and 3 rotations) in coordinates X, Y, Z for each node of the model. $[M]$ and $[K]$ are the respective mass and stiffness matrices of the reduced order elastic line model. $\{v\}$ is the vector of external excitations. $[E]$ is the actuation influence matrix and $\{u\}$ is the vector of actuation forces. The system is transformed to modal space via:

$$
\begin{equation*}
\{x\}=[\Phi]\{q\} \tag{3.4}
\end{equation*}
$$

where $[\Phi]$ is the eigenvector matrix and $\{q\}$ is the modal coordinate. When normalized with respect to the mass matrix [M], the equation of motion becomes:

$$
[\Phi]^{T}[M][\Phi]\{\ddot{q}\}+[\Phi]^{T}[K][\Phi]\{q\}=[\Phi]^{T}\{v\}+[\Phi]^{T}[E\}\{u\} \quad(3.5)
$$

where $[\Phi]^{T}[M][\Phi]=[\mathrm{I}]$ the identity matrix. In modal space, 0.2% proportional damping is added to the equations of motion to account for structural damping:

$$
\begin{equation*}
[D]=2 \zeta\left[\omega_{n}\right] \tag{3.6}
\end{equation*}
$$

where $\zeta=0.002$ is the damping factor and $\left[\omega_{n}\right]$ is a diagonal matrix of natural frequencies. The modal space equation of motion is transformed to a state space representation by defining the state vector as:

$$
\begin{gather*}
\{z\}=\left\{\begin{array}{c}
q \\
\dot{q}
\end{array}\right\} \tag{3.7}\\
\{\dot{z}\}=[A]\{z\}+\left[B_{1}\right\}\{v\}+\left[B_{2}\right]\{u\} \tag{3.8}\\
\{y\}=[C]\{z\} \tag{3.9}
\end{gather*}
$$

where $[A]$ is the state matrix, $\left[B_{1}\right]$ is the excitation input matrix, $\left[B_{2}\right]$ is the actuator input matrix, and $[C]$ is the output matrix of the state space representation.

$$
\begin{gather*}
{[A]=\left[\begin{array}{cc}
{[0]} & {[I]} \\
-[\Phi]^{T}[K][\Phi] & -[D]
\end{array}\right]} \tag{3.10}\\
{\left[B_{1}\right]=\left[\begin{array}{c}
{[0]} \\
{[\Phi]^{T}}
\end{array}\right]} \tag{3.11}\\
{\left[B_{2}\right]=\left[\begin{array}{c}
{[0]} \\
{[\Phi]^{T}[E]}
\end{array}\right]} \tag{3.12}\\
{[C]=[[\Psi][0]]} \tag{3.13}
\end{gather*}
$$

The output equation of the state space model is formulated such that the output vector $\{y\}$ contains the translational acceleration response (in the X, Y, Z directions) for each node of the model. The matrix [Ψ] is composed from the rows of [Φ] corresponding to the X, Y, Z translational degrees-of-freedom.

Two complex transfer function models are formulated, one for the external excitation inputs and another for the actuation inputs.

$$
\begin{gather*}
\left\{y_{1}(\mathrm{~s})\right\}=\left[G_{1}(\mathrm{~s})\right]\{v(\mathrm{~s})\}=\left([C](\mathrm{s} *[I]-[A])^{-1}\left[B_{1}\right]\right)\{v(\mathrm{~s})\} \tag{3.14}\\
\left\{y_{2}(\mathrm{~s})\right\}=\left[G_{2}(\mathrm{~s})\right]\{u(\mathrm{~s})\}=\left([C](\mathrm{s} *[I]-[A])^{-1}\left[B_{2}\right]\right)\{u(\mathrm{~s})\} \tag{3.15}\\
\left\{y_{3}(\mathrm{~s})\right\}=\left\{y_{1}(\mathrm{~s})\right\}+\left\{y_{2}(\mathrm{~s})\right\}=\left[G_{1}(\mathrm{~s})\right]\{v(\mathrm{~s})\}+\left[G_{2}(\mathrm{~s})\right]\{u(\mathrm{~s})\} \tag{3.16}
\end{gather*}
$$

The hub and tail loads are $4 / \mathrm{rev}$ oscillatory inputs to the excitation transfer function model $\left[G_{1}(\mathrm{~s})\right]$, and the actuation loads are $4 / \mathrm{rev}$ oscillatory inputs to the actuation transfer function model $\left[G_{2}(\mathrm{~s})\right.$]. The output of both transfer function models is a vibration response vector of complex numbers, representing the magnitude and phase. The airframe response due to external excitation $\left\{y_{1}\right\}$ is summed with the response due to actuation $\left\{y_{2}\right\}$ to produce the controlled vibration response $\left\{y_{3}\right\}$.

Custom computer analysis codes are written in the MATLAB programming language to create the model formulation described above. A listing of the MATLAB source codes is found in Appendix A.

3.5 Hybrid Active/Passive Optimization Process

3.5.1 Active Control Law

The control law is an optimal control formulation that was devised by Johnson [39] and has been used frequently for helicopter vibration control applications. The control formulation assumes a linear relationship between the output (vibrations) and the oscillatory load inputs (excitation or actuators).

$$
\begin{equation*}
\left\{y_{3}\right\}=\left\{y_{1}\right\}+\left[G_{2}\right]\{u\} \tag{3.17}
\end{equation*}
$$

The vector $\left\{y_{3}\right\}$ is the controlled vibration response, while $\left\{y_{1}\right\}$ is the uncontrolled vibration response due to external excitation inputs. Matrix [G_{2}] is the complex transfer function between the oscillatory actuation inputs $\{u\}$ and the airframe vibration response. The control scheme is open loop, where the active action is based upon the uncontrolled response due to external excitation. For a given set of Actuation Unit (AU) locations, the control action is computed based on optimal control theory, which minimizes a quadratic cost function [39]. The cost function J is a weighted sum of the output (vibration) and the input (control effort). Defined as:

$$
\begin{equation*}
J=\left\{y_{3}\right\}^{T}\left[W_{y}\right]\left\{y_{3}\right\}+\{u\}^{T}\left[W_{u}\right]\{u\} \tag{3.18}
\end{equation*}
$$

where $\left[W_{y}\right]$ and $\left[W_{u}\right]$ are diagonal matrices of weighting factors. The weighting matrices [W_{y}] and $\left[W_{u}\right]$ can be tailored to emphasize vibration reduction over control effort
reduction or vice versa. Also, $\left[W_{y}\right]$ and $\left[W_{u}\right]$ can be tailored to put more emphasis on certain elements of $\left\{y_{3}\right\}$ or $\{u\}$ respectively. By minimizing the cost function J, the optimal control law is simultaneously achieving the greatest vibration reduction with the least control effort. Minimization of the cost function $(\partial J / \partial\{u\}=0)$ yields the following optimal control effort formulation:

$$
\begin{equation*}
\{u\}=-\left(\left[G_{2}\right]^{T}\left[W_{y}\right]\left[G_{2}\right]+\left[W_{u}\right]\right)^{-1} *\left(\left[G_{2}\right]^{T}\left[W_{y}\right]\left\{y_{1}\right\}\right) \tag{3.19}
\end{equation*}
$$

3.5.2 Simultaneous Controller Design and Actuator Placement Method

The optimal actuator placement is not intuitive due to the complexity of the airframe structure, the numerous possible locations of the actuators, and the multiple excitation sources. A systematic methodology is developed to simultaneously determine the optimal Actuation Unit locations and the corresponding optimal control action. As presented in the literature survey of chapter one, methodologies similar to the proposed approach have been applied to generic structures for attitude control, shape control, and disturbance rejection. However, application of such a methodology on a helicopter poses some unique characteristics. The airframe structure is more complex, the excitation occurs at known discrete frequencies (integer multiples of the blade passage frequency), and the weight penalty of the control system is extremely important.

The proposed optimization procedure is a hybrid approach that couples a control law and an optimization routine for actuator placement. The procedure is formulated as a constrained minimization problem that can be stated as follows [40]:

$$
\begin{align*}
& \text { Minimize: } \quad J=f(\{y\},\{u\},\{p\}) \\
& J=\left\{y_{3}\right\}^{T}\left[W_{y}\right]\left\{y_{3}\right\}+\{u\}^{T}\left[W_{u}\right]\{u\}+\{p\}^{T}\left[W_{p}\right]\{p\} \tag{3.20}
\end{align*}
$$

Such that:

$$
\begin{align*}
& u_{i} \leq 4000 \quad i=1 \ldots N a \tag{3.21}\\
& x_{i} \in\{1,2,3, \ldots\} \quad i=1 \ldots N a \tag{3.22}\\
& p_{i}=\max \left(0,\left(\hat{y}_{i}-\hat{p}_{i}\right)\right) \tag{3.23}
\end{align*}
$$

$\left[W_{y}\right],\left[W_{u}\right]$ and $\left[W_{p}\right]$ are diagonal weighting matrices. Vector $\left\{y_{3}\right\}$ is the vibration response of the model nodes targeted for vibration reduction. Vector $\{u\}$ is the control force for a given set of actuation locations defined by $\{x\}$, a vector of integer values. Each potential actuation type and location is assigned an integer value between 1 and 155, shown in Appendix A. The objective function is implicitly a function of $\{x\}$ since the control effort $\{u\}$ is directly dependent upon the actuation locations. Vector $\{\hat{y}\}$ is the vibration response at airframe model nodes not targeted for vibration reduction, and $\{\hat{p}\}$ is the vector of corresponding vibration constraint values not to be exceeded. Vibration constraints at non-target nodes are enforced by an external penalty function, $\{p\}^{T}\left[W_{p}\right]\{p\}$. In other words, the last term of equation (3.20) is only effective when constraints (3.23) are violated. It is also worth noting that equation (3.20) is equal to
(3.18) within the feasible region (i.e. no constraint violation). The proposed optimization procedure searches for the best actuation types and locations that will achieve the greatest vibration reduction with the least amount of control effort.

The optimization process to be coupled with the control law is called "Simulated Annealing" [40-42]. The Simulated Annealing algorithm is a stochastic technique to find a global minimizer for continuous, discrete, or integer non-linear programming problems. The basic idea of the method is to randomly generate feasible designs within the design space and evaluate the problem's objective function. Initially, the user provides a feasible design, and the corresponding objective function is computed and saved as the current best value. The inner most loop of the algorithm randomly generates new feasible designs by sequentially changing one design variable (Actuation Unit location) at a time, see Figure 3.8. One Cycle is defined as n executions of the inner most loop, where n is the number of design variables. The objective function value is computed for each new feasible design. If the new objective function value is less than the current best value, then the new design is accepted and the record for the best value is updated. If the new objective function value is greater than the current best value, then the new design is sometimes accepted and sometimes rejected. The acceptance is based on the value of a probability function and the relative size of the change in objective function value. Initially, the probability function value is large to permit acceptance of larger objective function values and permits the algorithm to escape local minima. As the algorithm progresses, the probability function's value decreases toward zero, thus in the final stages the worse designs are rejected.

The generation of new designs is not a pure random search, because each design variable change is constrained by a step size parameter. In the early stages of the process, the step size parameter is large to permit new designs far from the current. An initially large step size helps speed up the search process, and avoids being trapped at a local minimum. The step size parameter for each design variable is periodically adjusted within the algorithm to maintain a 50% acceptance rate for new feasible designs. This variable step size helps accelerate the convergence rate of the algorithm. If the number of accepted designs is large (greater than 60% of the

Figure 3.8: Simulated annealing optimization algorithm. total) then the step size is too small and will be increased. If the number of accepted designs is too small (less than 40% of the total), the step size will be decreased.

Convergence of the Simulated Annealing algorithm occurs when all new designs produce objective functions larger than the current best value, and larger values are no longer accepted because the probability function value is very small.

The Simulated Annealing algorithm is selected to search for optimal actuator locations, because it is compatible with certain features of the design problem. The Actuation Unit locations are the passive design variables. The AU locations are confined to discrete positions at model nodes; therefore, the passive design variable is discontinuous. Secondly, the objective function is discontinuous, because the passive design variable is discrete and discontinuous. These two aspects precluded the use of gradient-based optimization routines, since gradients cannot be computed. In addition, our analysis revealed that the objective function contains multiple local minima. The Simulated Annealing routine is capable of escaping local minima and more likely to find the global minimum. A standard Simulated Annealing algorithm is modified to incorporate the optimal control effort calculation into the iteration loop. For this activepassive hybrid optimization approach, the active design variables are the control gains of each Actuation Unit. The optimization process generates new AU locations, and the corresponding control action is updated as well. A flow chart of the coupled optimal control-optimization algorithm is shown in Figure 3.9.

Custom computer analysis codes are written in the MATLAB [43, 44] programming language to create the active-passive hybrid optimization routine. A listing of the MATLAB source codes is found in Appendix A.

Figure 3.9: Hybrid active/passive optimization process.

Chapter 4

OPTIMAL ACTUATION PLACEMENT RESULTS

4.1 Introduction

The results of numerous analytical studies are summarized. The reduced order airframe model vibration response to external loading is examined. A state-of-the-art (centralized) active vibration control configuration is studied and used as a baseline for comparison. The formulated optimization procedure is applied to determine a number of optimally distributed actuation configurations. Distributed actuation is compared and contrasted with the baseline, centralized, configuration. Studies are conducted to acquire physical insight into the rational of the optimized distributions. The influences of actuation mass and actuation stiffness effects are examined. A parametric study on the appropriate number of Actuation Units is presented.

4.2 Uncontrolled Airframe Response

The uncontrolled airframe response is examined to determine which airframe modes are excited by the external disturbances. Results are examined for two loading conditions, external loading at the main rotor hub only, and external loading at both the hub and the horizontal tail simultaneously. The ten most prominently excited modes for

Figure 4.1: Modal participation of uncontrolled response to external excitation.
each loading condition are displayed in Figure 4.1. The oscillatory hub loads most prominently excite mode number 13. Mode number 13 is comprised of vertical airframe bending and fore-aft deflection of the main rotor mast. Oscillatory hub and tail loads most prominently excite mode number 16 , which is primarily a lateral airframe-bending mode. Both loading conditions excite modes near the $4 / \mathrm{rev}$ frequency of 19.3 Hz ; however, the tail loads clearly excite additional lower frequency modes (\#2, \#5, \#7).

The area targeted for vibration reduction may be localized or spread throughout the airframe. In this study, the airframe nodes selected for vibration suppression are nodes $[8,11,13,14,21,24,26,53,59,62,68]$, which are shown in Figure 4.2. The selected nodes are distributed along the centerline of the fuselage from the front into the forward tailboom section. The nodes are selected to target vibration suppression at the copilot station, pilot station, and avionics bays. The uncontrolled vibration response of the airframe model is displayed in Figure 4.3. The displayed vibration magnitude is a vector
sum of vibration amplitudes in the X, Y, and Z directions. The uncontrolled vibration response is in-line with the measured values reported by Boeing Mesa. The in-flight vibration levels of the Apache helicopter were $0.1-0.2 \mathrm{~g}$ in the pilot area and $1.0-2.0 \mathrm{~g}$ in the tail section, which correspond respectively to nodes 11-25 and nodes $80-93$ shown in Figure 4.3.

Figure 4.2: Nodes selected for vibration suppression

Figure 4.3: Uncontrolled airframe response to hub and tail excitation

The UTTAS/AAH development program [20] required vibration levels at the blade passage frequency to be 0.05 g or less at the pilot, copilot, and passenger stations.

Although the 0.05 g vibration requirement has been replaced by an intrusion index of Aeronautical Design Standard 27 (ADS-27) [21], the 0.05 g level puts into perspective the desirable vibration requirement of the cockpit area. Figure 4.4 displays the uncontrolled vibration response at the nodes targeted for vibration suppression. The 0.05 g level is exceeded at both the copilot (node 14) and pilot (node 24) stations.

Figure 4.4: Uncontrolled vibration at target nodes

4.3 Baseline Active Control

The baseline active control configuration emulates a state-of-the-art ACSR type actuator configuration, where actuators are placed between the main rotor gearbox support assembly and the airframe. The Centralized Actuation Configuration (CAC) will be used as a baseline for comparison of optimally distributed actuation configurations. Control actions for the CAC are computed using the optimal control law, with the control weighting matrix $\left[W_{u}\right]$ chosen to yield a maximum control effort of 4000 lbs . The vibration response, in the X, Y, Z directions, at each target node will comprise the vector $\left\{y_{3}\right\}$ in the control law and $\left[W_{y}\right]=[I]$ so that all elements of $\left\{y_{3}\right\}$ are weighted equally. The CAC controlled vibration response is displayed in Figure 4.5. Vibration suppression was
achieved at the target nodes, however, a small vibration increase is observed for some of the non-target nodes. This observed vibration increase at non-target nodes was part of the motivation for including a penalty function in the hybrid optimization objective function. Figure 4.6 displays the CAC controlled vibration response at the nodes targeted for vibration suppression. When compared to the uncontrolled response (Figure 4.4), the CAC achieved significant vibration suppression at all target nodes. At the copilot (node 14) and pilot (node 24) stations, vibration is suppressed below 0.08 g .

Figure 4.5: CAC controlled airframe response to hub and tail excitation.

Figure 4.6: CAC controlled vibration at target nodes.

4.4 Active Control with Optimally Placed Actuation

Two types of actuation are formulated for distribution throughout the airframe model, the Force Actuation Unit (FAU), and the Moment Actuation Unit (MAU). The optimization methodology presented in chapter 3 is used to synthesize a distributed actuation configuration. The centralized configuration is formulated with eight Actuation Units; therefore, a distribution of eight Actuation Units is used to enable a fair comparison with the CAC. The actuation configuration produced by the hybrid optimization process is designated the Distributed Actuation Unit Configuration (DAUC). The optimization process determines the optimal AU locations, as well as the type of Actuation Unit (FAU or MAU). In the optimization objective function, the diagonal weighting matrices, $\left[W_{y}\right]$ and $\left[W_{u}\right]$, are defined such that all elements of $\left\{y_{3}\right\}$, the vibration response at target nodes, are weighted equally, and all elements of $\{u\}$, the actuation forces, are weighted equally. MATLAB software code to execute the optimization process is run on a desktop personal computer with a Pentium II 400 MHz processor and 128 MB of RAM. Total execution time for one optimization run is dependent upon the Simulated Annealing convergence criteria; the probability function's rate of change toward zero, the design variable step size parameter, and the objective function's change of value. Typical execution time for one optimization run is found to be between 105 and 135 minutes, which requires between 18,000 and 23,000 objective function evaluations. The CAC configuration is used as the initial design (Actuation Unit locations) for all optimization runs.

An optimization procedure is executed to emphasize vibration reduction and limit the control effort to less than 4000 pounds. The controlled vibration response at all airframe model nodes, for the resulting optimized DAUC, is displayed in Figure 4.7. The corresponding response at the target nodes is shown in Figure 4.8. The optimized DAUC achieves vibration suppression at nearly all airframe nodes from nose to tail. Vibration is reduced below 0.015 g at all target nodes and below 0.005 g at the pilot stations. When compared to CAC (Figure 4.0), the DAUC achieved significantly better vibration reduction at all targeted nodes.

Figure 4.7: DAUC controlled airframe response to hub and tail excitation.

Figure 4.8: DAUC controlled vibration at target nodes.

In order to further evaluate the optimally distributed actuation concept and compare with the Centralized Actuation Configuration, three indices are defined.

1. The Vibration Index ($V_{\text {index }}$) is defined as the Root-Mean-Square value of the vibration response vector $\left\{y_{3}\right\}$, and m is the number of elements in vector $\left\{y_{3}\right\}$.

$$
\begin{equation*}
V_{\text {index }}=\sqrt{\left\{y_{3}\right\}^{T}\left\{y_{3}\right\} / m} \tag{array}
\end{equation*}
$$

2. The Control Index $\left(C_{\text {index }}\right)$ is defined as the RMS value of the actuation effort vector, and n is the number of elements in vector $\{u\}$.

$$
\begin{equation*}
C_{\text {index }}=\sqrt{\{u\}^{T}\{u\} / n} \tag{4.2}
\end{equation*}
$$

3. The Maximum Control Effort $\left(U_{\max }\right)$ is defined as the maximum actuation effort, or the maximum element of the control effort vector $\{u\}$.

$$
\begin{equation*}
U_{\max }=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|, \ldots,\left|u_{n}\right|\right\} \tag{4.3}
\end{equation*}
$$

The indices for the CAC are used as a baseline for comparison of the distributed actuation configurations. Shown in Table 4.1 are the indices for the uncontrolled condition and the Centralized Actuation Configuration (CAC) for two excitation conditions. The control effort weighting matrix $\left[W_{u}\right]$ of the control law is selected such that the maximum control effort equals 4000 lb .

Table 4.1: Centralized Actuation Configuration indices.				
Airframe	Uncontrolled	CAC	CAC	CAC
Excitation	$V_{\text {index }}$	$V_{\text {index }}$	$C_{\text {index }}$	$U_{\text {max }}$
Condition	$[\mathrm{g}]$	$[\mathrm{g}]$	$[\mathrm{lb}]$.	$[\mathrm{lb}]$.
Hub Only	0.089	0.027	2304	4000
Hub \& Tail	0.111	0.057	2521	4000

Based upon the vibration index, the centralized configuration is less effective when the airframe is excited by hub and tail loads simultaneously. The centralized configuration reduced the vibration index by 70% for the hub only excitation condition and reduced the vibration by 49% for the hub and tail excitation. For the hub only excitation condition, the centralized actuators do not completely eliminate airframe vibration, even though; the actuators are located between the hub and airframe. This apparent deficiency in vibration suppression can be explained. A broad area at eleven airframe nodes is targeted for vibration suppression. Secondly, the control weighting matrix has been selected to limit the maximum control effort to 4000 lb . If the control weighting is relaxed, the maximum control effort increases to $18,000 \mathrm{lb}$. and the vibration index is reduced to 0.0069 . In addition, the centralized actuators are mounted parallel to the support struts, and a portion of the actuator effort must overcome the strut stiffness. With respect to the global coordinate frame, a centralized actuator produces longitudinal, lateral, and vertical components of force, because the actuator is oriented at an angle. One component of the actuator force may be counteracting a hub load, but the other two components may be exciting the airframe.

Vibration reduction or control effort reduction may be emphasized within the optimization process by adjusting the weighting matrices of the objective function. Optimizations are performed to produce three scenarios, a DAUC emphasizing vibration reduction, a DAUC emphasizing control effort reduction, and a DAUC producing intermediate reductions in both vibration and control effort. Figure 4.9 through Figure 4.11 display the evaluation indices for each scenario. Each figure displays the uncontrolled vibration index, the CAC indices, and the DAUC indices. The vibration indices are shown as a percentage of the uncontrolled vibration index. The control index and maximum control effort, for the DAUC, are shown as a percentage of the respective CAC indices.

Figure 4.11: Optimized DAUC emphasizing both control effort and vibration reduction.

Figure 4.10: Optimized DAUC emphasizing control effort reduction.

Hub + Tail Excitation

Figure 4.9: Optimized DAUC emphasizing vibration reduction.

For the results displayed in Figure 4.9, the weighting matrices are adjusted to emphasize vibration reduction, but also achieved a small reduction in control effort. When compared to the CAC baseline, the DAUC reduced vibration an additional 47 percent. The results displayed in Figure 4.10 correspond to optimizations with weighting matrices adjusted to emphasize control effort reduction. When compared to the CAC baseline, the distributed configuration achieves similar vibration reduction, but requires 82% less control effort. Since the control system's effectiveness should be evaluated on both vibration reduction and control effort requirement, a more balanced weighting condition is considered with the outcome shown in Figure 4.11. Displayed in the figure are the results for a DAUC that achieves a 50% control effort reduction and another 41% reduction of vibration beyond the CAC.

All results presented thus far have been for a simultaneous hub and tail excitation condition. The hub only excitation condition was also examined, and the results are contained in Appendix B. To avoid repetition, hub excitation results are not presented here, because similar vibration and control effort reduction trends are exhibited by the DAUC.

The hybrid optimal control and optimization procedure determines the best Actuation Unit locations and actuation types to minimize the objective function. The optimized AU locations and types are displayed in Table 4.2 and Table 4.3. Column one
of each table lists the number assigned to each Actuation Unit. The AU numbering starts at 1 and increases consecutively to 155 . Number assignment is based upon the location of the applied actuation loads. Actuation Unit number 1 is located at the front of the airframe and applies loads to airframe nodes eight and nine.

Table 4.2: Actuation Unit locations for hub and tail excitation, emphasizing vibration reduction. Actuation Unit Number 8 Location: Airframe Nodes	Applied Load	
38	$10-11$	Pitch Moment
45	$25-26$	Pitch Moment
47	$29-30$	Yaw Moment
129	$30-13$	Pitch Moment
$\mathbf{1 5 2}$	$76-77$	Yaw Moment
$\mathbf{1 5 4}$	$2-28$	Axial Force
$\mathbf{1 5 5}$	$4-52$	Axial Force

Bold Italic indicates a centralized Actuation Unit location

Table 4.3: Actuation Unit locations for hub excitation, emphasizing vibration reduction.

Actuation Unit Number	Location: Airframe Nodes	Applied Load
8	$10-11$	Pitch Moment
41	$26-29$	Pitch Moment
45	$29-30$	Yaw Moment
47	$31-13$	Pitch Moment
$\mathbf{1 4 9}$	$1-51$	Axial Force
$\mathbf{1 5 0}$	$1-27$	Axial Force
$\mathbf{1 5 1}$	$2-27$	Axial Force
$\mathbf{1 5 2}$	$2-28$	Axial Force

Bold Italic indicates a centralized Actuation Unit location

Number assignment for Actuation Unit definitions increases toward the tail section of the airframe. Thus, AU numbers 1 to 39 are located in the forward fuselage and AU numbers 130 to 147 are located in the tail section. In addition, Actuation Unit numbers 148 through 155 are assigned to centralized actuator locations at the main rotor mast base. Column two of each table lists the airframe node pair where each AU applies loads. The airframe node numbering begins with 8 at the front of the fuselage and continues sequentially to 94 in the tail section. Column three lists the type of loads applied to adjacent nodes of the model. The Force Actuation Unit (FAU) applies an axial force along the elastic segment joining the node pair. A Moment Actuation Unit (MAU) applies opposing moments to the model nodes listed in column two. The moments in column three are with respect to the global coordinate system of the airframe. The rolling moments are about the global X-axis, pitching moments are about the global Y-axis, and yawing moments are about the global Z-axis.

When the model is excited with hub and tail loads, the optimization process places four Actuation Units in the forward fuselage, one in the rear tailboom section, and three at centralized locations, (Table 4.2). When excited by hub loads only, the optimization places four AU in the forward fuselage and four at centralized locations, (Table 4.3). These results indicate that some AU in the centralized locations are necessary, but AU at all eight centralized locations are apparently redundant. Actuation in the forward fuselage greatly enhances the vibration reduction capabilities of the three or
four centralized AU. At least one Actuation Unit near the tail section is beneficial when the airframe is subject to oscillatory tail loading.

The preceding results indicate that vibration reduction can be greatly improved by applying the optimization procedure to determine the actuation locations. The optimal actuation set is composed of AU in centralized locations and actuation in the fuselage. Additional analysis has been done to provide some insight and physical understanding why the optimization process selected certain locations, and why the coupled active/passive optimization procedure is necessary.

The external disturbances excite a certain set of airframe modes, as shown in Figure 4.1. In order to control vibration, the actuation needs to effectively control the dominant airframe modes. Given the knowledge of which modes are being excited, a natural question is which actuation positions effectively control a particular mode. To acquire some insight, an analysis is conducted to examine which actuation locations have the greatest authority to control a single airframe structural mode. First, a new transfer function model is generated using a single airframe structural mode in the modal transformation. Therefore, a single mode contributes to the vibration response, rather than a sum of multiple airframe modes. A single Actuation Unit excites the new transfer function model, and the resulting vibration response is observed at the target nodes. The process is repeated for each prominent airframe mode shown in Figure 4.1 and each
candidate actuation location. The Actuation Unit that excites the airframe and maximizes the vibration index indicates maximum control authority over a particular airframe mode.

The results of this analysis are summarized in Table 4.4. Column 1 lists the prominent airframe mode. Columns 2 through 6 list the Actuation Unit numbers in descending order of control authority. Actuation Unit numbers corresponding to centralized locations are highlighted with bold and italic text. Centralized actuation locations have the greatest control authority over airframe mode number 13 , which is one of the largest modal contributors to the vibration response. This strongly supports the optimization results that placed some actuators in centralized locations. Interestingly, the other airframe modes are not controlled well by the centralized actuation, thus certain modes are controlled better by actuation in the fuselage or tailboom. Although a single mode analysis is insightful, an effective control system must control all of the dominant modes simultaneously and each AU must perform in conjunction with the others. The potential exists for AU to produce conflicting responses that superimpose to amplify the vibration response, rather than suppress vibration.

Table 4.4: Top five AU authorities to control a single airframe structural mode.					
	Actuation Unit Number				
Airframe Mode No.	1 st	2 nd	3 rd	4 th	5 th
2	38	142	8	59	128
5	142	59	49	143	56
7	142	8	147	38	143
9	$\mathbf{1 5 4}$	142	$\mathbf{1 4 9}$	48	147
13	$\mathbf{1 5 2}$	$\mathbf{1 5 5}$	$\mathbf{1 5 1}$	$\mathbf{1 4 8}$	$\mathbf{1 5 4}$
14	57	48	$\mathbf{1 5 4}$	$\mathbf{1 4 9}$	$\mathbf{1 5 0}$
15	8	38	147	41	56
16	48	57	147	142	33
17	48	57	147	142	$\mathbf{1 5 0}$
22	142	$\mathbf{1 4 9}$	114	120	$\mathbf{1 5 2}$
24	142	8	153	41	$\mathbf{1 4 8}$

Bold Italic indicates a centralized Actuation Unit location

4.5 Actuation Mass and Stiffness Effects

The analytical airframe model and optimization process are formulated without including actuation mass and stiffness in the dynamic airframe model. Actuation is idealized as control force generators, which have no mass and no stiffness. This type of actuation formulation is selected to simplify the analysis procedure, streamline the optimization process, and to maintain a generic actuation method without restricting the analysis to a specific actuation device. Inclusion of actuation mass and stiffness into the reduced order airframe model is not straightforward and open to numerous formulations. Actuation in this analysis is restricted to extenders and benders, applied to the ROM,
which can be realized by one, two, or multiple actuation devices in a semi-monocoque helicopter airframe structure. Thus, detailed actuation formulation to produce a net force or bending moment within a certain airframe region is an open design issue. Without restricting oneself to a specific actuation device and detailed device configuration, it is difficult to determine the appropriate amount of mass and stiffness to be added to the reduced order airframe model. In addition, inclusion of actuation mass and stiffness into the ROM will result in significantly more numerical computations and prolong the optimization process. The current formulation computes the airframe model's response transfer function one time and stores the transfer function for the optimization routine to access. However, inclusion of actuation mass and stiffness changes the airframe dynamic model, and requires the response transfer function to be re-computed for each new set of actuation locations generated by the optimization routine.

Adding actuation mass and stiffness to the airframe ROM will alter the structural dynamic response and require greater control forces from the actuation system. In general, these two effects are applicable to any actuation configuration, whether it is centralized or distributed. Optimization results, which neglected actuation mass and stiffness, indicate distributed actuation is superior to centralized actuation; however, the performance advantages of distributed actuation may or may not be compromised by taking actuation mass and stiffness into consideration. To investigate the effects of actuation mass and stiffness two case studies are conducted. Actuation mass and stiffness is added to the airframe ROM at locations corresponding to centralized actuation.

Stiffness and mass is also added to a previously determined distributed actuation configuration that achieved reductions in both the vibration response and the control effort. For these case studies, a piezoelectric stack actuator is selected as the forcegenerating device. Stack actuator sizing is based upon the maximum force (4000 lb .) and displacement $\left(1.24 \times 10^{-3} \mathrm{in}\right.$.) requirements of the actuation systems. Two stack actuators are utilized for each Actuation Unit definition, and each stack actuator is considered to have a mass of $4.35 \times 10^{-3} \mathrm{lb}^{2} / \mathrm{s} / \mathrm{in}$ and a stiffness of $3.25 \times 10^{6} \mathrm{lb} / \mathrm{in}$.

Actuation mass and stiffness is added to the ROM at centralized locations and analyzed to compare with the baseline airframe model. Natural frequencies for both airframe models are computed and compared. Natural frequencies below 15 Hz are not altered significantly; however, adding actuation mass and stiffness altered a number of natural frequencies near $4 / \mathrm{rev}$ at 19.3 Hz . Thus, the uncontrolled vibration response, induce by external hub and tail loads, is also changed. With the addition of actuation mass and stiffness, the uncontrolled vibration index increases by 71 percent, from 0.111 to 0.190 . For the baseline airframe model, centralized actuation is capable of suppressing the vibration index from 0.111 to 0.057 , and the corresponding control index is 2521 pounds. With actuation mass and stiffness added to the baseline airframe model, centralized actuation is capable of suppressing the vibration index from 0.190 to 0.089 , and the corresponding control index is 4726 pounds. Hence, centralized actuation is able to suppress vibration by 53 percent; however, the required control effort increases by 87 percent. In other words, adding actuation mass and stiffness to the centralized
configuration shifts airframe natural frequencies, increases vibration levels, and requires greater control effort to suppress vibration.

In a second case study, actuation mass and stiffness is added to the airframe ROM for an optimized distribution of actuation locations and analyzed to compare with the baseline airframe model. Again, the natural frequencies below 15 Hz are not altered significantly; however, adding actuation mass and stiffness altered a number of natural frequencies near $4 / \mathrm{rev}$. The addition of actuation mass and stiffness increased the uncontrolled vibration levels at the target nodes. An increase in the vibration index of 23 percent is observed, escalating from 0.111 to 0.136 . For the baseline airframe model, distributed actuation is capable of suppressing the vibration index from 0.111 to 0.046 , and the corresponding control index is 1250 pounds. With actuation mass and stiffness added to the baseline airframe model, distributed actuation is capable of suppressing the vibration index from 0.136 to 0.058 , and the corresponding control index is 7735 pounds. Thus, the distributed actuation case is able to suppress vibration by 57 percent; however, the required control effort increases by 6.2 times. The increase of control effort is quite remarkable, but the actuation locations are optimized for the baseline airframe model. Adding actuation mass and stiffness after the optimization procedure alters the airframe dynamic response; therefore, the actuation distribution is no longer optimal.

The two case studies indicate that inclusion of actuation mass and stiffness can have a profound effect on the active control system performance. Therefore, actuation
mass and stiffness should be considered within the optimization problem formulation or should be considered in the detailed actuation design following the optimization procedure. Including mass and stiffness into the optimization formulation is feasible; however, additional constraints are imposed on the optimization problem, and computational efficiency may be sacrificed. Another approach is to neglect the actuation mass and stiffness within the optimization procedure, then consider the actuation parameters afterwards. Such an approach would most likely involve a redesign of the passive airframe structure in the regions of actuation, such that, the airframe dynamic response is not altered by the actuation installation. This second approach has been followed throughout the research study and has been demonstrated experimentally on a scaled helicopter tailboom model, which is presented in chapter six.

4.6 Multi-objective Optimization Analysis

The data in Table 4.2 and Table 4.3 indicate that the optimization process selected some different actuation locations, when the airframe is subject to different loading conditions. One desirable feature of an active control system is to perform effectively for a variety of excitation conditions. The optimization methodology can be utilized to search for an actuation configuration that is robust with respect to multiple excitation conditions. To demonstrate how the optimization methodology can be applied for multiple excitations, a case study is presented. In order to find one set of actuation locations that performs effectively for two excitation conditions, a multi-objective optimization is
formulated. A composite objective function is formulated for the multi-objective optimization methodology.

Multi-Objective Function: $J=J_{1}+J_{2}$

Hub only loading condition:

$$
\begin{equation*}
J_{1}=\left\{y_{1}\right\}^{T}\left[W_{y 1}\right]\left\{y_{1}\right\}+\left\{u_{1}\right\}^{T}\left[W_{u 1}\right]\left\{u_{1}\right\}+\left\{p_{1}\right\}^{T}\left[W_{p 1}\right]\left\{p_{1}\right\} \tag{}
\end{equation*}
$$

Hub and tail loading condition:

$$
J_{2}=\left\{y_{2}\right\}^{T}\left[W_{y_{2}}\right]\left\{y_{2}\right\}+\left\{u_{2}\right\}^{T}\left[W_{u 2}\right]\left\{u_{2}\right\}+\left\{p_{2}\right\}^{T}\left[W_{p 2}\right]\left\{p_{2}\right\}
$$

The multi-objective function is the sum of two scalar objective functions, one for each loading condition. J_{1} is the objective function for the hub only loading condition, and J_{2} is the objective function for the simultaneous hub and tail loading. The multiobjective optimization produced the AU locations and types listed in Table 4.5. The effectiveness of the multi-objective optimized actuation is compared to the centralized configuration and is illustrated in Figure 4.12 and Figure 4.13. Both figures display the DAUC effectiveness to control each loading condition independently. This actuation configuration reduced the vibration index by 84% for hub only excitation and 71% for simultaneous hub and tail loading. In addition, this multi-objective optimized configuration requires less control effort than centralized actuation, 59% less for hub only excitation and 57% less control effort for the simultaneous hub and tail loading.

Table 4.5: Actuator locations for multi-objective optimization.		
Actuation Unit Number	Location: Airframe Nodes	Applied Load
8	$10-11$	Pitch Moment
38	$25-26$	Pitch Moment
39	$25-26$	Yaw Moment
42	$26-29$	Yaw Moment
47	$31-13$	Pitch Moment
126	$75-76$	Yaw Moment
$\mathbf{1 4 9}$	$1-51$	Axial Force
$\mathbf{1 5 1}$	$2-27$	Axial Force

Bold Italic indicates a centralized Actuation Unit location

Figure 4.12: Vibration reduction of multiobjective optimized DAUC.

Figure 4.13: Control effort reduction of multi-objective optimized DAUC.

One point worth noting is that the multi-objective optimized DAUC sacrifices some vibration reduction, but still outperforms the centralized configuration. Examining vibration results displayed in Figure 4.12 with Figure 4.11, it can be observed that the multi-objective optimized DAUC sacrificed about 19% in vibration suppression, as
compared to an actuator distribution optimized for one loading condition (simultaneous hub and tail excitation).

4.7 Simplified Actuator Placement Method

The hybrid optimization process produces actuator locations that effectively suppress vibration. For the purpose of evaluation, a simpler method is used to determine actuation locations, and the resulting AU configuration is compared to the hybrid optimized actuation configuration. This simpler method for selecting actuation locations mimics an experimental laboratory type method. A single Actuation Unit is used to excite the airframe, and the resulting vibration response is measured. The process is repeated for all candidate actuation locations to determine which locations produce the greatest response. This type of simple design process is simulated numerically with the airframe and actuation models. The first twenty-five airframe structural modes are used in the modal transformation. There is 155 candidate AU locations and the vibration response at all target nodes are the response parameters to be maximized. The vibration index at target nodes is used as the performance metric to determine the maximum control authority. The top eight AU locations from the simple design process are listed in Table 4.6. This set of Actuation Units is designated the Sequential Actuation Configuration (SAC). Four of the eight Actuation Units are in centralized locations and highlighted in bold italic text.

Table 4.6: Top eight Actuation Units for the Sequential design method.	
Actuation Unit Number	Vibration index $[\mathrm{g}]$
48	0.296
57	0.263
$\mathbf{1 4 8}$	0.184
$\mathbf{1 5 3}$	0.168
$\mathbf{1 5 5}$	0.159
142	0.156
$\mathbf{1 5 0}$	0.152
147	0.128

Bold Italic indicates a centralized Actuation Unit location

In order to evaluate the simple actuator placement method, all eight AU of the SAC set are used simultaneously, and the optimal control law is applied to determine the control actions. The vibration response for the Sequential Actuation Configuration is computed to compare with the centralized and hybrid optimized actuation configurations. The SAC evaluation indices relative to the CAC and DAUC are illustrated in Figure 4.14. The Sequential Actuation Configuration (SAC) does not suppress vibration as well as the CAC or the DAUC. In addition, the SAC increased vibration in the tail section from 1.5 g to 2.6 g . This example highlights the need for multiple actuators to work in conjunction with each other to achieve vibration suppression. Each SAC actuator exhibits substantial individual control authority; however, the vibration reduction is not impressive when all eight AU are used simultaneously. Apparently, some of the SAC Actuation Units are combating others and producing conflicting responses. The DAUC actuators may not have the greatest individual control authorities, but their collaborative
effect produces substantial vibration reduction. Thus, the simultaneous optimal control and optimization methodology is required to search for actuation locations.

Figure 4.14: Evaluation indices for various actuation configurations.

4.8 Parametric Study on Number of Actuators

All of the prior analyses have involved eight Actuation Units, but eight AU may not be necessary for substantial vibration suppression. A fewer number of actuators would result in a simpler and lighter control system. A parametric study is conducted to determine an adequate number of Actuation Units that achieve vibration and control effort reductions. Eight different optimization runs are conducted to distribute actuation for a fixed number of $A U$ in each run. In the first optimization run, the location of one AU is determined, and the eighth optimization run distributed eight Actuation Units. The analysis results indicate that increasing the number of AU beyond four, yielded relatively small incremental improvement in vibration suppression. Displayed in Figure 4.15 are
the results, showing the objective function value and vibration index versus the number of Actuation Units. The evaluation indices for the four-AU set are shown in Figure 4.16. Actuation Unit numbers 38, 142, 151, and 154 are the set selected by the optimization process. The objective function weighting matrices are selected to achieve a good balance between vibration and control effort reductions. One item worth noting is that four distributed Actuation Units are more effective than eight centralized Actuation Units: four AU can achieve a 59% reduction of the vibration index and required 41% less control effort.

Figure 4.15: Optimization objective function and vibration index versus number of Actuation Units.

4.9 Summary and Conclusions

A new approach has been formulated to examine the feasibility and effectiveness of optimal actuation placement for active control of helicopter vibrations. An airframe model was selected and prepared for analytical study. A systematic procedure was formulated to simultaneously determine the optimal actuation locations and optimal
control actions. An analysis was performed comparing distributed configurations to a representative state-of-the-art centralized actuation configuration. The following observations can be made with regard to the investigation results.

1. The optimally distributed actuator configurations are significantly more effective than centralized actuators in controlling vibration. A case study shows the CAC reduced vibration by 49% and the DAUC achieved a 96% reduction with similar control effort.
2. The control effort of the distributed configurations can be greatly reduced while maintaining substantial vibration suppression. One case study shows the DAUC can reduce vibration to the same level as the CAC system but with 88% less control effort.
3. The optimization procedure can be tailored to emphasize both vibration and control effort reductions. In this study, the distributed actuation configuration achieves a 90% reduction of vibration and requires 50% less control effort than the centralized configuration.
4. By including a penalty parameter in the objective function of the optimization process, an actuator configuration can be found to suppress vibration at target
areas and prevent vibration increases at non-target areas, for instance, the tail section in this study.
5. Individual actuator control authority on a single airframe structural mode was examined. Actuators in centralized locations have the greatest control authority over structural mode 13, however, actuation located in the airframe more effectively controls the other nine dominant structural modes excited by the external loadings.
6. Two sets of external loads, one at the main rotor hub and another at the horizontal tail excited the airframe model. Both sets of loads excite airframe modes near the 4/rev frequency; however, the tail loads excite additional lower frequency modes. Actuation located in the airframe more effectively controls the lower frequency modes excited by the tail loads.
7. The hybrid optimization process produces a more effective actuation configuration than a simple selection process (the Sequential Actuation Configuration) based on individual AU control authority. Each Actuation Unit of the Sequential Actuation Configuration (SAC) possesses large individual control authority, but the SAC does not suppress vibration as well as the CAC or the DAUC. In this study, the SAC reduced vibration by 38% as compared to 49% for
the centralized and 96% for the DAUC configurations with all three control configurations applying similar levels of maximum control effort.
8. The optimization procedure and a multi-objective function can be utilized to search for an actuation configuration that performs effectively for multiple excitation conditions. A case study demonstrated that the multi-objective optimized DAUC sacrifices some vibration suppression as compared to a configuration optimized for one loading condition. However, the multi-objective optimized DAUC outperforms the centralized configuration for each excitation condition.
9. The optimization process can be applied to determine the minimum number of actuators for adequate vibration suppression. In the scenario studied, it is found that four optimally distributed Actuation Units are more effective than eight centralized AU. The four distributed AU configuration achieves 10% more vibration reduction and requires 41% less control effort relative to the centralized configuration.

Chapter 5

ANALYTICAL REALIZATION OF DISTRIBUTED ACTUATION

5.1 Introduction

The purpose of the analytical realization study is to investigate actuation concepts and active structure designs that produce the desired forces and moments within the airframe. Another consideration is to illustrate the Optimally Distributed Actuation Realization Methodology (ODARM) in greater detail and to provide supporting analysis that substantiates the methodology.

The third step of the ODARM is to utilize the optimization results and design a detailed actuator configuration that produces the desired control actions. The optimization procedure, which utilized the reduced order airframe model, produces results that indicate the actuation locations, type of actuation, and the necessary control effort. The reduced order model optimization results are used to guide the analytical study of actuation concepts in a larger and more detailed helicopter airframe model. The contents of Chapter 5 are summarized as follows. The large NASTRAN model of the Apache helicopter airframe is presented and described. A model comparison study is presented that compares the uncontrolled vibration responses of the Reduced Order Model (ROM) and the larger NASTRAN Finite Element (FE) model. The NASTRAN FE
model is utilized to study an actuation concept that produces a net force or moment at specific airframe cross-sections. Controlled vibration responses of both Apache airframe models are examined, and the benefits of distributed actuation are assessed. Finally, dynamic stresses induced by external loads and active control loads are examined.

5.2 NASTRAN Finite Element Airframe Model

A NASTRAN Finite Element (FE) model of the Apache helicopter airframe has been obtained from the Boeing Company, in Mesa, Arizona. A plot of the NASTRAN model is shown in Figure 5.1. The model is composed with 2198 node points, 7300 finite elements, and 8000 degrees-of-freedom. NASTRAN element types utilized in the model formulation are rod, beam, rigid, and shear panel elements. The airframe model obtained from Boeing is in the form of a NASTRAN input data file, which consists of 13,183 lines of column delimited text commands. As received, the NASTRAN input file is configured to construct the airframe model and perform an eigenvalue analysis. The computed eigenvalues are listed in tabular form in Appendix C. New lines of command code are added to the NASTRAN input file in order to compute and plot airframe mode shapes. A representative sampling of airframe mode shape plots are displayed in Appendix C. The large FE model of the Apache airframe is utilized to verify and compare the optimization results obtained from the reduced order airframe model analysis, study actuation concepts, and examine structural stresses.

Figure 5.1: Apache helicopter NASTRAN Finite Element model

5.3 Airframe Models Response Comparison

Two airframe models are used within the ODARM methodology, and the recommended reduction procedure creates a reduced order model from a high fidelity finite element model. Therefore, a high degree of correlation between the reduced order and finite element airframe models is expected. Both airframe models were obtained from Boeing, and engineers at Boeing were responsible for applying the reduction procedure to create the reduced order model. Unfortunately, the reduction procedure was applied to a NASTRAN finite element model that differs from the NASTRAN model used in this study. The large NASTRAN model, obtained from Boeing, was created in the
mid 1980's. The Apache reduced order airframe model was created from an early 1990's version of the Apache NASTRAN model, which underwent a number of refinements over the years. Boeing was unable to release the early 1990's version of the NASTRAN model for proprietary and confidentiality reasons. The degree of refinement to the NASTRAN model is uncertain, and the effect of the refinements on model correlations is unknown. Fortunately, as will be shown, vibration predictions of the Reduced Order Model (ROM) and the obtained NASTRAN Finite Element (FE) model still agree fairly well in this research study.

The vibration responses of the ROM and the NASTRAN FE model are compared to substantiate a reasonable correlation between the two models. Each model node of the ROM is geometrically equivalent to a node of the NASTRAN FE model. Therefore, model nodes that are common to both airframe models are examined to compare vibration responses. The uncontrolled vibration response of the ROM is displayed in Figure 5.2. Displayed in Figure 5.3, is the uncontrolled vibration response of the NASTRAN FE model at model nodes corresponding to the ROM nodes. To generate the following results, both airframe models are excited by the same set of external loads, which are described in Chapter 3.

Figure 5.2: Reduced Order Model, uncontrolled vibration response to hub and tail excitation

Figure 5.3: NASTRAN model, uncontrolled vibration response to hub and tail excitation

The uncontrolled vibration response of the NASTRAN FE model and Reduced Order Model of the Apache airframe exhibit similar characteristics. Although they differ to some degree in the absolute magnitude of the vibration, certain vibration trends are common to both airframe models. The largest $4 /$ rev vibration levels occur in the horizontal and vertical tail section. Vibration levels in the tailboom section between
nodes 59 and 75 exhibit an increasing trend for nodes closest to the tail end. Vibration levels in the forward fuselage between nodes 10 and 16 exhibit a decreasing trend. Vibration levels in the middle fuselage region between nodes 21 and 30 exhibit an increasing trend. Nodes 1 through 7 correspond to the main rotor mast and support struts in both airframe models, and the vibration response trend of both models is quite similar. Although response of the wings does appear to have the most discrepancy between the two models, the Reduced Order airframe Model (ROM) replicates the global dynamic trends of the much larger NASTRAN Finite Element (FE) model quit well. In addition, a high level of confidence can be inferred upon the optimal actuator placement results, which utilized the ROM. Within the optimization process, certain airframe model nodes are targeted for vibration suppression. In this study, the airframe nodes selected for vibration suppression are model nodes corresponding to the copilot station, pilot station, and avionics bays. The ROM uncontrolled vibration response at the target nodes is displayed in Figure 5.4, and the respective NASTRAN FE model response in Figure 5.5. Vibration at the target nodes is between 0.1 and 0.4 g for both airframe models.

Figure 5.4: Reduced Order Model: Uncontrolled vibration at target nodes

Figure 5.5: NASTRAN model: Uncontrolled vibration at target nodes

5.4 Distributed Actuation Analytical Realization

The optimally distributed actuation locations and control action results from prior research, which utilized the reduced order airframe model, will be used to guide the comparison study. The optimization process will not be applied utilizing the larger FE airframe model, but the optimized actuation locations predicted with the ROM will be used to specify actuation regions for the large NASTRAN FE airframe model. The airframe of the Apache is of semi-monocoque construction consisting of frames, bulkheads, longerons, and stringers covered with stressed skin. A helpful geometric equivalence relationship exists between the reduced order airframe model nodes and the large finite element model nodes, which are located, near the center of each frame member. Prior research did not incorporate any particular actuator, only actuation forces and moments that were applied at specific locations on the reduced order model. Actuation concepts that mimic the actuation forces and moments applied to the ROM are studied. One actuation concept is to apply forces at the intersection of the longeron/stringer and the frame member, as illustrated in Figure 5.6. The actuation concept could be realized by replacing the longerons with active structural elements, or could be realized by placing actuators in parallel with the longerons between frame members. This actuation concept can be configured to realize the dual point force or dual point bending moment types that are applied to the reduced order model. Actuation force directions and magnitudes are computed to produce a net force or moment at the airframe cross-section corresponding to a frame member. A pair of dual point actuation forces is applied at each stringer around the entire perimeter of the airframe cross section. The
magnitudes of the actuation forces are varied linearly from zero at the cross section geometric center to a maximum value at perimeter locations furthest from the center.

Figure 5.6: Dual-point actuation concept applied to semi-monocoque structure

The NASTRAN model input data file is edited to incorporate command codes that implement the dual-point actuation concept [45, 46]. A sample listing of the added command lines can be found in Appendix C. The input file is edited to implement the centralized actuation configuration and the dual-point actuation concept at 11 airframe locations. From the ROM optimization results, eleven Actuation Units (8, 33, 38, 41, 45, $56,59,107,113,129$, and 142) are selected for implementation in the NASTRAN FE model. Location and definition of dual-point actuation on the airframe applied to the NASTRAN FE model is listed in Appendix C. In the following analyses, distributed dualpoint actuation concepts are assessed analytically and compared with a centralized actuator configuration. Localized stresses are examined to insure that levels remain within the elastic limits of the structure.

A number of observations can be made when centralized control is applied to the reduced order model. The centralized control of ROM vibration at the target nodes is displayed in Figure 5.7. Significant vibration suppression, relative to uncontrolled vibration Figure 5.4, is achieved at all target nodes. Vibration is reduced below 0.08 g at the copilot (node 14) and pilot (node 24) stations. Centralized actuator control applied to the NASTRAN FE model produces similar results. Centralized control of the NASTRAN model vibration at the target nodes is displayed in Figure 5.8. Relative to Figure 5.5, vibration is suppressed at all target nodes. Vibration suppression is slightly better for centralized control applied to the NASTRAN model.

Figure 5.7: Reduced Order Model: Centralized actuation, Controlled vibration at target nodes

Figure 5.8: NASTRAN model: Centralized actuation, Controlled vibration at target nodes

The distributed actuation control of reduced order model vibration at the target nodes is displayed in Figure 5.9. Significant vibration suppression, below 0.04 g , is achieved at all target nodes, and vibration is reduced below 0.02 g at the copilot (node 14) and pilot (node 24) stations. Distributed control applied to the NASTRAN FE model produces similar results (Figure 5.10). Vibration is significantly reduced at target nodes, and vibration at the pilot stations, nodes 14 and 24 , are reduced below 0.05 g .

Figure 5.9: Reduced Order Model: Distributed actuation, Controlled vibration at target nodes

Figure 5.10: NASTRAN model: Distributed actuation, Controlled vibration at target nodes

To further evaluate the distributed actuation concept and compare with centralized actuation, three performance indices are defined. A vibration index is defined as the root-mean-square value of vibration at the target nodes. A control index is defined as the root-mean-square value of the actuation control effort. The third index is the maximum control effort of the active control system. These performance metrics are used to compare the centralized and distributed actuation configurations. A summary of the performance indices is depicted graphically in Figure 5.11, for the reduced order model, and Figure 5.12 for the NASTRAN FE model analysis. Centralized control, applied to the ROM, reduced the vibration index by 49% from 0.111 g to 0.057 g with a control index of 2521 lb . and a maximum control effort of 4000 lb . Centralized control, applied to the NASTRAN FE model, reduced the vibration index by 61% from 0.170 g to 0.066 g with a control index of 2473 lb . and a maximum control effort of 4000 lb . Distributed control, applied to the ROM, reduced the vibration index by 90% from 0.111 g to 0.011 g with a control index of 1261 lb . and a

Figure 5.11: Reduced Order Model: Comparison of performance indices

Figure 5.12: NASTRAN Model: Comparison of performance indices
maximum control effort of 1960 lb . Distributed control, applied to the NASTRAN FE model, reduced the vibration index by 69% from 0.170 g to 0.053 g with a control index of 1684 lb . and a maximum control effort of 2903 lb .

The reduced order model analysis indicates that the centralized control configuration is able to suppress vibration by 49% with a control index of 2521 lb . In contrast, the distributed control configuration reduced vibration by 90% and required 50% less control effort. Thus, distributed actuation is capable of greater vibration suppression and requires less control effort than a centralized actuator configuration. The NASTRAN FE model analysis indicates that the centralized control configuration is able to suppress vibration by 61 percent with a control index of 2473 lb . The distributed control configuration, applied to the NASTRAN model, reduced vibration by 69% and required 32% less control effort. The NASTRAN model analysis also indicates that distributed control is superior to centralized control. Greater vibration suppression is achieved with less control effort. However, the disparity between centralized and distributed actuation is not as pronounced with the NASTRAN model analysis. That is, centralized actuation is more effective on the NASTRAN model, and distributed actuation is less effective on the NASTRAN model.

A potential reason for the loss in disparity, between centralized and distributed control, may be that the actuation locations are not optimal for the NASTRAN FE model, due to differences between the two models. To test this hypothesis, the optimization
procedure is applied utilizing the NASTRAN FE model and a restricted set of potential actuation locations. The actuation locations are restricted to a set of nineteen candidate locations. Eight locations corresponding to the eight main rotor mast supporting struts, and eleven actuation locations that appeared most frequently in the ROM analysis results. Applying the optimization procedure with a restricted set of candidate actuation locations produces the following results, displayed in Figure 5.13, for a distribution of eight actuation locations. The vibration index is reduced from 0.170 g to 0.046 g with a control index of 1234 lb . and maximum control effort of 2089 lb . Some performance improvement is realized when compared with the actuation locations determined by the ROM analysis, Figure 5.12. The vibration index is reduced an additional 4\%, the control index is reduced an additional 18%, and the maximum control effort is reduced an additional 20 percent. The reoptimized actuator distribution, using a limited set of potential locations, shows minimal improvement with respect to the vibration index, but substantial reductions of the required control effort are realized.

Figure 5.13: NASTRAN Model: Comparison of performance indices, re-optimized locations

All results presented thus far have been for a simultaneous hub and tail excitation condition. The hub only excitation condition was also examined, and the results are
contained in Appendix C. To avoid repetition, the hub only excitation results are not presented here, because similar vibration and control effort reduction trends are exhibited.

5.5 Airframe Dynamic Stress

An important engineering concern, associated with any active vibration control configuration, is the airframe dynamic stress levels introduced by the control system. The NASTRAN FE model is utilized to examine the dynamic stresses introduced by the centralized and distributed control configurations. Dynamic stress levels for the uncontrolled vibration condition are used as a baseline for comparison. The uncontrolled vibration condition is a reasonable baseline, because the helicopter airframe strength is designed to withstand numerous hours of normal operating flight. The dynamic stress levels for the 5497 elastic elements of the NASTRAN model are examined for the uncontrolled vibration condition, and the results are displayed in Figure 5.14.

Figure 5.14: Finite Element dynamic stress from hub and tail excitation (uncontrolled)

The maximum observed stress level is 1170 psi , and only two elements have stresses in the 800 psi to 1200 psi range. Most of the element stresses, 99.2%, are less than 400 psi . A more precise breakdown is 84% in the 0.0 to 100 psi range, 11% in the 100 to 200 psi range, 3.3% in the 200 to 300 psi range, 0.9% in the 300 to 400 psi range, and 0.8% in the 400 to 1200 psi range.

Dynamic element stress levels are examined for the centralized control configuration, and the maximum observed stress is 700 psi . The dynamic stress values are displayed in Figure 5.15. Most of the element stresses (99.8\%) are less than 400 psi. A number of observations can be made by comparing the dynamic stress levels for the centralized control configuration to the baseline uncontrolled condition.

Figure 5.15: Finite Element dynamic stress, Centralized control of hub and tail excitation

The change in stress, as compared to the baseline uncontrolled stress, is illustrated in Figure 5.16. Dynamic stress levels are reduced in 68% of the finite elements, which is a logical expectation since the overall vibration levels of the airframe are reduced by the centralized control. A vibration increase is observed for 32% of the elements with a
maximum stress increase of 550 psi. However, a stress increase below 100 psi occurs for 30.8% of the elements. All elements with stress levels exceeding 600 psi for the uncontrolled vibration condition were reduced when centralized control is applied.

Figure 5.16: Change of element stress from uncontrolled to centralized control

The dynamic element stress levels are examined for the distributed actuation control configuration, and the maximum observed stress is 667 psi . The dynamic stress values are displayed in Figure 5.17. Most of the element stresses (99.9\%) are less than 400 psi.

Figure 5.17: Finite Element dynamic stress, Distributed control of hub and tail excitation

A number of observations can be made by comparing the dynamic stress levels for the distributed control configuration to the baseline uncontrolled condition. The change in stress, as compared to the baseline uncontrolled stress, is illustrated in Figure 5.18. Dynamic stress levels are reduced in 83% of the finite elements. A vibration increase is observed for 17% of the elements with a maximum stress increase of 250 psi. However, a stress increase below 100 psi occurs for 16.5% of the elements. All elements with stress levels exceeding 600 psi for the uncontrolled vibration condition were reduced when distributed control is applied. Comparison of the change in element stress level for centralized control with the distributed control reveals two observations. Dynamic stress levels in more of the finite elements are reduced by the distributed control, 82% versus 68% for centralized control. The maximum stress increase of 250 psi for the distributed control is less than half of the increase with centralized control (550 psi). These two observations are reasonable, because the distributed control is producing greater vibration suppression and applying smaller control inputs.

Figure 5.18: Change of element stress from uncontrolled to distributed control

Another interesting observation from the dynamic stress analysis data is that the largest dynamic stresses are not always near the location of external loads or actuation loads. To illustrate this observation, a contour plot of dynamic stresses for a distributed control configuration is shown in Figure 5.19. Low stress levels are indicated by dark colored regions and the highest stress areas are indicated by the lightest shading.

Figure 5.19: Dynamic stress levels for distributed control of hub and tail excitation

Actuation locations are identified by horizontal brackets in the figure. The largest stresses appear in the tailboom end and vertical stabilizer, not in the areas of actuation. Determination of the highest stress regions in a complex structure is not necessarily
intuitive, and is highly dependent upon which airframe structural modes are being excited. Therefore, an active control system designer needs to be cautious and examine stress levels in all regions of the aircraft, as well as, regions in the vicinity of control actuation.

5.6 Summary and Conclusion

Results of the feasibility study indicate that distributed actuation, applied to the reduced order airframe model, is capable of greater vibration suppression and requires less control effort than a centralized configuration. Vibration and distributed actuation analysis is also conducted with a large NASTRAN finite element model of the helicopter airframe. The uncontrolled vibration predictions of the reduced order model and the NASTRAN model are found to be similar. Distributed actuation control and centralized actuation control are applied to the NASTRAN airframe model. The distributed actuation control predicts a 73% vibration reduction and requires 50% less control effort than centralized actuation. When compared to the reduced order model analysis, the disparity between centralized control and distributed control is not as pronounced with the NASTRAN model analysis. However, distributed actuation control is still superior to centralized control, producing greater vibration suppression with less control effort. Dynamic stresses of the NASTRAN airframe model are examined for both the uncontrolled and controlled vibration conditions. For a controlled vibration condition, the majority of the element stresses are reduced. Dynamic stress levels in more of the finite elements are reduced by the distributed control, 82% versus 68% for the centralized
control. It was observed that the largest dynamic stresses are not always near the location of external or actuation applied loads. Thus, stress levels need to be examined in all regions of the airframe.

Chapter 6

SCALED TAILBOOM MODEL STRUCTURE AND EXPERIMENTAL STUDY

6.1 Introduction

A semi-monocoque test-bed structure is designed and fabricated for active vibration control studies. The structure is a scaled model of a helicopter tailboom that is fabricated with traditional semi-monocoque type aircraft construction. The structure is constructed and tested with several objectives in mind:
(a) To investigate the actuation design and realization issues associated with integrating dual-point actuation into a semi-monocoque structure;
(b) To examine a dual-point actuator configuration that produces a bending moment within the structure to suppress vibration;
(c) To demonstrate the correlation between the physical structure and the analytical model is reliable enough to make engineering decisions about the actuation design;
(d) To formulate an analysis procedure and establish guidelines for realizing dualpoint actuation in a semi-monocoque structure;
(e) To evaluate the potential of piezoelectric stack actuators as a dual-point actuation device.

The previous analytical studies produced design guidelines and some candidate active structure designs to realize distributed actuation for helicopter active vibration control. One particular finding of significant interest is that dual-point bending moment actuation in the airframe tailboom is in general quite effective for vibration control. In addition, actuation in the tailboom was found to be especially beneficial when the airframe is excited by harmonic tail loads in conjunction with hub loads. Most rotorcraft experience considerable harmonic tail loading in some portion of their flight envelope; consequently, the above observations may be applicable to many helicopters. These observations are motivational factors in the formulation and design of the experimental study. A straightforward experimental and analytical case study is conducted to investigate and demonstrate a dual-point actuation concept applied to a semi-monocoque structure. Design and construction of the tailboom model is described. A detailed Finite Element model and a reduced order beam equivalent Finite Element model of the scaled tailboom structure are created. The tailboom FE models are utilized to analytically study a dual-point bending moment actuation concept. Actuators are installed in the scaled tailboom structure to realize the dual-point actuation concept. Vibration testing is conducted to experimentally demonstrate the predictions of the analytical models. Dynamics of the tailboom structure are examined and compared before and after the actuation installation. The influence of the actuation installation on the tailboom structure's dynamic stress levels is examined. Active vibration control by the actuator installation is demonstrated.

6.2 Tailboom Construction and Design

The experimental test-bed structure is a 0.3 scale model of a helicopter tailboom section, based on the Apache AH64-A helicopter. A diagram and photograph of the scaled tailboom model is shown in Figure 6.1. Overall dimensions of the tailboom model are 81 inches long, 40 inches wide, and 38 inches high. The tailboom structure is fabricated with aluminum materials and a semi-monocoque construction technique. The boom section is a rectangular shaped and tapered box beam with seven frame members, eight perimeter stringers, and covered by 0.032 -inch aluminum skin material. Four stringer members, one on each corner, are 0.75 -inch aluminum angles. Four stringer members, one at the middle of each side, are 1.0 -inch by 0.125 -inch aluminum flat stock. The root end of the boom section is a 14-inch by 11-inch cross-section and tapers to 7.25 -inch by 7.25 -inch cross-section. The horizontal and vertical tail surfaces of the tailboom structure are fabricated with 2-inch square aluminum tubing. All structural members

Figure 6.1: Tailboom model, 0.3 scale semimonocoque structure
are fastened with screws to permit efficient disassembly and modifications. The total weight of the tailboom model is 60 pounds, which includes 22.5 pounds of inertial mass at the free ends of the tail surfaces.

Design of the test-bed structure is based on the Apache helicopter. The first decision in designing the tailboom model was choosing a scale factor and how much of the Apache helicopter tail section to consider. The rearmost 237 inches of the Apache tail section is selected, beginning at a bulkhead aft of the engines and an avionics bay. A testbed structure length of 72 inches is selected due to space constraints in the laboratory and size limitations of instrumentation. Thus, the geometric scale factor based on tailboom length is 72 over 237 , which equals 0.304 . The model scale factor is then applied to the overall height and width of the Apache tailboom. At the selected bulkhead location of the Apache, the approximate height and width are 36 inches and 46 inches respectively. Applying the scale factor, these dimensions translate to 11 -inch height and 14 -inch width for the model structure. The Apache helicopter tailboom is tapered from a nearly rectangular cross-section to a 24 -inch diameter circular cross-section at the tail end, which scales to 7.25 inches. In order to simplify fabrication and assembly the scaled tailboom model cross-section is rectangular throughout. However, the boom section is tapered to a 7.25 -inch square cross-section at the end. Modeling of the horizontal and vertical tail surfaces is simplified by using hollow tubing, rather than semi-monocoque construction. The added complexity is deemed unnecessary for the objectives of this study. Geometric scaling of the horizontal tail width and vertical tail height is applied.

The resulting scaled width and height are 38.9 inches and 30.8 inches respectively. Engineering drawings of the scaled tailboom model components are listed in Appendix D.

Another design goal for the scaled model is to mimic the fundamental dynamics of the Apache helicopter tail section. The Reduced Order Model (ROM) of the Apache airframe is utilized for dynamic computations. The ROM is modified to simulate a cantilevered tail configuration. The root end of the cantilevered tailboom corresponds to ROM node number 62, which is the location of the bulkhead selected for geometric scaling. Natural frequencies and mode shapes of the cantilevered ROM tail are computed as target dynamic parameters for the scaled model design. A custom MATLAB computer code, which can be found in Appendix D, is written to formulate a beam equivalent elastic line model of the scaled tailboom structure. The analytical model is comprised of 13 beam elements and 14 nodes. A diagram of the computer model is displayed in Figure 6.2. Each node point has six degrees-of-freedom, three translational and three rotational. The Beam Equivalent Model (BEM) is used to assess the design of the scaled tailboom structure to finalize detailed design parameters. Parameters to be determined with the BEM analysis are skin material thickness, frame member dimensions, stringer dimensions,

Figure 6.2: Scaled tailboom Beam Equivalent Model (BEM)
and inertial mass quantities. An iterative analytical procedure is conducted to search for model parameters that yield a scaled structure with natural frequencies matching the cantilevered ROM. Numerous design configurations are analyzed; unfortunately, a frequency matched design could not be achieved with practical and standard component sizes. Direct geometric scaling of component dimensions yields small component sizes that are not readily available. All of the trial designs were stiffer than the cantilevered ROM resulting in higher natural frequencies. Thus, an altered design approach is followed. Standard component dimensions are used and mode shape matching is attempted with less emphasis on natural frequency values. For the finalized scale model design, mode shape matching is achieved with much greater success. A comparison of the first two mode shapes of the final BEM design and the cantilevered ROM is displayed in Figure 6.3.

Figure 6.3: Cantilevered ROM and BEM mode shape comparison

Additional mode shape comparisons, up to mode eight, are listed in Appendix D. Cantilevered ROM natural frequencies and the resulting BEM natural frequencies are listed in Table 6.1.

Table 6.1: Cantilevered ROM and scaled BEM natural frequencies		
Mode Number	ROM Natural Frequency [Hz]	BEM Natural Frequency [Hz]
1	3.69	11.85
2	5.10	12.22
3	9.49	23.87
4	10.65	26.60
5	19.16	38.31
6	24.05	48.78
7	28.52	54.49
8	31.65	72.08

The finalized tailboom structure design is used to purchase and fabricate the necessary components. In conjunction with the tailboom fabrication and assembly, a detailed finite element model is created for further analysis and design of the actuator installation. The detailed tailboom Finite Element Model (FEM) is comprised of beam elements, membrane elements, rod elements, and discrete spring elements. The model, shown in Figure 6.4, contains 120 nodes and 267 elements with a total global degree-offreedom of 536. A custom MATLAB computer code was written to create the FEM, and a listing of the source code is contained in Appendix D. Static deflections and natural frequency predictions of the custom MATLAB code were verified with a commercial finite element package. Natural frequency and mode shape predictions of the FEM are
presented in later sections. The detailed FEM is utilized to design and evaluate actuator configurations that produce the desired control action within the tailboom structure.

6.3 Experimental Setup

The assembled tailboom structure is coupled with other testing hardware to create an experimental testing apparatus for vibration control studies and comparison with analytical model predictions. A diagram and photograph of the tailboom model and experimental setup are shown in Figure 6.5. The tailboom model is cantilevered at the root end from a rigid base structure. An electromechanical shaker is attached

Figure 6.4: Scaled tailboom Finite Element Model (FEM)

Figure 6.5: Tailboom model and experimental setup
to the tail end to excite the tailboom, and the shaker inputs are monitored with a piezoelectric load cell. Twelve accelerometers are installed on the tailboom to measure vibration levels. Four piezoelectric stack actuators are installed at the corner stringers between the second and third frames of the tailboom. A load cell is installed in series with the stack actuator to monitor the loads generated by the actuators. Twenty strain gages are installed on the corner stringers near the actuator installation to monitor the dynamic strains of the structure. All sensor signals are channeled to a signal-conditioning unit, then to a digital signal processor, and forwarded to a desktop PC for data collection. An equipment list for the experimental setup is detailed in Appendix D.

6.4 Actuation Design and Installation

6.4.1 Actuation Concept

A case study is formulated to investigate the actuation design and realization issues associated with integrating dual-point actuation into a semi-monocoque structure. A straightforward vibration control scenario is devised. The vibration control objective is to design a dual-point actuator configuration that will counteract the vibrations caused by a vertical load applied to the end of the tailboom structure. The actuation concept is to introduce a bending moment within the tailboom structure near the cantilevered end. This study is also formulated to evaluate piezoelectric stack actuators for realizing the actuation concept; thus, four stack actuators are installed near the root end of the tailboom model. The bending moment is realized by placing two actuators in the upper
left and right of the tailboom structure and placing two actuators in the lower left and right of the tailboom cross-section. A bending moment is created by commanding the top actuators out-of-phase with the bottom actuators.

6.4.2 Predicted Actuation Parameters

The dual point actuation concept, described above, is examined with the tailboom FE analysis model in order to select a commercial stack actuator. Actuator selection is based upon the static tail deflection produced by actuation. To establish a target tail deflection, bending moment actuation is applied to the cantilevered ROM. The resulting tail deflection is scaled for tailboom FE model analysis. Actuation is applied to the tailboom FE model to determine the appropriate actuator forces, which replicate the scaled tail deflection.

Examination of the optimization results, presented in Chapter 4, reveals that some distributed actuation configurations contained moment actuation in the tail section. One particular configuration, emphasizing both vibration and control effort reduction, contained Actuation Unit number 107. This AU produces bending moment actuation and is located near ROM node 62 , which is the node selected for tailboom model scaling. Optimal control law computations for this distributed configuration indicates that a $23,200 \mathrm{in}-\mathrm{lb}$ moment is required by AU 107. The 23,200 in-lb moment is applied at nodes 69 and 70 of the cantilevered ROM to compute the static deflection at the end of the tail section. The computed tail deflection is 3.95×10^{-3} inches, which scales to 1.2×10^{-3} inches
by applying the 0.304 geometric scale factor. Next, actuation loads are applied at the corner stringers between frames 2 and 3 of the scaled tailboom FE model. The actuation loads are configured to mimic dual-point actuation with each actuator replacing the four corner stringer sections between frames 2 and 3. Loads are applied to simulate actuator expansion at the top and actuator contraction at the bottom of the tailboom section. Thus, the net result is a bending moment producing downward deflection of the tail end. Analysis results indicate that a 57-pound actuation force is required to produce the 1.2×10^{-3} inch scaled tail deflection. In conjunction with the computed actuator force, a 1.1×10^{-3} inch actuator stroke is predicted to produce the tail deflection.

6.4.3 Actuator Selection

A commercially available piezoelectric stack actuator is selected based upon the computed actuator force, actuator stroke, and the local structural stiffness that each actuator is working against. A photograph of the selected piezoelectric stack actuator is displayed in Figure 6.6, and the specifications are listed in Table 6.2.

Figure 6.6: APC Pst 150/14/100 piezoelectric stack actuator

Table 6.2: Stack actuator specifications	
Manufacturer	American Piezo Ceramics
Model	Pst $150 / 14 / 100$
Blocked Force	1102 lb.
Free Stroke	$3.94 \times 10^{-3} \mathrm{in}$.
Stiffness	$2.28 \times 10^{5} \mathrm{lb} / \mathrm{in}$
Input Voltage	0 volt to +150 volt
Weight	$0.386 \mathrm{lb}_{\mathrm{f}}$

Piezoelectric stack actuators directly transform input electrical energy into output mechanical energy through the principle of piezoelectricity. The Lead Zirconate Titanate (PZT) stack consists of many thin layers of electroactive material alternatively connected to positive and negative terminals of a voltage source (Figure 6.7). When an electrical voltage is applied, each PZT material layer expands and produces a net output displacement. The one-dimensional constitutive equations of linear piezoelectricity for a freestanding PZT stack describe the relation between mechanical and electrical variables [51].

Figure 6.7: Piezoelectric stack element

$$
\begin{align*}
& S_{3}=s_{33}^{E} T_{3}+d_{33} E_{3} \tag{array}\\
& D_{3}=d_{33} T_{3}+\stackrel{\circ}{3}_{3}^{T} E_{3} \tag{6.2}
\end{align*}
$$

Where S_{3} is the mechanical strain, T_{3} is the mechanical stress, s_{33}^{E} is the mechanical compliance of the PZT material, E_{3} is the applied electric field, D_{3} is the electrical displacement, ε_{3}^{T} is the dielectric permittivity, and d_{33} is the piezoelectric coupling coefficient between mechanical and electrical variables. For a PZT stack, equation (6.1) can be rewritten as:

$$
\frac{x}{n t}=s_{33}^{E} \frac{F}{A}+d_{33} \frac{V}{t}
$$

where x is the stack displacement, n is the number of material layers, t is the layer thickness, F is the applied external force, A is the stack cross-sectional area, and V is the
input voltage. Stack actuators typically have an internal mechanical preload spring ($K_{s p}$) in parallel with the stack element. The linear relationship between actuator displacement, actuator force, input voltage, and internal spring stiffness can be arranged into a convenient form:

$$
\begin{align*}
& F=K_{a} x-F_{\text {ind }} \tag{6.4}\\
& K_{a}=\frac{A}{n t s_{33}^{E}}+K_{s p} \tag{6.5}\\
& F_{\text {ind }}=\frac{A d_{33}}{t s_{33}^{E}} V \tag{6.6}
\end{align*}
$$

where K_{a} is the actuator stiffness and $F_{\text {ind }}$ is the piezoelectric induced force of the stack. When an electric voltage is applied to the stack, in the absence of an external force, the resulting actuator displacement is termed the characteristic free stroke $\left(x_{o}\right)$. The characteristic blocked force $\left(F_{b}\right)$, the force generated by the actuator when the net displacement is zero, is equivalent to the external force required to return the free stroke displacement back to the original actuator length.

$$
\begin{array}{lll}
x_{o}=F_{\text {ind }} / K_{a} & (\text { Free stroke }) & \left(\begin{array}{c}
6.7
\end{array}\right) \\
F_{b}=-F_{\text {ind }} & (\text { Blocked force }) & \left(\begin{array}{c}
6.8
\end{array}\right) \tag{6.8}
\end{array}
$$

The internal mechanical energy of a piezoelectric stack actuator is equivalent to the work done by the piezoelectric induced force to overcome the internal stiffness and produce the free stroke displacement [51].

$$
\begin{equation*}
W_{a}=\frac{1}{2} K_{a} x_{o}^{2}=\frac{1}{2} F_{b} x_{o} \tag{6.9}
\end{equation*}
$$

In practice, a stack actuator operates against an external load $\left(F_{e}\right)$ with an external stiffness $\left(K_{e}\right)$. When operating against an external load, the output displacement of the stack actuator is a fraction of the actuator's free stroke displacement $\left(x_{o}\right)$ and is dependent upon the external stiffness.

$$
\begin{equation*}
x=\frac{K_{a}}{K_{a}+K_{e}} x_{o}=\frac{F_{e}}{K_{e}} \tag{6.10}
\end{equation*}
$$

The output energy of the actuator is equivalent to the work done on the external load, which is a fraction of the internal mechanical energy, and can be expressed as [51]:

$$
\begin{equation*}
W_{e}=\frac{1}{2} F_{e} x=\frac{1}{2} K_{e} x^{2}=\left[\frac{K_{e} K_{a}}{\left(K_{e}+K_{a}\right)^{2}}\right]\left[\frac{1}{2} K_{a} x_{o}^{2}\right] \tag{6.11}
\end{equation*}
$$

The stack actuator output energy is dependent upon the external stiffness and can be maximized when K_{e} equals K_{a}. This is known as the stiffness (impedance) matching principle [51]. The maximum output energy of a stack actuator is defined as one quarter of the internal mechanical energy $\left(W_{a}\right)$ or can be expressed as one eighth of the blocked force times the free stroke.

$$
\begin{equation*}
W_{e}^{\max }=\frac{1}{4} W_{a}=\frac{1}{8} K_{a} x_{o}^{2}=\frac{1}{8} F_{b} x_{o}=\frac{1}{8} \frac{F_{i n d}^{2}}{K_{a}} \tag{6.12}
\end{equation*}
$$

Selecting an appropriate piezoelectric stack actuator is done by using the above actuator relations, the actuator specifications, and a graphical technique. Four lines are
plotted on two axes of actuator force versus actuator displacement. Two lines are constructed that represent the characteristic linear force and displacement relationship of the actuator. One line is plotted using the actuator free stroke and blocked force corresponding to the maximum voltage input. A second line, parallel to the first, is plotted for a voltage input equal to one-half the maximum. The third line is constructed to represent the stiffness of the stack actuator, and the fourth line represents the stiffness of the external structure upon which the actuator is operating. Such a graphical representation is displayed in Figure 6.8 for the scaled tailboom structure and the stack actuator selected for this study.

Figure 6.8: Stack actuator force and displacement relation

The actuator operating conditions can be extracted from Figure 6.8 and are governed by the external structure stiffness and the characteristic stack actuator force and displacement relation. To illustrate the graphical analysis technique, a portion of Figure 6.8 is reconstructed and displayed in Figure 6.9. The operational actuator force amplitude and corresponding stroke amplitude are identified from the intersection (points \mathbf{A} and \mathbf{B}) of the external stiffness line and the two characteristic actuator force and displacement lines. For the tailboom application, the actuator input voltage is varied about a positive DC bias of 75 volt; therefore, the maximum input variation is ± 75 volt. Thus, the maximum achievable actuator force variation is the change in force between points \mathbf{A} and \mathbf{B} on the chart. The corresponding actuator stroke variation is identified by the change in displacement between points \mathbf{A} and \mathbf{B} or equivalently between points \mathbf{A} and \mathbf{C}.

Figure 6.9: Stack actuator operating conditions

For the selected piezoelectric stack actuator, the predicted force amplitude is 61 pounds and the predicted stroke amplitude is 1.75×10^{-3} inches. Both values exceed the 57-pound force and 1.1×10^{-3} inch actuator stroke required to produce the target static tailboom deflection. Thus, the selected actuator has adequate output characteristics for the prescribed tailboom application. It is worth noting that a more efficient stack actuator would be stiffness matched with the external structure $\left(K_{a}=K_{e}\right)$. A stiffness-matched actuator maximizes the actuator output energy and would transfer maximum energy to the tailboom structure. Stack actuator stiffness can be tailored by changing the stack length or changing the cross-sectional area. However, a stiffness-matched actuator that meets all performance specifications would most likely have to be custom manufactured.

6.4.4 Stack Actuator Installation

A photograph of the actuator installation is shown in Figure 6.10. The corner stringers between the second and third frame sections are removed and replaced with an actuator assembly. The top and bottom actuators, on each side, are attached to aluminum C-channels at each end of the actuator. One end of each actuator is bolted to the Cchannel with a set of spherical washers to accommodate misalignment. The opposite end of each actuator is fastened to the C-channel through a spherical ball joint to prevent the transmission of moments between the actuator and the tailboom structure. This type of actuator connection is required for piezoelectric stack type actuators to protect the brittle piezoelectric material within the actuator. Force transducers are installed in series with
two of the actuators on opposite corners to monitor actuator loads. The stack actuator assembly and the attachment hardware are illustrated in more detail with photos displayed in Figure 6.11.

Figure 6.10: Piezoelectric stack actuator installation

Figure 6.11: Stack actuator attachment and installation hardware

A thin steel rod is placed in parallel with and close to each actuator. The parallel steel rod serves two purposes: a device to preload the stack actuator assembly, and a mechanism to tailor the stiffness of the actuator assembly. One engineering challenge associated with using stack actuators is their one-directional force generating nature. Stack actuators are primarily pushing devices. Their ability to push against external loads is typically 7 times greater than the pulling force that can be generated. To minimize the effects of this limitation, actuators in the tailboom installation are pre-compressed by the surrounding tailboom structure. The stack actuators are installed through an access panel after the tailboom is completely assembled. A spreading tool is used to expand the opening between actuator attachment C-channels, then the actuator is installed and the spreading tool released. In addition, the actuators are operated with a DC bias input voltage that causes the stack to expand to a median length and introduce additional pre-stress. The actuators are pre-stressed by the tailboom structure, and vice versa, the tailboom structure is pre-stressed by the actuators. When the stack input voltage is decreased, the actuator length contracts and the tailboom structure elastically springs back. Therefore, the stack actuator's poor pulling ability is assisted by the structural pre-load.

6.5 Static Deflection Analysis

Both tailboom analytical models are utilized to examine static deflections and compare with experimentally measured data from the physical tailboom structure. One test case is determining the static deflection of the tailboom to a load applied at the free
end of the tailboom. Loads are applied with the electromagnetic shaker and displacements are measured with a linear potentiometer. Initial predictions of the analytical models did not correlate well with the experimental data and required adjustment of the model boundary condition. Initially, the cantilevered boundary condition was modeled as a fully constrained support and deflections were underpredicted. The boundary condition was altered to incorporate elasticity of the tailboom mounting and the pedestal base structure. A discrete spring element was added to the analytical models to account for flexibility at the mounting location. The added spring element stiffness had a negligible effect on the analytical model's natural frequency predictions, but the modeling adjustment greatly improved the static deflection predictions. A summary of the results is displayed in Table 6.3. Excellent agreement between the analytical models and the physical tailboom structure is achieved. In addition, the experimental data indicates the static deflection of the tailboom structure is linear.

Table 6.3: Static deflection at free end of tailboom			
Applied Load [lb.]	BEM Model [in.]	FEM Model [in.]	Physical Model [in.]
10.7	0.0055	0.0056	0.0052
14.8	0.0076	0.0077	0.0075
18.9	0.0098	0.0098	0.0096

Another test case is formulated to examine the static deflection induced by the actuator installation. The top actuators are commanded to expand and the bottom
actuators are commanded to contract; thus, a bending moment is created and the free end of the tailboom deflects downward. Displacement at the free end and actuator stroke is measured with a linear displacement potentiometer. A summary of the results is displayed in Table 6.4. Fair agreement of the tailboom end deflection trend is observed; however, the measured actuator stroke is nearly twice the FEM predicted value. The results indicate the FEM is not accurately modeling the compliance of the actuator installation.

Table 6.4: Actuator induced static deflection of tailboom free end				
Stack Actuator Force [lb.]	FEM Model End Disp. [in.]	FEM Model Actuator Stroke [in.]	Physical Model End Disp. [in.]	Physical Model Actuator Stroke [in.]
42.1	0.00099	0.0008	0.00078	0.0014
52.9	0.00124	0.0010	0.00140	0.0018
63.9	0.00150	0.0012	0.00166	0.0020

6.6 Dynamic Analysis and Vibration Control

The fundamental structural dynamics of the tailboom are determined through an experimental modal analysis to determine its natural frequencies and mode shapes. Natural frequencies and mode shapes are also computed for the analytical models. Listed in Table 6.5 are the first eight natural frequencies of the analytical models and the physical tailboom structure. Natural frequencies computed from the analytical models are in good agreement with the experimentally measured values. The natural frequency
predictions of the analytical models are within 15% of the experimentally measured values. Five of the eight analytical predictions are within 5% of the measured values. Although not shown here, fair mode shape correlation is also observed between the analytical models and the tailboom structure. Mode shape plots are listed in Appendix D.

Table 6.5: Tailboom natural frequencies			
Mode Number	BEM Model $[\mathrm{Hz}]$	FEM Model $[\mathrm{Hz}]$	Physical Model $[\mathrm{Hz}]$
1	11.9	11.9	11.7
2	12.2	13.5	14.0
3	23.9	24.1	25.1
4	26.6	29.6	26.8
5	38.3	38.2	38.6
6	48.8	39.8	46.8
7	54.5	55.2	55.4
8	72.1	72.2	71.5

Helicopter airframes are designed to avoid resonance situations; specifically, the airframe is designed such that natural frequencies do not coincide with harmonics of the $N /$ rev main rotor frequency. The installation of an active vibration control system must adhere to the same principle. In other words, the actuator installation should not shift the airframe natural frequencies to coincide with the $N /$ rev harmonics. Design of the piezoelectric stack actuator installation in the tailboom structure is conducted following this principle. The detailed finite element model of the tailboom is utilized to design and
analyze an actuator installation that does not significantly alter the structure's natural frequencies. Successful design of the actuator installation is accomplished. The combined stiffness of the stack actuator and the pre-stress rod is designed to be nearly equivalent to the stiffness of the removed corner stringer segment. The added mass of the actuator installation had a negligible effect; even though, the added mass $\left(0.814 \mathrm{lb}_{\mathrm{m}}\right)$ is 6.6 times larger than the removed corner stringer mass $\left(0.123 \mathrm{lb}_{\mathrm{m}}\right)$. Listed in Table 6.6 are the experimentally measured natural frequencies of the baseline tailboom, before the actuator installation, and the natural frequencies measured after installation of the actuators. The actuator installation had a negligible effect on the structure's natural frequencies. The largest shift of natural frequency is 6% for mode four.

Vibration control authority of the piezoelectric stack actuator installation is investigated. The design intent of the actuator installation is to produce a bending moment within the tailboom structure that counters vertical inputs at the free end. Actuator induced vibration of the tailboom is examined both analytically with the FEM model and experimentally with the tailboom structure. The tailboom FEM model is used to compute the frequency response transfer

Table 6.6: Tailboom natural frequencies before and after actuator installation Mode Number		
Before Actuator Installation [Hz]	After Actuator Installation $[\mathrm{Hz}]$	
1	11.5	11.7
2	14.0	14.0
3	25.5	25.1
4	28.5	26.8
5	39.0	38.6
6	47.0	46.8
7	55.5	55.4
8	72.5	71.5

function between the stack actuator inputs and the resulting vibration response. Displayed in Figure 6.12 is the transfer function for the vertical vibration response at the top of the vertical tail, which is produced by a unit actuator force. The largest vibration levels, produced by the actuator installation, occur at three frequencies (13.5, 24.1, 72.2 Hz), which are commensurate with the natural frequencies of the second, third, and eighth vibration modes of the tailboom structure. In other words, vibrations at or very near these frequencies can be most effectively controlled by the actuator installation.

Figure 6.12: FEM analytical transfer function between actuator inputs and vertical response at tip of vertical tail

Transfer functions between the actuators and the twelve accelerometer sensors are computed from experimental data. A sine sweep method is used to collect the necessary vibration response data over the 10 Hz to 80 Hz frequency range. The actuators are commanded at a specific sinusoidal frequency to produce a bending moment and excite the tailboom structure. After the vibrations reach a steady state level, the accelerometer
signals are captured for a short time period. The data capture process is repeated multiple times at numerous frequencies in the 10 to 80 Hz range. The experimental data is postprocessed to compute the transfer function, which is defined as the ratio of measured acceleration amplitude to the measured actuator force amplitude. An experimentally determined transfer function for the vertical tail vibration is displayed in Figure 6.13. The largest vibration levels, produced by the actuator installation, occur at three frequencies $(14,25.1,71.5 \mathrm{~Hz})$, which correspond to experimentally determined natural frequencies. The overall shape of the transfer function and the peak values are comparable to FEM analysis transfer function (Figure 6.12).

Figure 6.13: Experimental transfer function between actuator inputs and vertical response at tip of vertical tail

Vibrations at or very near the peak value frequencies can be most effectively controlled by the actuator installation. To illustrate a specific example consider actuator inputs at a 14 Hz frequency, the maximum force output of the actuator is 64 pounds; therefore, the maximum actuator induced vibration would be $1.98 \mathrm{~g}(0.0309 * 64)$. Thus, electromagnetic shaker inputs at 14 Hz , which produce 1.98 g at the vertical tail, can be suppressed by the stack actuator installation. The transfer function can be used similarly to assess the control authority of the actuator installation at other excitation frequencies.

To demonstrate the vibration control ability of the actuator installation, a test case is formulated. First, the tailboom model is excited at 14 Hz by the electromagnetic shaker to produce 0.6 g of vibration at the vertical tail. The shaker-induced vibration is then cancelled by the actuator induced bending moment. For demonstration safety purposes, the shaker input is chosen to be conservative; however, the actuator installation is able to suppress 1.98 g vibration levels. A time history plot of the vibration control test is shown in Figure 6.14. Initially the vibration amplitude is 0.6 g , and the vibration amplitude quickly decays below 0.1 g after the actuators are activated.

Figure 6.14: Tailboom active vibration control demonstration

Dynamic strain and stress in the vicinity of the actuator installation is examined to determine the effect of the actuator installation on the structure stresses. The tailboom is instrumented with strain gages on the four corner stringers and the actuator attachment frames. On the stringers, strain gages are installed near the root end and near both ends of the stack actuator. Strain gages are also installed on the actuator attachment frames near the point of actuator attachment. Dynamics strains are measured on the baseline tailboom structure, before the actuator installation, and after the actuators are installed. Three vibration scenarios are formulated and examined for comparison. On the baseline structure, dynamic strains are measured when the tailboom is excited by the electromagnetic shaker. The shaker input is commanded at 14 Hz , to excite the first vertical bending mode, and produce 1.0 g of vibration at the free end of the tailboom vertical stabilizer. It is worth noting that the tailboom response is linear, and the following results can be scaled with respect to initial vibration level. After the actuators are installed, the tailboom is again excited by the shaker, and strain data is collected. The third case studied is a vibration cancellation scenario, where the piezoelectric stack actuators are commanded to produce a bending moment that cancels the tailboom vibration caused by the electromagnetic shaker input. Dynamic stress values are computed from the experimentally measured strain data collected for each case study. A comparison of the dynamic stress results is illustrated in Figure 6.15. In the corner stringers, a measurable reduction of stress is observed after installation of the actuators. Substantial stress reductions in the corner stringers are evident when comparing case two and case three.

Figure 6.15: Comparison of tailboom dynamic stress levels, before and after actuator installation

These stress reductions are expected since the vibration and tailboom motion are being reduced by the actuator actions. However, stress levels in the actuator attachment frames are nearly doubled for the vibration cancellation scenario. The increase of stress in the attachment frames is however not detrimental, because the stress levels remain well below the endurance limit of 9000 psi for aluminum materials [47].

6.7 Summary and Conclusion

An analytical and experimental investigation is conducted on a scaled model of a helicopter tailboom. The scaled tailboom model is used to study the actuation design and realization issues associated with integrating dual-point actuation into a semi-monocoque airframe structure. Excellent correlation of static deflection and dynamic response is observed between the analytical tailboom model predictions and the experimental data. A
piezoelectric stack actuator configuration is designed and installed on the tailboom model. Successful design of the actuator installation is accomplished without altering the natural frequencies of the tailboom structure. Fair correlation of the frequency response transfer functions is observed between the analytical FEM model prediction and the experimentally determined transfer function. Experimental tests indicate the stack actuator configuration is able to produce a bending moment and suppress vibration induced by external shaker loads. The actuator installation does not significantly alter the uncontrolled dynamic stresses of the tailboom structure. In other words, vibration suppression is achieved without creating excessive stress in the structure near the actuator installation.

Chapter 7

CONCLUSION AND FUTURE RESEARCH

7.1 Thesis Summary and Conclusions

Reducing helicopter airframe vibrations has numerous payoffs with regard to passenger comfort, weapons sighting, structural fatigue, production costs, and maintenance costs. Airframe vibrations are caused by several important excitation sources; however, the dominant sources are the $N /$ rev main rotor hub forces and moments. Historically, helicopter vibrations have been addressed with passive control methods, and considerable progress has been made in designing rotorcraft with lower vibration levels. However, vibration specifications continue to be ever more stringent, and there are continued efforts to strive for more effective vibration control measures. Therefore, active vibration control methods are receiving considerable attention and study. An extensive literature search on helicopter active vibration control methods was conducted. Helicopter active vibration control can be broadly categorized as either rotorbased or airframe-based. Rotor-based systems apply control actions in the main rotor system, and control actions of the airframe-based systems are applied within the helicopter airframe structure. Rotor-based active control methods reduce the oscillatory hub loads, but may not be capable or efficient at controlling excitations that do not enter the airframe through the main rotor hub. Until all problematic excitation sources are
eliminated, some type of airframe-based control system is required to meet more stringent vibration specifications.

One of the more promising airframe-based active control approaches is commonly referred to as Active Control of Structural Response (ACSR). In general terms, an ACSR system consists of airframe mounted sensors, a control computer, and a set of force actuators mounted on the airframe. Vibration control is achieved by the superposition of an actuator-induced airframe response with the response caused by external loads. Numerous analytical and experimental studies have been conducted on variations of the ACSR control approach. Study and flight-testing of airframe-based approaches have demonstrated significant vibration suppression and enough promise to begin appearing on production rotorcraft. Limitations of the current airframe-based active control approaches were identified from the literature search materials. Actuator placement, in the airframebased systems, is based largely upon engineering experience and limitations imposed by retrofitting an existing airframe structure. Some researchers have concluded that actuator locations, different from their selected locations, may yield a more effective active vibration control system. They also concluded that a larger number of small actuators may be more effective than a fewer number of large actuator devices. Thus, smaller actuators could be placed at more locations in the airframe and avoid the unfortunate circumstance of placing all actuators near modal nodes. The helicopter airframe is a complex structure, and it has a complex dynamic response; therefore, determining the best actuator locations is not a simple task. Distributing actuators at optimal locations in
the airframe needs to be studied to investigate feasibility and examine the potential for improving vibration suppression.

A literature review has been conducted on actuator placement techniques. Numerous approaches have been formulated to determine actuator locations for the active control of flexible structures. The actuator placement problem is typically solved by an optimization technique to maximize or minimize a cost function. The optimization problem has been solved with gradient-based techniques and non-gradient techniques. Various performance metrics have been formulated for the optimization cost function, such as; metrics based on the entries of the actuator influence matrix, metrics formed from the controllability grammian, metrics to maximize the energy dissipation, and metrics to minimize the system energy. A formal optimization procedure for actuator placement has not been applied to the helicopter for active structural control purposes. Therefore, a need exists to formulate an optimization procedure for the unique features of actuator placement in rotorcraft active vibration control. The majority of present day helicopter airframes are of semi-monocoque construction; therefore, actuator placement within an airframe is most likely relegated to a finite number of distinct locations. Unlike simple continuous beam or plate structures, the actuator placement in helicopter airframes is discrete in nature, and non-gradient optimization algorithms are well suited for the discrete actuator placement problem. In addition, the non-gradient approaches are less likely to converge to a local minimum solution. Helicopter vibration excitation is known to occur at discrete frequencies, rather than excitation over a broad frequency range.

Active control of specific structural modes has been attempted by other researchers; however, such an approach requires a priori knowledge of which modes are significant or which modes are to be controlled. Researchers have demonstrated the influence of control laws and performance objectives on the actuator placement problem; therefore, an optimization procedure for actuator placement in the helicopter airframe should incorporate a control law. Drawing on the knowledge acquired from previous researchers, an optimization procedure is formulated for the unique characteristics of helicopter airframe vibration control.

To overcome the limitations of present active control systems and advance the state-of-the-art, a new actuator placement and active structure design methodology is proposed and explored. The proposed methodology is termed the Optimally Distributed Actuation Realization Methodology (ODARM), which is versatile enough to be applied to any rotorcraft. ODARM is a four-part methodology that relies heavily on numerical computation, modeling, and analysis. The first step of ODARM is to create a detailed numerical finite element model of the helicopter airframe. The second step is to create a reduced order model of the airframe and apply an optimization procedure to determine actuation placement and control action. The optimization procedure is applied to the reduced order airframe model, and the results indicate the actuation locations, types of actuation, and the necessary control effort. In the third step of the ODARM, the detailed airframe finite element model is utilized for analysis and design. The third step is to use the optimization results for guidance, and design a detailed actuator configuration that
produces the desired control actions. The fourth and final step of the ODARM is to utilize the analytical knowledge acquired in the previous steps to install the hardware and realize the active vibration control system in the actual helicopter structure.

Two dynamic models of the helicopter airframe and an optimization procedure are utilized within the ODARM methodology. One of the dynamic models is a reduced order representation of the helicopter airframe. Airframe model reduction is an essential part of the ODARM methodology in order to reduce the optimization problem to a manageable size. Numerous model reduction techniques exist, however, one particular reduction method is recommended for the proposed design methodology. The recommended reduction procedure creates the mass and stiffness matrices of a reduced order elastic line model representation from the mass and stiffness matrices of a much larger finite element model of the helicopter airframe. The reduced mass and stiffness matrices are produced by separate static condensation routines. Unlike some other reduction techniques, this method retains a geometric relationship between the large finite element model and the reduced order model. Each node of the reduced order elastic line model geometrically corresponds to one node of the detailed finite element model. Thus, an actuator location in the reduced order model is easily translated to a geometric region in the larger finite element model.

An optimization procedure is developed to simultaneously determine the actuation type, the optimal actuation locations, and the optimal control action. The
proposed optimization method is a hybrid approach that couples a control law and an optimization routine for actuator placement. The selected control law is based on optimal control theory and is commonly used for rotorcraft active vibration control applications. The optimization procedure is formulated as a constrained minimization problem with a quadratic objective function. The optimization algorithm to be coupled with the control law is called Simulated Annealing. The Simulated Annealing algorithm is a probabilistic search technique to find a global minimizer. This algorithm is selected for the optimization procedure, because it is compatible with certain features of the design problem. The actuation locations are confined to discrete positions at reduced order model nodes; therefore, the design variables are discontinuous. Unlike gradient-based techniques, the Simulated Annealing algorithm is compatible with discrete design variables. In addition, our analysis revealed that the objective function contains multiple local minima. The Simulated Annealing routine is capable of escaping local minima and more likely to find a global minimum.

A new approach has been formulated to examine the feasibility and effectiveness of optimal actuation placement for active control of helicopter vibrations. A numerical study was performed, on a reduced order airframe model, comparing distributed actuation configurations to a representative state-of-the-art centralized actuation configuration. The following observations were made with regard to the investigation results. The optimally distributed actuation configurations are significantly more effective than centralized actuation. One case study shows the centralized actuation reduced vibration by 49%, but
the distributed configuration achieved a 96% vibration reduction with similar control effort. The optimization procedure can be tailored to emphasize both vibration and control effort reductions. In another case study, the distributed actuation configuration achieves a 90% reduction of vibration and requires 50% less control effort than the centralized configuration. The optimization procedure and a multi-objective function can be utilized to search for an actuation configuration that performs effectively for multiple excitation conditions. A case study demonstrated that the multi-objective optimized actuation configuration outperforms the centralized configuration for each excitation condition. The optimization procedure can be applied to determine the minimum number of actuation locations for adequate vibration suppression. In the scenario studied, it is found that four optimally distributed actuation locations are more effective than centralized configuration. The four distributed configuration achieves 10% more vibration reduction and requires 41% less control effort relative to the centralized configuration.

Vibration and distributed actuation analysis was conducted with a large NASTRAN finite element model of the helicopter airframe. Distributed actuation control and centralized actuation control were applied to the NASTRAN airframe model. Distributed control predicted a 73% vibration reduction and required 50% less control effort than centralized actuation. When compared to the reduced order model analysis, the disparity between centralized control and distributed control was not as pronounced with the NASTRAN model analysis. However, distributed actuation control is still
superior to centralized control, producing greater vibration suppression with less control effort. Dynamic stresses of the NASTRAN airframe model were examined for both the uncontrolled and controlled vibration conditions. For a controlled vibration condition, the majority of the element stresses were reduced. Dynamic stress levels in more of the finite elements are reduced by the distributed control, 82% versus 68% for the centralized control. It was observed that the largest dynamic stresses were not always near the location of external or actuation applied loads. Thus, stress levels need to be examined in all regions of the airframe.

An analytical and experimental investigation was conducted on a scaled model of a helicopter tailboom. The scaled tailboom model was used to study the actuation design and realization issues associated with integrating dual-point actuation into a semimonocoque airframe structure. Excellent correlation of static deflection and dynamic response was observed between the analytical tailboom model predictions and the experimental data. A piezoelectric stack actuator configuration was designed and installed on the tailboom model. Successful design of the actuator installation was accomplished without altering the natural frequencies of the tailboom structure. Experimental results indicate the stack actuator configuration is able to produce a bending moment to suppress vibration induced by external shaker loads at the tailboom end. The actuator installation did not significantly alter the uncontrolled dynamic stresses of the tailboom structure. In other words, vibration suppression is achieved without creating excessive localized stress in the structure.

7.2 Future Research Recommendations

A comprehensive research project has been conducted and many findings have been discovered with respect to distributed actuation to control helicopter vibrations. Although the project was executed with specific objectives and many inquiries were addressed, new research issues arose during the course of the project. Some of the new issues are beyond the scope of this research program or could not be investigated due to the time constraints associated with a finite project length. Continuing research programs can be formulated to address many related topics; however, the following topics are recommended in order to make significant contributions to rotorcraft active vibration control.

Distributed actuation applied to the NASTRAN FE model was restricted to one dual-point actuation concept (Figure 5.6). Control forces are applied at the intersection of stringers and adjacent frame members of the airframe structure. The dual-point actuation concept can be commanded to produce a net force or bending moment within the localized structure. Another research topic worthy of investigation is to formulate and examine other dual-point actuation concepts that mimic the control actions applied to the reduced order airframe model. For example, a new actuation concept illustrated in Figure 7.1 could be the formulation of an active frame member to replace an existing passive frame member of the airframe. The active frame member would generate a force and displacement distribution around its perimeter. Forces would then be transferred to the stringers and skin, which are connected to both sides of the active frame member.

Figure 7.1: Active frame member actuation concept (future research)

Specific actuator devices were not selected or modeled in the present study to realize distributed actuation systems. The intent was to keep the analysis general and robust by not committing to a particular actuator device. In addition, actuator selection can be delayed until the later stages of the Optimally Distributed Actuation Realization Methodology. Thus, a future research topic could be an actuator selection and comparison study or an actuator design study for this specific application. Actuator types worth considering are hydraulic actuators, electro-mechanical, piezoelectric, or some hybrid combination.

A scaled tailboom structure, which incorporates conventional piezoelectric stack actuators, was fabricated for vibration control studies. Control authority of the actuator installation was limited by the one-directional (push only) nature of the commercial stack actuators. The actuator installation required structural preload, which added complexity
to the installation. A recommendation for future research is to install push-pull actuation devices in the tailboom structure and assess their control authority relative to the currently installed conventional stack actuators. Bi-directional push and pull actuators may eliminate the need for structural preload, which simplifies the actuator installation and may improve the actuation authority. One possible actuator recommended for consideration is a new piezoelectric stack actuator design developed by Heverly et al. [52] in a study independent of the research contained in this thesis. Their stack actuator design is a push-pull device, does not require preload, and produces greater output than a conventional piezoelectric stack actuator design. A detailed report on the new stack actuator design can be found in reference 52 .

In the early stages of the research investigation, an engineering decision was made that restricted actuation to dual-point concepts for analysis and study. In light of the fact that dual-point actuation may require up to 6 actuator devices to realize an airframe bending moment, the weight penalty of single-point actuation may not be as dramatic as initially anticipated. Therefore, future research should revisit the distributed actuation optimization and incorporate single-point actuation concepts. It may be found that the optimal distribution may include both single-point and dual-point actuation. In addition, a penalty function, based on actuation device weight, could be formulated and added to the optimization objective function to distinguish between single-point and dual-point actuation.

BIBLIOGRAPHY

1. Loewy, R. G., "Helicopter Vibrations: A Technological Perspective," Journal of the American Helicopter Society, Vol. 29, No. 4, Oct. 1984, pp. 4-30.
2. Johnson, W., "Helicopter Theory," New York, Dover Publications, Inc., 1994, pp. 694-707.
3. Bielawa, R. L., "Rotary Wing Structural Dynamics and Aeroelasticity," Washington DC, American Institute of Aeronautics and Astronautics, AIAA Education Series, 1992, pp. 163-208.
4. Friedmann, P. P., and Millott, T. A., "Vibration Reduction in Rotorcraft Using Active Control: A Comparison of Various Approaches,"_Proceedings of the 1994 American Helicopter Society Aeromechanics Specialists Conference, San Francisco, CA, 1994, pp. 7.6-1 to 7.6-19.
5. Teal, R. S., McCorvey, D. L., and Malloy, D., "Active Vibration Suppression for the CH-47D," Proceedings of the 53 rd Annual Forum of the American Helicopter Society, Virginia Beach, VA, 1997, pp. 211-219.
6. King, S. P., and Staple, A. E., "Minimization of Helicopter Vibration through Active Control of Structural Response," Proceedings of AGARD Conference, Rotorcraft Design for Operations, AGARD, 1986, (N88-1164903-05).
7. Staple, A. E., "Evaluation of Active Control of Structural Response as a Means of Reducing Helicopter Vibration," Proceedings of the $46^{\text {th }}$ Annual Forum of the American Helicopter Society, Washington, DC, 1990, pp. 3-17.
8. Goodman, R. K., and Millott, T. A., "Design, Development, and Flight Testing of the Active Vibration Control System for the Sikorsky S-92," Proceedings of the 56th Annual Forum of the American Helicopter Society, Virginia Beach, VA, 2000, pp. 764-771.
9. Welsh, W. A., Von Hardenberg, P. C., Von Hardenberg, P. W., and Staple, A. E., "Test and Evaluation of Fuselage Vibration Utilizing Active Control of Structural Response (ACSR) Optimized to ADS-27," Proceedings of the $46^{\text {th }}$ Annual Forum of the American Helicopter Society, Washington, DC, 1990, pp. 21-37.
10. Kvaternik, R., G., "The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - A Government Overview," Proceedings of the

AIAA/ASME/ASCE/AHS/ASC, $33^{\text {rd }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC, 1992, pp. 1103-1112 (AIAA 92-2200-CP).
11. Cronkhite, J., "The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - Bell Helicopter Textron Accomplishments," Proceedings of the AIAA/ASME/ASCE/AHS/ASC, 33 ${ }^{\text {rd }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC, 1992, pp. 1113-1125 (AIAA 92-2201-CP).
12. Gabel, R., Lang, P., and Reed, D., "The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - Boeing Helicopters Airframe Finite Element Modeling," Proceedings of the AIAA/ASME/ASCE/AHS/ASC, $33^{\text {rd }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC, 1992, pp. 1126-1137 (AIAA 92-2202-CP).
13. Toossi, M., Weisenburger, R., and Hashemi-Kia, M., "The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - McDonnell Douglas Helicopter Company Achievements," Proceedings of the AIAA/ASME/ASCE/AHS/ASC, $33^{\text {rd }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC, 1992, pp. 1138-1148 (AIAA 92-2203-CP).
14. Twomey, W., "The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - Sikorsky Aircraft - Advances Toward Interacting With The Airframe Design Process," Proceedings of the AIAA/ASME/ASCE/AHS/ASC, $33^{\text {rd }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC, 1992, pp. 1149-1158 (AIAA 92-2204-CP).
15. Hashemi-kia, M. and Toossi, M., "Finite Element Model Reduction Application to Parametric Studies and Optimization of Rotorcraft Structures," Proceedings of the $46^{\text {th }}$ Annual Forum of the American Helicopter Society, Washington, DC, 1990, pp. 139-154.
16. Chiu, T., and Friedmann, P. P., "A Coupled Helicopter Rotor/Fuselage Aeroelastic Response Model For ACSR," Proceedings of the AIAA/ASME/ASCE/AHS/ASC, $36^{\text {th }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, New Orleans, LA, 1995, pp. 574-600 (AIAA Paper 95-1226-CP).
17. Chiu, T., and Friedmann, P. P., "Vibration Suppression in Helicopter Rotor/Flexible Fuselage System Using the ACSR Approach With Disturbance

Rejection," Proceedings of the 52 ${ }^{\text {nd }}$ Annual Forum of the American Helicopter Society, Washington, DC, 1996, pp. 736-757.
18. Cribbs, R. C., and Friedmann, P. P., "Vibration Suppression in Helicopters Using The ACSR Approach With Improved Aerodynamic Modeling," Proceedings of the AIAA/ASME/ASCE/AHS/ASC, 40 ${ }^{\text {th }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, St. Louis, MO, 1999, pp. 110-125 (AIAA Paper 991218).
19. Hanagud, S., and Babu, G. L., "Smart Structures in the Control of Airframe Vibrations," Journal of the American Helicopter Society, Vol. 39, No. 2, 1994, pp. 69-72.
20. Schrage, D. P., and Peskar, R. E., "Helicopter Vibration Requirements," Proceedings of the $33^{\text {rd }}$ Annual Forum of the American Helicopter Society, Washington, DC, 1977, pp. 77.33-33-1 to 77.33-33-9.
21. Crews, S. T., "Rotorcraft Vibration Criteria, A New Perspective," Proceedings of the $43^{\text {rd }}$ Annual Forum of the American Helicopter Society, St Louis, MO, 1987, pp. 991-998.
22. Welsh, W., Fredrickson, C., and Rauch, C., "Flight Test of an Active Vibration Control System on the UH-60 Black Hawk Helicopter," Proceedings of the $51^{\text {st }}$ Annual Forum of the American Helicopter Society, Fort Worth, TX, 1995, pp. 393-402.
23. Kawaguchi, H., Bandoh, S., and Niwa, Y., "The Test Results of AVR (Active Vibration Reduction) System," Proceedings of the $52^{\text {nd }}$ Annual Forum of the American Helicopter Society, Washington, DC, 1996, pp. 123-136.
24. Aso, M., and Bandoh, S., "The Development of the Total Vibration Reduction (TVR) System," Proceedings of the 55th Annual Forum of the American Helicopter Society, Montreal, Quebec, Canada, 1999, pp. 202-208.
25. Settle, T. B., and Nixon, M. W., "MAVSS Control of an Active Flaperon for Tiltrotor Vibration Reduction," Proceedings of the 53 ${ }^{\text {rd }}$ Annual Forum of the American Helicopter Society, Virginia Beach, VA, 1997, pp. 1177-1193.
26. Lim, K. B., "Method for Optimal Actuator and Sensor Placement for Large Flexible Structures," Journal of Guidance, Control, and Dynamics, Vol. 15, No. 1, 1992, pp. 49-57.
27. Xu, K., Warnitchai, P., and Igusa, T., "Optimal Placement and Gains of Sensors and Actuators for Feedback Control," Journal of Guidance, Control, and Dynamics, Vol. 17, No. 5, 1994, pp. 929-934.
28. Schulz, G., and Heimbold, G., "Dislocated Actuator/Sensor Positioning and Feedback Design for Flexible Structures," Journal of Guidance, Control, and Dynamics, Vol. 6, No. 5, 1983, pp. 361-367.
29. DeLorenzo, M. L., "Sensor and Actuator Selection for Large Space Structural Control," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 2, 1990, pp. 249-257.
30. Choe, K., and Baruh, H., "Actuator Placement in Structural Control," Journal of Guidance, Control, and Dynamics, Vol. 15, No. 1, 1992, pp. 40-48.
31. Singiresu, R., and Tzong-Shii, P., "Optimal Placement of Actuators in Actively Controlled Structures Using Genetic Algorithms," AIAA Journal, Vol. 29, No. 6, 1991, pp. 942-944.
32. Kirby, G., Matic, P., and Lindner, D., "Optimal Actuator Size and Location Using Genetic Algorithms for Multivariable Control," Proceedings of the ASME International Congress and Exposition, ASME, Chicago, IL, Vol. 45, 1994, pp. 325-335.
33. Sepulveda, A., Jin, I., and Schmit, L., "Optimal Placement of Active Elements in Control Augmented Structural Synthesis," Proceedings of the AIAA/ASME/ASCE/AHS/ASC, $33^{\text {rd }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC, 1992, pp. 2768-2787 (AIAA 92-2557-CP).
34. Maghami, P., and Joshi, S., "Sensor-Actuator Placement for Flexible Structures with Actuator Dynamics," Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, 1993, pp. 301-307.
35. Lindberg, R., and Longman, R., "On the Number and Placement of Actuators for Independent Modal Space Control," Journal of Guidance, Control, and Dynamics, Vol. 7, No. 2, 1984, pp. 215-221.
36. Venkatesan, C., and Udayasankar, A., "Selection of Sensor Locations for Active Vibration Control of Helicopter Fuselages," Journal of Aircraft, Vol. 36, No. 2, 1999, pp. 434-442.
37. Devore, J. L., "Probability and Statistics for Engineering and the Sciences," Monterey, CA, Wadsworth, Inc., 1987, pp. 46-52.
38. Gangwani, S. T., "Calculation of Rotor Wake Induced Empennage Airloads," Journal of the American Helicopter Society, Vol. 28, No. 2, 1983, pp. 37-46.
39. Yeo, H. and Chopra, I., "Coupled Rotor/Fuselage Vibration Analysis Using Detailed 3-D Airframe Models," Proceedings of the AIAA/ASME/ASCE/ AHS/ASC, $40^{\text {th }}$ Structures, Structural Dynamics, and Materials Conference, AIAA, St. Louis, MO, 1999, pp. 126-145 (AIAA Paper 99-1219).
40. Johnson, W., "Self-Tuning Regulators for Multicyclic Control of Helicopter Vibration," NASA Technical Paper, NAS 1.60:1996, A-8719, 1982, (ISSN: 01488341).
41. Haftka, R. T., and Gurdal, Z., "Elements of Structural Optimization," Kluwer Academic Publishers, Third Edition, 1992, pp. 145-149.
42. Corana, A., Marchesi, M., Martini, C., and Ridella, S., "Minimizing Multimodal Functions of Continuous Variables with the "Simulated Annealing" Algorithm," Association for Computing Machinery Transactions on Mathematical Software, ACM, Vol. 13, No. 3, 1987, pp. 262-280.
43. Huang, M. W., and Arora J. S., "Optimal Design with Discrete Variables: Some Numerical Experiments," International Journal for Numerical Methods in Engineering, Vol. 40, 1997, pp. 165-188.
44. The Math Works Inc., "MATLAB, Technical Computing Software, Version 5," The Math Works Inc., Natick, MA, 1996.
45. The Math Works Inc., "Using MATLAB," The Math Works Inc., Natick, MA, Version 5, 1996.
46. MacNeal-Schwendler Corp., "MSC/Nastran User's Manual," MacNealSchwendler Corporation, Los Angeles, CA, Version 66, Vol. 1, 1988.
47. MacNeal-Schwendler Corp., "MSC/Nastran User's Manual," MacNealSchwendler Corporation, Los Angeles, CA, Version 66, Vol. 2, 1988.
48. Spotts, M. F., "Design of Machine Elements," 6 edition, Englewood Cliffs, Prentice-Hall, 1985.
49. Ross, C. T. F., "Finite Element Methods in Structural Mechanics," Chichester, Ellis Horwood, 1985.
50. NASA, "NASTRAN Theoretical Manual," National Aeronautics and Space Administration, Washington D.C., 1981, NASA SP-221(06).
51. Giurgiutiu, V., and Rogers, C. A., "Power and Energy Characteristics of SolidState Induced-Strain Actuators for Static and Dynamic Applications," Journal of Intelligent Material Systems and Structures, Vol. 8, 1997, pp. 738-750.
52. Heverly, D. E., Wang, K. W., and Smith, E. C., "A New Dual Stack Piezoelectric Actuation Device with Improved Performance," Proceedings of SPIE Conference on Smart Structures and Materials, Vol. 4701, 2002, San Diego, CA.

Appendix A

HELICOPTER AIRFRAME MODEL AND COMPUTER SOURCE CODES

Reduced Order Model (ROM) description, node numbering, and coordinate locations
\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { ROM } \\
\text { Node } \\
\text { Number }\end{array} & \begin{array}{c}\text { Nastran } \\
\text { FEM } \\
\text { Node } \\
\text { Number }\end{array} & \begin{array}{c}\text { X } \\
\text { Global } \\
\text { Coordinate } \\
\text { [in.] }\end{array} & \begin{array}{c}\text { Y } \\
\text { Global } \\
\text { Coordinate } \\
\text { [in.] }\end{array}
$$ \& \begin{array}{c}Z

Global

Coordinate

[in.]\end{array} \& Location Description\end{array}\right]\)| Mast base right side |
| :---: |
| 1 |
| 2 |

ROM Node Number	Nastran FEM Node Number	X Global Coordinate [in.]	Y Global Coordinate [in.]	Z Global Coordinate [in.]	Location Description

ROM Node Number	Nastran FEM Node Number	X Global Coordinate [in.]	Y Global Coordinate [in.]	Z Global Coordinate [in.]	Location Description
51	23010	230.0	23.75	145.5	Right rear airframe attachment point for mast base supporting strut
52	23011	230.0	-23.75	145.5	Left rear airframe attachment point for mast base supporting strut
53	23800	238.9	0.0	129.2	Engine attachment
54	24000	239.6	38.3	165.3	Engine right
55	24001	239.5	-37.2	165.3	Engine left
56	24700	247.7	0.0	129.2	Tailboom frames
57	25800	258.5	0.0	129.2	Tailboom frames
58	26900	269.2	0.0	129.2	Tailboom frames
59	28000	280.0	0.0	129.2	Tailboom frames
60	29000	290.0	0.0	129.2	Tailboom frames
61	30000	300.0	0.0	129.2	Tailboom frames
62	31000	310.0	0.0	129.2	Tailboom frames
63	32000	320.0	0.0	129.2	Tailboom frames
64	33000	330.0	0.0	129.2	Tailboom frames
65	34000	340.0	0.0	129.2	Tailboom frames
66	35000	350.0	0.0	129.2	Tailboom frames
67	36000	360.0	0.0	129.2	Tailboom frames
68	37000	370.0	0.0	129.2	Tailboom frames
69	38300	383.0	0.0	129.2	Tailboom frames
70	39600	396.6	0.0	129.2	Tailboom frames
71	40900	409.9	0.0	129.2	Tailboom frames
72	42300	423.2	0.0	129.2	Tailboom frames
73	43600	436.5	0.0	129.2	Tailboom frames
74	45000	450.0	0.0	129.2	Tailboom frames
75	46300	463.3	0.0	129.2	Tailboom frames
76	47600	476.6	0.0	129.2	Tailboom frames
77	48900	489.9	0.0	129.2	Tailboom frames
78	50300	503.2	0.0	129.2	Tailboom frames

ROM Node Number	Nastran FEM Node Number	X Global Coordinate [in.]	Y Global Coordinate [in.]	Z Global Coordinate [in.]	Location Description
79	51600	516.5	0.0	129.2	Tailboom frames
80	53000	530.1	0.0	129.2	Frame at Vertical Stabilizer
81	54700	547.2	0.0	129.2	Tailboom frame (Tail end)
82	55401	576.7	0.0	242.2	Vertical Stabilizer Top
83	55403	554.8	0.0	189.2	Vertical Stabilizer
84	55404	538.5	0.0	149.6	Vertical Stabilizer
85	56501	553.8	-64.0	147.2	Horizontal Stabilizer Left
86	56502	553.8	-40.0	147.2	Horizontal Stabilizer
87	56503	553.8	-21.0	147.2	Horizontal Stabilizer
88	56504	553.8	-5.7	147.2	Horizontal Stabilizer
89	56505	553.8	0.0	147.2	Horizontal Stabilizer Center
90	56506	553.8	5.7	147.2	Horizontal Stabilizer
91	56507	553.8	21.0	147.2	Horizontal Stabilizer
92	56508	553.8	40.0	147.2	Horizontal Stabilizer
93	56509	553.8	64.0	147.2	Horizontal Stabilizer Right
94	57004	578.0	0.0	109.8	Tail landing gear

Reduced Order Model (ROM) element topology and node connectivity

ROM Element Number	Start Node Number	End Node Number	ROM Element Number	Start Node Number	End Node Number
1	5	6	51	42	43
2	6	7	52	43	44
3	2	7	53	44	45
4	1	7	54	45	46
5	3	7	55	46	47
6	4	7	56	47	48
7	27	2	57	13	49
8	28	2	58	49	50

9	27	1	59	50	53
10	51	1	60	53	54
11	51	3	61	53	55
12	52	3	62	53	56
13	52	4	63	56	57
14	28	4	64	57	58
15	26	27	65	58	59
16	26	28	66	59	60
17	50	51	67	60	61
18	50	52	68	61	62
19	8	9	69	62	63
20	9	10	70	63	64
21	10	11	71	64	65
22	11	12	72	65	66
23	12	14	73	66	67
24	14	15	74	67	68
25	15	16	75	68	69
26	16	21	76	69	70
27	21	17	77	70	71
28	17	19	78	71	72
29	21	18	79	72	73
30	18	20	80	73	74
31	21	22	81	74	75
32	22	23	82	75	76
33	23	24	83	76	77
34	24	25	84	77	78
35	25	26	85	78	79
36	26	29	86	79	80
37	29	30	87	80	81
38	30	13	88	81	94
39	13	31	89	80	84
40	31	32	90	84	83

ROM Element Number	Start Node Number	End Node Number	ROM Element Number	Start Node Number	End Node Number
41	32	33	91	83	82
42	33	34	92	84	89
43	34	35	93	85	86
44	35	36	94	86	87
45	36	37	95	87	88
46	37	38	96	88	89
47	38	39	97	89	90
48	13	40	98	90	91
49	40	41	99	91	92
50	41	42	100	92	93

Reduced Order Model (ROM) eigenvalues and natural frequencies

ROM Mode Number	ROM Eigenvalue $[\mathrm{rad} 2 / \mathrm{sec} 2]$	ROM Natural Frequency $[\mathrm{rad} / \mathrm{sec}]$	ROM Natural Frequency $[\mathrm{Hz}]$
1	810.0110	28.4607	4.5297
2	1454.5899	38.1391	6.0700
3	2797.6076	52.8924	8.4181
4	2844.6105	53.3349	8.4885
5	3437.5566	58.6307	9.3314
6	3793.7209	61.5932	9.8029
7	4407.6180	66.3899	10.5663
8	5681.0616	75.3728	11.9960
9	5792.8408	76.1107	12.1134
10	6845.1728	82.7356	13.1678
11	7912.9089	88.9545	14.1576
12	8263.5344	90.9040	14.4678
13	9667.1921	98.3219	15.6484
14	10432.5112	102.1397	16.2560
15	11195.6122	105.8093	16.8401

	ROM Eigenvalue [rad2/sec2]	ROM Natural Frequency [rad/sec]	ROM Natural Frequency [Hz]
16	13055.0758	114.2588	18.1849
17	13456.7049	116.0030	18.4625
18	19127.3352	138.3016	22.0114
19	19768.7459	140.6014	22.3774
20	20435.1590	142.9516	22.7515
21	21087.2903	145.2146	23.1116
22	22221.1291	149.0675	23.7248
23	24027.8629	155.0092	24.6705
24	27334.2541	165.3307	26.3132
25	29676.7177	172.2693	27.4175
26	31407.1545	177.2206	28.2055
27	33231.0449	182.2938	29.0130
28	39731.0999	199.3266	31.7238
29	42476.6994	206.0988	32.8016
30	44601.5953	211.1909	33.6121
31	45086.5751	212.3360	33.7943
32	46092.2201	214.6910	34.1691
33	47672.9382	218.3413	34.7501
34	52420.9350	228.9562	36.4395
35	55489.3864	235.5619	37.4908
36	57416.7301	239.6179	38.1364
37	59120.5900	243.1473	38.6981
38	65891.3587	256.6931	40.8540
39	69329.5299	263.3050	41.9063
40	72250.9632	268.7954	42.7801

The first twenty modes shapes of the Reduced Order Model are displayed in the following figures.

Mode Number 3 Freq. $=8.4181[\mathrm{~Hz}]$

Mode Number 5 Freq. $=9.3314[\mathrm{~Hz}]$

Mode Number 11 Freq. $=14.1576[\mathrm{~Hz}]$

Mode Number 8 Freq. $=11.996[\mathrm{~Hz}]$

Mode Number 12 Freq. $=14.4678[\mathrm{~Hz}]$

Mode Number 15 Freq. $=16.8401[\mathrm{~Hz}]$

Mode Number 17 Freq. $=18.4625[\mathrm{~Hz}]$

Mode Number 14 Freq. $=16.256[\mathrm{~Hz}]$

Mode Number 16 Freq. $=18.1849[\mathrm{~Hz}]$

Mode Number 18 Freq. $=22.0114[\mathrm{~Hz}]$

Mode Number 19 Freq. $=22.3774[\mathrm{~Hz}]$

Mode Number 20 Freq. $=22.7515[\mathrm{~Hz}]$

Actuation Unit definitions and relation to ROM

Actuation Unit Identification NumberActuation Unit Type	First ROM Node Number	First ROM Global D.O.F.	Second ROM Node Number	Second ROM Global D.O.F.	Elastic Axis Offset [in.]	
1	FAU	8	43	9	49	1
2	MAU	8	47	9	53	17
3	MAU	8	48	9	54	18
4	FAU	9	49	10	55	1
5	MAU	9	53	10	59	17
6	MAU	9	54	10	60	18
7	FAU	10	55	11	61	1
8	MAU	10	59	11	65	17
9	MAU	10	60	11	66	20
10	FAU	11	61	12	67	1
11	MAU	11	65	12	71	9
12	MAU	11	66	12	72	23
13	FAU	12	67	14	79	1
14	MAU	12	71	14	83	9
15	MAU	12	72	14	84	24
16	FAU	14	79	15	85	1

Actuation Unit Identification Number	Actuation Unit Type	First ROM Node Number	First ROM Global D.O.F.	Second ROM Node Number	Second ROM Global D.O.F.	Elastic Axis Offset [in.]
17	MAU	14	83	15	89	9
18	MAU	14	84	15	90	24
19	FAU	15	85	16	91	1
20	MAU	15	89	16	95	9
21	MAU	15	90	16	96	24
22	FAU	16	91	21	121	1
23	MAU	16	95	21	125	9
24	MAU	16	96	21	126	24
25	FAU	21	121	22	127	1
26	MAU	21	125	22	131	9
27	MAU	21	126	22	132	24
28	FAU	22	127	23	133	1
29	MAU	22	131	23	137	9
30	MAU	22	132	23	138	24
31	FAU	23	133	24	139	1
32	MAU	23	137	24	143	9
33	MAU	23	138	24	144	24
34	FAU	24	139	25	145	1
35	MAU	24	143	25	149	9
36	MAU	24	144	25	150	24
37	FAU	25	145	26	151	1
38	MAU	25	149	26	155	9
39	MAU	25	150	26	156	24
40	FAU	26	151	29	169	1
41	MAU	26	155	29	173	20
42	MAU	26	156	29	174	24
43	FAU	29	169	30	175	1
44	MAU	29	173	30	179	20
45	MAU	29	174	30	180	24
46	FAU	30	175	13	73	1
47	MAU	30	179	13	77	20
48	MAU	30	180	13	78	24

Actuation Unit Identification Number	Actuation Unit Type	First ROM Node Number	First ROM Global D.O.F.	Second ROM Node Number	Second ROM Global D.O.F.	Elastic Axis Offset [in.]
49	FAU	31	182	32	188	1
50	MAU	31	184	32	190	5
51	MAU	31	186	32	192	6
52	FAU	40	236	41	242	1
53	MAU	40	238	41	244	5
54	MAU	40	240	41	246	6
55	FAU	13	73	49	289	1
56	MAU	13	77	49	293	20
57	MAU	13	78	49	294	24
58	FAU	49	289	50	295	1
59	MAU	49	293	50	299	20
60	MAU	49	294	50	300	24
61	FAU	50	295	53	313	1
62	MAU	50	299	53	317	20
63	MAU	50	300	53	318	24
64	FAU	53	313	56	331	1
65	MAU	53	317	56	335	20
66	MAU	53	318	56	336	24
67	FAU	56	331	57	337	1
68	MAU	56	335	57	341	20
69	MAU	56	336	57	342	24
70	FAU	57	337	58	343	1
71	MAU	57	341	58	347	20
72	MAU	57	342	58	348	24
73	FAU	58	343	59	349	1
74	MAU	58	347	59	353	20
75	MAU	58	348	59	354	24
76	FAU	59	349	60	355	1
77	MAU	59	353	60	359	19
78	MAU	59	354	60	360	23
79	FAU	60	355	61	361	1
80	MAU	60	359	61	365	19

Actuation Unit Identification Number	Actuation Unit Type	First ROM Node Number	First ROM Global D.O.F.	Second ROM Node Number	Second ROM Global D.O.F.	Elastic Axis Offset [in.]
81	MAU	60	360	61	366	23
82	FAU	61	361	62	367	1
83	MAU	61	365	62	371	19
84	MAU	61	366	62	372	23
85	FAU	62	367	63	373	1
86	MAU	62	371	63	377	19
87	MAU	62	372	63	378	22
88	FAU	63	373	64	379	1
89	MAU	63	377	64	383	19
90	MAU	63	378	64	384	22
91	FAU	64	379	65	385	1
92	MAU	64	383	65	389	18
93	MAU	64	384	65	390	21
94	FAU	65	385	66	391	1
95	MAU	65	389	66	395	18
96	MAU	65	390	66	396	21
97	FAU	66	391	67	397	1
98	MAU	66	395	67	401	17
99	MAU	66	396	67	402	20
100	FAU	67	397	68	403	1
101	MAU	67	401	68	407	17
102	MAU	67	402	68	408	20
103	FAU	68	403	69	409	1
104	MAU	68	407	69	413	16
105	MAU	68	408	69	414	19
106	FAU	69	409	70	415	1
107	MAU	69	413	70	419	15
108	MAU	69	414	70	420	18
109	FAU	70	415	71	421	1
110	MAU	70	419	71	425	15
111	MAU	70	420	71	426	17
112	FAU	71	421	72	427	1

Actuation Unit Identification NumberActuation Unit Type	First ROM Node Number	First ROM Global D.O.F.	Second ROM Node Number	Second ROM Global D.O.F.	Elastic Axis Offset [in.]	
113	MAU	71	425	72	431	14
114	MAU	71	426	72	432	16
115	FAU	72	427	73	433	1
116	MAU	72	431	73	437	14
117	MAU	72	432	73	438	15
118	FAU	73	433	74	439	1
119	MAU	73	437	74	443	13
120	MAU	73	438	74	444	14
121	FAU	74	439	75	445	1
122	MAU	74	443	75	449	13
123	MAU	74	444	75	450	14
124	FAU	75	445	76	451	1
125	MAU	75	449	76	455	12
126	MAU	75	450	76	456	13
127	FAU	76	451	77	457	1
128	MAU	76	455	77	461	12
129	MAU	76	456	77	462	13
130	FAU	77	457	78	463	1
131	MAU	77	461	78	467	12
132	MAU	77	462	78	468	13
133	FAU	78	463	79	469	1
134	MAU	78	467	79	473	12
135	MAU	78	468	79	474	12
136	FAU	87	518	88	524	1
137	MAU	87	520	88	526	4
138	MAU	87	522	88	528	7
139	FAU	90	536	91	542	1
140	MAU	90	538	91	544	4
141	MAU	90	540	91	546	7
142	MAU	80	479	84	503	6
143	MAU	83	497	84	503	6

Actuation Unit Identification Number	Actuation Unit Type	First ROM Node Number	First ROM Global D.O.F.	Second ROM Node Number	Second ROM Global D.O.F.	Elastic Axis Offset [in.]
144	FAU	$\begin{aligned} & \hline 83 \\ & 83 \end{aligned}$	$\begin{aligned} & 493 \\ & 495 \end{aligned}$	$\begin{aligned} & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & 499 \\ & 501 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
145	FAU	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 475 \\ & 477 \end{aligned}$	$\begin{aligned} & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & 499 \\ & 501 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
146	MAU	$\begin{aligned} & \hline 83 \\ & 83 \end{aligned}$	$\begin{aligned} & \hline 496 \\ & 498 \end{aligned}$	$\begin{aligned} & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & 502 \\ & 504 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
147	MAU	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 478 \\ & 480 \end{aligned}$	$\begin{aligned} & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & 502 \\ & 504 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
148	CA	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 51 \\ & 51 \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 301 \\ & 302 \\ & 303 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
149	CA	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 51 \\ & 51 \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 301 \\ & 302 \\ & 303 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
150	CA	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 157 \\ & 158 \\ & 159 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
151	CA	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 157 \\ & 158 \\ & 159 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
152	CA	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 163 \\ & 164 \\ & 165 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
153	CA	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 163 \\ & 164 \\ & 165 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
154	CA	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 19 \\ & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & 307 \\ & 308 \\ & 309 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
155	CA	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & \hline 307 \\ & 308 \\ & 309 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$

Hydraulic Actuator, Model RD-41 specification data sheet, page 1 of 2

RD-Series, Precision Production Cylinders
Hydraulic Technology Worldwide

Fhown from kett to right: RD-2510, RD-96, RD-256, RD-41, RD-166

High Precision and High Cycle Performance

- Designed for long life, the best choice for production applications
- Unique mounting configurations simplify fixturing
- Baked enamel finish for increased corrosion resistance
- Double-acting operation develops force in both directions, providing maximum versatility
- Plunger wiper reduces contamination, extending cylinder life

This pacer milil uses RD cyifinders for precislan when tromming.														
Nominal Cyllinder Capactly	strocke	Madel Number	Max Cyllinder Capacity :tares:		$\begin{gathered} \text { Cyllinder Enfectlve } \\ \text { Ares } \\ \text { in! } \\ \hline \end{gathered}$		에 Cspacty:n'\|		Col. Height A Hif!	Ext. Hraghil B liil::	Bodif Lanert C [in	Exit. Dla. D live:	$\begin{gathered} \text { Cyl. Ear? } \\ \text { Dis. } \\ \text { E } \\ \text { inlin! } \end{gathered}$	Figr. Diid F Inịi
tareit	[11		Fstrinne:	Fetract	- ¢uance	Ristart	-duance	Rcilisic 1						
	1.1'J	RD-41	\because	$?$. 78	. \quad :	. 6 ?	. Ec	7.51	6. 1	6.38	7.00	1.00	. 75
4	3.13	RD-43	i	\%	. 3	. 28	2.45	1.0i	3.81	12. 24	c. ${ }^{1}$	2.50	1.3	A
	6.1'J	RD-46	?	?	. 78	. \quad :	$\because 31$? 10	17.21	13. $\% 1$	11.59	7.00	1.00	. 75
	1.13	RD-91	4	-	1.i'	. 41	1.64	1.10	J.is	9.16	i.5u	2.50	1.bli	1. Jb
a	3.13	RD-9G	4	-	$1 . i$. 4	5.22	'J.@i	13.13	13.41	或的	2.50	1.a	1.30
\checkmark	6.1 J	RD-96	9	5	1.77	.98	10.97	Ci. 0^{1}	13.75	19.91	12.60	7.50	1.50	1.00
	10.15	RD-910	4	$=$	1. $\%$. 4	1\% 6	3.985	1\%.13	$\underline{3} 81$	16.351	2.50	1.0	1.30
16	6.20	RD-166	10	3	2.1 :	1.60	19.63	10.35	15.31	71.55	1 . 12	3.00	2.00	1.33
16	13.25	RD-1610	10	3	2.1 :	1.60	37.20	1+̀.es	13.21	29.55	19.11	500	2.00	1.38
25	6. 7.15	RD-256	c	11	4.91	2.15	JJ.US	1'5.2	10.E4	$\underline{2 c} 2.44$	15.02	3.63	2.00	1.50
25	13.25	RD-2510	\%	11	$\because 1$	7.15	50.21	27.01	20.c\%	30.9.1	19.51	5.45	2.50	1.63

Hydraulic Actuator，Model RD－41 specification data sheet，page 2 of 2
Double－Acting，Precision Production Cylinders

Foot Mounting

Retalner Nut
For locking foot or foryge mountings．Tybhiens onto cywnoer coilar thrasts fincturied with foot and fange rrounling kits）

Clevis Eye

Capacity：
4－25 tons
Stroke：
1．13－10．25 inch
Maximum Operating Pressure： $10,000 \mathrm{psi}$

$\begin{gathered} \text { Top } \\ \text { 1o Rat. } \\ \text { Porl } \\ \text { H } \\ \text { וni! } \\ \hline \end{gathered}$	Bottam Porl I ：il	Plures Fimitilision$\begin{gathered} k \\ i+1 n \mid \end{gathered}$	H：Cll Lylogh N ｜rii		Puirciry Exlential Threand C inhi	Cyilnder Mourting Dimensions irị					Weight ｜ltasi	Model Number
						C－1lar Thread 乐	Collar Tharas L x	InI．Brese Thirast z	nt．Eass： Threand Lenigltis Z1	Pill to Pirı Perth Iarats Efes Filled＇		
1．6：	1．6：	S．	1.13	． 75	118120	1：1\％＇－12	$\stackrel{\sim}{4}$	1\％．＊－フ0	．${ }^{1} 1$	10.16	1.5	RD－41
1．6：	1．6：	9：	1.13	75	\cdots	$\left.1^{3 \prime \prime}\right)^{\prime} 12$	4	113\％改	． 6	12．1ヶ	$5 . \%$	RD－43
1．$<$	1．x	． 98	1.13	is		1：1：＇－1？	$\therefore 1$	1\％．0－フ0	．${ }^{1}$	15．1ヶ	4.3	RD－46
万．78	2．78	．98	1.50	． 75	$\because \because 10$	2＇12	．	$1^{110} 918$	込	11．7．	9.0	RD－91
2.25	2.20	． 4	1.50	ib	$\because{ }^{\prime}$	2＇12	． 55	$1^{111_{1} \%^{\prime \prime}} 18$	． 3	1J．${ }^{\text {b }}$	11．${ }^{\text {J }}$	RD－93
2．25	2.20	． 96	1.50	i＇	＂i4＇ 10	$\hat{r}^{\prime}-1{ }^{\text {a }}$	． 55		As	16．78	12．3	RD－96
2．75	2.76	． 92	1.50	75	\because	2＇12	5i\％	1^{110}	． 5	70.75	18.0	RD－910
2.84	2.84	1.13	2.13	1.00	1 is 12	7s： 1 －16	． 56	24\％	．	幏．	22．${ }^{3}$	RD－166
？． 68	2.68	1．19	7.15	1.00	1 is 12	7s－10	S6	23irs－ 10	c－：	$\cdots \cdot .51$	72.0	RD－1610
3.50	3.50	1.00	2.75	1.00	$1 \therefore-17$	＇sis＇16	1.13	2s＊＂1t	1.12	创碞	3 So	RD－256
J． s U	J．su	1．${ }^{\text {d }}$	$2 . i$	1.00	$1 \% 12$	3＇，－10	1.13	2ar＊－10	1．0？	2－．	40．${ }^{\text {a }}$	RD－2510

```
Program to read airframe model information and save in matrix format
% This MATLAB program is part of a computer software package for
% helicopter vibration analysis, active vibration control, and
optimized
% actuator placement studies.
%
% Written by: David E. Heverly II 2/22/99
    Mechanical Engineering Ph.D. Candidate
    The Pennsylvania State University
%********************************************************
% Filename = readin.m
%**********************************************************
Routine to read the data file "mat.dat" and stores the result
in the specified matrix & file.
"mat.dat" contains the Apache helicopter Reduced Order Model
mass and stiffness matrix information.
The (564 X 564) "mass" & "stif" matrix data is stored in row format.
Each line of "mat.dat" has three entries, therefore the first 188
lines of "mat.dat" compose the first row of the mass matrix.
************ Variable names/definitions ********************
Input: mat.dat - ASCII text file of airframe model information
Output: mass - 564 X 564 mass matrix
    stif - 564 x 564 stiffness matrix
    stk-m-k.mat - binary output file containing mass, stif
%*********************************************************
clear % Clear variables from computer memory
fid=fopen('mat.dat'); % Open data file
disp('Reading Mass Matrix')
strl=fscanf(fid,'%4s',1);
m=fscanf(fid,'%3d',2);
disp(['Number of read elements should be = ',num2str(m(1)*m(2))])
[mass, count]=fscanf(fid, '%g %g %g',[m(1),m(2)]);
mass=mass';
disp(['Number of elements read = ',num2str(count)])
disp(' ')
disp('Reading Stiffness Matrix')
strl=fscanf(fid,'%4s',1);
m=fscanf(fid,'%3d',2);
disp(['Number of read elements should be = ',num2str(m(1)*m(2))])
[stif, count]=fscanf(fid, '%g %g %g',[m(1),m(2)]);
stif=stif';
disp(['Number of elements read = ',num2str(count)])
```

```
Program to read airframe model information and save in matrix format
disp(' ')
fclose(fid); % Close data file
% Save variables in binary output file "stk-m-k.mat"
%****************************************************
disp('Saving "mass" & "stif" matrices to binary file: "stk-m-k.mat"')
save stk-m-k mass stif
%***************** End of File **************************
```

Program to compute eigenvalues and eigenvectors

This MATLAB program is part of a computer software package for
helicopter vibration analysis, active vibration control, and
optimized
\% actuator placement studies.
Written by: David E. Heverly II

2/22/99
Mechanical Engineering Ph.D. Candidate
The Pennsylvania State University

Filename $=$ eignanal.m

The program loads the structure's mass and stiffness
matricies that have been stored in a binary data file.
An eigenanalysis is performed to compute the eigenvalues
(natural frequencies) and eigenvectors (mode shapes). The
eigenvectors are normalized with-respect-to the mass matrix
such that the norm (magnidude) of each eigenvector $=$ one.
NOTE: The eigenvectors are mormalized w.r.t the mass matrix such that [evecs] '*[mass]*[evecs] = [I]

The first 100 eigenvalues and corresponding eigenvectors are
stored in a binary output file.
************ Variable names/definitions **************

Input: mass - $\mathrm{Ng} x \mathrm{Ng}$ mass matrix
stif - Ng x Ng stiffness matrix
Ng - No. global physical d.o.f. ($\mathrm{Ng}=564$)
Output: eval - 100 X 1 vector of natural frequencies
evec - Ng x 100 matrix of eigenvectors
eigen.mat - binary output file containing evals,evecs
$\%$

Program to compute eigenvalues and eigenvectors

```
% Load mass & stiffness matrices
%**********************************************************
clear variables % Clears all variables from computer memory
load stk-m-k.mat % Loads binary mass, stif file
mass=0.5*(mass'+mass);
stif=0.5*(stif'+stif);
[Ng,N]=size(mass);
N=100; % Number of eigenvalues to save and print
%***************************
% Compute eigenvalues and eigenvectors
%***************************
disp('Computing eigenvalues and eigenvectors')
[V,lamda]=eig(stif,mass);
for i=1:Ng
    lam(i,1)=sqrt((abs(lamda(i,i))));
end
[dum,II]=sort(lam);
for i=1:N % Eliminate first 6 rigid
body modes
    eval(i,1)=dum(i+6);
    freqs(i,1)=(dum(i+6) )^2; % Natural frequency in
rad^2/ sec^2
    freqs(i,2)=dum(i+6); % Natural frequency in
rad/sec
    freqs(i,3)=(dum(i+6))/(2*pi); % Natural frequency in Hz
    vec(:,i)=real(V(:,II(i+6))); % eigenvector
end
disp('Normalizing eigenvectors wrt mass matrix')
% Normalize eigenvectors (mode shapes) w.r.t. mass matrix
% ********************************************************
for i=1:N
    norm=abs(((vec(:,i))') *mass*(vec(:,i)));
    evec(:,i)=(vec(:,i))/sqrt(norm);
end
% Save matricies in binary output file
%**************************************
disp('Saving natural frequencies and normalized eigenvectors to file:
"eigen.mat"')
save eigen eval evec Ng
disp(' ')
disp('Natural Frequencies')
disp('w^2 [rad^2/sec^2] w [rad/sec] f=w/2pi [Hz]')
disp('***************************************')
for i=1:N
    disp([num2str(freqs(i,1)),', ',num2str(freqs(i,2)),',
```


Program to compute eigenvalues and eigenvectors

', num2str(freqs (i, 3))])
end

```
%****************** End of File
```

Program to formulate a State Space model

```
This MATLAB program is part of a computer software package for
```

helicopter vibration analysis, active vibration control, and
ptimized
\% actuator placement studies.
Written by: David E. Heverly II
3/2/99
Mechanical Engineering Ph.D. Candidate
The Pennsylvania State University
Filename $=$ ssmodel.m

The program loads the structure's mass, stiffness, and
eigenvector matricies that have been stored in binary data files.
Using the selected number of modes (up to 100), the equations of
motion are transformed to modal coordinates in second order form.
The equation of motion is then transformed to state space form
(first order) with the option of adding modal damping. Finally,
the state space matricies are saved in binary format.
NOTE: The eigenvectors (mode shapes) have been mormalized w.r.t
the mass matrix in subroutine "eignanal.m" such that
[phi]'*[mass]*[phi] = [Mm] = [I]
************ Variable names/definitions **************
Input: mass - 564×564 mass matrix
stif - 564×564 stiffness matrix
evec - 564×100 eigenvector matrix (normalized wrt [mass])
Km - modal mass matrix
Cm - modal damping matrix
zeta - modal damping ratio
e - vector of Actuation Unit moment arms
Output: A - 2N x 2N State matrix
B - $2 \mathrm{~N} x \mathrm{Ng}$ Actuation Input matrix
N - No. modes used in modal reduction
$\mathrm{Ng}=564$ - No. global physical d.o.f.
phi - Ng x N Matrix of normalized mode shapes

Program to formulate a State Space model

```
%***************** Revisions/comments ******************
% Revision 1/5/00 - increase modes to 100
% Revision 1/5/00 - Added moment arm matrix for inputs so
% that input loads have consistent units [lbs.]
%***********************************************************
% Load mass & stiffness matricies & eigenvectors
%******************************************************************
clear % Clears all variables from computer memory
load stk-m-k.mat % Loads binary mass, stif file
load eigen.mat % Loads binary eigenvector file
%***************************
Ng=564; % Global degrees-of-freedom of full model
N=25; % No. of modes used in modal reduction
% Define modal transformation matrix
%**************************
for i=1:N
    phi(1:Ng,i)=evec(1:Ng,i);
end
% Transform to modal space
%**************************
disp('Transforming to modal coordinates')
% Note: Mm=(phi')*mass*phi=[I] ;
Km=diag(diag((phi')*stif*phi)) ;
% Add 0.2% modal damping matrix
%******************************
disp('Adding modal damping')
zeta=0.002; % Modal damping ratio
Cm=eye (N);
for i=1:N
    Cm(i,i)=2*zeta*(sqrt(Km(i,i)));
end
% Transform to state space form
%*******************************
% NOTE: [Mm]=[I] ==> inv(Mm)=[I]
disp('Transforming to state space')
A(1:N,1:N)=zeros (N,N);
A (1:N,N+1:N*2) =eye (N);
A (N+1:N*2, 1:N) = - Km;
A(N+1:N*2,N+1:N*2)= - Cm;
% Specify moment arm matrix
% for actuation influence matrix
%***************************
e=ones (1,Ng);
e(47)=17; e (48)=18; % Node #8
e(53)=17; e(54)=18; % Node #9
```

Program to formulate a State Space model			
e (59) = 17;	$\mathrm{e}(60)=20$;	\% Node \#10	
e(65) $=9$;	$e(66)=23 ;$	\% Node \#11	
$\mathrm{e}(71)=9$;	$\mathrm{e}(72)=24$;	\% Node \#12	
$\mathrm{e}(77)=20$;	$\mathrm{e}(78)=24$;	\% Node \#13	
$\mathrm{e}(83)=9$;	$\mathrm{e}(84)=24$;	\% Node \#14	
e(89) $=9$;	$\mathrm{e}(90)=24$;	\% Node \#15	
e(95) $=9$;	$\mathrm{e}(96)=24$;	\% Node \#16	
$\mathrm{e}(125)=9$;	$\mathrm{e}(126)=24$;	\% Node \#21	
$\mathrm{e}(131)=9$;	$\mathrm{e}(132)=24$;	\% Node \#22	
$\mathrm{e}(137)=9$;	$\mathrm{e}(138)=24$;	\% Node \#23	
$\mathrm{e}(143)=9$;	$\mathrm{e}(144)=24$;	\% Node \#24	
$\mathrm{e}(149)=9$;	$e(150)=24 ;$	\% Node \#25	
$\mathrm{e}(155)=20$;	$\mathrm{e}(156)=24 ;$	\% Node \#26	
$\mathrm{e}(173)=20$;	$\mathrm{e}(174)=24 ;$	\% Node \#29	
$\mathrm{e}(179)=20$;	$\mathrm{e}(180)=24$;	\% Node \#30	
$\mathrm{e}(184)=5$;	$\mathrm{e}(186)=6$;	\% Node \#31	
e (190) $=5$;	$\mathrm{e}(192)=6$;	\% Node \#32	
e (238) $=5$;	e (240) $=6$;	\% Node \#40	
e (244) $=5$;	$e(246)=6 ;$	\% Node \#41	
e (293) $=20$;	$\mathrm{e}(294)=24 ;$	\% Node \#49	
e (299) $=20$;	$\mathrm{e}(300)=24 ;$	\% Node \#50	
$\mathrm{e}(317)=20$;	$\mathrm{e}(318)=24 ;$	\% Node \#53	
$\mathrm{e}(335)=20$;	$\mathrm{e}(336)=24 ;$	\% Node \#56	
$\mathrm{e}(341)=20$;	$\mathrm{e}(342)=24 ;$	\% Node \#57	
$\mathrm{e}(347)=20$;	$\mathrm{e}(348)=24 ;$	\% Node \#58	
e(353) $=19$;	$e(354)=23 ;$	\% Node \#59	
e(359) =19;	e(360) $=23$;	\% Node \#60	
$e(365)=19$;	$e(366)=23 ;$	\% Node \#61	
e(371) $=19$;	$\mathrm{e}(372)=22$;	\% Node \#62	
e(377) =19;	$e(378)=22 ;$	\% Node \#63	
e(383) $=18$;	$\mathrm{e}(384)=21 ;$	\% Node \#64	
e (389) $=18$;	$e(390)=21 ;$	\% Node \#65	
e (395) =17;	$e(396)=20$;	\% Node \#66	
$e(401)=17$;	$e(402)=20$;	\% Node \#67	
e(407) $=16$;	$\mathrm{e}(408)=19$;	\% Node \#68	
$\mathrm{e}(413)=15$;	$\mathrm{e}(414)=18$;	\% Node \#69	
e(419) $=15$;	$\mathrm{e}(420)=17$;	\% Node \#70	
e(425) $=14$;	e(426) $=16$;	\% Node \#71	
$\mathrm{e}(431)=14$;	$\mathrm{e}(432)=15$;	\% Node \#72	
e(437) $=13$;	$e(438)=14 ;$	\% Node \#73	
$\mathrm{e}(443)=13$;	$\mathrm{e}(444)=14$;	\% Node \#74	
e(449) $=12$;	$e(450)=13 ;$	\% Node \#75	
e(455) $=12$;	$\mathrm{e}(456)=13$;	\% Node \#76	
e(461) $=12$;	$\mathrm{e}(462)=13$;	\% Node \#77	
$\mathrm{e}(467)=12$;	$\mathrm{e}(468)=12$;	\% Node \#78	
$\mathrm{e}(473)=12$;	$\mathrm{e}(474)=12$;	\% Node \#79	
e (478) $=5$;	$e(479)=6$;	e(480) $=5$;	\% Node \#80
e (496) $=5$;	e(497) $=6$;	$e(498)=5 ;$	\% Node \#83
e (502) $=5$;	e (503) $=6$;	$\mathrm{e}(504)=5$;	\% Node \#84
$\mathrm{e}(520)=4$;	$\mathrm{e}(521)=4$;	$\mathrm{e}(522)=7$;	\% Node \#87
$e(526)=4$;	$e(527)=4$;	$\mathrm{e}(528)=7$;	\% Node \#88

```
Program to formulate a State Space model
e(538)=4; e(539)=4; e(540)=7; % Node #90
e(544)=4; e(545)=4; e(546)=7; % Node #91
E=diag(e); % form matrix with "e" on diagonal
B(1:N,1:Ng)=zeros(N,Ng); % Input matrix for Force & Moment actuation
Units
B(N+1:2*N,1:Ng)=phi'*E; % which are dual point actuation
%********************************
% Save matricies in binary output file
%**************************************
disp('Saving state space model to file: statemod.mat')
save statemod A B phi Ng N
%***************** End of File ***************************
```

```
                    Program to formulate a Transfer Function model
% This MATLAB program is part of a computer software package for
% helicopter vibration analysis, active vibration control, and
optimized
% actuator placement studies.
%
% Written by: David E. Heverly II 3/7/99
    Mechanical Engineering Ph.D. Candidate
    The Pennsylvania State University
%***********************************************************
% Filename = tfmodel.m
%********************************************************
% The program computes the Complex Transfer Function Matrices
(input/output
% relationship in the frequency domain) of the helicopter airframe
% model at the specified frequency. The actuation model assumes
% the actuators are placed between nodes to generate loads equal
% in magnitude but opposite in direction. The defined actuation
% types are: 1) Force Actuation Unit (FAU) 2) Moment Actuation Unit
(MAU)
% 3) Centralized Actuation (CA). There are a total of 147 airframe
% Actuation Units (FAU or MAU) and 8 CA at the main rotor/airframe
interface.
% The computation method assumes a linear global model of the
airframe.
%
%************ Variable names/definitions ***************
    Z = Zo + [T]*u
    % Z = 3 tranlational vibrations (acceleration) at airframe nodes
```


Program to formulate a Transfer Function model

```
% (complex output vector)
    Zo = uncontrolled vibration level due to vibratory hub loads
    u = actuation input vector (complex - magnitude & phase)
    T = Transfer Function Matrix (complex)
    [TFF1] = Complex Transfer Function matrix between actuation input &
output.
% Output being the complex disp. response for each airframe
d.o.f.
% (3 tranlational & 3 Rotational).
    [TFF2] = Complex Transfer Function matrix between actuation input &
output.
% Output being a complex vector of the translational (x,y,z)
```

\% accelerations at each airframe node.
\%***************** Revisions/comments *****************
\% Revision $1 / 7 / 00$ - Added moment arm matrix for inputs so
that input loads have consistent units [lbs.]
\% Revision 1/11/00 - Removal of specific actuators (reduced from 218
to 155)

clear \% Clears all variables from computer memory
omega $=30.264 ; \quad$ \% rotor speed [rad/s]
$\mathrm{w}=4 *$ omega; \quad excitation frequency
eta=1.17966; \% Vertical Stabilizer angle [radians]=67.589 degrees
gees $=\left(w^{\wedge} 2\right) / 386.4$; conversion factor to accel. in G's
\% Note: acceleration $=w^{\wedge} 2$ * displacement
\% Load state space equations and mode shapes
\% for the helicopter airframe model.
\%**
load statemod.mat
\% Define system output matrix "y=C1*z+D1*u"
\% for system translational \& rotational
\% displacement response.

C1 (1:Ng, 1:N) =phi;
C1 (1:Ng,N+1:2*N) = zeros (Ng,N);
D1=zeros (Ng,Ng);
\% Define transformation matrix to extract
\% the x, y, z translational response
\% where C2=psi*C1.
\%***
psi=zeros ($\mathrm{Ng} / 2, \mathrm{Ng}$) ;
for $i=1:(\mathrm{Ng} / 6)$
$j=6 *(i-1)+1$;
ii=3* (i-1) +1 ;

Program to formulate a Transfer Function model

```
    psi(ii,j)=1;
    psi(ii+1,j+1)=1;
    psi(ii+2,j+2)=1;
end
%***********************************
disp('Wait, the program is working.')
disp('Computing the frequency responses')
% Compute frequency response for all 6
% inputs at each airframe node.
%**************************************
[mag1,phase1] =bode(A,B,C1,D1,[1:1:Ng],w);
for i=1:Ng
    mag(i,:)=mag1(((i-1)*Ng+1):(i*Ng));
    phase(i,:)=phase1(((i-1)*Ng+1):(i*Ng));
end
%**************************************
% Define the Actuation Unit topology
%*****************************
% Atop(i,1 or 2)= j; i=Actuation Unit number, j=global d.o.f.
Atop (1,1) =43; Atop (1,2)=49; Atop (2,1)=47; Atop (2, 2)=53;
    Atop (3,1)=48; Atop (3,2)=54;
Atop (4,1)=49; Atop (4,2)=55; Atop (5,1)=53; Atop (5,2)=59;
Atop (6,1)=54; Atop (6,2)=60;
Atop (7,1) =55; Atop (7,2)=61; Atop (8,1)=59; Atop (8,2)=65;
    Atop (9,1)=60; Atop (9,2)=66;
Atop (10,1)=61; Atop (10,2)=67; Atop (11,1)=65; Atop (11,2)=71;
Atop (12,1)=66; Atop (12,2)=72;
Atop (13,1)=67; Atop (13,2)=79; Atop(14,1)=71; Atop (14,2)=83;
Atop (15,1)=72; Atop (15,2)=84;
Atop (16,1) =79; Atop (16,2)=85; Atop (17,1)=83; Atop (17,2)=89;
Atop (18,1)=84; Atop (18,2)=90;
Atop (19,1)=85; Atop (19,2)=91; Atop (20,1)=89; Atop (20,2)=95;
Atop (21,1)=90; Atop (21,2)=96;
Atop (22,1)=91; Atop (22,2)=121; Atop (23,1)=95; Atop (23,2)=125;
Atop (24,1)=96; Atop (24,2)=126;
Atop (25,1)=121; Atop (25,2)=127;
Atop (27,1)=126; Atop (27,2)=132;
Atop (28,1)=127; Atop (28,2)=133;
Atop (30,1)=132; Atop (30,2)=138;
Atop (31,1)=133; Atop (31,2)=139;
Atop (33,1)=138; Atop (33,2)=144;
Atop (34,1)=139; Atop (34,2)=145;
Atop (36,1)=144; Atop (36,2)=150;
Atop (37,1)=145; Atop (37,2)=151
Atop (39,1)=150; Atop (39,2)=156
Atop (40,1)=151; Atop (40,2)=169; Atop (41,1)=155; Atop (41,2)=173;
Atop (42,1)=156; Atop (42,2)=174;
Atop (43,1)=169; Atop (43,2)=175; Atop (44,1)=173; Atop (44,2)=179;
```


Program to formulate a Transfer Function model

Atop $(45,1)=174$; Atop $(46,1)=175$;
Atop $(48,1)=180$;
Atop $(49,1)=182$;
Atop $(51,1)=186$;
Atop $(52,1)=236$;
Atop $(54,1)=240$;
Atop $(55,1)=73$;
Atop $(57,1)=78$;
Atop $(58,1)=289$;
Atop $(60,1)=294$;
Atop $(61,1)=295$;
Atop $(63,1)=300$;
Atop $(64,1)=313$;
Atop $(66,1)=318$;
Atop $(67,1)=331$;
Atop $(69,1)=336$;
Atop $(70,1)=337$;
Atop $(72,1)=342$;
Atop $(73,1)=343$;
Atop $(75,1)=348$;
Atop $(76,1)=349$;
Atop $(78,1)=354$;
Atop $(79,1)=355$;
Atop $(81,1)=360$;
Atop $(82,1)=361$;
Atop $(84,1)=366$;
Atop $(85,1)=367$;
Atop $(87,1)=372$;
Atop $(88,1)=373$;
Atop $(90,1)=378$;
Atop $(91,1)=379$;
Atop $(93,1)=384$;
Atop $(94,1)=385$;
Atop $(96,1)=390$;
Atop $(97,1)=391$;
Atop $(99,1)=396$;
Atop $(100,1)=397$;
Atop $(102,1)=402$;
Atop $(103,1)=403$;
Atop $(105,1)=408$;
Atop $(106,1)=409$;
Atop $(108,1)=414$;
Atop $(109,1)=415$;
Atop $(111,1)=420$;
Atop $(112,1)=421$;
Atop $(114,1)=426$;
Atop $(115,1)=427$;
Atop $(117,1)=432$;
Atop $(118,1)=433$;
Atop $(120,1)=438$;

Atop $(45,2)=180$;
Atop $(46,2)=73$; Atop $(48,2)=78$;
Atop $(49,2)=188$;
Atop $(51,2)=192$;
Atop $(52,2)=242$;
Atop $(54,2)=246$;
Atop $(55,2)=289$;
Atop $(57,2)=294$;
Atop $(58,2)=295$;
Atop $(60,2)=300$;
Atop $(61,2)=313$;
Atop $(63,2)=318$;
Atop $(64,2)=331$;
Atop $(66,2)=336$;
Atop $(67,2)=337$;
Atop $(69,2)=342$;
Atop $(70,2)=343$;
Atop $(72,2)=348$;
Atop $(73,2)=349$;
Atop $(75,2)=354$;
Atop $(76,2)=355$;
Atop $(78,2)=360$;
Atop $(79,2)=361$;
Atop $(81,2)=366$;
Atop $(82,2)=367$;
Atop $(84,2)=372$;
Atop $(85,2)=373$;
Atop $(87,2)=378$;
Atop $(88,2)=379$;
Atop $(90,2)=384$;
Atop $(91,2)=385$;
Atop $(93,2)=390$;
Atop $(94,2)=391$;
Atop $(96,2)=396$;
Atop $(97,2)=397$;
Atop $(99,2)=402$;
Atop $(100,2)=403$;
Atop $(102,2)=408$;
Atop $(103,2)=409$;
Atop $(105,2)=414$;
Atop $(106,2)=415$;
Atop $(108,2)=420$;
Atop $(109,2)=421$;
Atop $(111,2)=426$;
Atop $(112,2)=427$;
Atop $(114,2)=432$;
Atop $(115,2)=433$;
Atop $(117,2)=438$;
Atop $(118,2)=439$;
Atop $(120,2)=444$;

Atop (47, 1) $=179$;	Atop (47, 2$)=77$;
Atop (50, 1) $=184$;	Atop (50, 2) = 190;
Atop (53, 1) $=238$;	Atop (53, 2) = 244 ;
Atop (56, 1) = 77;	Atop (56, 2) = 293;
Atop (59, 1) $=293$;	Atop (59, 2) $=299$;
Atop (62, 1) $=299$;	Atop (62, 2) = 317;
Atop (65, 1) $=317$;	Atop (65, 2$)=335$;
Atop (68,1) $=335$;	Atop (68, 2) = 341;
Atop (71, 1) $=341$;	Atop (71, 2) $=347$;
Atop (74, 1) = 347;	Atop (74, 2) = 353;
Atop (77, 1) $=353$;	Atop (77, 2) $=359$;
Atop (80,1) $=359$;	Atop (80,2) $=365$;
Atop (83, 1) $=365$;	Atop (83, 2) $=371$;
Atop $(86,1)=371$;	Atop (86, 2) = 377;
Atop (89, 1) $=377$;	Atop (89,2) $=383$;
Atop (92,1)=383;	Atop (92, 2) = 389;
Atop (95,1)=389;	Atop (95, 2) = 395;
Atop (98,1) = 395;	Atop (98,2)=401;
Atop $(101,1)=401$	1; Atop (101, 2) $=407$;
Atop $(104,1)=407$	7; Atop $(104,2)=413$;
Atop $(107,1)=413$; Atop (107, 2) $=419$;
Atop (110, 1) =419	; Atop (110, 2) $=425$;
Atop $(113,1)=425$; Atop $(113,2)=431$;
Atop $(116,1)=431$	1; Atop $(116,2)=437$;
Atop $(119,1)=437$	7; Atop $(119,2)=443$;

Program to formulate a Transfer Function model

Atop (121,1) $=439$;	Atop (121, 2) $=445$;	Atop (122,1) = 443;	op (122,2)=449;
Atop $(123,1)=444$;	Atop $(123,2)=450$;		
Atop $(124,1)=445$;	Atop $(124,2)=451$;	Atop (125,1) $=449$;	Atop (125, 2) $=455$;
Atop $(126,1)=450$;	Atop $(126,2)=456$;		
Atop $(127,1)=451$;	Atop (127, 2) $=457$;	Atop $(128,1)=455 ;$	Atop (128, 2) = 461;
Atop $(129,1)=456$;	Atop (129, 2) $=462$;		
Atop $(130,1)=457$;	Atop $(130,2)=463$;	Atop (131, 1) $=461$;	Atop (131, 2) = 467;
Atop $(132,1)=462$;	Atop (132, 2) $=468$;		
Atop $(133,1)=463$;	Atop $(133,2)=469$;	Atop $(134,1)=467$;	Atop (134, 2) $=473$;
Atop $(135,1)=468$;	Atop $(135,2)=474$;		
Atop $(136,1)=518$;	Atop $(136,2)=524$;	Atop (137, 1) $=520$;	Atop (137, 2) $=526$;
Atop $(138,1)=522$;	Atop (138,2) $=528$;		
Atop $(139,1)=536$;	Atop (139,2) $=542$;	Atop (140, 1) $=538$;	Atop (140, 2) $=544$;
Atop (141, 1) $=540$;	Atop (141, 2) =546;		
\% Actuators in vertical stabilizer			
Atop $(142,1)=479$; Atop $(142,2)=503$;		Atop $(143,1)=503$;	Atop (143, 2) $=497$;
$\operatorname{Avfin}(1,1)=493 ; \operatorname{Avfin}(1,2)=499 ; \operatorname{Avfin}(1,3)=495 ; \operatorname{Avfin}(1,4)=501 ;$			
$\operatorname{Avfin}(2,1)=499 ; \operatorname{Avfin}(2,2)=475 ; \operatorname{Avfin}(2,3)=501 ; \operatorname{Avfin}(2,4)=477$;			
$\operatorname{Avfin}(3,1)=498 ; \operatorname{Avfin}(3,2)=504 ; \operatorname{Avfin}(3,3)=496 ; \operatorname{Avfin}(3,4)=502 ;$			
$\operatorname{Avfin}(4,1)=504 ; \operatorname{Avfin}(4,2)=480 ; \operatorname{Avfin}(4,3)=502 ; \operatorname{Avfin}(4,4)=478 ;$			
\% Centralized actuators			
$\operatorname{Ac}(1,1)=301 ; ~ \mathrm{Ac}(1,2)=13 ; \mathrm{Ac}(1,3)=302 ; \operatorname{Ac}(1,4)=14 ; \mathrm{AC}(1,5)=303$;			
Ac $(1,6)=15$;			
$\operatorname{Ac}(2,1)=301 ; ~ A C(2,2)=1 ; ~ A C(2,3)=302 ; ~ A C(2,4)=2 ; ~ A C(2,5)=303 ;$			
Ac $(2,6)=3$;			
Ac $(3,6)=3$;			
$\operatorname{Ac}(4,1)=157$; $\operatorname{Ac}(4,2)=7$; $\operatorname{Ac}(4,3)=158 ; ~ A C(4,4)=8 ; \quad \operatorname{Ac}(4,5)=159$;			
Ac $(4,6)=9$;			
$\operatorname{Ac}(5,1)=163 ; \quad \operatorname{Ac}(5,2)=7 ; \quad \mathrm{Ac}(5,3)=164 ; \quad \operatorname{Ac}(5,4)=8 ; \quad \operatorname{Ac}(5,5)=165$;			
Ac $(5,6)=9$;			
$\operatorname{Ac}(6,1)=163 ; ~ A c(6,2)=19 ; ~ A c(6,3)=164 ; ~ A C(6,4)=20 ; ~ A c(6,5)=165 ;$			
Ac $(6,6)=21 ;$			
$\operatorname{Ac}(7,1)=307 ; ~ A C(7,2)=19 ; ~ A C(7,3)=308 ; ~ A C(7,4)=20 ; ~ A C(7,5)=309 ;$			
$\operatorname{Ac}(7,6)=21 ;$			
$\operatorname{AC}(8,1)=307 ; ~ A C(8,2)=13 ; ~ A C(8,3)=308 ; ~ A C(8,4)=14 ; ~ A C(8,5)=309$;			
Ac $(8,6)=15$;			
$\operatorname{Dcos}(1,1)=0.3316 ; \operatorname{DCos}(1,2)=0.6307 ; \operatorname{Dcos}(1,3)=-0.7016 ;$			
$\operatorname{Dcos}(2,1)=0.7135 ; \operatorname{Dcos}(2,2)=0.253$		$\operatorname{Dcos}(2,3)=-0.65$;
$\operatorname{Dcos}(3,1)=-0.7022 ; \operatorname{Dcos}(3,2)=0.2577$; $\operatorname{Dcos}(3,3)=-0.66$	7;
$\operatorname{Dcos}(4,1)=-0.3509 ; \operatorname{Dcos}(4,2)=0.6602$; $\operatorname{Dcos}(4,3)=-0.66$	
$\operatorname{Dcos}(5,1)=-0.3509 ; \operatorname{Dcos}(5,2)=-0.6602 ; \operatorname{Dcos}(5,3)=-0.6641 ;$			
$\operatorname{Dcos}(6,1)=-0.7022 ; \operatorname{Dcos}(6,2)=-0.2577 ; \operatorname{DCos}(6,3)=-0.6637 ;$			
$\operatorname{Dcos}(7,1)=0.7135 ; \operatorname{Dcos}(7,2)=-0.2536 ; \operatorname{Dcos}(7,3)=-0.6532 ;$			
$\operatorname{Dcos}(8,1)=0.3316$;	$\operatorname{Dcos}(8,2)=-0.6307$; $\operatorname{Dcos}(8,3)=-0.70$;
\%*******************			
disp('Computing transfer function matrices')			
\% Compute transfer	function for each	Actuation Unit	

Program to formulate a Transfer Function model

```
% **************************************************
TFF1=zeros(Ng,155);
TFF2=zeros(Ng/2,155);
i=sqrt(-1);
for jjj=1:143
    Z=zeros(1,Ng);
    for jj=1:2
        ang=(pi/180)*phase(Atop(jjj,jj),:); % convert to radians
        ang=ang-((jj-1)*pi*ones(1,Ng));
        Z=Z+((mag(Atop(jjj,jj),:)).*(exp(i*ang))); % make complex vector
& sum
    end
    TFF1(:,jjj)=Z.'; % magnitude of summed frequency response
end
% ***************************************
% Compute transfer function for each Actuation Unit in vertical
stabilizer
%
**************************************************************************
*
% Axial force actuators
i=sqret(-1);
ang=zeros(1,Ng);
ang2=zeros(1,Ng);
ang3=zeros(1,Ng);
for iii=1:2
    Z1=zeros(1,Ng);
    Z2=zeros(1,Ng);
    for ii=1:2
        ang=(pi/180)*phase(Avfin(iii,ii),:); % convert to radians
        ang=ang-((ii-1)*pi*ones(1,Ng));
        Z1=Z1+((mag(Avfin(iii,ii),:)).*(exp(i*ang))); % make complex
vector & sum
    ang2=(pi/180)*phase(Avfin(iii,ii+2),:); % convert to radians
    ang2=ang2-((ii-1) *pi*ones(1,Ng));
    Z2=Z2+((mag(Avfin(iii,ii+2),:)).*(exp(i*ang2))); % make complex
vector & sum
    end
    Z=(cos(eta).*(Z1))+(sin(eta).*(Z2));
    TFF1(:,(143+iii))=Z.'; % magnitude of summed frequency
response
end
% Lateral bending moment actuators
i=sqrt(-1);
for iii=3:4
    Z1=zeros(1,Ng);
    Z2=zeros(1,Ng);
    for ii=1:2
    ang=(pi/180)*phase(Avfin(iii,ii),:); % convert to radians
```


Program to formulate a Transfer Function model

```
    ang=ang-((ii-1) *pi*ones(1,Ng));
    Z1=Z1+((mag(Avfin(iii,ii),:)).*(exp(i*ang))); % make complex
vector & sum
    ang2=(pi/180)*phase(Avfin(iii,ii+2),:); % convert to radians
    ang2=ang2-((ii-1)*pi*ones(1,Ng));
    Z2=Z2+((mag(Avfin(iii,ii+2),:)).*(exp(i*ang2))); % make complex
vector & sum
    end
    Z=((sin(eta).*(Z2)-cos(eta).*(Z1)));
    TFF1(:,(143+iii))=Z.'; % magnitude of summed frequency
response
end
% **************************************************************
% Compute transfer function for each actuation pair in centralized
configuration
%
**************************************************************************
*******
i=sqrt(-1);
for iii=1:8
    Z1=zeros(1,Ng);
    Z2=zeros(1,Ng);
    Z3=zeros(1,Ng);
    for ii=1:2
        ang=(pi/180)*phase(Ac(iii,ii),:); % convert to radians
        ang=ang-((ii-1)*pi*ones(1,Ng));
        Z1=Z1+((mag(Ac(iii,ii),:)).*(exp(i*ang))); % make complex vector
& sum
    ang2=(pi/180)*phase(Ac(iii,ii+2),:); % convert to radians
    ang2=ang2-((ii-1)*pi*ones(1,Ng));
    Z2=Z2+((mag(Ac(iii,ii+2),:)).*(exp(i*ang2))); % make complex
vector & sum
    ang3=(pi/180)*phase(Ac(iii,ii+4),:); % convert to radians
    ang3=ang3-((ii-1) *pi*ones(1,Ng));
    Z3=Z3+((mag(Ac(iii,ii+4),:)).*(exp(i*ang3))); % make complex
vector & sum
    end
    Z=((Dcos(iii,1)).*(Z1))+((Dcos(iii,2)).*(Z2))+((Dcos(iii,3)).*(Z3));
    TFF1(:,(147+iii))=Z.'; % magnitude of summed frequency
response
end
% ***************************************************************
TFF2=gees*(psi*TFF1); % Transfer function for output of x,y,z
translational components
% Save transfer function matrices
% to binary output file "tfmodel.mat".
```

Program to formulate a Transfer Function model
\% ***
disp('Saving transfer function model matrices to file "tfmodel.mat"') save tfmodel TFF1 TFF2

Coupled optimal control and optimization program
\% This MATLAB program is part of a computer software package for
\% helicopter vibration analysis, active vibration control, and optimized
\% actuator placement studies.
\%
Written by: David E. Heverly II 8/31/99
Mechanical Engineering Ph.D. Candidate
The Pennsylvania State University

Filename $=$ saoptim.m

Hybrid optimization routine: Simulated Annealing + Active Control
The program is a coupled optimal control (actuation effort) and
passive (actuation placement) optimization routine. A standard
Simulated Annealing optimization algorithm is modified to
incorporate the active control computation. The main program
is a general-purpose format code, and makes calls to user
supplied subroutines for objective function evaluation, new
trial designs, and an uncontrolled vibration response vector.
。
\%***************** Variable names/definitions ***************************)
$\mathrm{n}=\quad$ number of design variables
$\mathrm{x}=\quad$ vector (length n) of design variables (Actuation Unit No.)
$\mathrm{xp}=$ vector (length n) of trial design variables
xopt $=$ optimal vector of design variables
$\mathrm{f}=$ objective function value (scalar) to be minimized
fp $=$ objective function value of trial design
fopt $=$ optimal objective function
$T=$ temperature parameter to control acceptance probability
step $=$ vector (length n) new design step size
smax $=$ vector (length n) of maximum step size
smin = vector (length n) of minimum step size
eps = termination criteriion on objective function (\% change)
Neps = number of temperature reductions to test for termination $\mathrm{Ns}=$ number of iterations to test for step size adjustment

Coupled optimal control and optimization program

```
c = scalar step size variation criterion
Nt = number of cycles for temperature reduction
rt = temperature reduction coefficient
h = index denoting coordinate direction h=1,2, ... ,n
i = index of successive trial designs
j = index of successive cycles along every coordinate direction
k = index of successive temperature reductions
m = index of successive step size adjustments
nu = vector (length n) of accepted trial designs for each
variable *
    fstr = vector (length Neps) of past function values for termination
    maxtry = maximum number of trial designs before termination
    ucvibs = user supplied subroutine that computes the uncontrolled
        vibration response, which is sent to "funcn"
    trial = user supplied subroutine that randomly generates a feasible
        set of design variables: Syntax is: "xp=trial(x,h,step(h))"
    funcn = user supplied subroutine that computes and returns the
        objective function for given set of design variables:
    Syntax is: "fp=funcn(xp)"
%************************************************************************
***
% Initialize parameters
clear
n=8;
eps=1e-3;
Neps=3;
Ns=10;
Nt=5;
C=2;
rt=0.85;
i=1; j=0; k=1; m=0; h=1;
maxtry=100000;
wuu=1e-10; % Control effort weighting
% Compute uncontrolled vibration
zo=ucvibs(0); % Hub Loading Only
%zo=ucvibs(1); % Hub & Tail Loading
% Initial guess of Actuation Unit Numbers
x=[148; 149; 150; 151; 152; 153; 154; 155]; % Centralized Actuation
```


Coupled optimal control and optimization program

```
% Initialize parameters
xopt=x;
f=funcn (x,zo,wuu);
fopt=f;
T=1*fopt;
for ii=1:n
    nu(ii)=0;
    step(ii)=1000;
    smax(ii)=2000;
    smin(ii)=1;
end
for ii=1:Neps
    fstr(ii)=ii;
    end
    % Write current results to screen
    disp('Opt. Func. Func. No. Iter. Temp.')
    disp('*******************************************************************')
    disp([fopt,f,i,T])
    disp('Current actuators')
    disp('**********************')
    disp([xopt(:)'])
while i<maxtry % Beginning of while loop #1
        while m<Nt % Beginning of while loop #2
            while j<Ns % Beginning of while loop #3
% Randomly perturb each design variable individually
                while h<=n % Beginning of while loop #4
            xp=trial(x,h,step(h)); % Call "trial" to find new trial
design
                    fp=funcn(xp,zo,wuu); % Call "funcn" to compute objective
function
            dF=fp-f;
% Accept new design if objective function decreases
        if dF<=0.0
            x=xp;
            f=fp;
            i=i+1;
            nu (h) =nu(h) +1;
            if fp<fopt
                    xopt=xp;
                    fopt=fp;
                    end
% Accept/Reject an increase based on probability
            else
                        z=rand;
                        p=exp(-dF/T);
```

```
Coupled optimal control and optimization program
            if z<p
                        x=xp;
                        f=fp;
                        i=i+1;
                    nu(h)=nu(h)+1;
                end
            end
            h=h+1;
        end % End of while loop #4
        h=1;
        j=j+1;
    end % End of while loop #3
% Adjust step size for each design variable
    for jj=1:n
        if nu(jj)>(0.6*Ns)
            step(jj)=step(jj)*(1+c*(((nu(jj)/Ns)-0.6)/0.4));
        end
        if nu(jj)<(0.4*Ns)
            step(jj)=step(jj)/(1+c*((0.4-(nu(jj)/Ns))/0.4));
        end
        if step(jj)>smax(jj)
            step(jj)=smax(jj);
        end
        if step(jj)<smin(jj)
            step(jj)=smin(jj);
        end
    end
    j=0;
    m=m+1;
    for ii=1:n
        nu(ii)=0;
    end
    end % End of while loop #2
% Write current results to screen
disp('Opt. Func. Func. No. Iter. Temp.')
disp('********************************************************************')
disp([fopt,f,i,T])
disp('Current actuators')
disp('**********************')
disp([x(:)'])
disp('Optimal actuators')
disp('***********************')
disp([xopt(:)'])
% Reduce temperature for next cycle
    T=rt*T;
```


Coupled optimal control and optimization program

```
    k=k+1;
    fstr(1)=f;
    m=0;
% Check termination criteria
    gout=0; % Flag to break out of loop
    for jj=1:Neps-1
        if (abs((fstr(jj)-fstr(jj+1))/fstr(jj))) <= eps
            gout=gout+1;
        end
    end
    if ((fstr(1)-fopt)/fopt) <= eps
        gout=gout+1;
    end
    if gout>=Neps
        disp('Converged: Objective function NOT changing')
        break
    end
    gout=0;
    for jj=Neps:-1:2
        fstr(jj)=fstr(jj-1);
    end
    i=i+1;
    x=xopt;
    f=fopt;
    if i>=maxtry
        disp('Program Stopped: Maximum number of trials reached')
        break
    end
end % End of while loop #1
% Write final results to screen
disp('Opt. Func. Control weighting No. Iter. Temp.')
disp('*******************************************************************')
disp([fopt,wuu,i,T])
disp('Optimal actuators')
disp('***********************')
disp([xopt(:)'])
%***************** End of File ***************************
```


Subroutine for uncontrolled vibration response computation

```
function zo=ucvibs(flag)
%UCVIBS
%
% This MATLAB program is part of a computer software package for
% helicopter vibration analysis, active vibration control, and
optimized
% actuator placement studies.
%
    Written by: David E. Heverly II 3/5/99
    Mechanical Engineering Ph.D. Candidate
    The Pennsylvania State University
%********************************************************
% Filename = ucvibs.m
%********************************************************
    The function m-file (subroutine) computes the uncontrolled vibratory
    response of the airframe model at the specified harmonic (4/rev).
%
%***************** Variable names/definitions *******************
    Output: zo = uncontrolled vibration response vector (complex)
            both magnitude and phase for x,y,z directions
            omega = fundamental frequency
            flag = 0 ==> Hub only excitation
            flag = 1 ==> Hub & Tail excitation
%****************************************************************
omega=30.264; % rotor speed [rad/s]
w=4*omega; % excitation and response frequency (4/rev)
    Load state space equations and mode shapes
    for the helicopter airframe model.
%*******************************************
load statemod.mat
% Define the external excitation loads
%***************************************
if flag==1
    vdof=[25 26 27 28 29 531 532 533]; % Global dof of input
excitations
    Ne=length(vdof); % No. of external excitations
    B2=zeros(2*N,Ne); % State Space input matrix
    for i=1:Ne
        B2(:,i)=B(:,vdof(i));
    end
    % Excitation loads, magnitude and phase
    v(1)=185; % Fx 4/rev hub load [lbs], Global dof #25
    theta(1)=0; % phase angle [deg] of Fx
    v(2)=185; % Fy 4/rev hub load [lbs] Global dof #26
```


Subroutine for uncontrolled vibration response computation

```
    theta(2)=90; % phase angle [deg] of Fy
    v(3)=920; % Fz 4/rev hub load [lbs] Global dof #27
    theta(3)=90; % phase angle [deg] of Fz
    v(4)=920; % Mx 4/rev hub load [in-lbs] Global dof #28
    theta(4)=90; % phase angle [deg] of Mx
    v(5)=920; % My 4/rev hub load [in-lbs] Global dof #29
    theta(5)=180; % phase angle [deg] of My
    v(6)=250; % Ftz 4/rev Tail load [lbs] Global dof #531
    theta(6)=-90; % phase angle [deg] of Ftz
    v(7)=5400; % Mtx 4/rev Tail load Global dof #532
    theta(7)=195; % phase angle [deg] of Mtx
    v(8)=1300; % Mty 4/rev Tail load Global dof #533
    theta(8)=130; % phase angle [deg] of Mty
elseif flag==0
    vdof=[25 26 27 28 29]; % Global dof of input excitations
    Ne=length(vdof); % No. of external excitations
    B2=zeros (2*N,Ne); % State space input matrix
    for i=1:Ne
        B2(:,i)=B(:,vdof(i));
    end
    % Excitation loads, magnitude and phase
    v(1)=185; % Fx 4/rev hub load [lbs], Global dof #25
    theta(1)=0; % phase angle [deg] of Fx
    v(2)=185; % Fy 4/rev hub load [lbs] Global dof #26
    theta(2)=90; % phase angle [deg] of Fy
    v(3)=920; % Fz 4/rev hub load [lbs] Global dof #27
    theta(3)=90; % phase angle [deg] of Fz
    v(4)=920; % Mx 4/rev hub load [in-lbs] Global dof #28
    theta(4)=90; % phase angle [deg] of Mx
    v(5)=920; % My 4/rev hub load [in-lbs] Global dof #29
    theta(5)=180; % phase angle [deg] of My
else
    disp('ERROR: Excitation condition NOT specified properly')
    disp('flag=0 ==> Hub loading')
    disp('flag=1 ==> Hub &Tail loading')
    pause
end
%********************************
% Define system output matrix "Y=C*z"
% for system translational displacement response
%**************************************
for i=1:(Ng/6)
    j=6*(i-1)+1;
    ii=3*(i-1)+1;
    psi(ii,1:N)=phi(j,1:N);
    psi(ii+1,1:N)=phi(j+1,1:N);
    psi(ii+2,1:N)=phi(j+2,1:N);
end
C(1:(Ng/2),1:N)=psi;
```


Subroutine for uncontrolled vibration response computation

```
C(1:(Ng/2),N+1:2*N)=zeros((Ng/2),N);
D1=zeros((Ng/2),Ne);
%************************************
% Compute freq. response to each individual
% hub load and sum for total response.
%********************************************
[mag1,phase1] =bode(A,B2,C,D1, [1:1:Ne],w) ;
for ii=1:Ne
    mag(ii,:)=magl(((ii-1)*(Ng/2) +1):(ii*(Ng/2)));
    phase(ii,:)=phasel(((ii-1)*(Ng/2)+1):(ii*(Ng/2)));
end
%*************************************
Z=zeros(1,(Ng/2));
i=sqrt(-1);
phase=(pi/180)*phase; % convert to radians
for ii=1:Ne
    theta(ii)=theta(ii)*(pi/180); % convert to radians
    Z=Z+(v(ii)*(mag(ii,:).*exp(i*(phase(ii,:)+theta(ii))))); % make
complex vector & sum
end
gees=(w^2)/386.4; % conversion factor to accel. in G's
zo=gees*(Z); % magnitude & phase of total acceleration
frequency response
zo=zo.'; % Non-conjugate transpose
%***************** End of File **************************
```


Subroutine to generate new trial design variable sets

```
function xp=trial(x,h,step)
%TRIAL
%
% This MATLAB program is part of a computer software package for
% helicopter vibration analysis, active vibration control, and
optimized
% actuator placement studies.
%
    Written by: David E. Heverly II
                            8/31/99
                    Mechanical Engineering Ph.D. Candidate
                    The Pennsylvania State University
%**********************************************************
% Filename = trial.m
%**********************************************************
%
% Function m-file (subroutine) to randomly generate a new feasible
```


Subroutine to generate new trial design variable sets

```
% (within constraints) set of passive design variables (Actuation
% Unit locations). Only one component of vector "x" is randomly
varied for each call to "trial" all other components are fixed.
%
%************ Variable names/definitions **************
    INPUTS:
    x = vector of design variables
    h = component index of vector "x" to be varied
    step = step size variable
    Constraint: 1 <= xp(h) <= 155
    OUTPUT:
    xp = new feasible design vector
%********************************************************
out=1;
n=length(x);
iter=0;
while out>0.0
    out=0;
    xp=x;
% Generate random number between -1.0 and 1.0
    inc=(2*rand)-1;
    dX=step*inc; % step size increment
    xp(h)=x(h)+round(dx); % New trial design variable
% Check constraints
    if xp(h)>155
        out=1;
    end
    if xp(h)<1
        out=1;
    end
    for i=1:n
        if i ~= h
            if xp(h)==xp(i)
                    out=1;
            end
        end
    end
    iter=iter+1;
    if iter>20
        xp=x;
        break
    end
end
%***************** End of File **************************
```


Subroutine to compute the objective function for the optimization program

```
function fp=funcn(xp,zo,wuu)
%FUNCN
%
% This MATLAB program is part of a computer software package for
% helicopter vibration analysis, active vibration control, and
optimized
% actuator placement studies.
%
% Written by: David E. Heverly II 8/31/99
% Mechanical Engineering Ph.D. Candidate
% The Pennsylvania State University
%********************************************************
% Filename = funcn.m
%********************************************************
%
% Function m-file (subroutine) to compute the objective function
% to be minimized by the Simulated Annealling optimization program.
%
%************ Variable names/definitions **************
%
% Global Model: {z} = {zo} + [T]{u}
    Objective Function: J = {z}'[Wz]{z} + {u}'[Wu]{u}+{p}'[Wp]{p}
%
% z = controlled vibration response
% zo = uncontrolled vibration response
% T = Transfer function between actuation inputs and response outputs
% u = vector of optimal actuation inputs
%
% z2 = controlled vibration response at target nodes
zo2 = uncontrolled vibration response at target nodes
T2 = Transfer function between for response at target nodes
%
Wz = [I] = vibration response weighting matrix
Wu = wuu*[I] = control effort weighting matrix
Wp = [I] = penalty function weighting matrix
    p = penalty function vector (constraint violation)
%
%********************************************************
% Load the transfer function matrix
% for the helicopter airframe model.
%********************************************
load tfmodel.mat
%****************************************
[m,n]=size(TFF2);
n=length(xp);
% Define transfer function matrix for
% actuator locations given in "xp"
%**********************************************
```


Subroutine to compute the objective function for the optimization program

```
T=zeros(m,n); % Initialize transfer function matrix
for i=1:n
    T(:,i)=TFF2(:, xp (i));
end
% Define transfer function matrix for
% actuator locations given in "xp"
% and output at target nodes for vibration suppression
%******************************************
rp=[8 11 13 14 21 24 26 53 59 62 68]; % Target nodes
m2=length(rp);
% Uncontrolled vibration response at target nodes
for i=1:m2
    for j=1:3
        zo2((3*(i-1)+j),1)=zo((3*(rp(i)-1)+j));
    end
end
% Transfer function for target nodes
T2=zeros(3*m2,n); % Initialize transfer function matrix
for i=1:n
    for j=1:m2
        for ii=1:3
            T2((3*(j-1)+ii),i)=T((3*(rp(j)-1)+ii),i);
        end
    end
end
% Define weighting matricies
Wu=wuu*eye (n);
Wz=eye (3*m2);
% Compute control inputs
u=((T2'*Wz*T2)+Wu)\(- (T2'*Wz*zo2));
% Compute response from transfer functions
z=zo+T*u; % Controlled response at all airframe nodes
z2=zo2+T2*u; % Controlled response at target nodes
% Compute penalty function
%******************************************
% Compute a vector sum of translational vibration components (x, y, z)
for i=1:(m/3)
    zz(i)=sqrt((abs(z(3*(i-1)+1)) )^2+(abs(z(3*(i-1)+2)) )^2+(abs(z(3*(i-
1)+3)))^2);
end
j=1;
for i=31:48 % check vibration magnitudes at nodes 31 thru 48
    p(j,1)=zz(i)/0.4; % Vibration level not to be exceeded = 0.4
    if p(j)<=1.0
        p(j)=0;
```

Subroutine to compute the objective function for the optimization program

```
    end
    j=j+1;
end
for i=82:93 % check vibration magnitudes at nodes 82 thru 93
    p(j,1)=zz(i)/1.7; % Vibration level not to be exceeded = 1.7
    if p(j)<=1.0
        p(j)=0;
    end
    j=j+1;
end
Wp=eye(length(p)); % Weighting matrix for penalty function
% Compute objective function
fp=abs(z2'*Wz*z2) +abs(u'*Wu*u) +(p'*Wp*p);
%***************** End of File **************************
```

Program to display and plot the optimization results

```
% This MATLAB program is part of a computer software package for
% helicopter vibration analysis, active vibration control, and
optimized
% actuator placement studies.
%
Written by: David E. Heverly II 8/31/99
    Mechanical Engineering Ph.D. Candidate
    The Pennsylvania State University
%**********************************************************
% Filename = plott1.m
%*********************************************************
%
The program plots the frequency response of the Global linear
helicopter airframe model. User inputs are the excitation
condition, actuation locations/types, and the weighting
on control effort.
%************ Variable names/definitions **************
%
Global Model: {z} = {zo} + [T]{u}
Objective Function: J = {z}'[Wz]{z} + {u}'[Wu]{u}+{p}'[Wp]{p}
z = controlled vibration response
zo = uncontrolled vibration response
% T = Transfer function between actuation inputs and response outputs
%u = vector of optimal actuation inputs
```


Program to display and plot the optimization results

```
%
% Wz = [I] = vibration response weighting matrix
% Wu = wuu*[I] = control effort weighting matrix
% Wp = [I] = penalty function weighting matrix
p = penalty function vector (constraint violation)
%
Input: xp - vector of Actuation Unit numbers
        rp - vector of node numbers at target response locations
        wuu - scale factor for control weighting matrix
        flag = O ==> Hub only excitation
        flag = 1 ==> Hub & Tail excitation
    Subroutines: ucvibs.m, funcn.m
%*************************************************************
clear % Clear variables from computer memory
```

\%***
\% User supplied information.
\% Uncomment the appropriate variables
\% to execute the desired analysis.

\%***
\% Specify excitation condition
flag=0; \% Hub loads only
$\% f l a g=1 ; \quad$ \% Hub \& Tail loads
\% Actuation Unit definitions for active control
$\% * ~+~$
\% Centralized Actuation (CA)
$\mathrm{xp}=\left[\begin{array}{llllllll}148 & 149 & 150 & 151 & 152 & 153 & 154 & 155\end{array}\right] ;$
wuu $=4.32 e-10 ; \quad$ \% Control weighting for Hub excitation
\%wuu=7.013e-10; \% Control weighting for Hub \& Tail excitation
\% Optimally distributed actuation Hub excitation condition
$\% x p=[8414547149150151$ 152]; \% Hub, Maximum control effort case
\%wuu=1e-20;
$\% x p=[8384159148152154$ 155]; \% Hub, Vibration reduction similar
to CA
\%wuu=1e-8;
$\% x p=\left[\begin{array}{llllllll}8 & 33 & 38 & 56 & 148 & 151 & 154 & 155\end{array}\right] ; \quad \%$ Hub, Intermediate case
\%wuu=1e-10;
\% Optimally distributed actuation Hub excitation condition
$\% x p=[8384547129152154$ 155]; \% Hub \& Tail, Maximum control
effort case
\%wuu=1e-20;
$\% \mathrm{xp}=\left[\begin{array}{lllllll}8 & 38 & 41 & 142 & 151 & 154 & 155\end{array}\right] ; \%$ Hub \& Tail, Vibration reduction

Program to display and plot the optimization results

```
similar to CA
%wuu=2.5e-8;
%xp=[8 38 107 113 142 148 150 155]; % Hub & Tail Intermediate case
%wuu=2e-10;
%**********************************************
%**********************************************
% Display results to screen
if flag==0
    disp('Hub Excitation Condition')
    disp(' ')
end
if flag==1
    disp('Hub + Tail Excitation Condition')
    disp(' ')
end
% Load the transfer function matrix
% for the helicopter airframe model.
%****************************************
load tfmodel.mat
%********************************************
zo=ucvibs(flag); % Call subroutine to compute uncontrolled vibration
response
disp('Actuation Unit Numbers') % Display results to screen
disp(xp)
[m,n]=size(TFF2);
n=length(xp);
Tp=zeros(m,n);
rp=[8 11 13 14 21 24 26 53 59 62 68];
% Display results to screen
disp('Response to be minimized at airframe target nodes')
disp(rp)
m2=length(rp);
Tp2=zeros(3*m2,n);
% Uncontrolled response at target nodes
for i=1:m2
    for j=1:3
        zOO((3*(i-1) +j),1)=zO((3*(rp (i) - 1) +j));
    end
end
% Define transfer function matrices for
% actuator locations given in "xp"
for i=1:n
    Tp(:,i)=TFF2(:,xp(i));
    for j=1:m2
        for ii=1:3
            Tp2((3*(j-1)+ii),i)=TFF2((3*(rp(j) -1) +ii), xp (i));
            end
    end
```


Program to display and plot the optimization results

```
end
% Define weighting matricies
Wz=eye (3*m2);
Wu=wuu*eye(n);
% Display results to screen
disp(['Control weighting = ',num2str(wuu)])
disp(' ')
u=((Tp2'*Wz*Tp2) +Wu)\(-(Tp2'*Wz*zoo));
% Display results to screen
disp('Actuation Effort: Magnitude and Phase')
disp(u)
% Compute control effort for FAU's & MAU's
for i=1:n
    if xp(i)<=147
            % For FAU's & MAU's
            uuu(i)=(u(i))/2;
    else
            % For Centralized Actuation
            uuu(i)=u(i);
    end
end
maxx=max(abs(uuu));
% Display results to screen
disp('Actuation Effort Magnitude')
disp(abs(uuu))
disp(' ')
disp('Actuation Effort Phase')
disp((angle(u)*(180/pi))')
disp(' ')
% Compute controlled response from transfer functions
z=zo+Tp*u; % response of all airframe nodes
z2=zoo+Tp2*u; % response for nodes targeted for vibration suppression
% Compute vector sum of translational vibration components (x, y, z)
for i=1:(m/3)
    zzo(i)=sqrt((abs(zo(3*(i-1)+1)))^2+(abs(zo(3*(i-
1)+2)) )^2+(abs}(zo(3*(i-1)+3)))^2)
    zz(i)=sqrt((abs(z(3*(i-1)+1)) )^2+(abs(z(3*(i-1)+2)) )}^2+(abs(z(3*(i
1)+3)))^2);
end
for i=1:m2
    zz2(i,1)=sqrt((abs(z2(3*(i-1)+1)))^2+(abs(z2(3*(i-
1)+2)) )^2+(abs(z2(3*(i-1)+3)))^2);
    zoo2(i,1)=sqrt((abs(zoo(3*(i-1)+1)))^2+(abs(zoo(3*(i-
1) +2)) )^2+(abs(zoo(3*(i-1)+3)))^2);
end
```


Program to display and plot the optimization results

```
% Compute objective function
fopt=funcn(xp,zo,wuu);
% Display results to screen
disp(['Uncontrolled Vibration Index for target nodes =
',num2str(sqrt(abs((zoo2'*zoo2)/(3*m2))))])
disp(' ')
disp(['Controlled Vibration Index for target nodes =
',num2str(sqrt(abs((zz2'*zz2)/(3*m2))))])
disp(' ')
disp(['Control Index = ',num2str(sqrt(abs((uuu*uuu')/n)))])
disp(' ')
disp(['Max. Control Effort = ',num2str(maxx)])
disp(' ')
disp(['Objective function value = ',num2str(abs(fopt))])
% Plot response of uncontrolled system
%***********************************
figure
subplot(2,1,1)
stem(zzo,'ro','r-')
grid on
xlabel('Node Number')
ylabel('Acceleration [g]')
if flag==0
    axx=axis;
    axis([0 95 0 axx(4)])
    title(['Uncontrolled Response to 4/rev Hub Loads'])
end
if flag==1
    axx=axis;
    axis([0 95 0 axx(4)])
    title(['Uncontrolled Response to 4/rev Hub & Tail Loads'])
end
%***************************************
% Plot response of controlled system
%***********************************************
subplot(2,1,2)
stem(zz,'ro','r-')
grid on
xlabel('Node Number')
ylabel('Acceleration [g]')
if flag==0
    axis([0 95 0 axx(4)])
    title(['Controlled Response to 4/rev Hub Loads'])
end
if flag==1
    axis([0 95 0 axx(4)])
    title(['Controlled Response to 4/rev Hub & Tail Loads'])
```

Program to display and plot the optimization results
end
\%***************************************
\%***************** End of File **********************************)

Appendix B

ADDITIONAL ACTUATION PLACEMENT RESULTS

Optimized Actuation Unit locations for hub and tail excitation, emphasizing control effort reduction. Actuation Unit Number Location: Airframe Nodes		
8	$10-11$	Applied Load
38	$25-26$	Pitch Moment
41	$26-29$	Pitch Moment
142	$80-84$	Pitch Moment
151	$2-27$	Pitch Moment
152	$2-28$	Axial Force
154	$4-52$	Axial Force
155	$3-52$	Axial Force

Optimized Actuation Unit locations for hub and tail excitation, emphasizing both vibration and control effort reduction.

Actuation Unit Number	Location: Airframe Nodes	Applied Load
8	$10-11$	Pitch Moment
38	$25-26$	Pitch Moment
107	$69-70$	Pitch Moment
113	$71-72$	Pitch Moment
142	$80-84$	Pitch Moment
148	$3-51$	Axial Force
150	$1-27$	Axial Force
155	$3-52$	Axial Force

ROM: Uncontrolled airframe response to hub excitation

ROM: CAC controlled airframe response to hub excitation.

ROM: DAUC controlled airframe response to hub excitation.

ROM: Uncontrolled vibration response at target nodes (hub excitation).

ROM: CAC controlled vibration response at target nodes (hub excitation).

ROM: DAUC controlled vibration response at target nodes (hub excitation).

ROM: Optimized DAUC emphasizing vibration reduction.

Optimized Actuation Unit locations for hub excitation, emphasizing vibration reduction.

Actuation Unit Number	Location: Airframe Nodes	Applied Load
8	$10-11$	Pitch Moment
41	$26-29$	Pitch Moment
45	$29-30$	Yaw Moment
47	$31-13$	Pitch Moment
149	$1-51$	Axial Force
150	$1-27$	Axial Force
151	$2-27$	Axial Force
152	$2-28$	Axial Force

ROM: Optimized DAUC emphasizing control effort reduction.

Optimized Actuation Unit locations for hub excitation, emphasizing control effort reduction.

Actuation Unit Number	Location: Airframe Nodes	Applied Load
8	$10-11$	Pitch Moment
38	$25-26$	Pitch Moment
41	$26-29$	Pitch Moment
59	$49-50$	Pitch Moment
148	$3-51$	Axial Force
152	$2-28$	Axial Force
154	$4-52$	Axial Force
155	$3-52$	Axial Force

ROM: Optimized DAUC emphasizing both control effort and vibration reduction.

Optimized Actuation Unit locations for hub excitation, emphasizing both control effort and vibration reduction.

Actuation Unit Number	Location: Airframe Nodes	Applied Load
8	$10-11$	Pitch Moment
33	$23-24$	Yaw Moment
38	$25-26$	Pitch Moment
56	$13-49$	Pitch Moment
148	$3-51$	Axial Force
151	$2-27$	Axial Force
154	$4-52$	Axial Force
155	$3-52$	Axial Force

ROM: Evaluation indices for various actuation configurations.

Optimization objective function and vibration index versus number of Actuation Units

Evaluation indices of CAC and 4 optimally distributed Actuation Unit configuration

$$
\text { Actuation Unit Numbers }=[8,47,152,154]
$$

Appendix C

DISTRIBUTED ACTUATION REALIZATION ANALYSIS RESULTS

Apache helicopter Nastran airframe model eigenvalue analysis results. The first 6 modes are rigid body modes, and modes 6 through 12 are very localized structure modes.

The first global dynamic structural mode is number 13 at $4.145[\mathrm{~Hz}]$.

Mode No.	Eigenvalue $\left[\mathrm{rad}^{2} / \mathrm{sec}^{2}\right]$	Radians $[\mathrm{rad} / \mathrm{sec}]$	Cycles $[\mathrm{Hz}]$	Generalized Mass	Generalized Stiffness
1	$2.9060 \mathrm{E}-09$	$5.3907 \mathrm{E}-05$	$8.5796 \mathrm{E}-06$	$1.0000 \mathrm{E}+00$	$2.9060 \mathrm{E}-09$
2	$3.9388 \mathrm{E}-09$	$6.2760 \mathrm{E}-05$	$9.9885 \mathrm{E}-06$	$1.0000 \mathrm{E}+00$	$3.9388 \mathrm{E}-09$
3	$8.8416 \mathrm{E}-09$	$9.4030 \mathrm{E}-05$	$1.4965 \mathrm{E}-05$	$1.0000 \mathrm{E}+00$	$8.8416 \mathrm{E}-09$
4	$5.7618 \mathrm{E}-07$	$7.5906 \mathrm{E}-04$	$1.2081 \mathrm{E}-04$	$1.0000 \mathrm{E}+00$	$5.7618 \mathrm{E}-07$
5	$2.2912 \mathrm{E}-06$	$1.5137 \mathrm{E}-03$	$2.4091 \mathrm{E}-04$	$1.0000 \mathrm{E}+00$	$2.2912 \mathrm{E}-06$
6	$1.0098 \mathrm{E}-05$	$3.1778 \mathrm{E}-03$	$5.0576 \mathrm{E}-04$	$1.0000 \mathrm{E}+00$	$1.0098 \mathrm{E}-05$
7	$1.3796 \mathrm{E}+02$	$1.1746 \mathrm{E}+01$	$1.8694 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$1.3796 \mathrm{E}+02$
8	$1.5879 \mathrm{E}+02$	$1.2601 \mathrm{E}+01$	$2.0056 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$1.5879 \mathrm{E}+02$
9	$1.8545 \mathrm{E}+02$	$1.3618 \mathrm{E}+01$	$2.1674 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$1.8545 \mathrm{E}+02$
10	$1.8563 \mathrm{E}+02$	$1.3624 \mathrm{E}+01$	$2.1684 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$1.8563 \mathrm{E}+02$
11	$1.9083 \mathrm{E}+02$	$1.3814 \mathrm{E}+01$	$2.1986 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$1.9083 \mathrm{E}+02$
12	$1.9689 \mathrm{E}+02$	$1.4032 \mathrm{E}+01$	$2.2332 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$1.9689 \mathrm{E}+02$
13	678.416	26.046	4.145	1.000	678.416
14	735.769	27.125	4.317	1.000	735.769
15	761.384	27.593	4.392	1.000	761.384
16	963.244	31.036	4.940	1.000	963.244
17	982.474	31.344	4.989	1.000	982.474
18	1133.478	33.667	5.358	1.000	1133.478
19	1346.107	36.689	5.839	1.000	1346.107
20	1989.824	44.607	7.099	1.000	1989.824
21	2375.411	48.738	7.757	1.000	2375.411

Mode No.	Eigenvalue $\left[\mathrm{rad}^{2} / \mathrm{sec}^{2}\right]$	Radians [rad/sec]	Cycles [Hz]	Generalized Mass	Generalized Stiffness
22	2980.899	54.598	8.689	1.000	2980.899
23	3210.526	56.662	9.018	1.000	3210.526
24	3811.226	61.735	9.825	1.000	3811.226
25	5016.515	70.827	11.273	1.000	5016.515
26	5390.046	73.417	11.685	1.000	5390.046
27	6066.628	77.889	12.396	1.000	6066.628
28	6679.901	81.731	13.008	1.000	6679.901
29	6827.713	82.630	13.151	1.000	6827.713
30	7418.970	86.133	13.709	1.000	7418.970
31	7570.051	87.006	13.847	1.000	7570.051
32	8629.388	92.895	14.785	1.000	8629.388
33	9028.369	95.018	15.123	1.000	9028.369
34	9377.566	96.838	15.412	1.000	9377.566
35	9720.283	98.592	15.691	1.000	9720.283
36	9925.175	99.625	15.856	1.000	9925.175
37	10516.800	102.551	16.322	1.000	10516.800
38	11064.720	105.189	16.741	1.000	11064.720
39	11646.670	107.920	17.176	1.000	11646.670
40	12584.060	112.179	17.854	1.000	12584.060
41	14619.600	120.912	19.244	1.000	14619.600
42	15518.930	124.575	19.827	1.000	15518.930
43	15823.240	125.791	20.020	1.000	15823.240
44	17812.760	133.464	21.242	1.000	17812.760
45	18494.220	135.994	21.644	1.000	18494.220
46	19014.840	137.894	21.947	1.000	19014.840
47	20482.650	143.118	22.778	1.000	20482.650
48	21667.680	147.200	23.428	1.000	21667.680
49	22619.130	150.397	23.936	1.000	22619.130
50	22732.030	150.771	23.996	1.000	22732.030
51	22736.240	150.785	23.998	1.000	22736.240
52	23447.160	153.125	24.371	1.000	23447.160

Nastran Model: Mode shape, Frequency $=4.15[\mathrm{~Hz}]$, Tailboom torsion

Nastran Model: Mode shape, Frequency = 5.36 [Hz], Vertical bending

Nastran Model: Mode shape, Frequency $=8.69[\mathrm{~Hz}]$, Lateral bending $\&$ torsion

Nastran Model: Mode shape, Frequency $=9.83[\mathrm{~Hz}]$, Second vertical bending

Definition of dual-point actuation applied to both airframe models					
Nastran FE Model			Reduced Order Model		
Actuation ID Label	Node No. Or Frame No	Net Actuation Load	Actuation Unit Number	Model Node Numbers	Actuation Type
1	29, 23010	Force, x, y, z	148	3, 51	CA
2	5, 23010	Force, x, y, z	149	1,51	CA
3	5,17616	Force, x, y, z	150	1,27	CA
4	18, 17616	Force, x, y, z	151	2, 27	CA
5	18, 17619	Force, x, y, z	152	2, 28	CA
6	41, 17619	Force, x, y, z	153	4,28	CA
7	41, 23011	Force, x, y, z	154	4, 52	CA
8	29, 23011	Force, x, y, z	155	3, 52	CA
9	57, 69	Moment, Y	8	10, 11	MAU, Y
10	144, 154	Moment, Z	33	23, 24	MAU, Z
11	163, 176	Moment, Y	38	25, 26	MAU, Y
12	182, 188	Moment, Y	41	26, 29	MAU, Y
13	188, 199	Moment, Z	45	29, 30	MAU, Z
14	199, 214	Moment, Y	56	13, 49	MAU, Y
15	214, 230	Moment, Y	59	49, 50	MAU, Y
16	383, 396	Moment, Y	107	69, 70	MAU, Y
17	409, 423	Moment, Y	113	71, 72	MAU, Y
18	476, 489	Moment, Z	129	76, 77	MAU, Z
19	530, 547	Moment, Y	142	80, 84	MAU, Y

$\$ 000$ $\$ 000$ \$ THE FOLLOWING SECTIONS WERE ADDED BY DAVID HEVERLY ON 11/7/01 \$ EXECUTIVE CONTROL DECK \$EE $\$ 0000001000000020000000300000004000000050000000600000007000000080000000900000010$ ID DEH,AH64A TIME 15 \$ Dynamic analysis solution for dynamic excitation \$** SOL 11 CEND \$EEE \$ \$ \$ CASE CONTROL DECK TITLE=AH64A, Dynamic Analysis, Hub \& Tail Loads SUBTITLE=Distributed Control (Inter. Case), Element Stress FREQUENCY=66631 MPC=10 METHOD=100 ECHO=NONE SDAMPING=66611 DLOAD=66603 \$ \$ NASTRAN model grid points = Reduced Order Model (ROM) nodes SET $66621=5,18,29,41,54,62,500,3499,4600,5700,6900,8000,9056,9101,10514$, 11501,12002,12004,12031,12032,12501,13501,14401,15400,16300, 17600,17616,17619,18800,19900,20050,20051,20052,20053,20054, 20055,20056,20057,20058,20060,20061,20062,20063,20064,20065, 20066,20067,20068,21400,22999,23010,23011,23800,24000, 24001, $24700,25800,26900,28000,29000,30000,31000,32000,33000,34000$, $35000,36000,37000,38300,39600,40900,42300,43600,45000,46300$, $47600,48900,50300,51600,53000,54700,55401,55403,55404,56501$, $56502,56503,56504,56505,56506,56507,56508,56509,57004$ \$ NASTRAN model grid points = Reduced Order Model (ROM) target nodes SET $66622=3499,6900,9056,9101,12501,15400,17600,23800,28000$, 31000,37000 \$ \$ Case 1 = Distributed control, response at all ROM nodes SUBCASE 1 SUBTITLE=Distributed control, response at all ROM nodes ACCELERATION=66621 \$ \$ Case 2 = Distributed control, response at target nodes SUBCASE 2 SUBTITLE=Distributed control, response at target nodes ACCELERATION=66622

NASTRAN source code, sample of added command lines								
\$								
\$ Case 3	= Dynam	c stres	for all	element				
SUBCASE 3								
SUBTITLE=Dynamic stress for all elements								
ELSTRESS (PRINT, PHASE) =ALL								
\$								
BEGIN BULK								
\$ССС \$								
\$ THE FOLLOWING SECTIONS WERE ADDED BY DAvid heveriy on 11/7/01								
\$ BULK DATA DECK ADDITIONS								
\$BB								
\$0000001000000020000000300000004000000050000000600000007000000080000000900000010								
SUPORT	54	123456						
$\begin{array}{llll}\text { EIGRL } & 100 & 4 . & 40 .\end{array}$								
INCLUDE AH64BULK.DATA								
FREQ	66631	19.2						
TABDMP1	66611	CRIT						
	0.0	0.02	10.0+9	0.02	ENDT			
\$								
\$								
\$ This section is for the Hub \& Tail loading condition								
DLOAD	66601	1.0	185.0	77701	185.0	77702	920.0	77703 +DLHpT
+DLHpT	920.0	77704	920.0	77705	62.5	77706	62.5	77707 +DLHpT2
+DLHpT2	368.25	77708	368.25	77709	88.65	77710	88.65	77711
RLOAD1	77701	77751		77771	77901			
RLOAD1	77702	77752		77772	77901			
RLOAD1	77703	77753		77773	77901			
RLOAD1	77704	77754		77774	77901			
RLOAD1	77705	77755		77775	77901			
RLOAD1	77706	77756		77776	77901			
RLOAD1	77707	77757		77777	77901			
RLOAD1	77708	77758		77778	77901			
RLOAD1	77709	77759		77779	77901			
RLOAD1	77710	77760		77780	77901			
RLOAD1	77711	77761		77781	77901			
DAREA	77751	54	1	1.0				
DAREA	77752	54	2	1.0				
DAREA	77753	54	3	1.0				
DAREA	77754	54	4	1.0				
DAREA	77755	54	5	1.0				
DAREA	77756	56050	3	1.0	56051	3	1.0	
DAREA	77757	56054	3	1.0	56055	3	1.0	
DAREA	77758	56050	2	-1.0	56051	2	1.0	
DAREA	77759	56054	2	-1.0	56055	2	1.0	
DAREA	77760	56050	1	1.0	56051	1	-1.0	
DAREA	77761	56054	1	1.0	56055	1	-1.0	
DPHASE	77771	54	1	0.0				
DPHASE	77772	54	2	90.0				

NASTRAN source code, sample of added command lines								
DPHASE	77773	54	3	0.0				
DPHASE	77774	54	4	90.0				
DPHASE	77775	54	5	180.0				
DPHASE	77776	56050	3	270.0	56051	3	270.0	
DPHASE	77777	56054	3	270.0	56055	3	270.0	
DPHASE	77778	56050	2	195.0	56051	2	195.0	
DPHASE	77779	56054	2	195.0	56055	2	195.0	
DPHASE	77780	56050	1	130.0	56051	1	130.0	
DPHASE	77781	56054	1	130.0	56055	1	130.0	
TABLED1	77901							+TB1
+TB1	0.0	1.0	10.0+9	1.0	ENDT			
\$								
\$								
\$ This section is for Centralized actuator control								
\$0000001000000020000000300000004000000050000000600000007000000080000000900000010								
\$ Centralized Actuator 148								
RLOAD1	78051	78101		78251	77901			
RLOAD1	78052	78102		78252	77901			
RLOAD1	78053	78103		78253	77901			
RLOAD1	78054	78104		78254	77901			
RLOAD1	78055	78105		78255	77901			
RLOAD1	78056	78106		78256	77901			
\$ Centralized Actuator 149								
RLOAD1	78057	78107		78257	77901			
RLOAD1	78058	78108		78258	77901			
RLOAD1	78059	78109		78259	77901			
RLOAD1	78060	78110		78260	77901			
RLOAD1	78061	78111		78261	77901			
RLOAD1	78062	78112		78262	77901			
\$ Centralized Actuator 150								
RLOAD1	78063	78113		78263	77901			
RLOAD1	78064	78114		78264	77901			
RLOAD1	78065	78115		78265	77901			
RLOAD1	78066	78116		78266	77901			
RLOAD1	78067	78117		78267	77901			
RLOAD1	78068	78118		78268	77901			
\$ Centralized Actuator 151								
RLOAD1	78069	78119		78269	77901			
RLOAD1	78070	78120		78270	77901			
RLOAD1	78071	78121		78271	77901			
RLOAD1	78072	78122		78272	77901			
RLOAD1	78073	78123		78273	77901			
RLOAD1	78074	78124		78274	77901			
\$ Centralized Actuator 152								
RLOAD1	78075	78125		78275	77901			
RLOAD1	78076	78126		78276	77901			
RLOAD1	78077	78127		78277	77901			
RLOAD1	78078	78128		78278	77901			
RLOAD1	78079	78129		78279	77901			
RLOAD1	78080	78130		78280	77901			
\$ Centralized Actuator 153								

NASTRAN source code, sample of added command lines					
RLOAD1	78081	78131		78281	77901
RLOAD1	78082	78132		78282	77901
RLOAD1	78083	78133		78283	77901
RLOAD1	78084	78134		78284	77901
RLOAD1	78085	78135		78285	77901
RLOAD1	78086	78136		78286	77901
\$ Centralized Actuator 154					
RLOAD1	78087	78137		78287	77901
RLOAD1	78088	78138		78288	77901
RLOAD1	78089	78139		78289	77901
RLOAD1	78090	78140		78290	77901
RLOAD1	78091	78141		78291	77901
RLOAD1	78092	78142		78292	77901
\$ Centralized Actuator 155					
RLOAD1	78093	78143		78293	77901
RLOAD1	78094	78144		78294	77901
RLOAD1	78095	78145		78295	77901
RLOAD1	78096	78146		78296	77901
RLOAD1	78097	78147		78297	77901
RLOAD1	78098	78148		78298	77901
\$					
\$ Centralized Actuator 148					
DAREA	78101	29	1	-. 3316	
DAREA	78102	29	2	-. 6307	
DAREA	78103	29	3	0.7016	
DAREA	78104	23010	1	0.3316	
DAREA	78105	23010	2	0.6307	
DAREA	78106	23010	3	-. 7016	
\$ Centralized Actuator 149					
DAREA	78107	5	1	-. 7135	
DAREA	78108	5	2	-. 2536	
DAREA	78109	5	3	0.6532	
DAREA	78110	23010	1	0.7135	
DAREA	78111	23010	2	0.2536	
DAREA	78112	23010	3	-. 6532	
\$ Centralized Actuator 150					
DAREA	78113	5	1	0.7022	
DAREA	78114	5	2	-. 2577	
DAREA	78115	5	3	0.6637	
DAREA	78116	17616	1	-. 7022	
DAREA	78117	17616	2	0.2577	
DAREA	78118	17616	3	-. 6637	
\$ Centralized Actuator 151					
DAREA	78119	18	1	0.3509	
DAREA	78120	18	2	-. 6602	
DAREA	78121	18	3	0.6641	
DAREA	78122	17616	1	-. 3509	
DAREA	78123	17616	2	0.6602	
DAREA	78124	17616	3	-. 6641	
\$ Centralized Actuator 152					
DAREA	78125	18	1	0.3509	

NASTRAN source code, sample of added command lines				
DAREA	78126	18	2	0.6602
DAREA	78127	18	3	0.6641
DAREA	78128	17619	1	-. 3509
DAREA	78129	17619	2	-. 6602
DAREA	78130	17619	3	-. 6641
\$ Centralized Actuator 153				
DAREA	78131	41	1	0.7022
DAREA	78132	41	2	0.2577
DAREA	78133	41	3	0.6637
DAREA	78134	17619	1	-. 7022
DAREA	78135	17619	2	-. 2577
DAREA	78136	17619	3	-. 6637
\$ Centralized Actuator 154				
DAREA	78137	41	1	-. 7135
DAREA	78138	41	2	0.2536
DAREA	78139	41	3	0.6532
DAREA	78140	23011	1	0.7135
DAREA	78141	23011	2	-. 2536
DAREA	78142	23011	3	-. 6532
\$ Centralized Actuator 155				
DAREA	78143	29	1	-. 3316
DAREA	78144	29	2	0.6307
DAREA	78145	29	3	0.7016
DAREA	78146	23011	1	0.3316
DAREA	78147	23011	2	-. 6307
DAREA	78148	23011	3	-. 7016
\$ $\$ 0000001000000020000000300000004000000050000000600000007000000080000000900000010$				
\$ Centralized Actuator 148				
DPHASE	78251	29	1	0.0
DPHASE	78252	29	2	0.0
DPHASE	78253	29	3	0.0
DPHASE	78254	23010	1	0.0
DPHASE	78255	23010	2	0.0
DPHASE	78256	23010		0.0
\$ Centralized Actuator 149				
DPHASE	78257	5	1	203.7
DPHASE	78258	5	2	203.7
DPHASE	78259	5	3	203.7
DPHASE	78260	23010		203.7
DPHASE	78261	23010	2	203.7
DPHASE	78262	23010	3	203.7
\$ Centralized Actuator 150				
DPHASE	78263	5	1	0.0
DPHASE	78264	5	2	0.0
DPHASE	78265	5	3	0.0
DPHASE	78266	17616	1	0.0
DPHASE	78267	17616		0.0
DPHASE	78268	17616	3	0.0
\$ Centralized Actuator 151				
DPHASE	78269	18	1	205.0

NASTRAN source code, sample of added command lines									
DPHASE	78270	18	2	205.0					
DPHASE	78271	18	3	205.0					
DPHASE	78272	17616	1	205.0					
DPHASE	78273	17616	2	205.0					
DPHASE	78274	17616	3	205.0					
\$ Centralized Actuator 152									
DPHASE	78275	18	1	0.0					
DPHASE	78276	18	2	0.0					
DPHASE	78277	18	,	0.0					
DPHASE	78278	17619	1	0.0					
DPHASE	78279	17619	2	0.0					
DPHASE	78280	17619	3	0.0					
\$ Centralized Actuator 153									
DPHASE	78281	41	1	0.0					
DPHASE	78282	41	2	0.0					
DPhASE	78283	41	3	0.0					
DPHASE	78284	17619	1	0.0					
DPHASE	78285	17619	2	0.0					
DPHASE	78286	17619	3	0.0					
\$ Centralized Actuator 154									
DPHASE	78287	41	1	0.0					
DPHASE	78288	41	,	0.0					
DPHASE	78289	41	3	0.0					
DPHASE	78290	23011	1	0.0					
DPHASE	78291	23011	2	0.0					
DPHASE	78292	23011	3	0.0					
\$ Centralized Actuator 155									
DPHASE	78293	29	1	43.4					
DPHASE	78294	29	2	43.4					
DPHASE	78295	29	3	43.4					
DPHASE	78296	23011	1	43.4					
DPHASE	78297	23011	2	43.4					
DPHASE	78298	23011	3	43.4					
\$									
\$									
\$ This section is for distributed control - intermediate case $\$ 0000001000000020000000300000004000000050000000600000007000000080000000900000010$									
DLOAD	66603	1.0	185.0	77701	185.0	77702	920.0	77703	+DLIC1
+DLIC1	920.0	77704	920.0	77705	62.5	77706	62.5	77707	+DLIC2
+DLIC2	368.25	77708	368.25	77709	88.65	77710	88.65	77711	+DLIC3
+DLIC3	1575.0	78057	1575.0	78058	1575.0	78059	1575.0	78060	+DLIC4
+DLIC4	1575.0	78061	1575.0	78062	692.4	78069	692.4	78070	+DLIC5
+DLIC5	692.4	78071	692.4	78072	692.4	78073	692.4	78074	+DLIC6
+DLIC6	1127.0	78093	1127.0	78094	1127.0	78095	1127.0	78096	+DLIC7
+DLIC7	1127.0	78097	1127.0	78098	183.2	79017	183.2	79018	+DLIC8
+DLIC8	183.2	79019	183.2	79020	183.2	79021	183.2	79022	+DLIC9
+DLIC9	183.2	79023	183.2	79024	183.2	79025	183.2	79026	+DLIC10
+DLIC10	183.2	79027	183.2	79028	183.2	79029	183.2	79030	+DLIC11
+DLIC11	183.2	79031	183.2	79032	1294.5	79033	1294.5	79034	+DLIC12
+DLIC12	1294.5	79035	1294.5	79036	1294.5	79037	1294.5	79038	+DLIC13
+DLIC13	1294.5	79039	1294.5	79040	1294.5	79041	1294.5	79042	+DLIC14

NASTRAN source code, sample of added command lines									
+DLIC14	1294.5	79043	1294.5	79044	1294.5	79045	1294.5	79046	+DLIC15
+DLIC15	1294.5	79047	1294.5	79048	425.9	79061	425.9	79062	+DLIC16
+DLIC16	425.9	79063	425.9	79064	425.9	79065	425.9	79066	+DLIC17
+DLIC17	425.9	79067	425.9	79068	425.9	79069	425.9	79070	+DLIC18
+DLIC18	425.9	79071	425.9	79072	425.9	79073	425.9	79074	+DLIC19
+DLIC19	425.9	79075	425.9	79076	425.9	79077	425.9	79078	+DLIC20
+DLIC20	425.9	79079	425.9	79080	2089.1	79081	2089.1	79082	+DLIC21
+DLIC21	2089.1	79083	2089.1	79084	2089.1	79085	2089.1	79086	+DLIC22
+DLIC22	2089.1	79087	2089.1	79088	2089.1	79089	2089.1	79090	+DLIC23
+DLIC23	2089.1	79091	2089.1	79092	2089.1	79093	2089.1	79094	+DLIC24
+DLIC24	2089.1	79095	2089.1	79096	1303.0	79153	1303.0	79154	+DLIC25
+DLIC25	1303.0	79155	1303.0	79156	1303.0	79157	1303.0	79158	+DLIC26
+DLIC26	1303.0	79159	1303.0	79160	1303.0	79161	1303.0	79162	+DLIC27
+DLIC27	1303.0	79163	1303.0	79164	1303.0	79165	1303.0	79166	+DLIC28
+DLIC28	1303.0	79167	1303.0	79168	1303.0	79169	1303.0	79170	+DLIC29
+DLIC29	1303.0	79171	1303.0	79172					
\$									
\$									
\$ This section is for distributed actuation loads									
\$0000001000000020000000300000004000000050000000600000007000000080000000900000010									
\$ Distributed Actuator 8									
RLOAD1	79001	79301		79601	77901				
RLOAD1	79002	79302		79602	77901				
RLOAD1	79003	79303		79603	77901				
RLOAD1	79004	79304		79604	77901				
RLOAD1	79005	79305		79605	77901				
RLOAD1	79006	79306		79606	77901				
RLOAD1	79007	79307		79607	77901				
RLOAD1	79008	79308		79608	77901				
RLOAD1	79009	79309		79609	77901				
RLOAD1	79010	79310		79610	77901				
RLOAD1	79011	79311		79611	77901				
RLOAD1	79012	79312		79612	77901				
RLOAD1	79013	79313		79613	77901				
RLOAD1	79014	79314		79614	77901				
RLOAD1	79015	79315		79615	77901				
RLOAD1	79016	79316		79616	77901				
\$ Distributed Actuator 33									
RLOAD1	79017	79317		79617	77901				
RLOAD1	79018	79318		79618	77901				
RLOAD1	79019	79319		79619	77901				
RLOAD1	79020	79320		79620	77901				
RLOAD1	79021	79321		79621	77901				
RLOAD1	79022	79322		79622	77901				
RLOAD1	79023	79323		79623	77901				
RLOAD1	79024	79324		79624	77901				
RLOAD1	79025	79325		79625	77901				
RLOAD1	79026	79326		79626	77901				
RLOAD1	79027	79327		79627	77901				
RLOAD1	79028	79328		79628	77901				
RLOAD1	79029	79329		79629	77901				

NASTRAN source code, sample of added command lines				
RLOAD1	79030	79330	79630	77901
RLOAD1	79031	79331	79631	77901
RLOAD1	79032	79332	79632	77901
\$ Distributed Actuator 38				
RLOAD1	79033	79333	79633	77901
RLOAD1	79034	79334	79634	77901
RLOAD1	79035	79335	79635	77901
RLOAD1	79036	79336	79636	77901
RLOAD1	79037	79337	79637	77901
RLOAD1	79038	79338	79638	77901
RLOAD1	79039	79339	79639	77901
RLOAD1	79040	79340	79640	77901
RLOAD1	79041	79341	79641	77901
RLOAD1	79042	79342	79642	77901
RLOAD1	79043	79343	79643	77901
RLOAD1	79044	79344	79644	77901
RLOAD1	79045	79345	79645	77901
RLOAD1	79046	79346	79646	77901
RLOAD1	79047	79347	79647	77901
RLOAD1	79048	79348	79648	77901
\$ Distributed Actuator 41				
RLOAD1	79049	79349	79649	77901
RLOAD1	79050	79350	79650	77901
RLOAD1	79051	79351	79651	77901
RLOAD1	79052	79352	79652	77901
RLOAD1	79053	79353	79653	77901
RLOAD1	79054	79354	79654	77901
RLOAD1	79055	79355	79655	77901
RLOAD1	79056	79356	79656	77901
RLOAD1	79057	79357	79657	77901
RLOAD1	79058	79358	79658	77901
RLOAD1	79059	79359	79659	77901
RLOAD1	79060	79360	79660	77901
\$ Distributed Actuator 45				
RLOAD1	79061	79361	79661	77901
RLOAD1	79062	79362	79662	77901
RLOAD1	79063	79363	79663	77901
RLOAD1	79064	79364	79664	77901
RLOAD1	79065	79365	79665	77901
RLOAD1	79066	79366	79666	77901
RLOAD1	79067	79367	79667	77901
RLOAD1	79068	79368	79668	77901
RLOAD1	79069	79369	79669	77901
RLOAD1	79070	79370	79670	77901
RLOAD1	79071	79371	79671	77901
RLOAD1	79072	79372	79672	77901
RLOAD1	79073	79373	79673	77901
RLOAD1	79074	79374	79674	77901
RLOAD1	79075	79375	79675	77901
RLOAD1	79076	79376	79676	77901
RLOAD1	79077	79377	79677	77901

NASTRAN source code, sample of added command lines				
RLOAD1	79078	79378	79678	77901
RLOAD1	79079	79379	79679	77901
RLOAD1	79080	79380	79680	77901
\$ Distributed Actuator 56				
RLOAD1	79081	79381	79681	77901
RLOAD1	79082	79382	79682	77901
RLOAD1	79083	79383	79683	77901
RLOAD1	79084	79384	79684	77901
RLOAD1	79085	79385	79685	77901
RLOAD1	79086	79386	79686	77901
RLOAD1	79087	79387	79687	77901
RLOAD1	79088	79388	79688	77901
RLOAD1	79089	79389	79689	77901
RLOAD1	79090	79390	79690	77901
RLOAD1	79091	79391	79691	77901
RLOAD1	79092	79392	79692	77901
RLOAD1	79093	79393	79693	77901
RLOAD1	79094	79394	79694	77901
RLOAD1	79095	79395	79695	77901
RLOAD1	79096	79396	79696	77901
\$ Distributed Actuator 59				
RLOAD1	79097	79397	79697	77901
RLOAD1	79098	79398	79698	77901
RLOAD1	79099	79399	79699	77901
RLOAD1	79100	79400	79700	77901
RLOAD1	79101	79401	79701	77901
RLOAD1	79102	79402	79702	77901
RLOAD1	79103	79403	79703	77901
RLOAD1	79104	79404	79704	77901
RLOAD1	79105	79405	79705	77901
RLOAD1	79106	79406	79706	77901
RLOAD1	79107	79407	79707	77901
RLOAD1	79108	79408	79708	77901
RLOAD1	79109	79409	79709	77901
RLOAD1	79110	79410	79710	77901
RLOAD1	79111	79411	79711	77901
RLOAD1	79112	79412	79712	77901
\$ Distributed Actuator 107				
RLOAD1	79113	79413	79713	77901
RLOAD1	79114	79414	79714	77901
RLOAD1	79115	79415	79715	77901
RLOAD1	79116	79416	79716	77901
RLOAD1	79117	79417	79717	77901
RLOAD1	79118	79418	79718	77901
RLOAD1	79119	79419	79719	77901
RLOAD1	79120	79420	79720	77901
RLOAD1	79121	79421	79721	77901
RLOAD1	79122	79422	79722	77901
RLOAD1	79123	79423	79723	77901
RLOAD1	79124	79424	79724	77901
RLOAD1	79125	79425	79725	77901

NASTRAN source code, sample of added command lines				
RLOAD1	79126	79426	79726	77901
RLOAD1	79127	79427	79727	77901
RLOAD1	79128	79428	79728	77901
RLOAD1	79129	79429	79729	77901
RLOAD1	79130	79430	79730	77901
RLOAD1	79131	79431	79731	77901
RLOAD1	79132	79432	79732	77901
\$ Distributed Actuator 113				
RLOAD1	79133	79433	79733	77901
RLOAD1	79134	79434	79734	77901
RLOAD1	79135	79435	79735	77901
RLOAD1	79136	79436	79736	77901
RLOAD1	79137	79437	79737	77901
RLOAD1	79138	79438	79738	77901
RLOAD1	79139	79439	79739	77901
RLOAD1	79140	79440	79740	77901
RLOAD1	79141	79441	79741	77901
RLOAD1	79142	79442	79742	77901
RLOAD1	79143	79443	79743	77901
RLOAD1	79144	79444	79744	77901
RLOAD1	79145	79445	79745	77901
RLOAD1	79146	79446	79746	77901
RLOAD1	79147	79447	79747	77901
RLOAD1	79148	79448	79748	77901
RLOAD1	79149	79449	79749	77901
RLOAD1	79150	79450	79750	77901
RLOAD1	79151	79451	79751	77901
RLOAD1	79152	79452	79752	77901
\$ Distributed Actuator 129				
RLOAD1	79153	79453	79753	77901
RLOAD1	79154	79454	79754	77901
RLOAD1	79155	79455	79755	77901
RLOAD1	79156	79456	79756	77901
RLOAD1	79157	79457	79757	77901
RLOAD1	79158	79458	79758	77901
RLOAD1	79159	79459	79759	77901
RLOAD1	79160	79460	79760	77901
RLOAD1	79161	79461	79761	77901
RLOAD1	79162	79462	79762	77901
RLOAD1	79163	79463	79763	77901
RLOAD1	79164	79464	79764	77901
RLOAD1	79165	79465	79765	77901
RLOAD1	79166	79466	79766	77901
RLOAD1	79167	79467	79767	77901
RLOAD1	79168	79468	79768	77901
RLOAD1	79169	79469	79769	77901
RLOAD1	79170	79470	79770	77901
RLOAD1	79171	79471	79771	77901
RLOAD1	79172	79472	79772	77901
\$ Distributed Actuator 142				
RLOAD1	79173	79473	79773	77901

NASTRAN source code, sample of added command lines				
RLOAD1	79174	79474	79774	77901
RLOAD1	79175	79475	79775	77901
RLOAD1	79176	79476	79776	77901
RLOAD1	79177	79477	79777	77901
RLOAD1	79178	79478	79778	77901
RLOAD1	79179	79479	79779	77901
RLOAD1	79180	79480	79780	77901
\$				
\$0000001000000020000000300000004000000050000000600000007000000080000000900000010				
\$ Distributed Actuator 8				
DAREA	79301	5708	$1 \quad 0.17$	
DAREA	79302	5709	10.17	
DAREA	79303	5710	10.36	
DAREA	79304	5711	10.36	
DAREA	79305	5714	10.50	
DAREA	79306	5715	10.50	
DAREA	79307	5719	11.0	
DAREA	79308	5720	$1 \quad 1.0$	
DAREA	79309	6904	$1 \begin{array}{ll}1 & -0.17\end{array}$	
DAREA	79310	6903	$1 \begin{array}{ll}1 & -0.17\end{array}$	
DAREA	79311	6906	1 -0.36	
DAREA	79312	6905	$1-0.36$	
DAREA	79313	6908	$1-0.5$	
DAREA	79314	6907	1 -0.5	
DAREA	79315	6919	$1-1.0$	
DAREA	79316	6920	$1-1.0$	
\$ Distributed Actuator 33				
DAREA	79317	14408	1 -0.25	
DAREA	79318	14410	1 -0.25	
DAREA	79319	14412	1 -0.25	
DAREA	79320	14414	1 -0.25	
DAREA	79321	14409	10.25	
DAREA	79322	14411	10.25	
DAREA	79323	14413	10.25	
DAREA	79324	14415	10.25	
DAREA	79325	15468	10.25	
DAREA	79326	15406	10.25	
DAREA	79327	15408	10.25	
DAREA	79328	15410	10.25	
DAREA	79329	15467	1 -0.25	
DAREA	79330	15407	$1-0.25$	
DAREA	79331	15409	$1-0.25$	
DAREA	79332	15411	$1-0.25$	
\$ Distributed Actuator 38				
DAREA	79333	16303	$1-1.00$	
DAREA	79334	16306	1 -1.00	
DAREA	79335	16309	10.30	
DAREA	79336	16314	10.30	
DAREA	79337	16313	10.30	
DAREA	79338	16318	10.30	
DAREA	79339	16317	10.40	

NASTRAN source code, sample of added command lines				
DAREA	79340	16322	1	0.40
DAREA	79341	17619	1	1.00
DAREA	79342	17616	1	1.00
DAREA	79343	17677	1	-0.30
DAREA	79344	17680	1	-0.30
DAREA	79345	17691	1	-0.30
DAREA	79346	17688	1	-0.30
DAREA	79347	17703	1	-0.40
DAREA	79348	17700	1	-0.40
\$ Distributed Actuator 41				
DAREA	79349	18202	1	-1.00
DAREA	79350	18203	1	-1.00
DAREA	79351	18208	1	0.50
DAREA	79352	18209	1	0.50
DAREA	79353	18212	1	0.50
DAREA	79354	18213	1	0.50
DAREA	79355	18808	1	1.00
DAREA	79356	18807	1	1.00
DAREA	79357	18814	1	-0.50
DAREA	79358	18813	1	-0.50
DAREA	79359	18818	1	-0.50
DAREA	79360	18817	1	-0.50
\$ Distributed Actuator 45				
DAREA	79361	18804	1	-0.20
DAREA	79362	18806	1	-0.20
DAREA	79363	18810	1	-0.20
DAREA	79364	18814	1	-0.20
DAREA	79365	18818	1	-0.20
DAREA	79366	18805	1	0.20
DAREA	79367	18807	1	0.20
DAREA	79368	18809	1	0.20
DAREA	79369	18813	1	0.20
DAREA	79370	18817	1	0.20
DAREA	79371	19908	1	0.20
DAREA	79372	19920	1	0.20
DAREA	79373	19930	1	0.20
DAREA	79374	19940	1	0.20
DAREA	79375	19948	1	0.20
DAREA	79376	19909	1	-0.20
DAREA	79377	19921	1	-0.20
DAREA	79378	19933	1	-0.20
DAREA	79379	19943	1	-0.20
DAREA	79380	19951	1	-0.20
\$ Distributed Actuator 56				
DAREA	79381	19908	1	-0.60
DAREA	79382	19909	1	-0.60
DAREA	79383	19920	1	-0.40
DAREA	79384	19921	1	-0.40
DAREA	79385	19940	1	0.40
DAREA	79386	19943		0.40
DAREA	79387	19948	1	0.60

NASTRAN source code, sample of added command lines						

NASTRAN source code, sample of added command lines				
DAREA	79436	40904	1	-0.20
DAREA	79437	40905	1	-0.20
DAREA	79438	40910	1	0.20
DAREA	79439	40911	1	0.20
DAREA	79440	40912	1	0.20
DAREA	79441	40913	1	0.20
DAREA	79442	40917	1	0.20
DAREA	79443	42301	1	0.20
DAREA	79444	42302	1	0.20
DAREA	79445	42303	1	0.20
DAREA	79446	42304	1	0.20
DAREA	79447	42305	1	0.20
DAREA	79448	42308	1	-0.20
DAREA	79449	42309	1	-0.20
DAREA	79450	42310	1	-0.20
DAREA	79451	42311	1	-0.20
DAREA	79452	42313	1	-0.20
\$ Distributed Actuator 129				
DAREA	79453	47602	1	-0.20
DAREA	79454	47604	1	-0.20
DAREA	79455	47606	1	-0.20
DAREA	79456	47608	1	-0.20
DAREA	79457	47610	1	-0.20
DAREA	79458	47603	,	0.20
DAREA	79459	47605		0.20
DAREA	79460	47607		0.20
DAREA	79461	47609	1	0.20
DAREA	79462	47611	1	0.20
DAREA	79463	48902	1	0.20
DAREA	79464	48904	1	0.20
DAREA	79465	48906	1	0.20
DAREA	79466	48908	1	0.20
DAREA	79467	48910	1	0.20
DAREA	79468	48903	1	-0.20
DAREA	79469	48905	1	-0.20
DAREA	79470	48907	1	-0.20
DAREA	79471	48909	1	-0.20
DAREA	79472	48911	1	-0.20
\$ Distributed Actuator 142				
DAREA	79473	53022	3	-0.50
DAREA	79474	53035	3	-0.50
DAREA	79475	54755	3	0.50
DAREA	79476	54756	3	0.50
DAREA	79477	55062	3	0.50
DAREA	79478	55061	3	0.50
DAREA	79479	55063	3	-0.50
DAREA	79480	55064	3	-0.50
\$ Distributed Actuator 8				

	NASTRAN source code, sample of added command lines			
DPHASE	79650	18203	1	0.0
DPHASE	79651	18208	1	0.0
DPHASE	79652	18209	1	0.0
DPHASE	79653	18212	1	0.0
DPHASE	79654	18213	1	0.0
DPHASE	79655	18808	1	0.0
DPHASE	79656	18807	1	0.0
DPHASE	79657	18814	1	0.0
DPHASE	79658	18813	1	0.0
DPHASE	79659	18818	1	0.0
DPHASE	79660	18817	1	0.0
S Distributed Actuator 45				
DPHASE	79661	18804	1	249.3
DPHASE	79662	18806	1	249.3
DPHASE	79663	18810	1	249.3
DPHASE	79664	18814	1	249.3
DPHASE	79665	18818	1	249.3
DPHASE	79666	18805	1	249.3
DPHASE	79667	18807	1	249.3
DPHASE	79668	18809	1	249.3
DPHASE	79669	18813	1	249.3
DPHASE	79670	18817	1	249.3
DPHASE	79671	19908	1	249.3
DPHASE	79672	19920	1	249.3
DPHASE	79673	19930	1	249.3
DPHASE	79674	19940	1	249.3
DPHASE	79675	19948	1	249.3
DPHASE	79676	19909	1	249.3
DPHASE	79677	19921	1	249.3
DPHASE	79678	19933	1	249.3
DPHASE	79679	19943	1	249.3
DPHASE	79680	19951	1	249.3
\$ Distributed Actuator 56				
DPHASE	79681	19908	1	174.3
DPHASE	79682	19909	1	174.3
DPHASE	79683	19920	1	174.3
DPHASE	79684	19921	1	174.3
DPHASE	79685	19940	1	174.3
DPHASE	79686	19943	1	174.3
DPHASE	79687	19948	1	174.3
DPHASE	79688	19951	1	174.3
DPHASE	79689	21408	1	174.3
DPHASE	79690	21409	1	174.3
DPHASE	79691	21414	1	174.3
DPHASE	79692	21415	1	174.3
DPHASE	79693	21432	1	174.3
DPHASE	79694	21435	1	174.3
DPHASE	79695	21438	1	174.3
DPHASE	79696	21441	1	174.3
	79697	21408	1	0.0

NASTRAN source code, sample of added command lines				
DPHASE	79698	21409	1	0.0
DPHASE	79699	21414	1	0.0
DPHASE	79700	21415	1	0.0
DPHASE	79701	21432	1	0.0
DPHASE	79702	21435	1	0.0
DPHASE	79703	21438	1	0.0
DPHASE	79704	21441	1	0.0
DPHASE	79705	23010	1	0.0
DPHASE	79706	23011	1	0.0
DPHASE	79707	23020	1	0.0
DPHASE	79708	23023	1	0.0
DPHASE	79709	23038	1	0.0
DPHASE	79710	23041	1	0.0
DPHASE	79711	23042	1	0.0
DPHASE	79712	23045	1	0.0
\$ Distributed Actuator 107				
DPHASE	79713	38301	1	0.0
DPHASE	79714	38302	1	0.0
DPHASE	79715	38303	1	0.0
DPHASE	79716	38304	1	0.0
DPHASE	79717	38305	1	0.0
DPHASE	79718	38310	1	0.0
DPHASE	79719	38311	1	0.0
DPHASE	79720	38312	1	0.0
DPHASE	79721	38313	1	0.0
DPHASE	79722	38317	1	0.0
DPHASE	79723	39601	1	0.0
DPHASE	79724	39602	1	0.0
DPHASE	79725	39603	1	0.0
DPHASE	79726	39604	1	0.0
DPHASE	79727	39605	1	0.0
DPHASE	79728	39610	1	0.0
DPHASE	79729	39611	1	0.0
DPHASE	79730	39612	1	0.0
DPHASE	79731	39613	1	0.0
DPHASE	79732	39617	1	0.0
\$ Distributed Actuator 113				
DPHASE	79733	40901	1	0.0
DPHASE	79734	40902	1	0.0
DPHASE	79735	40903	1	0.0
DPHASE	79736	40904	1	0.0
DPHASE	79737	40905	1	0.0
DPHASE	79738	40910	1	0.0
DPHASE	79739	40911	1	0.0
DPHASE	79740	40912	1	0.0
DPHASE	79741	40913	1	0.0
DPHASE	79742	40917	1	0.0
DPHASE	79743	42301	1	0.0
DPHASE	79744	42302	1	0.0
DPHASE	79745	42303	1	0.0
DPHASE	79746	42304	1	0.0

NASTRAN source code, sample of added command lines						
DPHASE	79747	42305	1	0.0		
DPHASE	79748	42308	1	0.0		
DPHASE	79749	42309	1	0.0		
DPHASE	79750	42310	1	0.0		
DPHASE	79751	42311	1	0.0		
DPHASE	79752	42313	1	0.0		
\$ Distributed Actuator 129						
DPHASE	79753	47602	1	57.2		
DPHASE	79754	47604	1	57.2		
DPHASE	79755	47606	1	57.2		
DPHASE	79756	47608	1	57.2		
DPHASE	79757	47610	1	57.2		
DPHASE	79758	47603	1	57.2		
DPHASE	79759	47605	1	57.2		
DPHASE	79760	47607	1	57.2		
DPHASE	79761	47609	1	57.2		
DPhase	79762	47611	1	57.2		
DPHASE	79763	48902	1	57.2		
DPHASE	79764	48904	1	57.2		
DPHASE	79765	48906	1	57.2		
DPHASE	79766	48908	1	57.2		
DPHASE	79767	48910	,	57.2		
DPHASE	79768	48903	,	57.2		
DPHASE	79769	48905	1	57.2		
DPHASE	79770	48907	1	57.2		
DPHASE	79771	48909	1	57.2		
DPHASE	79772	48911	1	57.2		
\$ Distributed Actuator 142						
DPHASE	79773	53022	3	0.0		
DPHASE	79774	53035	3	0.0		
DPHASE	79775	54755	3	0.0		
DPHASE	79776	54756	3	0.0		
DPHASE	79777	55062	3	0.0		
DPHASE	79778	55061	3	0.0		
DPHASE	79779	55063	3	0.0		
DPHASE	79780	55064	3	0.0		
\$						
\$						
\$ ADD GRID POINTS						
\$0000001000000020000000300000004000000050000000600000007000000080000000900000010						
GRID	3499		35.5	0.0	129.2	100
GRID	9056		206.2	0.0	129.2	100
GRID	20050		206.2	23.75	129.2	100
GRID	20051		206.2	33.0	129.2	100
GRID	20052		206.2	46.0	129.2	100
GRID	20053		206.2	60.0	129.2	100
GRID	20054		206.2	66.0	129.2	100
GRID	20055		206.2	78.0	129.2	100
GRID	20056		206.2	90.0	129.2	100
GRID	20057		206.2	96.0	129.2	100
GRID	20058		206.2	98.0	129.2	100

NASTRAN source code, sample of added command lines						
GRID	20060		206.2	-23.75	129.2	100
GRID	20061		206.2	-33.0	129.2	100
GRID	20062		206.2	-46.0	129.2	100
GRID	20063		206.2	-60.0	129.2	100
GRID	20064		206.2	-66.0	129.2	100
GRID	20065		206.2	-78.0	129.2	100
GRID	20066		206.2	-90.0	129.2	100
GRID	20067		206.2	-96.0	129.2	100
GRID	20068		206.2	-98.0	129.2	100
GRID	22999		230.0	0.0	129.2	100
GRID	55401		576.7	0.0	242.2	100
GRID	55403		554.8	0.0	189.2	100
GRID	55404		538.5	0.0	149.6	100
GRID	56501		553.8	-64.0	147.2	100
GRID	56502		553.8	-40.0	147.2	100
GRID	56503		553.8	-21.0	147.2	100
GRID	56504		553.8	-5.7	147.2	100
GRID	56505		553.8	0.0	147.2	100
GRID	56506		553.8	5.7	147.2	100
GRID	56507		553.8	21.0	147.2	100
GRID	56508		553.8	40.0	147.2	100
GRID	56509		553.8	64.0	147.2	100
\$ ADD PLOTTING ELENENTS $\$ 0000001000000020000000300000004000000050000000600000007000000080000000900000010$						
PLOTEL	99001	54	62			
PLOTEL	99002	62	500			
PLOTEL	99003	18	500			
PLOTEL	99004	5	500			
PLOTEL	99005	29	500			
PLOTEL	99006	41	500			
PLOTEL	99007	17616	18			
PLOTEL	99008	17619	18			
PLOTEL	99009	17616	5			
PLOTEL	99010	23010	5			
PLOTEL	99011	23010	29			
PLOTEL	99012	23011	29			
PLOTEL	99013	23011	41			
PLOTEL	99014	17619	41			
PLOTEL	99015	17600	17616			
PLOTEL	99016	17600	17619			
PLOTEL	99017	22999	23010			
PLOTEL	99018	22999	23011			
PLOTEL	99019	3499	4600			
PLOTEL	99020	4600	5700			
PLOTEL	99021	5700	6900			
PLOTEL	99022	6900	8000			
PLOTEL	99023	8000	9101			
PLOTEL	99024	9101	10514			
PLOTEL	99025	10514	11501			
PLOTEL	99026	11501	12501			
PLOTEL	99027	12501	12002			

	NASTRAN source code, sample of added command lines		
PLOTEL	99028	12002	12031
PLOTEL	99029	12501	12004
PLOTEL	99030	12004	12032
PLOTEL	99031	12501	13501
PLOTEL	99032	13501	1401
PLOTEL	99033	14401	15400
PLOTEL	99034	15400	16300
PLOTEL	99035	16300	17600
PLOTEL	99036	17600	18800
PLOTEL	99037	18800	1900
PLOTEL	99038	19900	9056
PLOTEL	99039	9056	20050
PLOTEL	99040	20050	20051
PLOTEL	99041	20051	20052
PLOTEL	99042	20052	20053
PLOTEL	99043	20053	20054
PLOTEL	99044	20054	20055
PLOTEL	99045	20055	20056
PLOTEL	99046	20056	20057
PLOTEL	99047	20057	20058
PLOTEL	99048	9056	20060
PLOTEL	99049	20060	20061
PLOTEL	99050	20061	20062
\$000000100000			
PLOTEL	99051	200062	20063
PLOTEL	99052	20063	20064
PLOTEL	99053	20064	20065
PLOTEL	99054	20065	20066
PLOTEL	99055	20066	20067
PLOTEL	99056	20067	20068
PLOTEL	99057	9056	21400
PLOTEL	99058	21400	22999
PLOTEL	99059	22999	23800
PLOTEL	99060	23800	24000
PLOTEL	99061	23800	24001
PLOTEL	99062	23800	24700
PLOTEL	99063	24700	25800
PLOTEL	99064	25800	26900
PLOTEL	99065	26900	28000
PLOTEL	99066	28000	29000
PLOTEL	99067	29000	30000
PLOTEL	99068	30000	31000
PLOTEL	99069	31000	32000
PLOTEL	99070	32000	33000
PLOTEL	99071	33000	34000
PLOTEL	99072	34000	35000
PLOTEL	99073	35000	36000
PLOTEL	99074	36000	37000
PLOTEL	99075	37000	38300
PLOTEL	99076	38300	39000
PLOTEL	99077	39600	40900

NASTRAN source code, sample of added command lines									
PLOTEL	99078	40900	42300						
PLOTEL	99079	42300	43600						
PLOTEL	99080	43600	45000						
PLOTEL	99081	45000	46300						
PLOTEL	99082	46300	47600						
PLOTEL	99083	47600	48900						
PLOTEL	99084	48900	50300						
PLOTEL	99085	50300	51600						
PLOTEL	99086	51600	53000						
PLOTEL	99087	53000	54700						
PLOTEL	99088	54700	57004						
PLOTEL	99089	53000	55404						
PLOTEL	99090	55404	55403						
PLOTEL	99091	55403	55401						
PLOTEL	99092	55404	56505						
PLOTEL	99093	56501	56502						
PLOTEL	99094	56502	56503						
PLOTEL	99095	56503	56504						
PLOTEL	99096	56504	56505						
PLOTEL	99097	56505	56506						
PLOTEL	99098	56506	56507						
PLOTEL	99099	56507	56508						
PLOTEL	99100	56508	56509						
\$ ADD RBE3 ELENENTS TO RESENBLE STICK MODEL OUTPUT $\$ 0000001000000020000000300000004000000050000000600000007000000080000000900000010$ \$ Note the following RBE3 entry is duplicated later by RBE3 503500									
RBE3	99908		3499	123456	1.0	123	3519	3520	+RB08
+RB08	3541	3542	3553	3554					
RBE3	99909		4600	123456	1.0	123	4608	4609	+RB09
+RB09	4616	4617	4628	4629					
RBE3	99910		5700	123456	1.0	123	5706	5707	+RB10
+RB10	5714	5715	5719	5720					
RBE3	99911		6900	123456	1.0	123	6901	6902	+RB11
+RB11	6907	6908	6919	6920					
RBE3	99912		8000	123456	1.0	123	8001	8002	+RB12
+RB12	8007	8008	8019	8020					
RBE3	99913		9056	123456	1.0	123	19901	19908	+RB13
+RB13	19909	19948	19951	21401	21408	21409	21438	21441	
RBE3	99914		9101	123456	1.0	123	9106	9107	+RB14
+RB14	9116	9117	9121	9122	9124				
RBE3	99915		10514	123456	1.0	123	10501	10502	+RB15
+RB15	10507	10508	10511	10512					
RBE3	99916		11501	123456	1.0	123	11506	11507	+RB16
+RB16	11536	11537	11544	11545					
RBE3	99921		12501	123456	1.0	123	12506	12507	+RB21
+RB21	12520	12521	12528	12529					
RBE3	99922		13501	123456	1.0	123	13506	13507	+RB22
+RB22	13514	13515	13518	13519					
Rbe3	99923		14401	123456	1.0	123	14406	14407	+RB23
+RB23	14414	14415	14418	14419					
RBE3	99924		15400	123456	1.0	123	15401	15406	+RB24

NASTRAN source code, sample of added command lines									
+RB24	15407	15412	15413	15414	15457	15458	15415		
RBE3	99925		16300	123456	1.0	123	16302	16303	+RB25
+RB25	16306	16313	16318	16324					
RBE3	99926		17600	123456	1.0	123	17634	17639	+RB26
+RB26	17688	17691	17708						
RBE3	99929		18800	123456	1.0	123	18801	18804	+RB29
+RB29	18805	18817	18818						
RBE3	99930		19900	123456	1.0	123	19901	19908	+RB30
+RB30	19909	19948	19951						
\$0000001000000020000000300000004000000050000000600000007000000080000000900000010									
RBE3	99931		20050	123456	1.0	123	20106	20108	+RB31
+RB31	20118	20120							
RBE3	99932		20051	123456	1.0	123	20134	20136	+RB32
+RB32	20146	20148							
RBE3	99933		20052	123456	1.0	123	20162	20164	+RB33
+RB33	20174	20176							
RBE3	99934		20053	123456	1.0	123	20190	20192	+RB34
+RB34	20198	20200							
RBE3	99935		20054	123456	1.0	123	20214	20216	+RB35
+RB35	20226	20228							
RBE3	99936		20055	123456	1.0	123	20242	20244	+RB36
+RB36	20254	20256							
RBE3	99937		20056	123456	1.0	123	20270	20272	+RB37
+RB37	20282	20284							
RBE3	99938		20057	123456	1.0	123	20294	20296	+RB38
+RB38	20306	20308							
RBE3	99939		20058	123456	1.0	123	20314	20316	+RB39
+RB39	20326	20328							
\$									
\$0000001000000020000000300000004000000050000000600000007000000080000000900000010									
RBE3	99940		20060	123456	1.0	123	20406	20408	+RB40
+RB40	20418	20420							
RBE3	99941		20061	123456	1.0	123	20434	20436	+RB41
+RB41	20446	20448							
RBE3	99942		20062	123456	1.0	123	20462	20464	+RB42
+RB42	20474	20476							
RBE3	99943		20063	123456	1.0	123	20490	20492	+RB43
+RB43	20498	20500							
RBE3	99944		20064	123456	1.0	123	20514	20516	+RB44
+RB44	20526	20528							
RBE3	99945		20065	123456	1.0	123	20542	20544	+RB45
+RB45	20554	20556							
RBE3	99946		20066	123456	1.0	123	20570	20572	+RB46
+RB46	20582	20584							
RBE3	99947		20067	123456	1.0	123	20594	20596	+RB47
+RB47	20606	20608							
RBE3	99948		20068	123456	1.0	123	20614	20616	+RB48
+RB48	20626	20628							
\$0000001000000020000000300000004000000050000000600000007000000080000000900000010									
RBE3	99949		21400	123456	1.0	123	21401	21408	+RB49
+RB49	21409	21438	21441						

NASTRAN source code, sample of added command lines									
RBE3	99950		22999	123456	1.0	123	23001	23010	+RB50
+RB50	23011	23042	23045	23057					
RBE3	99953		23800	123456	1.0	123	23801	23804	+RB53
+RB53	23805	23812	23813	23819					
RBE3	99956		24700	123456	1.0	123	24701	24706	+RB56
+RB56	24707	24714	24715	24721					
RBE3	99957		25800	123456	1.0	123	25801	25804	+RB57
+RB57	25805	25812	25813	25819					
RBE3	99958		26900	123456	1.0	123	26901	26904	+RB58
+RB58	26905	26912	26913	26919					
RBE3	99959		28000	123456	1.0	123	28001	28004	+RB59
+RB59	28005	28012	28013	28019					
RBE3	99960		29000	123456	1.0	123	29008	29009	+RB60
+RB60	29016	29017							
RBE3	99961		30000	123456	1.0	123	30012	30013	+RB61
+RB61	30016	30017							
RBE3	99962		31000	123456	1.0	123	31001	31004	+RB62
+RB62	31005	31012	31013	31019					
RBE3	99963		32000	123456	1.0	123	32001	32004	+RB63
+RB63	32005	32012	32013	32019					
RBE3	99964		33000	123456	1.0	123	33001	33004	+RB64
+RB64	33005	33012	33013	33019					
RBE3	99965		34000	123456	1.0	123	34001	34004	+RB65
+RB65	34005	34012	34013	34019					
RBE3	99966		35000	123456	1.0	123	35001	35006	+RB66
+RB66	35007	35010	35011	35019					
RBE3	99967		36000	123456	1.0	123	36001	36006	+RB67
+RB67	36007	36010	36011	36019					
RBE3	99968		37000	123456	1.0	123	37001	37004	+RB68
+RB68	37005	37008	37009	37017					
RBE3	99969		38300	123456	1.0	123	38301	38306	+RB69
+RB69	38307	38317							
\$00000010	00000020	00000030	0000004	00000005	00006	00007	0000008	0000009	900000010
RBE3	99970		39600	123456	1.0	123	39601	39606	+RB70
+RB70	39607	39617							
RBE3	99971		40900	123456	1.0	123	40901	40906	+RB71
+RB71	40907	40917							
RBE3	99972		42300	123456	1.0	123	42301	42306	+RB72
+RB72	42307	42313							
RBE3	99973		43600	123456	1.0	123	43601	43606	+RB73
+RB73	43607	43613							
RBE3	99974		45000	123456	1.0	123	45001	45006	+RB74
+RB74	45007	45013							
RBE3	99975		46300	123456	1.0	123	46301	46306	+RB75
+RB75	46307	46313							
RBE3	99976		47600	123456	1.0	123	47601	47606	+RB76
+RB76	47607	47613							
RBE3	99977		48900	123456	1.0	123	48901	48906	+RB77
+RB77	48907	48913							
RBE3	99978		50300	123456	1.0	123	50301	50306	+RB78
+RB78	50307	50313							

NASTRAN source code, sample of added command lines									
RBE3	99979		51600	123456	1.0	123	51601	51606	+RB79
+RB79	51607	51613							
RBE3	99980		53000	123456	1.0	123	53003	53012	+RB80
+RB80	53015	53033							
RBE3	99981		54700	123456	1.0	123	54701	54710	+RB81
+RB81	54711	54733							
RBE3	99982		55401	123456	1.0	123	55041	55042	+RB82
+RB82	55043	55044							
RBE3	99983		55403	123456	1.0	123	55021	55022	+RB83
+RB83	55023	55024							
RBE3	99984		55404	123456	1.0	123	55005	55006	+RB84
+RB84	55007	55008							
RBE3	99985		56501	123456	1.0	123	56044	56045	+RB85
+RB85	56096	56097							
RBE3	99986		56502	123456	1.0	123	56046	56047	+RB86
+RB86	56098	56099							
RBE3	99987		56503	123456	1.0	123	56048	56049	+RB87
+RB87	56100	56101							
RBE3	99988		56504	123456	1.0	123	56050	56051	+RB88
+RB88	56102	56103							
RBE3	99989		56505	123456	1.0	123	56050	56051	+RB89
+RB89	56054	56055	56102	56103	56106	56107			
RBE3	99990		56506	123456	1.0	123	56054	56055	+RB90
+RB90	56106	56107							
RBE3	99991		56507	123456	1.0	123	56056	56057	+RB91
+RB91	56108	56109							
RBE3	99992		56508	123456	1.0	123	56058	56059	+RB92
+RB92	56110	56111							
RBE3	99993		56509	123456	1.0	123	56060	56061	+RB93
+RB93	56112	56113							
$\begin{aligned} & \text { \$ } \\ & \text { ENDDATA } \\ & \text { \$ } \\ & \text { \$BB} \\ & \$ \text { END OF ADED SECTION BY DAIID HVERLY } \\ & \$ 00 \end{aligned}$									

Nastran Model: Centralized Actuation, Controlled vibration response to hub and tail excitation

Nastran Model: Distributed Actuation, Controlled vibration response to hub and tail excitation

Nastran Model: Uncontrolled vibration response to hub excitation

Nastran Model: Uncontrolled vibration at target nodes (hub excitation)

Nastran Model: Centralized Actuation, Controlled vibration response to hub excitation

Nastran Model: Centralized Actuation, Controlled vibration at target nodes (hub excitation)

Nastran Model: Distributed Actuation, Controlled vibration response to hub excitation

Nastran Model: Distributed Actuation, Controlled vibration at target nodes (hub excitation)

Nastran Model: Comparison of performance indices (hub excitation)

Nastran Model: Comparison of performance indices, Re-optimized locations (hub excitation)

Nastran Finite Element dynamic stress from hub excitation (uncontrolled)

Nastran Finite Element dynamic stress, Centralized control of hub excitation

Change of element stress from uncontrolled to centralized control (hub excitation)

Nastran Finite Element dynamic stress, Distributed control of hub excitation

Change of element stress from uncontrolled to distributed control (hub excitation)

Appendix D

SCALED TAILBOOM MODEL SPECIFICATIONS AND ANALYSIS RESULTS

```
TITLE FRAME MEMBERS
QUANTITY = 6
MATERIAL .032 INCH ALUMINUM SHEET
DIMENSIDNS: INCHES
PAGE 1 DF 1
GRGANIZATIDN PENN STATE
UNIVERSITY RUTGRCRAFT CENTER
```


Scaled tailboom structure, Frame member layout, see accompanying table for dimensions

Scaled tailboom structure, Frame member dimensions									
	Dimension [inches]								
Frame No.	A	B	C	D	E	F	G	H	
1	5.0	8.0	7.0	10.0	12.89	10.89	15.81	13.81	
2	4.31	6.81	6.31	8.81	12.31	10.31	14.81	12.81	
3	3.69	5.69	5.69	7.69	11.69	9.69	13.69	11.69	
4	3.0	4.5	5.0	6.5	11.0	9.0	12.5	10.5	
5	3.31	4.31	5.31	6.31	10.31	8.31	11.31	9.31	
6	2.69	3.19	4.69	5.19	9.69	7.69	10.19	8.19	

Scaled tailboom structure, Skin material layout and dimensions

MATERIALS LIST :

1. 0.5 in. ALUMINUM PLATE
2. 0.25 in . ALUMINUM PLATE
3. $2.0 \times 2.0 \mathrm{in}$. ALUMINUM TUBING
$1 / 8$ in. WALL THICKNESS
4. WELD ALL JOINTS

REAR VIEW

Scaled tailboom structure, Tail section layout and dimensions

Scaled tailboom structure, Tail section layout and dimensions

Scaled tailboom structure, Tail section layout and dimensions

Scaled tailboom structure, Tail section layout and dimensions

```
TITLE : END PLATE
DIMENSIONS : INCHES
PAGE 1 पF 1
\squareRGANIZATIGN : PENN STATE RDTDRCRAFT CENTER
MATERIALS LIST :
1. 0.5 in. ALUMINUM PLATE
```


Scaled tailboom structure, End plate (last frame member) layout and dimensions
TITLE : ANCHDR PLATE
TITLE : ANCHDR PLATE
DIMENSIDNS : INCHES
DIMENSIDNS : INCHES
PAGE 1 पF 1
PAGE 1 पF 1
\squareRGANIZATIDN : PENN STATE RDTDRCRAFT CENTER
\squareRGANIZATIDN : PENN STATE RDTDRCRAFT CENTER
MATERIALS LIST :
MATERIALS LIST :

1. पNE 3.0 in. ALUMINUM PLATE
2. पNE 3.0 in. ALUMINUM PLATE

DETAIL - AA

DETAIL - BB

Scaled tailboom structure, Anchor plate (to base support) layout and dimensions

Apache Reduced Order Model (ROM) cantilevered tail section mode shape

BEM: Mode 3, Freq. $=23.8[\mathrm{~Hz}]$

Scaled tailboom Beam Equivalent Model (BEM) mode shape

Apache Reduced Order Model (ROM) cantilevered tail section mode shape

ROM: Mode 5, Freq. $=19.1[\mathrm{~Hz}]$

Apache Reduced Order Model (ROM) cantilevered tail section mode shape

ROM: Mode 6, Freq. $=24.0[\mathrm{~Hz}]$

Apache Reduced Order Model (ROM)
cantilevered tail section mode shape
Apache Reduced Order Model (ROM)
cantilevered tail section mode shape

BEM: Mode 4, Freq. $=26.6[\mathrm{~Hz}]$

Scaled tailboom Beam Equivalent Model (BEM) mode shape

BEM: Mode 5, Freq. $=38.3[\mathrm{~Hz}]$

Scaled tailboom Beam Equivalent Model
(BEM) mode shape

BEM: Mode 6, Freq. $=48.7$ [Hz]

Scaled tailboom Beam Equivalent Model
(BEM) mode shape

ROM: Mode 7, Freq. $=28.5$ [Hz]

Apache Reduced Order Model (ROM) cantilevered tail section mode shape

BEM: Mode 7, Freq. $=54.4$ [Hz]

Scaled tailboom Beam Equivalent Model (BEM) mode shape

ROM: Mode 8, Freq. $=31.6$ [Hz]

Apache Reduced Order Model (ROM) cantilevered tail section mode shape

BEM: Mode 8, Freq. $=72.0[\mathrm{~Hz}]$

Scaled tailboom Beam Equivalent Model
(BEM) mode shape

```
Program to formulate the tailboom BEM model parameters
\% This MATLAB program is part of a computer software package for \% the design and analysis of a scaled tailboom structure model.
응
응
\% Written by: David E. Heverly II
9/1/00
Mechanical Engineering Ph.D. Candidate
The Pennsylvania State University
```



```
\% Filename = inframe.m
```



```
\% This program creates an input data file for "frame.m" a Finite Element based analysis program of Rigid-jointed Space Frames.
```

```
                    Program to formulate the tailboom BEM model parameters
"Frame.m" creates a beam equivalent model of the tailboom structure.
This MATLAB m-file must be executed prior to executing "frame.m"
%
%************ Variable names/definitions **************
Input:
    nj - number of nodes
    mems - number of elements
    nmatl - number of element/material types/properties
    nsup - number od supported/restrained nodes
    Eref - reference elastic modulus
    x,y,z - global coordinates of model node locations
    Etop - element topology, node connectivity
    *frm - frame member dimensions/properties
    *st - stringer dimensions/properties
    *sk - skin dimensions/properties
    *vs - vertical stabilizer dimesions/properties
    *hs - horizontal stabilizer dimesions/properties
    E - elastic modulus
    G - rigidity/shear modulus
    dens - material density
    Output: (Beam Equivalent properties)
    elast(i) - Elastic modulus
    rigd(i) - Rigidity modulus
    area(i) - Cross-sectional area
    xin(i) - Torsional constant of cross section
    yin(i) - 2nd moment of area of the cross section about x-y plane
    zin(i) - 2nd moment of area of the cross section about x-z plane
    xjp(i) - Polar 2nd moment of area of cross section
    dens(i) - Material density
%
%****************************************************************
clear % Clears all variables from computer memory
%General descriptive parameters
nj=14; % Number of joints/nodes
mems=13; % Number of elements or members
nmatl=9; % Number of element/material types
nsup=1; % Number of supported/restrained joints
nconc=10; % Number of concentrated masses (at joints/nodes)
Eref = 9.99e6; % Reference elastic modulus [psi]
% Global coordinates of each structural joint, followed by the
% global coordinates of the imaginary nodes. Imaginary nodes are
% needed to define the principle "x-y" bending plane of each
% element, which may be an existing joint of the structure.
x(1)=0.0; y(1)=0.0; z(1)=0.0;
x(2)=12.0; y(2)=0.0; 
```


Program to formulate the tailboom BEM model parameters
\% Stringer Dimensions
\% Outer Stringer Dimensions (Aluminum angles)
```lego = 0.75; % height & width of angles, outer stringers tst = 1/8; % thickness of angles```
\% ybar distance from outer leg surface to center-of-gravity cgdist $=($ lego^2+tst*lego-tst^2) $/(4 *$ lego- $2 * t s t)$;
Est $=9.99 \mathrm{e}$; \% Modulus of elasticity:
densst $=(0.0979 / 386.4)$; $\%$ Material density
\% Area moment of inertia about the stringers centroid
```Ist = ((1/12)*(lego-tst)*(tst^3) +(lego-tst)*tst*(cgdist- tst/2)^2) +((1/12)*tst*(lego^3)+((lego/2-cgdist)^2)*lego*tst);```
areasto $=2 *$ lego*tst-tst^2; \% cross section area of stringer
Length=72; \% Overall length of tailboom structure
legi=1.0; \% Width of inner stringers, rectangular shape
\% Inner Stringer Dimensions (Aluminum flat stock) areasti=legi*tst; \% Area of inner strigers
Isti=(1/12)*legi*tst^3; \% Area moment of inertia
\% Weight of all stringers in LBSf
strwght = (4*areasto+4*areasti)*densst*Length*386.4;
\% Skin Dimensions (Aluminum sheet metal)
tsk = .032; \% thickness of skin
Esk = 9.99e6; \% Modulus of elasticity
Gsk = 3.77e6; \% Shear modulus
denssk $=(0.0979 / 386.4)$; Material density
\% Compute beam equivalent properties from component properties
totmass=0;
for $i=1: 7$
lel(i) $=x(i+1)-x(i) ; ~ e l e m e n t ~ l e n g t h ~$
\% Stringers
\% distance from stringer c.g. to global Y-axis ast(i) $=$ afrm(i)/2+tst-cgdist;
\% distance from stringer c.g. to global Z-axis bst(i) $=$ bfrm(i)/2+tst-cgdist;
\% Skin
ask(i) = afrm(i); \% width at center between nodes
bsk(i) = bfrm(i); \% height at center between nodes
skwght (i) $=(2 * \operatorname{sisk}(\mathrm{i})+2 * \mathrm{bsk}(\mathrm{i})$) *tsk*denssk*lel (i)*386.4;
\% Equivalent moments of area, cross-sectional area if i>=6
IY $(\mathrm{i})=(2 *$ (Est/Eref) * (Isti+areasti*bst (i)^2)) + (4* (Est/Eref)* (Ist+areasto
bst (i)^2)) + (2 (Esk/Eref) * ((1/12)*ask (i)*tsk^3) +(ask (i) *tsk* (bsk (i) /2)
$\left.\left.{ }^{\wedge} 2\right)+\left((1 / 12) * t s k * \sin (\mathrm{i})^{\wedge} 3\right)\right)$) $+\left((1 / 12) * \operatorname{afrm}(\mathrm{i}) * 0.5^{\wedge} 3\right)+(\operatorname{afrm}(\mathrm{i}) * 0.5 *(\mathrm{bfrm}($

Program to formulate the tailboom BEM model parameters

```
i) (2+0.25)^2));
IZ(i)=(2*(Est/Eref)*(Isti+areasti*ast(i)^2)) +(4*(Est/Eref)*(Ist+areasto
*ast(i)^2))+(2*(Esk/Eref)*(((1/12)*bsk(i)*tsk^3) +(bsk(i)*tsk*(ask(i)/2)
^2)+((1/12)*tsk*ask(i)^3)))+((1/12)*0.5*(afrm(i))^3);
    J (i)=((1/12)*((ask(i)*bsk(i)*(ask(i)^2+bsk(i)^2)) - ((ask(i) -
2*tsk)*(bsk(i)-2*tsk)*((ask(i) -2*tsk)^2+(bsk(i) -
2*tsk)^2)) ) ) (((1/12)*afrm(i)*0. 5^3)+(afrm(i)*0.5*(bfrm(i)/2+0.25)^2))+
((1/12)*0.5*(afrm(i))^3);
```

massdistrib(i) $=(4$ *areasto +4 *areasti) *densst $+2 * t s k * d e n s s k *(a s k(i)+b s k(i)$
) +0.46*afrm(i)*densfrm;
Acs (i) $=((2 * \operatorname{ask}(i)+2 *$ bsk(i) $) *$ tsk* (Esk/Eref) $)+((4 *$ areasto 4 *areasti) * (Est
/Eref)) +0.5*afrm(i);
else
$\operatorname{IY}(i)=(2 *(E s t / E r e f) *($ Isti+areasti*bst (i) ^2) $)+(4 *$ (Est/Eref) * (Ist+areasto
bst (i)^2)) + (2 (Esk/Eref) * (((1/12) *ask (i) *tsk^3) + (ask (i) *tsk* (bsk (i) / 2)
$\left.\left.\left.{ }^{\wedge} 2\right)+\left((1 / 12) * t s k * b s k(i)^{\wedge} 3\right)\right)\right)$;
IZ $(\mathrm{i})=(2 *($ Est $/$ Eref $) *($ Isti+areasti*ast (i) ^2 $) ~) ~+(4 *$ (Est/Eref) * (Ist+areasto
ast (i)^2)) + (2 (Esk/Eref) * (((1/12) *bsk (i) *tsk^3) + (bsk (i) *tsk* (ask (i) /2)
$\left.{ }^{\wedge} 2\right)+((1 / 12) *$ tsk*ask(i)^3)));
$J(i)=(1 / 12) *\left(\left(\operatorname{ask}(i) * b s k(i) *\left(\operatorname{ask}(i)^{\wedge} 2+b s k(i)^{\wedge} 2\right)\right)-((a s k(i)-\right.$
$\left.\left.2 * t s k) *(b s k(i)-2 * t s k) *\left((a s k(i)-2 * t s k) \wedge 2+(b s k(i)-2 * t s k)^{\wedge} 2\right)\right)\right) ;$
massdistrib(i) $=(4$ *areasto+4*areasti) *densst+2*tsk*denssk*(ask(i) +bsk(i)
);
Acs $(i)=((2 * a s k(i)+2 * b s k(i)) * t s k *(E s k / E r e f))+((4 * a r e a s t o+4 * a r e a s t i) * a r e a$
sto*(Est/Eref));
end
\% Frame members
hith=11-(4/72) *x(i+1);
widt=14-(7/72) *x (i+1);
\% volume of frame material
if i<=3
volfrm(i) $=((w i d t) *(h i t h)-(w i d t-4) *(h i t h-4)) * t f r m ;$

Program to formulate the tailboom BEM model parameters

```
    elseif i<=5
    volfrm(i)=((widt)*(hith)-(widt-3)*(hith-3))*tfrm;
    elseif i==6
        volfrm(i)=0.0;
    else
        volfrm(i)=(((widt*hith)-((widt-3)*(hith-3)))*0.532);
    end
    frmwght(i)=volfrm(i)*densfrm*386.4; % Weight of all frames in LBSf
    pointmass(i) = volfrm(i)*densfrm; % frame member mass added at nodes;
    % Equivalent Beam Element Properties
    elast(i)=Eref; % Elastic modulus - E
    rigd(i)=Gsk; % Rigidity modulus - G
    area(i)=Acs(i); % Cross-sectional area - A
    xin(i)=J(i); % Torsional constant of cross section - J
    yin(i)=IY(i); % 2nd moment of area about x-y plane - Iy
    zin(i)=IZ(i); % 2nd moment of area about x-z plane - Iz
    xjp(i)=yin(i)+zin(i);% Polar 2nd moment of area of cross section - Ip
    dens(i)=massdistrib(i)/Acs(i);% Material density - rhoa
    totmass=totmass+(lel(i)*massdistrib(i))+pointmass(i);
end
%***********************************************************
%**********************************************************
```

UGmass=0.7*totmass; \% Point mass for tail rotor upper gearbox
HSmass $=0.3$ *totmass; \% Point mass for tail rotor lower gearbox
tailbwgt=totmass*386.4;
UGwgt=UGmass*386.4;
HSwgt $=2$ *HSmass*386.4;
disp(' ')
disp(['Vertical tail Mass = ',num2str(UGmass*386.4),' [lbs]'])
disp(' ')
disp(['Horizontal tail Masses = ', num2str(HSmass*386.4),' [lbs]'])
disp(' ')
\% Vertical Stabilizer dimensions \& properties

avs=2; \% width of vertical stabilizer elements
bvs=2; \quad height of vertical stabilizer elements
tvs=1/8; \quad \% wall thickness of vertical stabilizer tubing
dens $(8)=(0.0979 / 386.4)$; \% Material density - rhoa (Aluminum)
elast (8) =Eref; \quad Elastic modulus - E (Aluminum)
rigd (8) =Gsk; \quad R Rigidity modulus - G (Aluminum)
area $(8)=2$ * (avs+bvs-tvs-tvs)*tvs; \quad Cross-sectional area - A
$\operatorname{xin}(8)=\left((1 / 12) * a v s * b v s *\left(\operatorname{avs}^{\wedge} 2+\right.\right.$ bvs $\left.\left.^{\wedge} 2\right)\right)-((1 / 12) *($ avs $-2 *$ tvs $) *(b v s-$
$\left.2 * t v s) *\left((a v s-2 * t v s)^{\wedge} 2+(b v s-2 * t v s)^{\wedge} 2\right)\right)$; $\%$ Torsional constant of cross
section - J
yin (8) $=2$ * (((1/12) *avs*tvs^3) + (avs*tvs* (bvs/2-
tvs/2 $\left.\left.)^{\wedge} 2\right)+\left((1 / 12) * t v s * b v \wedge^{\wedge} 3\right)\right)$; $\%$ 2nd moment of area of the cross

```
    Program to formulate the tailboom BEM model parameters
    section about x-y plane - Iy
    zin(8)=2*(((1/12) *bvs*tvs^3) +(bvs*tvs*(avs/2-
    tvs/2)^2)+((1/12)*tvs*avs^3)); % 2nd moment of area of the cross
section about x-z plane - Iz
xjp(8)=xin(8); % Polar 2nd moment of area of cross section - Ip
% Horizontal Stabilizer dimensions & properties
%**********************************************************
ahs=2; % width of horizontal stabilizer elements
bhs=2; % height of horizontal stabilizer elements
ths=1/8; % wall thickness of horizontal stabilizer tubing
dens(9)=(0.0979/386.4); % Material density - rhoa (Aluminum)
elast(9)=Eref; % Elastic modulus - E (Aluminum)
rigd(9)=Gsk; % Rigidity modulus - G (Aluminum)
area(9) =2*(ahs+bhs-ths-ths)*ths; % Cross-sectional area - A
xin(9)=((1/12) *ahs*bhs* (ahs^2+bhs^2))-((1/12) *(ahs-2*ths) *(bhs-
2*ths)*((ahs-2*ths)^2+(bhs-2*ths)^2)); % Torsional constant of cross
section - J
yin(9)=2*(((1/12)*ahs*ths^3) +(ahs*ths* (bhs/2-
ths/2)^2)+((1/12)*ths*bhs^3)); % 2nd moment of area of the cross
section about x-y plane - Iy
zin(9) =2*(((1/12)*bhs*ths^3) +(bhs*ths*(ahs/2-
ths/2)^2)+((1/12)*ths*ahs^3)); % 2nd moment of area of the cross
section about x-z plane - Iz
xjp(9)=xin(9); % Polar 2nd moment of area of cross section - Ip
vswgt=(area (8)*dens(8)*(((x(10)-x(7) )^2+(y(10)-y(7) )^ 2+(z(10)-
z(7))^2)^0.5))*386.4;
hswgt=(area(9)*dens(9)*(((x(14)-x(11))^2+(y(14)-y(11))^2+(z(14)-
z(11))^2)^0.5))*386.4;
totweight=(totmass+UGmass+2*HSmass)*386.4+vswgt+hswgt;
disp(['Total Tailboom Weight = ',num2str(totweight),' [lbs]'])
disp(' ')
% Constrained Joints/Nodes
%**********************************************************
% NOTE: O=No Restraint & 1=Full Restraint of specified d.o.f.
% Joint # X-tran Y-tran Z-tran X-rot Y-rot Z-rot
Jrest=[ 1 1 1 1 1 1 1 < llllll
% Concentrated Translational Masses
%*********************************************************
% Note concentrated masses MUST be located at joints
nposn(1)=7; % Unconstrained Global dof of joint at mass location
xmass(1)=pointmass(1); % Value of concentrated mass
```


Program to formulate the tailboom BEM model parameters

```
nposn(2)=13; % Unconstrained Global dof of joint at mass location
xmass(2)=pointmass(2); % Value of concentrated mass
nposn(3)=19; % Unconstrained Global dof of joint at mass location
xmass(3)=pointmass(3); % Value of concentrated mass
nposn(4)=25; % Unconstrained Global dof of joint at mass location
xmass(4)=pointmass(4); % Value of concentrated mass
nposn(5)=31; % Unconstrained Global dof of joint at mass location
xmass(5)=pointmass(5); % Value of concentrated mass
nposn(6)=37; % Unconstrained Global dof of joint at mass location
xmass(6)=pointmass(6); % Value of concentrated mass
nposn(7)=43; % Unconstrained Global dof of joint at mass location
xmass(7) =pointmass(7); % Value of concentrated mass
nposn(8)=55; % Unconstrained Global dof of joint at mass location
xmass(8)=UGmass; % Value of concentrated mass
nposn(9)=61; % Unconstrained Global dof of joint at mass location
xmass(9)=HSmass; % Value of concentrated mass
nposn(10)=79; % Unconstrained Global dof of joint at mass location
xmass(10)=HSmass; % Value of concentrated mass
save inframe % Saves variables in binary file "inframe.mat"
    % to be loaded by "frame.m"
%********************* End of File *****************************
```

Main program to create the tailboom BEM finite element model
\% This MATLAB program is part of a computer software package for \% the design and analysis of a scaled tailboom structure model.
\%
\% Written by: David E. Heverly II
9/1/00
Mechanical Engineering Ph.D. Candidate
\% The Pennsylvania State University
\% Filename = frame.m

\% Finite Element based analysis program to create a beam
\% equivalent model of the scaled tailboom structure.
\% The input data is created by "inframe.m" and loaded
\% by this program. The main program calls the following \% subroutines/function m-files:
\% 1.) assembl.m
2.) FEstiff.m
3.) FEmass.m
\%
\%************ Variable names/definitions **************
\% Input:

Main program to create the tailboom BEM finite element model

```
    nj - number of nodes
    mems - number of elements
    nmatl - number of element/material types/properties
    nsup - number od supported/restrained nodes
    x,y,z - global coordinates of model node locations
    Etop - element topology, node connectivity
(Beam Equivalent properties)
    elast(i) - Elastic modulus
    rigd(i) - Rigidity modulus - G
    area(i) - Cross-sectional area - A
    xin(i) - Torsional constant of cross section - J
    yin(i) - 2nd moment of area of the cross section about x-y plane
    zin(i) - 2nd moment of area of the cross section about x-z plane
    xjp(i) - Polar 2nd moment of area of cross section
    dens(i) - Material density
Output:
    Mg - global mass matrix
    Kg - global stiffness matrix
    evec - mass normalized eigenvectors
    eval - eigenvalues
%***********************************************************
%*******************************************************
% Start Main Program
%*******************************************************
clear all % Clears variables from computer memory
load inframe % Loads the binary input data file
dof=6*nj; % Unrestrained global degrees of freedom
% Initialize Mass & Stiffness Matrices
stiff=zeros(dof,dof);
mass=zeros(dof,dof);
% Loop thru each element: compute element matrices
% & assemble global matrices
%************************
for mem=1:mems
    i=Etop (mem,1);
    j=Etop (mem,2);
    k=Etop (mem,3);
    matl=Etop (mem,4);
    E=elast(matl); rho=dens(matl); G=rigd(matl); csa=area(matl);
    TC=xin(matl); smay=yin(matl); smaz=zin(matl); xpol=xjp(matl);
    xi=x(i); yi=y(i); zi=z(i);
    xj=x(j); yj=y(j); zj=z(j);
    xk=x(k); yk=y(k); zk=z(k);
    % Form elemental Stiffness matrix
```

```
                    Main program to create the tailboom BEM finite element model
    sk=FEstiff(Etop(mem,5),xi,yi,zi,xj,yj,zj,xk,yk,zk,csa,TC,smay,smaz,E,G)
;
    % Form elemental Mass matrix
sm=FEmass(Etop(mem,5),xi,yi,zi,xj,yj,zj,xk,yk,zk,csa,smay,smaz,xpol,rho
) ;
    stiff=assembl(stiff,sk,i,j,k,Etop(mem,5));% Assemble global stiffness
matrix
    mass=assembl(mass,sm,i,j,k,Etop(mem,5)); % Assemble global mass matrix
end
%**********************************
% Addition of concentrated translational masses to global mass matrix
%*******************************************************
if nconc>0
    for ii=1:nconc
        n9=nposn(ii);
        mass(n9,n9)=mass(n9,n9) +xmass(ii);
        mass(n9+1,n9+1)=mass(n9+1,n9+1) +xmass(ii);
        mass(n9+2,n9+2)=mass(n9+2,n9+2)+xmass(ii);
    end
end
%*************************************************
% Apply boundary conditions/constraints by deleting rows
% and columns from Unconstrained global matrices.
%**************************************************************
nn1=6*nj;
if nsup>0
    nn2=0;
    for i=1:nsup
    b2=(6*(Jrest(i,1)-1)) -nn2;
    xr(1:6)=Jrest(i,2:7);
    nn3=0;
    for j=1:6
        if xr(j)==1
                mm1=b2+j-nn3;
                for ii=mm1:(nn1-1)
                b1=ii+1;
                for jj=1:nn1
                    stiff(ii,jj)=stiff(bl,jj);
                    mass(ii,jj)=mass(b1,jj);
                end
                for jj=1:nn1
                    stiff(jj,ii)=stiff(jj,bl);
                mass(jj,ii)=mass(jj,b1);
                end
            end
            nn1=nn1-1;
            nn2=nn2+1;
            nn3=nn3+1;
```

```
                    Main program to create the tailboom BEM finite element model
            end
    end
    end
end
%**********************************
% Add Y-rotational stiffness at the root end
%****************************************
stiff(1,1)=stiff(1,1)+2.1e7;
%****************************************
% Make copies of constrained Mass & Stiffness matrices
%********************************************************
for ii=1:nn1
    for jj=1:nn1
        Kg(ii,jj)=stiff(ii,jj);
        Mg(ii,jj)=mass(ii,jj);
    end
end
%*****************************************************
% COMPUTE EIGENVALUES AND EIGENVECTORS
%*****************************************
disp('Computing eigenvalues and eigenvectors')
[V,lamda]=eig(Kg,Mg);
[lam,II] =sort (diag(lamda));
for i=1:nn1
        eval(i,1)=sqrt(lamda(II(i),II(i)));
        frq(i,1)=(sqrt(lamda(II(i),II(i))))/(2*pi);
        vec(:,i)=V(:,II(i));
end
% Normalize wrt mass matrix
for i=1:nn1
    norm=((vec(:,i))')*Mg*(vec(:,i));
    evec(:,i)=(vec(:,i))/sqrt(norm);
end
%****************************************
disp('Natural Frequencies [Hz]')
disp(frq(1:10))
% Save model data
disp('Saving model data in file bem-M-K.mat')
%****************************************
save bem-M-K Kg Mg eval evec
%**************** End of File ********************************
```


Subroutine to compute finite element stiffness matrix

```
function
sk=FEstiff(type,xio,yio,zio,xjo,yjo,zjo,xko,yko,zko,A,TC,smay,smaz,E,G)
% This MATLAB subroutine is part of a computer software package for
the design and analysis of a scaled tailboom structure model.
%
% Written by: David E. Heverly II
    9/1/00
    Mechanical Engineering Ph.D. Candidate
    The Pennsylvania State University
%********************************************************
Filename = FEstiff.m
%************************************************************
    Form elemental stiffness matrix for the Finite Element Model
    Subroutine "Glb2Loc.m" is called to transform from local
    element coordinates to global coordinates
    xio - global X-coordinate of first element node
    yio - global Y-coordinate of first element node
    zio - global Z-coordinate of first element node
    xjo - global X-coordinate of second element node
    yjo - global Y-coordinate of second element node
    zjo - global Z-coordinate of second element node
    xko - global X-coordinate of third element node
    yko - global Y-coordinate of third element node
    zko - global Z-coordinate of third element node
    A - Cross-sectional area
    TC - Torsional constant of cross section
    smay - 2nd moment of area of the cross section about x-y plane
    smaz - 2nd moment of area of the cross section about x-z plane
    E - Elastic modulus
    G - Rigidity/shear modulus
    Four Finite Element Types can be used to construct the model
    Type 1: One dimensional Beam Element (2 nodes)
    degrees-of-freedom: {u,v,w,THETAx,THETAy,THETAz} at each node
Type 2: Two dimensional Triangular Membrane Element (3 nodes)
    (Plane Stress)degrees-of-freedom: {u,v} at each node
    Type 3: One dimensional Rod Element (2 nodes)
    degrees-of-freedom: {u} at each node
    Type 4: One dimensional Discrete Scalar Spring Element (2 nodes)
        degrees-of-freedom: {u AND/OR theta} at each node
        Translational stiffness AND/OR Torsional stiffness between
nodes
% Elemental Stiffness Matrix for type 1 Beam elements
if type == 1
```


Subroutine to compute finite element stiffness matrix

```
% Compute element stiffness matrix
sk=zeros(12,12); % Initialize element matrix
xl=sqrt((xjo-xio)^2+(yjo-yio)^2+(zjo-zio)^2);
sk(1,1) = (A*E/xl);
sk(7,7)=sk(1,1);
sk(7,1)=-sk(1,1);
sk (1,7)=-sk(1,1);
sk(2,2)=12*E*smaz/(xl^3);
sk(8,8)=sk (2,2);
sk (8,2)=-sk (2,2);
sk (2, 8) =-sk (2, 2);
sk (6,2)=6*E*smaz/(xl^2);
sk(2,6)=sk (6,2);
sk(12,2)=sk (6,2);
sk (2,12) =sk (6,2);
sk (3,3)=12*E*smay/(xl^3);
sk(9,9)=sk(3,3);
sk (9,3)=-sk (3,3);
sk (3,9) =-sk (3,3);
sk (5,3) = - 6*E*smay/(xl^2);
sk (3,5)=sk (5,3);
sk(11,3)=sk(5,3);
sk (3,11) =sk (11,3);
sk(4,4)=G*TC/xl;
sk(10,10)=sk(4,4);
sk (10,4)=-sk (4,4);
sk (4,10) =-sk (4,4);
sk (5,5) =4*E*smay/xl;
sk(11,11)=sk(5,5);
sk(11,5)=sk (5,5)/2.0;
sk (5,11)=sk (11,5);
sk (9,5)=6*E*smay/(xl^2);
sk (5,9) =sk (9,5);
sk (6,6) =4*E*smaz/xl;
sk (12,12) =sk (6,6);
sk (12, 6) =sk (6, 6)/2.0;
sk (6,12)=sk (12,6);
sk (8,6) =-6*E*smaz/(x\mp@subsup{l}{}{\wedge}2);
sk (6, 8) =sk (8,6);
sk(12,8)=-6*E*smaz/(xl^2);
sk(8,12) =sk (12,8);
sk (11,9)=6*E*smay/ (xl^2);
sk(9,11)=sk(11,9);
% Tranform element matrix to global coordinates
% Compute transformation matrix
zeta=Glb2Loc(xio,yio,zio,xjo,yjo,zjo,xko,yko,zko);
PSI=zeros(12,12);
PSI(1:3,1:3)=zeta;
PSI(4:6,4:6)=zeta;
PSI(7:9,7:9)=zeta;
PSI(10:12,10:12)=zeta;
```


Subroutine to compute finite element stiffness matrix

```
    sk=(PSI')*sk*PSI;
end
% Elemental Stiffness Matrix for type 2 Triangular membrane elements
if type == 2
    % Length of element sides
    L1=sqrt((xjo-xio)^2+(yjo-yio)^2+(zjo-zio)^2);
    L2=sqrt((xko-xjo)^2+(yko-yjo)^2+(zko-zjo)^2);
    L3=sqrt((xko-xio)^2+(yko-yio)^2+(zko-zio)^2);
    theta=acos((L2^2-L1^2-L3^2) / (-2*L1*L3));
    % Element in local (planar) coordinates
    xi=0; yi=0;
    xj=L1; yj=0;
    xk=L3*Cos(theta); yk=L3*sin(theta);
    % Element area
    Ae=0.5*((xj*yk+xi*yj+yi*xk) - (yi*xj+yj*xk+xi*yk));
    % Element stiffness matrix in local coordinates
    BB(1,1:6) = [-(yk-yj), 0, -(yi-yk), 0, -(yj-yi), 0];
    BB}(2,1:6)=[0, (xk-xj), 0, (xi-xk), 0, (xj-xi)]
    BB}(3,1:6)=[(xk-xj), -(yk-yj), (xi-xk), -(yi-yk), (xj-xi), -(yj-yi)]
    nu=(E/ (2*G)) -1;
    EE=((E*A)/(4*Ae* (1-nu^2)))*[1, nu, 0; nu, 1, 0; 0, 0, 0.5*(1-nu)];
    Kuv=BB'*EE*BB;
    % Add zero rows and columns for out of plane disp. "w"
    Add=zeros(9,6);
    Add(1,1)=1; Add(2,2)=1; Add(4,3)=1; Add(5,4)=1; Add(7,5)=1;
Add (8, 6)=1;
    Kuvw=Add*Kuv*Add';
    % Tranform element matrix to global coordinates
    % Compute transformation matrix
    zeta=Glb2Loc(xio,yio,zio,xjo,yjo,zjo,xko,yko,zko);
    PSI=zeros(9,9);
    PSI(1:3,1:3)=zeta;
    PSI(4:6,4:6)=zeta;
    PSI(7:9,7:9)=zeta;
    sk=(PSI')*Kuvw*PSI;
end
% Elemental Stiffness Matrix for type 3 Rod elements
if type == 3
    % Length of element
    L=sqrt((xjo-xio)^2+(yjo-yio)^2+(zjo-zio)^2);
    % Element stiffness matrix in local coordinates
    Kuvw (1:3,1:6) = [1,0,0,-1,0,0;0,0,0,0,0,0;0,0,0,0,0,0];
    Kuvw (4:6,1:6) = [-1,0,0,1,0,0;0,0,0,0,0,0;0,0,0,0,0,0];
    Kuvw= (A*E/L)*Kuvw;
    % Tranform element matrix to global coordinates
    % Compute transformation matrix
    zeta=Glb2Loc(xio,yio,zio,xjo,yjo,zjo,xko,yko,zko);
    PSI=zeros(6,6);
    PSI(1:3,1:3)=zeta;
```


Subroutine to compute finite element stiffness matrix

```
    PSI (4:6,4:6)=zeta;
    sk=(PSI')*Kuvw*PSI;
```

end
\% Elemental Stiffness Matrix for type 4 Scalar Spring elements
\% Translational stiffness OR Torsional stiffness between nodes
if type $==4$
\% Element stiffness matrix in local coordinates
$\operatorname{Kuvw}(1,1: 12)=[E, 0,0,0,0,0,-E, 0,0,0,0,0]$;
$\operatorname{Kuvw}(2,1: 12)=[0,0,0,0,0,0,0,0,0,0,0,0]$;
$\operatorname{Kuvw}(3,1: 12)=[0,0,0,0,0,0,0,0,0,0,0,0] ;$
$\operatorname{Kuvw}(4,1: 12)=[0,0,0, G, 0,0,0,0,0,-G, 0,0]$;
$\operatorname{Kuvw}(5,1: 12)=[0,0,0,0,0,0,0,0,0,0,0,0] ;$
$\operatorname{Kuvw}(6,1: 12)=[0,0,0,0,0,0,0,0,0,0,0,0]$;
$\operatorname{Kuvw}(7,1: 12)=[-E, 0,0,0,0,0, E, 0,0,0,0,0] ;$
$\operatorname{Kuvw}(8,1: 12)=[0,0,0,0,0,0,0,0,0,0,0,0]$;
$\operatorname{Kuvw}(9,1: 12)=[0,0,0,0,0,0,0,0,0,0,0,0]$;
$\operatorname{Kuvw}(10,1: 12)=[0,0,0,-G, 0,0,0,0,0, G, 0,0] ;$
$\operatorname{Kuvw}(11,1: 12)=[0,0,0,0,0,0,0,0,0,0,0,0] ;$
$\operatorname{Kuvw}(12,1: 12)=[0,0,0,0,0,0,0,0,0,0,0,0]$;
\% Tranform element matrix to global coordinates
\% Compute transformation matrix
zeta=Glb2Loc (xio,yio, zio, xjo,yjo, zjo, xko,yko, zko) ;
PSI=zeros (12,12) ;
PSI (1:3,1:3)=zeta;
PSI (4:6,4:6)=zeta;
$\operatorname{PSI}(7: 9,7: 9)=$ zeta;
$\operatorname{PSI}(10: 12,10: 12)=z e t a ;$
sk= (PSI') *Kuvw*PSI;
end

Subroutine to compute finite element mass matrix

```
function
sm=FEmass(type,xio,yio, zio,xjo,yjo, zjo, xko,yko,zko,A, smay, smaz, xpol,rho
)
% This MATLAB subroutine is part of a computer software package for
% the design and analysis of a scaled tailboom structure model.
%
% Written by: David E. Heverly II
                                    9/1/00
    Mechanical Engineering Ph.D. Candidate
    The Pennsylvania State University
%********************************************************
% Filename = FEmass.m
%********************************************************
% Form elemental stiffness matrix for the Finite Element Model
```


Subroutine to compute finite element mass matrix

```
Subroutine "Glb2Loc.m" is called to transform from local
element coordinates to global coordinates
    xio - global X-coordinate of first element node
    yio - global Y-coordinate of first element node
    zio - global Z-coordinate of first element node
    xjo - global X-coordinate of second element node
    yjo - global Y-coordinate of second element node
    zjo - global Z-coordinate of second element node
    xko - global X-coordinate of third element node
    yko - global Y-coordinate of third element node
    zko - global Z-coordinate of third element node
    A - Cross-sectional area
    smay - 2nd moment of area of the cross section about x-y plane
    smaz - 2nd moment of area of the cross section about x-z plane
    xpol - 2nd moment of area of the cross section about y-z plane
    rho - mass density
Form elemental mass matrix for the Finite Element Model
Four Finite Element Types can be used to construct the model
Type 1: One dimensional Beam Element (2 nodes)
    degrees-of-freedom: {u,v,w,THETAx,THETAy,THETAz} at each node
Type 2: Two dimensional Triangular Membrane Element (3 nodes)
    (Plane Stress) degrees-of-freedom: {u,v} at each node
Type 3: One dimensional Rod Element (2 nodes)
    degrees-of-freedom: {u} at each node
Type 4: One dimensional Discrete Scalar Spring Element (2 nodes)
    degrees-of-freedom: {u AND/OR theta} at each node
    Translational stiffness AND/OR Torsional stiffness
    One-half of concentrated mass value assigned to each node
```

\% Elemental Mass Matrix for type 1 Beam elements
if type == 1
\% Compute element mass matrix
sm=zeros (12,12); \% Initialize element matrix
$\mathrm{xl}=\operatorname{sqrt}\left((\mathrm{xjo-xio})^{\wedge} 2+(\mathrm{yjo}-\mathrm{yio})^{\wedge} 2+(\mathrm{zjo-zio})^{\wedge} 2\right)$;
ral=rho*A*xl;
$\operatorname{sm}(1,1)=(1 / 3) * r a l$;
$\operatorname{sm}(7,7)=s m(1,1)$;
$\operatorname{sm}(7,1)=(1 / 6) * r a l$;
$\operatorname{sm}(1,7)=\operatorname{sm}(7,1)$;
$\operatorname{sm}(2,2)=\left((13 / 35)+6 * \operatorname{smaz} /\left(5 * A * x l^{\wedge} 2\right)\right) * r a l$;
$\operatorname{sm}(8,8)=\operatorname{sm}(2,2)$;
$\operatorname{sm}(6,2)=((11 * x l / 210)+\operatorname{smaz} /(10 * A * x l)) * r a l ;$

Subroutine to compute finite element mass matrix

```
    \(\operatorname{sm}(2,6)=\operatorname{sm}(6,2)\);
    \(\operatorname{sm}(12,8)=-\operatorname{sm}(6,2)\);
    \(\operatorname{sm}(8,12)=\operatorname{sm}(12,8) ;\)
    \(\operatorname{sm}(8,2)=\left((9 / 70)-6 * \operatorname{smaz} /\left(5 * A * x l^{\wedge} 2\right)\right) * r a l\);
    \(\operatorname{sm}(2,8)=\operatorname{sm}(8,2)\);
    sm \((12,2)=((-13 * x l / 420)+\) smaz \(/(10 * A * x l)) * r a l\);
    \(\operatorname{sm}(2,12)=\operatorname{sm}(12,2)\);
    \(\operatorname{sm}(8,6)=-\operatorname{sm}(12,2)\);
    \(\operatorname{sm}(6,8)=\operatorname{sm}(8,6)\);
    \(\operatorname{sm}(3,3)=\left((13 / 35)+6 * \operatorname{smay} /\left(5 * A * x l^{\wedge} 2\right)\right) * r a l\);
    \(\operatorname{sm}(9,9)=\operatorname{sm}(3,3)\);
    \(\operatorname{sm}(5,3)=((-11 * x l / 210)-\) smay \(/(10 * A * x l)) * r a l\);
    sm \((3,5)=\operatorname{sm}(5,3)\);
    \(\operatorname{sm}(11,9)=-\operatorname{sm}(5,3)\);
    \(\operatorname{sm}(9,11)=\operatorname{sm}(11,9)\);
    \(\operatorname{sm}(9,3)=\left((9 / 70)-6 *\right.\) smay \(\left./\left(5 * A * x l^{\wedge} 2\right)\right) * r a l\);
    \(\operatorname{sm}(3,9)=\operatorname{sm}(9,3)\);
    sm \((11,3)=((13 * x l / 420)-\) smay \(/(10 * A * x l)) * r a l\);
    \(\operatorname{sm}(3,11)=\operatorname{sm}(11,3)\);
    \(\operatorname{sm}(9,5)=-\operatorname{sm}(11,3)\);
    \(\operatorname{sm}(5,9)=\operatorname{sm}(9,5)\);
    sm \((4,4)=(\operatorname{xpol} /(3 * A)) * r a l\);
    \(\operatorname{sm}(10,10)=\operatorname{sm}(4,4)\);
    \(\operatorname{sm}(10,4)=(\operatorname{xpol} /(6 * A)) * r a l ;\)
    \(\operatorname{sm}(4,10)=s m(10,4)\);
    \(\operatorname{sm}(5,5)=\left(\left(x l^{\wedge} 2 / 105\right)+2 *\right.\) smay \(\left./(15 * A)\right)\) *ral;
    \(\operatorname{sm}(11,11)=\operatorname{sm}(5,5)\);
    \(\operatorname{sm}(11,5)=((-x l * x l / 140)-\) smay \(/(30 * A)) * r a l ;\)
    \(\operatorname{sm}(5,11)=\operatorname{sm}(11,5)\);
    \(\operatorname{sm}(6,6)=\left(\left(x l^{\wedge} 2 / 105\right)+2 *\right.\) smaz \(\left./(15 * A)\right) * r a l\);
    \(\operatorname{sm}(12,12)=\operatorname{sm}(6,6) ;\)
    \(\operatorname{sm}(12,6)=((-x l * x l / 140)-\) smaz \(/(30 * A)) * r a l\);
    \(\operatorname{sm}(6,12)=\operatorname{sm}(12,6)\);
    \% Tranform element matrix to global coordinates
    \% Compute transformation matrix
    zeta=Glb2Loc (xio,yio,zio,xjo,yjo,zjo,xko,yko,zko) ;
    PSI=zeros \((12,12)\);
    \(\operatorname{PSI}(1: 3,1: 3)=\) zeta;
    \(\operatorname{PSI}(4: 6,4: 6)=\) zeta;
    PSI (7:9,7:9) =zeta;
    PSI (10:12,10:12)=zeta;
    sm=(PSI') *sm*PSI;
\% Elemental Mass Matrix for type 2 Triangular membrane elements
if type == 2
    \% Length of element sides
    \(\mathrm{L} 1=\operatorname{sqrt}\left((\mathrm{xjo-xio})^{\wedge} 2+(y j o-y i o)^{\wedge} 2+(z j o-z i o)^{\wedge} 2\right) ;\)
    \(\mathrm{L} 2=\operatorname{sqrt}\left((\text { xko-xjo })^{\wedge} 2+(\text { yko-yjo })^{\wedge} 2+(z k o-z j o)^{\wedge} 2\right) ;\)
    \(\mathrm{L} 3=\operatorname{sqrt}\left((\text { xko-xio })^{\wedge} 2+(\text { yko-yio })^{\wedge} 2+(z k o-z i o)^{\wedge} 2\right) ;\)
    theta=acos ( (L2^2-L1^2-L3^2) / (-2*L1*L3));
```

end

Subroutine to compute finite element mass matrix

```
% Element in local (planar) coordinates
xi=0; yi=0;
xj=L1; yj=0;
xk=L3*Cos(theta); yk=L3*sin(theta);
% Element area
Ae=0.5*((xj*yk+xi*yj+yi*xk) - (yi*xj+yj*xk+xi*yk));
% Element consistent mass matrix in local coordinates
```

$\operatorname{Muvw}(1: 3,1: 9)=[2,0,0,1,0,0,1,0,0 ; 0,2,0,0,1,0,0,1,0 ; 0,0,2,0,0,1,0,0,1] ;$
$\operatorname{Muvw}(4: 6,1: 9)=[1,0,0,2,0,0,1,0,0 ; 0,1,0,0,2,0,0,1,0 ; 0,0,1,0,0,2,0,0,1] ;$
$\operatorname{Muvw}(7: 9,1: 9)=[1,0,0,1,0,0,2,0,0 ; 0,1,0,0,1,0,0,2,0 ; 0,0,1,0,0,1,0,0,2] ;$
Muvw= ($(1 / 12)$ *rho*Ae*A) *Muvw;
\% Tranform element matrix to global coordinates
\% Compute transformation matrix
zeta=Glb2Loc (xio,yio,zio,xjo,yjo,zjo,xko,yko,zko);
PSI=zeros (9,9);
PSI (1:3,1:3)=zeta;
PSI (4:6,4:6) =zeta;
PSI (7:9,7:9) =zeta;
sm=(PSI') *Muvw*PSI;
end
\% Elemental Mass Matrix for type 3 Rod elements
if type $==3$
\% Length of element
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{xjo-xio})^{\wedge} 2+(\mathrm{yjo}-\mathrm{yio})^{\wedge} 2+(z j o-z i o)^{\wedge} 2\right)$;
\% Element consistent mass matrix in local coordinates
$\operatorname{Muvw}(1: 3,1: 6)=[2,0,0,1,0,0 ; 0,2,0,0,1,0 ; 0,0,2,0,0,1]$;
$\operatorname{Muvw}(4: 6,1: 6)=[1,0,0,2,0,0 ; 0,1,0,0,2,0 ; 0,0,1,0,0,2] ;$
Muvw $=((1 / 6) * r h o * A * L) * M u v w$;
\% Tranform element matrix to global coordinates
\% Compute transformation matrix
zeta=Glb2Loc (xio,yio,zio,xjo,yjo,zjo,xko,yko,zko);
PSI=zeros (6,6);
PSI (1:3,1:3) =zeta;
PSI (4:6, 4:6) =zeta;
sm=(PSI') *Muvw*PSI;
end
\% Elemental Mass Matrix for type 4 Scalar spring elements
\% One-half of concentrated mass value assigned to each node
if type $=4$
\% Element consistent mass matrix in local coordinates
$\operatorname{Muvw}(1,1: 12)=[2,0,0,0,0,0,1,0,0,0,0,0]$;
$\operatorname{Muvw}(2,1: 12)=[0,2,0,0,0,0,0,1,0,0,0,0]$;
$\operatorname{Muvw}(3,1: 12)=[0,0,2,0,0,0,0,0,1,0,0,0]$;
$\operatorname{Muvw}(4: 6,1: 12)=$ zeros $(3,12)$;
$\operatorname{Muvw}(7,1: 12)=[1,0,0,0,0,0,2,0,0,0,0,0]$;
$\operatorname{Muvw}(8,1: 12)=[0,1,0,0,0,0,0,2,0,0,0,0]$;

Subroutine to compute finite element mass matrix

```
Muvw (9,1:12)=[0,0,1,0,0,0,0,0,2,0,0,0];
Muvw(10:12,1:12)=zeros(3,12);
Muvw=((1/6)*rho) *Muvw;
% Tranform element matrix to global coordinates
% Compute transformation matrix
zeta=Glb2Loc(xio,yio,zio,xjo,yjo,zjo,xko,yko,zko);
PSI=zeros(12,12);
PSI(1:3,1:3)=zeta;
PSI(4:6,4:6)=zeta;
PSI(7:9,7:9)=zeta;
PSI(10:12,10:12)=zeta;
sm=(PSI') *Muvw*PSI;
%**************** End of File **********************************
```

end

Subroutine to compute the global to local transformation matirx

function zeta=Glb2Loc (xi,yi,zi,xj,yj,zj,xk,yk,zk)
\% This MATLAB subroutine is part of a computer software package for
\% the design and analysis of a scaled tailboom structure model.
\%
\%
\% Written by: David E. Heverly II 9/1/00
Mechanical Engineering Ph.D. Candidate
The Pennsylvania State University

\% Filename $=$ Glb2Loc.m

\% Computation of transformation matrix from global coordinates
\% to local element coordinates.
\% Given the global coordinates of node "I" , node "J" \& node "K"
\% of the element, the nodal coordinate values can be obtained in
\% local element coordinates. $\{u, v, w\} '=[z e t a] *\{u o, ~ v o, ~ w o\} '$
$\{u, v, w\}=$ displacements in local coor. (tranlations or rotations)
\{uo, vo, wo\} = displacements in global coor. (tranlations or
rotations)
[zeta] = 3x3 transformation matrix
NOTE: $\operatorname{inv}([$ zeta $])=[\text { zeta }]^{\prime}==>\{u o$, vo, wo\}' $=[$ zeta]'*\{u, v, w\}'
xi - global X-coordinate of first element node
yi - global Y-coordinate of first element node
zi - global Z-coordinate of first element node
xj - global X-coordinate of second element node
yj - global Y-coordinate of second element node
zj - global Z-coordinate of second element node
xk - global X-coordinate of third element node
yk - global Y-coordinate of third element node

Subroutine to compute the global to local transformation matirx

```
% zk - global z-coordinate of third element node
% zeta - transformation matrix
% Define local x-y plane vectors V1 & V4
xl=xj-xi; yl=yj-yi; zl=zj-zi; % components of V1
x4=xk-xi; y4=yk-yi; z4=zk-zi; % components of V4
% Compute local z-axis by cross product of V1 & V4
x3=y1*z4-y4*z1; % x-comp. of V3
y3=x4*z1-x1*z4; % Y-comp. of V3
z3=x1*y4-x4*y1; % z-comp. of V3
% Compute local y-axis by cross product of V3 & V1
x2=y3*z1-y1*z3; % x-comp. of V2
y2=x1*z3-x3*z1; % y-comp. of V2
z2=x3*y1-x1*y3; % z-comp. of V2
% Compute vector lengths
V1L=sqrt (x1^2+y1^}2+z\mp@subsup{1}{}{\wedge}2)
V2L=sqrt(x\mp@subsup{2}{}{\wedge}2+y\mp@subsup{2}{}{\wedge}2+z\mp@subsup{2}{}{\wedge}2);
V3L=sqrt (x3^2 +y y^^2+z3^2);
% Compute direction cosines for transformation matrix
zeta(1,1)=x1/V1L; zeta(1,2)=y1/V1L; zeta(1,3)=z1/V1L;
zeta(2,1)=x2/V2L; zeta(2,2)=y2/V2L; zeta(2,3)=z2/V2L;
zeta(3,1)=x3/V3L; zeta(3,2)=y3/V3L; zeta(3,3)=z3/V3L;
%**************** End of File *********************************
```

Subroutine to assemble the element matrices into a global matrix

```
function glob=assembl(glob,elem,i,j,k,type);
% This MATLAB subroutine is part of a computer software package for
% the design and analysis of a scaled tailboom structure model.
%
% Written by: David E. Heverly II
                            9/1/00
                    Mechanical Engineering Ph.D. Candidate
    The Pennsylvania State University
Filename = assembl.m
%**********************************************************
% Assembles the global martix from the elemental matrices
%
% glob = global matrix (mass or stiffness)
elem = element matrix (mass or stiffness)
。
% i = first grid/node point number of the element
% j = second grid/node point number of the element
```

```
                    Subroutine to assemble the element matrices into a global matrix
% k = third grid/node point number of the element
%
Four Finite Element Types can be used to construct the model
Type 1: One dimensional Beam Element (2 nodes)
    degrees-of-freedom: {u,v,w,THETAx,THETAy,THETAz} at each node
Type 2: Two dimensional Triangular Membrane Element (3 nodes)
    (Plane Stress) degrees-of-freedom: {u,v} at each node
    Type 3: One dimensional Rod Element (2 nodes)
    degrees-of-freedom: {u} at each node
Type 4: One dimensional Discrete Scalar Spring Element (2 nodes)
    degrees-of-freedom: {u AND/OR theta} at each node
    Translational stiffness AND/OR Torsional stiffness
% Type 1: Beam elements - 12 global dof
if type==1
    k1=6*(i-1);
    k2=6*(j-1);
    for ii=1:6
            m1=k1+ii;
            m2=k2+ii;
            for jj=1:6
                n1=k1+jj;
                n2=k2+jj;
                glob(m1,n1) =glob(m1,n1) +elem(ii,jj);
                glob(m2,n2) =glob(m2,n2) +elem(6+ii, 6+jj);
                glob(m1,n2) =glob(m1,n2) +elem(ii,6+jj) ;
                glob(m2,n1) =glob(m2,n1) +elem(6+ii,jj);
            end
    end
end
% Type 2: Triangular membrane elements - 9 global dof
if type==2
    k1=6*(i-1);
    k2=6* (j-1);
    k3=6*(k-1);
    for ii=1:3
        m1=k1+ii;
        m2=k2+ii;
        m3=k3+ii;
        for jj=1:3
            n1=k1+jj;
            n2=k2+jj;
            n3=k3+jj;
            glob(m1,n1) =glob(m1,n1) +elem(ii,jj);
            glob(m1,n2) =glob(m1,n2) +elem(ii,jj+3);
            glob(m1,n3) =glob(m1,n3) +elem(ii,jj+6);
```


Subroutine to assemble the element matrices into a global matrix

```
            glob(m2,n1) =glob(m2,n1) +elem(ii+3,jj);
            glob(m2,n2) =glob(m2,n2) +elem(ii+3,jj+3);
            glob(m2,n3) =glob(m2,n3) +elem(ii+3,jj+6);
            glob(m3,n1) =glob(m3,n1) +elem(ii+6,jj);
            glob(m3,n2) =glob(m3,n2) +elem(ii+6,jj+3);
            glob(m3,n3) =glob(m3,n3) +elem(ii+6,jj+6);
            end
        end
end
% Type 3: Rod elements - 6 global dof
if type==3
    k1=6*(i-1);
    k2=6*(j-1);
    for ii=1:3
            m1=k1+ii;
            m2=k2+ii;
            for jj=1:3
                    n1=k1+jj;
            n2=k2+jj;
            glob(m1,n1) =glob(m1,n1) +elem(ii,jj);
            glob(m2,n2) =glob(m2,n2) +elem(3+ii, 3+jj);
            glob(m1,n2) =glob(m1,n2) +elem(ii,3+jj);
            glob(m2,n1) =glob(m2,n1) +elem(3+ii,jj);
        end
        end
end
% Type 4: Scalar Spring elements - 12 global dof
if type==4
    k1=6*(i-1);
    k2=6*(j-1);
    for ii=1:6
        m1=k1+ii;
        m2=k2+ii;
        for jj=1:6
            n1=k1+jj;
            n2=k2+jj;
            glob(m1,n1) =glob(m1,n1) +elem(ii,jj);
            glob(m2,n2) =glob(m2,n2) +elem(6+ii,6+jj);
            glob(m1,n2) =glob(m1,n2) +elem(ii,6+jj);
            glob(m2,n1) =glob(m2,n1) +elem(6+ii,jj);
        end
    end
end
%**************** End of File *********************************
```

```
                    Program to formulate the tailboom FEM model parameters
% This MATLAB program is part of a computer software package for
% the design and analysis of a scaled tailboom structure model.
%
% Written by: David E. Heverly II
                                    11/1/00
    Mechanical Engineering Ph.D. Candidate
    The Pennsylvania State University
%********************************************************
% Filename = FEAinput.m
%********************************************************
% This program creates an input data file for "FEAnalys.m" a Finite
% Element based vibration analysis program of Rigid-jointed Space
Frames.
% This MATLAB m-file must be executed prior to executing "FEAnalys.m"
%
% Four Finite Element Types can be used to construct the model
%
% Type 1: One dimensional Beam Element (2 nodes)
% degrees-of-freedom: {u,v,w,THETAx,THETAy,THETAz} at each
node
%
% Type 2: Two dimensional Triangular Membrane Element (3 nodes)
(Plane Stress)
% degrees-of-freedom: {u,v} at each node
    Type 3: One dimensional Rod Element (2 nodes)
                                degrees-of-freedom: {u} at each node
            Type 4: One dimensional Discrete Scalar Spring Element (2 nodes)
                        degrees-of-freedom: {u AND/OR theta} at each node
                        Translational stiffness AND/OR Torsional stiffness
between nodes
%*********************************************************
clear % Clears all variables from computer memory
% General descriptive parameters
%***********************************************************
nj=120; % Number of joints/nodes
mems=267; % Number of elements or members
nmatl=10; % Number of element/material types
nsup=16; % Number of supported/restrained joints
nconc=3; % Number of concentrated masses (at joints/nodes)
np=10; % Number of frequencies desired on output of results
%*******************************************************
%************************************************************
% Global coordinates of each structural node, followed by the
% global coordinates of the imaginary nodes. Imaginary nodes are
% needed to define the principle "x-y" bending plane of each
```


Program to formulate the tailboom FEM model parameters			
$\mathrm{x}(43)=21.25$;	$y(43)=5.9670$;	$z(43)=-3.75$;	
$\mathrm{x}(44)=21.25$;	$y(44)=5.9670$;	$z(44)=-4.9097$;	\% Actuator
attachment Le	Side Tail end		
$\mathrm{x}(45)=24.0$;	$y(45)=5.8333$;	$z(45)=-4.8333$;	\% 2nd frame
$\mathrm{x}(46)=24.0$;	$\mathrm{y}(46)=0.0$;	$z(46)=-4.8333$;	
$\mathrm{x}(47)=24.0$;	$y(47)=-5.8333$;	$z(47)=-4.8333$;	
$x(48)=24.0$;	$y(48)=-5.8333$;	$\mathrm{z}(48)=0.0$;	
$\mathrm{x}(49)=24.0$;	$y(49)=-5.8333$;	$z(49)=4.8333$;	
$\mathrm{x}(50)=24.0$;	$y(50)=0.0$;	$\mathrm{z}(50)=4.8333$;	
$\mathrm{x}(51)=24.0$;	$\mathrm{Y}(51)=5.8333$;	$z(51)=4.8333$;	
$x(52)=24.0$;	$y(52)=5.8333$;	$\mathrm{z}(52)=0.0$;	
$\mathrm{x}(53)=24.0$;	$y(53)=3.8333$;	$z(53)=-2.8333$;	
$\mathrm{x}(54)=24.0$;	$Y(54)=-3.8333$;	$z(54)=-2.8333$;	
$\mathrm{x}(55)=24.0$;	$y(55)=-3.8333$;	$z(55)=2.8333$;	
$x(56)=24.0$;	$\mathrm{Y}(56)=3.8333$;	$z(56)=2.8333$;	\% 2nd frame
$x(57)=36.0$;	$\mathrm{Y}(57)=5.25$;	$\mathrm{z}(57)=-4.5$;	\% 3rd frame
$x(58)=36.0$;	$\mathrm{y}(58)=0.0$;	$z(58)=-4.5$;	
$x(59)=36.0$;	$Y(59)=-5.25 ;$	$z(59)=-4.5$;	
$x(60)=36.0$;	$\mathrm{Y}(60)=-5.25$;	$z(60)=0.0$;	
$x(61)=36.0$;	$y(61)=-5.25 ;$	$\mathrm{z}(61)=4.5$;	
$x(62)=36.0$;	$y(62)=0.0$;	$\mathrm{z}(62)=4.5$;	
$x(63)=36.0$;	$\mathrm{y}(63)=5.25$;	$z(63)=4.5$;	
$x(64)=36.0$;	$\mathrm{Y}(64)=5.25$;	$z(64)=0.0$;	
$x(65)=36.0$;	$y(65)=3.25 ;$	$z(65)=-2.5$;	
$x(66)=36.0$;	$y(66)=-3.25 ;$	$z(66)=-2.5$;	
$x(67)=36.0$;	$y(67)=-3.25$;	$z(67)=2.5$;	
$x(68)=36.0$;	$y(68)=3.25$;	$z(68)=2.5$;	\% 3rd frame
$x(69)=48.0$;	$y(69)=4.6667$;	$z(69)=-4.1667$;	\% 4th frame
$\mathrm{x}(70)=48.0$;	$\mathrm{y}(70)=0.0$;	$z(70)=-4.1667$;	
$\mathrm{x}(71)=48.0$;	$y(71)=-4.6667$;	$z(71)=-4.1667$;	
$\mathrm{x}(72)=48.0$;	$y(72)=-4.6667$;	$\mathrm{z}(72)=0.0$;	
$x(73)=48.0$;	$y(73)=-4.6667$;	$z(73)=4.1667$;	
$\mathrm{x}(74)=48.0$;	$y(74)=0.0$;	$z(74)=4.1667$;	
$\mathrm{x}(75)=48.0$;	$y(75)=4.6667$;	$z(75)=4.1667$;	
$x(76)=48.0$;	$y(76)=4.6667$;	$\mathrm{z}(76)=0.0$;	
$x(77)=48.0$;	$y(77)=3.1667$;	$z(77)=-2.6667$;	
$\mathrm{x}(78)=48.0$;	$y(78)=-3.1667$;	$z(78)=-2.6667$;	
$\mathrm{x}(79)=48.0$;	$y(79)=-3.1667$;	$z(79)=2.6667$;	
$x(80)=48.0$;	$\mathrm{y}(80)=3.1667$;	$z(80)=2.6667$;	\% 4th frame
$x(81)=60.0$;	$Y(81)=4.0833$;	$z(81)=-3.8333$;	\% 5th frame
$x(82)=60.0$;	$y(82)=0.0$;	$z(82)=-3.8333$;	
$x(83)=60.0$;	$Y(83)=-4.0833$;	$z(83)=-3.8333$;	
$x(84)=60.0$;	$y(84)=-4.0833$;	$\mathrm{z}(84)=0.0$;	
$x(85)=60.0$;	$Y(85)=-4.0833$;	$z(85)=3.8333$;	
$x(86)=60.0$;	$y(86)=0.0$;	$z(86)=3.8333$;	
$x(87)=60.0$;	$y(87)=4.0833$;	$z(87)=3.8333$;	
$x(88)=60.0$;	$y(88)=4.0833$;	$z(88)=0.0$;	
$x(89)=60.0$;	$y(89)=2.5833$;	$z(89)=-2.3333$;	
$\mathrm{x}(90)=60.0$;	$\mathrm{Y}(90)=-2.5833$;	$z(90)=-2.3333$;	
$x(91)=60.0$;	$y(91)=-2.5833$;	$z(91)=2.3333$;	
$\mathrm{x}(92)=60.0$;	$y(92)=2.5833$;	$z(92)=2.333$;	\% 5th frame

Program to formulate the tailboom FEM model parameters			
$\mathrm{x}(93)=72.0$;	$\mathrm{y}(93)=3.5$;	$z(93)=-3.5$;	\% 6th frame
$\mathrm{x}(94)=72.0$;	$y(94)=0.0$;	$z(94)=-3.5$;	
$\mathrm{x}(95)=72.0$;	$y(95)=-3.5$;	$z(95)=-3.5$;	
$\mathrm{x}(96)=72.0$;	$y(96)=-3.5$;	$\mathrm{z}(96)=0.0$;	
$\mathrm{x}(97)=72.0$;	$y(97)=-3.5$;	$\mathrm{z}(97)=3.5$;	
$\mathrm{x}(98)=72.0$;	$\mathrm{y}(98)=0.0$;	$\mathrm{z}(98)=3.5$;	
$\mathrm{x}(99)=72.0$;	$y(99)=3.5$;	$\mathrm{z}(99)=3.5$;	
$\mathrm{x}(100)=72.0$;	$y(100)=3.5$;	$\mathrm{z}(100)=0.0$;	
$\mathrm{x}(101)=72.0$;	$y(101)=2.0$;	$z(101)=-2.0$;	
$\mathrm{x}(102)=72.0$;	$y(102)=-2.0$;	$z(102)=-2.0$;	
$\mathrm{x}(103)=72.0$;	$y(103)=-2.0$;	$z(103)=2.0$;	
$\mathrm{x}(104)=72.0$;	$y(104)=2.0$;	$z(104)=2.0$;	\% 6th frame
$\begin{aligned} & x(105)=68.285 \text {; } \\ & \text { tail } \end{aligned}$	$y(105)=0.0$;	$\mathrm{z}(105)=3.6030$;	Base of vertical
$\mathrm{x}(106)=69.359$;	$y(106)=0.0$;	$z(106)=6.2069$;	Vertical tail
intersection with	hoizontal tail		
$\mathrm{x}(107)=75.153$;	$y(107)=0.0$;	$z(107)=20.2542$;	\% Vertica tail
$\begin{aligned} & x(108)=80.967 ; \\ & \text { tail } \end{aligned}$	$y(108)=0.0$;	$z(108)=34.35$;	\% Top of vertical
$x(109)=69.359 ;$ Left end	$y(109)=-19.456$;	$z(109)=6.2069$;	Horizontal tail
$\mathrm{x}(110)=69.359$;	$y(110)=-9.5$;	$z(110)=6.2069$;	Horizontal tail
$\mathrm{x}(111)=69.359$;	$y(111)=9.5$;	$z(111)=6.2069$;	Horizontal tail
$\mathrm{x}(112)=69.359$;	$y(112)=19.456$;	$\mathrm{z}(112)=6.2069$;	Horizontal tail
Right end			
$\begin{aligned} & x(113)=-10.0 \text {; } \\ & \text { support } \end{aligned}$	$y(113)=7.0$;	$z(113)=-5.5$;	\% Root/base
$x(114)=-10.0$;	$y(114)=0.0$;	$z(114)=-5.5$;	
$\mathrm{x}(115)=-10.0$;	$y(115)=-7.0$;	$z(115)=-5.5$;	
$x(116)=-10.0$;	$y(116)=-7.0$;	$z(116)=0.0$;	
$x(117)=-10.0$;	$y(117)=-7.0$;	$z(117)=5.5$;	
$x(118)=-10.0$;	$y(118)=0.0$;	$z(118)=5.5$;	
$\mathrm{x}(119)=-10.0$;	$y(119)=7.0$;	$z(119)=5.5$;	
$\begin{aligned} & x(120)=-10.0 ; \\ & \text { support } \end{aligned}$	$y(120)=7.0$;	$\mathrm{z}(120)=0.0$;	\% Root/base
\% Imaginary nodes	to define bending	planes	
$\mathrm{x}(121)=0.0$;	$y(121)=7.0$;	$z(121)=-5.5$;	
$\mathrm{x}(122)=0.0$;	$y(122)=-7.0$;	$z(122)=-5.5$;	
$\mathrm{x}(123)=0.0$;	$y(123)=-7.0$;	$z(123)=5.5$;	
$\mathrm{x}(124)=0.0$;	$y(124)=7.0$;	$z(124)=5.5$;	
$\mathrm{x}(125)=80.967$;	$\mathrm{y}(125)=90.0$;	$z(125)=34.35$;	
$\mathrm{x}(126)=0.0$;	$y(126)=0.0$;	$\mathrm{z}(126)=6.2069$;	
$\mathrm{x}(127)=60.0$;	$y(127)=-4.0833$;	$\mathrm{z}(127)=3.8333$;	
$\mathrm{x}(128)=60.0$;	$y(128)=4.0833$;	$\mathrm{z}(128)=3.8333$;	
$\mathrm{x}(129)=72.0$;	$y(129)=3.5$;	$\mathrm{z}(129)=3.5$;	
$\mathrm{x}(130)=72.0$;	$y(130)=-3.5$;	$z(130)=3.5$;	
\%***************	****************	***************	****
\%***************	******************	***************	****
\%***************	*****************		
\% Element/Material Type Properties			

Program to formulate the tailboom FEM model parameters

\% Skin \& frame material - 0.032 inch thick aluminum sheet (Membrane element)
dens(1) $=(0.0979 / 386.4)$; Material density - rhoa [1bf-s^2/in^4]
elast(1)=9.99e6; \% Elastic modulus - E [psi] (Aluminum)
rigd(1)=3.77e6; \quad Rigidity modulus - G [psi] (Aluminum)
area(1) $=0.032$; \quad O Membrane (sheet metal) thickness [in.]
$\operatorname{xin}(1)=0 ; \quad$ \% Not Used assign zero value
yin(1)=0; \quad o Not Used assign zero value
$\operatorname{zin}(1)=0$; \quad Not Used assign zero value
$\operatorname{xjp}(1)=0$; \quad Not Used assign zero value
\% Outer Stringer material - ($0.75 \times 0.75 \times 0.125$ thick) aluminum angles
(Beam Element)
dens (2) $=(0.0979 / 386.4) ;$ Material density - rhoa [1bf-s^2/in^4]
elast(2)=9.99e6; \% Elastic modulus - E [psi] (Aluminum)
rigd(2)=3.77e6; \quad O Rigidity modulus - G [psi] (Aluminum)
area(2) $=0.17188$; \quad Cross-sectional area - A [in^2]
$\operatorname{xin}(2)=0.01732 ; \quad$ \% Torsional constant of cross section - J [in^4]
$\operatorname{yin}(2)=8.6577 e-3$; \quad \% 2nd moment of area of the cross section about x -
y plane - Iy [in^4]
$\operatorname{zin}(2)=8.6577 \mathrm{e}-3$; \quad \% 2nd moment of area of the cross section about x -
z plane - Iz [in^4]
xjp(2)=0.01732; \quad O Polar 2nd moment of area of cross section - Ip
[in^4]
\% Inner Stringer Material - (0.125 x 1.0) flat stock aluminum (Beam Element)
dens(3) $=(0.0979 / 386.4)$; Material density - rhoa [1bf-s^2/in^4]
elast (3) =9.99e6; \quad Elastic modulus - E [psi] (Aluminum)
rigd (3) $=3.77 \mathrm{e}$; \quad \% Rigidity modulus - G [psi] (Aluminum)
area(3) $=0.125$; \quad Cross-sectional area - A [in^2]
$\operatorname{xin}(3)=0.01058 ; \quad$ \% Torsional constant of cross section - J [in^4]
$\operatorname{yin}(3)=1.6276 \mathrm{e}-4$; \quad \% 2nd moment of area of the cross section about x -
y plane - Iy [in^4]
$\operatorname{zin}(3)=0.01042$; \quad 2nd moment of area of the cross section about x -
z plane - Iz [in^4]
xjp(3) $=0.01058$; \quad Polar 2nd moment of area of cross section - Ip
[in^4]
\% Tail mounting plate - 0.5 inch aluminum plate (Modeled as 4 Beam Elements)
dens (4) $=(0.0979 / 386.4)$; \% Material density - rhoa [1bf-s^2/in^4]
elast(4)=9.99e6; \% Elastic modulus - E [psi] (Aluminum)
rigd(4)=3.77e6; \quad Rigidity modulus - G [psi] (Aluminum)
area(4) $=1.5865$; \quad Cross-sectional area - A [in^2]
$\operatorname{xin}(4)=0.4195$; \quad Torsional constant of cross section - J [in^4]
$\operatorname{yin}(4)=0.20976 ; \quad$ \% 2nd moment of area of the cross section about x -
y plane - Iy [in^4]
$\operatorname{zin}(4)=0.20976 ; \quad$ \% 2nd moment of area of the cross section about x -

Program to formulate the tailboom FEM model parameters

```
z plane - Iz [in^4]
xjp(4)=0.4195; % Polar 2nd moment of area of cross section - Ip
[in^4]
% Tail section material - (2.0 x 2.0 x 0.125 thick) Square aluminum
tube (Beam Element)
dens(5)=(0.0979/386.4);% Material density - rhoa [lbf-s^2/in^4]
elast(5)=9.99e6; % Elastic modulus - E [psi] (Aluminum)
rigd(5)=3.77e6; % Rigidity modulus - G [psi] (Aluminum)
area(5)=0.9375; % Cross-sectional area - A [in^2]
xin(5)=1.1035; % Torsional constant of cross section - J [in^4]
yin(5)=0.5518; % 2nd moment of area of the cross section about x-y
plane - Iy [in^4]
zin(5)=0.5518; % 2nd moment of area of the cross section about x-z
plane - Iz [in^4]
xjp(5)=1.1035; % Polar 2nd moment of area of cross section - Ip
[in^4]
% Tail end plate material - 0.5 inch thick aluminum plate (Membrane
element)
dens(6)=(0.0979/386.4); % Material density - rhoa [lbf-s^2/in^4]
elast(6)=9.99e6; % Elastic modulus - E [psi] (Aluminum)
rigd(6)=3.77e6; % Rigidity modulus - G [psi] (Aluminum)
area(6)=0.532; % Membrane (sheet metal) thickness [in.]
xin(6)=0; % Not Used assign zero value
yin(6)=0; % Not Used assign zero value
zin(6)=0; % Not Used assign zero value
xjp(6)=0; % Not Used assign zero value
% Piezoceramic Stack actuator properties (Rod Element)
dens(7)=7.0206e-4; % Material density - rhoa [lbf-s^2/in^4] (PZT)
elast(7)=8.434e6; % Elastic modulus - E [psi] (stack actuator)
area(7)=0.1963; % Cross-sectional area - A [in^2]
rigd(7)=0.0; % Not Used assign zero value
xin(7)=0.0; % Not Used assign zero value
yin(7)=0.0; % Not Used assign zero value
zin(7)=0.0; % Not Used assign zero value
xjp(7)=0.0; % Not Used assign zero value
% Actuator Precompression rod (Rod Element) (1/16 in. Dia. mild steel
rod)
dens(8)=0.283/386.4;% Material density - rhoa [lbf-s^2/in^4] (steel)
elast(8)=10e6; % Elastic modulus - E [psi] (mild steel)
area(8)=3.068e-3; % Cross-sectional area - A [in^2]
rigd(8)=0.0; % Not Used assign zero value
xin(8)=0.0; % Not Used assign zero value
yin(8)=0.0; % Not Used assign zero value
zin(8)=0.0; % Not Used assign zero value
xjp(8)=0.0; % Not Used assign zero value
% Actuator mountinq supports - (1.0 x 1.0 x 0.125 thick) aluminum C-
```


Program to formulate the tailboom FEM model parameters								
$\begin{gathered} 25 \\ \text { mount, root } \end{gathered}$	$\begin{aligned} & \hline 24 \\ & \text { end } \end{aligned}$	32	1	9	\%	Element	46	TR actuator
$\begin{gathered} 37 \\ \text { mount, tail } \end{gathered}$	$\begin{aligned} & 36 \\ & \text { end } \end{aligned}$	44	1	9	\%	Element	47	TR actuator
24 mount, root	23 end	32	1	9	\%	Element	48	MR actuator
$\begin{gathered} 36 \\ \text { mount, tail } \end{gathered}$	$\begin{aligned} & 35 \\ & \text { end } \end{aligned}$	44	1	9	\%	Element	49	MR actuator
$\begin{aligned} & 23 \\ & \text { mount, root } \end{aligned}$	$\begin{aligned} & 22 \\ & \text { end } \end{aligned}$	32	1	9	\%	Element	50	BR actuator
$\begin{gathered} 35 \\ \text { mount, tail } \end{gathered}$	$\begin{aligned} & 34 \\ & \text { end } \end{aligned}$	44	1	9	\%	Element	51	BR actuator
$\begin{array}{r} 22 \\ \text { Actuator } \end{array}$	34	31	3	7	\%	Element	52	BR PZT
22 mount, root	21 end	32	1	9	\%	Element	53	BR actuator
m4 3	33	44	1	9	\%	Element	54	BR actuator
15	14	50	2	1	\%	Element	55	Skin
14	13	50	2	1	\%	Element	56	Skin
13	49	50	2	1	\%	Element	57	Skin
15	50	51	2	1	\%	Element	58	Skin
15	27	123	1	2	\%	Element	59	TL stringer
27	39	123	3	8	\%	Element	60	TL
precompression rod								
39	51	123	1	2	\%	Element	61	TL stringer
15	16	52	2	1	\%	Element	62	Skin
16	9	52	2	1	\%	Element	63	Skin
9	45	52	2	1	\%	Element	64	Skin
15	52	51	2	1	\%	Element	65	Skin
27	28	21	1	9	\%	Element	66	TL actuator
mount, root	end							
$\begin{gathered} 39 \\ \text { mount, tail } \end{gathered}$	$\begin{aligned} & 40 \\ & \text { end } \end{aligned}$	33	1	9	\%	Element	67	TL actuator
28	40	24	3	7	\%	Element	68	TL PZT
Actuator								
$\begin{gathered} 28 \\ \text { mount, root } \end{gathered}$	$\begin{aligned} & 29 \\ & \text { end } \end{aligned}$	21	1	9	\%	Element	69	TL actuator
$\begin{gathered} 40 \\ \text { mount, tail } \end{gathered}$	41 end	33	1	9	\%	Element	70	TL actuator
$\begin{aligned} & 29 \\ & \text { mount, root } \end{aligned}$	$\begin{aligned} & 30 \\ & \text { end } \end{aligned}$	21	1	9	\%	Element		ML actuator
$\text { mount, }{ }^{41}$	$\begin{aligned} & 42 \\ & \text { end } \end{aligned}$	33	1	9	\%	Element		ML actuator
30 mount, root	$\begin{aligned} & 31 \\ & \text { end } \end{aligned}$	21	1	9	\%	Element		BL actuator
42	43	33	1	9	\%	Element		BL actuator
mount, tail 31	end 43	22	3	7		Element	75	BL PzT
Actuator								
31	32	21	1	9		Element	76	BL actuator

Program to formulate the tailboom FEM model parameters								
mount, root	end							
43	44	33	1	9		Element	77 B	BL actuator
mount, tail	end							
16	52	124	1	3		Element	78	ML stringer
12	48	123	1	3		Element	79 M	MR stringer
45	46	58	2	1		Element	80	*** Skin
46	47	58	2	1		Element	81	Skin
47	59	58	2	1		Element	82	Skin
45	58	57	2	1		Element	83	Skin
45	57	122	1	2		Element	84	BL stringer
46	58	121	1	3		Element	85	BM Stringer
47	59	121	1	2		Element	86 B	BR stringer
49	48	60	2	1		Element	87	Skin
48	47	60	2	1		Element	88	Skin
47	59	60	2	1		Element	89	Skin
49	60	61	2	1		Element	90	Skin
49	61	124	1	2		Element	91 TR	TR stringer
48	60	123	1	3		Element	92 M	MR stringer
51	50	62	2	1		Element	93	Skin
50	49	62	2	1		Element	94	Skin
49	61	62	2	1		Element	95	Skin
51	62	63	2	1		Element	96	Skin
51	63	123	1	2		Element	97 T	TL stringer
50	62	123	1	3		Element	98 T	TM stringer
51	52	64	2	1		Element	99	Skin
52	45	64	2	1		Element	100	Skin
45	57	64	2	1	\%	Element	101	Skin
51	64	63	2	1	\%	Element	102	Skin
52	64	124	1	3		Element	103	ML stringer
57	58	70	2	1		Element	104	*** Skin
58	59	70	2	1	\%	Element	105	Skin
59	71	70	2	1		Element	106	Skin
57	70	69	2	1		Element	107	Skin
57	69	122	1	2		Element	108	BL stringer
58	70	121	1	3		Element	109	BM Stringer
59	71	121	1	2		Element	110	BR stringer
61	60	72	2	1		Element	111	Skin
60	59	72	2	1		Element	112	Skin
59	71	72	2	1		Element	113	Skin
61	72	73	2	1		Element	114	Skin
61	73	124	1	2		Element	115	TR stringer
60	72	123	1	3		Element	116	MR stringer
63	62	74	2	1		Element	117	Skin
62	61	74	2	1		Element	118	Skin
61	73	74	2	1		Element	119	Skin
63	74	75	2	1		Element	120	Skin
63	75	123	1	2		Element	121	TL stringer
62	74	123	1	3		Element	122	TM stringer
63	64	76	2	1		Element	123	Skin
64	57	76	2	1		Element	124	Skin
57	69	76	2	1		Element	125	Skin

Program to formulate the tailboom FEM model parameters							
63	76	75	2	1	\%	Element 126	Skin
64	76	124	1	3	\%	Element 127	ML stringer
69	70	82	2	1		Element 128	*** Skin
70	71	82	2	1		Element 129	Skin
71	83	82	2	1		Element 130	Skin
69	82	81	2	1		Element 131	Skin
69	81	122	1	2		Element 132	BL stringer
70	82	121	1	3		Element 133	BM Stringer
71	83	121	1	2	\%	Element 134	BR stringer
73	72	84	2	1		Element 135	Skin
72	71	84	2	1		Element 136	Skin
71	83	84	2	1		Element 137	Skin
73	84	85	2	1		Element 138	Skin
73	85	124	1	2		Element 139	TR stringer
72	84	123	1	3		Element 140	MR stringer
75	74	86	2	1		Element 141	Skin
74	73	86	2	1		Element 142	Skin
73	85	86	2	1		Element 143	Skin
75	86	87	2	1		Element 144	Skin
75	87	123	1	2		Element 145	TL stringer
74	86	123	1	3	\%	Element 146	TM stringer
75	76	88	2	1	\%	Element 147	Skin
76	69	88	2	1	\%	Element 148	Skin
69	81	88	2	1	\%	Element 149	Skin
75	88	87	2	1		Element 150	Skin
76	88	124	1	3		Element 151	ML stringer
81	82	94	2	1		Element 152	*** Skin
82	83	94	2	1		Element 153	Skin
83	95	94	2	1		Element 154	Skin
81	94	93	2	1		Element 155	Skin
81	93	122	1	2		Element 156	BL stringer
82	94	121	1	3		Element 157	BM Stringer
83	95	121	1	2		Element 158	BR stringer
85	84	96	2	1		Element 159	Skin
84	83	96	2	1		Element 160	Skin
83	95	96	2	1		Element 161	Skin
85	96	97	2	1		Element 162	Skin
85	97	124	1	2		Element 163	TR stringer
84	96	123	1	3		Element 164	MR stringer
87	86	98	2	1		Element 165	Skin
86	85	98	2	1		Element 166	Skin
85	97	98	2	1		Element 167	Skin
87	98	99	2	1		Element 168	Skin
87	99	123	1	2		Element 169	TL stringer
86	98	123	1			Element 170	TM stringer
87	88	100	2	1		Element 171	Skin
88	81	100	2	1		Element 172	Skin
81	93	100	2	1		Element 173	Skin
87	100	99	2	1		Element 174	Skin
88	100	124	1	3		Element 175	ML stringer
87	105	127	1	4		Element 176	*** Tail

Program to formulate the tailboom FEM model parameters							
$\begin{array}{ll} \\ 59 \\ 58 \\ & 58 \\ 57 \\ 64 \\ 64 \\ 64 \\ 63 \\ 62 \\ & 62 \\ & 73\end{array}$	58	66	2	1	\％	Element 214	Frame \＃3
	65	66	2	1	\％	Element 215	Frame \＃3
	57	65	2	1	\％	Element 216	Frame \＃3
	64	65	2	1	\％	Element 217	Frame \＃3
	68	65	2	1	\％	Element 218	Frame \＃3
	63	68	2	1	\％	Element 219	Frame \＃3
	62	68	2	1	\％	Element 220	Frame \＃3
	67	68	2	1	\％	Element 221	Frame \＃3
	61	67	2	1	\％	Element 222	Frame \＃3
	72	79	2	1	\％	Element 223	＊＊＊Frame
77277767775778	78	79	2	1	\％	Element 224	Frame \＃4
	71	78	2	1	\％	Element 225	Frame \＃4
	70	78	2	1	\％	Element 226	Frame \＃4
	77	78	2	1	\％	Element 227	Frame \＃4
	69	77	2	1	\％	Element 228	Frame \＃4
	76	77	2	1	。	Element 229	Frame \＃4
	80	77	2	1	－	Element 230	Frame \＃4
	75	80	2	1	\％	Element 231	Frame \＃4
	74	80	2	1	－	Element 232	Frame \＃4
	79	80	2	1	\％	Element 233	Frame \＃4
	73	79	2	1		Element 234	Frame \＃4
	84	91	2	1	\bigcirc	Element 235	＊＊＊Frame
\＃5							
84	90	91	2	1		Element 236	Frame \＃5
84	83	90	2	1	，	Element 237	Frame \＃5
83	82	90	2	1	－	Element 238	Frame \＃5
82	89	90	2	1	。	Element 239	Frame \＃5
82	81	89	2	1	\％	Element 240	Frame \＃5
81	88	89	2	1	－	Element 241	Frame \＃5
88	92	89	2	1	\％	Element 242	Frame \＃5
88	87	92	2	1	\％	Element 243	Frame \＃5
87	86	92	2	1		Element 244	Frame \＃5
86	91	92	2	1	，	Element 245	Frame \＃5
86	85	91	2	1	\％	Element 246	Frame \＃5
97	96	103	2	6	\％	Element 247	＊＊＊Frame
－ 96	102	103	2	6	。	Element 248	Frame \＃6
96	95	102	2	6		Element 249	Frame \＃6
95	94	102	2	6	\％	Element 250	Frame \＃6
94	101	102	2	6	\％	Element 251	Frame \＃6
94	93	101	2	6		Element 252	Frame \＃6
93	100	101	2	6		Element 253	Frame \＃6
100	104	101	2	6		Element 254	Frame \＃6
100	99	104	2	6	\％	Element 255	Frame \＃6
99	98	104	2	6	\％	Element 256	Frame \＃6
98	103	104	2	6	\％	Element 257	Frame \＃6
98	97	103	2	6	\％	Element 258	Frame \＃6
14	50	123	1	3	\％	Element 259	TM
stringer							
1	113	115	4	10	\％	Element 260	Scalar

Program to formulate the tailboom FEM model parameters

```
save FEAin % Saves variables in binary file "FEAin.mat"
    % to be loaded by "FEAnalys.m"
%**************** End of File ********************************
```

Main program to create the FEM finite element model

This MATLAB program is part of a computer software package for \% the design and analysis of a scaled tailboom structure model.
\%
\%
\% Written by: David E. Heverly II 11/1/00
\% Mechanical Engineering Ph.D. Candidate
The Pennsylvania State University

\% Filename = FEAnalys.m

\% This a Finite Element based vibration analysis program.
\% The input data is created by "FEAinput.m" and loaded by this program.
\% The main program calls the following subroutines/function m-files:
\% 1.) assembl.m
\% 2.) Glb2Loc.m
\% 3.) FEstiff.m
\% 4.) FEmass.m
$\% * ~+~$
\% Start Main Program
\% ***
clear all \% Clears variables from computer memory
load FEAin \quad Loads the binary input data file
dof=6*nj; \% Unrestrained global degrees of freedom
\% Initialize Mass \& Stiffness Matrices
stiff=zeros (dof,dof);
mass=zeros (dof, dof);
\% Loop thru each element: compute element matrices \& assemble global
matrices

```
%*************************
```

for mem=1:mems
i=Etop (mem, 1);
j=Etop (mem, 2);
k=Etop (mem, 3);
matl=Etop (mem,5);
E=elast(matl); rho=dens(matl); G=rigd(matl); csa=area(matl);
TC=xin(matl); smay=yin(matl); smaz=zin(matl); xpol=xjp(matl);

```
                    Main program to create the FEM finite element model
    xi=x(i); yi=y(i); zi=z(i);
    xj=x(j); yj=y(j); zj=z(j);
    xk=x(k); yk=y(k); zk=z(k);
    sk=FEstiff(Etop(mem,4),xi,yi,zi,xj,yj, zj,xk,yk,zk,csa,TC,smay,smaz,E,G)
    ; % Form elemental Stiffness matrix
    sm=FEmass(Etop(mem,4),xi,yi,zi,xj,yj,zj,xk,yk,zk,csa,smay,smaz,xpol,rho
); % Form elemental Mass matrix
    stiff=assembl(stiff,sk,i,j,k,Etop(mem,4)); % Assemble global
stiffness matrix
    mass=assembl(mass,sm,i,j,k,Etop(mem,4)); % Assemble global
mass matrix
end
stiff=(triu(stiff))-(diag(diag(stiff)))+((triu(stiff))'); % Makes
exactly symmetric
mass=(triu(mass)) - (diag(diag(mass))) +((triu(mass))'); % Makes exactly
symmetric
%**********************************
disp('Element matrices formed')
% Addition of concentrated translational masses to global mass matrix
%******************************************************
if nconc>0
    for ii=1:nconc
        n9=nposn(ii);
        mass(n9,n9)=mass(n9,n9) +xmass(ii);
        mass(n9+1,n9+1)=mass(n9+1,n9+1)+xmass(ii);
        mass(n9+2,n9+2)=mass(n9+2,n9+2)+xmass(ii);
    end
end
%*************************************************
% Apply boundary conditions/constraints by deleting rows
% and columns from Unconstrained global matrices.
%*******************************************************
if nsup>0
    for ii=1:nsup
                for jj=1:6
                if Jrest(ii,jj+1)==1
                nn1=6*(Jrest(ii,1)-1)+jj;
                        stiff(nn1,1:dof)=zeros(1,dof);
                        stiff(1:dof,nn1)=zeros(dof,1);
                        mass(nn1,1:dof)=zeros(1,dof);
                        mass(1:dof,nn1)=zeros(dof,1);
                end
        end
    end
end
%**********************************
```

```
                    Main program to create the FEM finite element model
disp('Boundary conditions applied')
% Eliminate zero rows and columns from
% constrained Mass & Stiffness matrices
%**************************************
nn1=0;
nn2=0;
for ii=1:dof
    chek=stiff(ii,:)*(stiff(ii,:))';
    if chek<=1e-10
        nn1=nn1+1;
        indx1(nn1)=ii; % Index vector of deleted global dof (zero rows &
columns)
    else
        nn2=nn2+1;
        indx2(nn2)=ii; % Index vector of retained (nonzero) global dof
    end
end
cdof=length(indx2);
for ii=1:cdof
    for jj=1:cdof
        Kg(ii,jj)=stiff(indx2(ii),indx2(jj));
        Mg(ii,jj)=mass(indx2(ii),indx2(jj));
    end
end
%*****************************************************
% COMPUTE EIGENVALUES AND EIGENVECTORS
%****************************************
nmodes=30;
    [evec,eval]=fe_eig((sparse(Mg)),(sparse(Kg)),[3 nmodes 0 0 le-7]);
for i=1:nmodes
    frq(i)=(eval(i))/(2*pi); % Natural frequency in Hz
end
% Display natural frequiencies
disp('Frequencies - [Hz]')
for i=1:np
    disp(frq(i))
end
%****************************************
% Save data to binary "*.mat" file
save FEAtail91 Kg Mg dof cdof indx1 indx2 eval evec
%**************** End of File ********************************
```

Scaled Tailboom Experiment Equipment List	
Item Description	Quantity
Ling Electronics, Inc., Model LMT-100, Modal Thruster with trunnion base	1
Ling Electronics, Inc., Model STAR 1.0, Amplifier	1
Ling Electronics, Inc., Model CB-1.5, Cooling Blower with 6 ft. hose	1
American Piezo Ceramics, Inc., Model Pst 150/14/100 VS20, Piezoelectric Stack Actuator	4
American Piezo Ceramics, Inc., Model LE 150/200 - 2/2 channel, Actuator Power Supply	2
PCB Piezotronics, Model 481A02, Line-Powered ICP sensor signal conditioner, 16 channel, gain x 1, x 10, x 100	1
PCB Piezotronics, Model 353B01, General purpose ICP accelerometer, quartz shear, 20 mV/g, 1 to 7000 Hz	12
PCB Piezotronics, Model 208C02, Multi-purpose ICP quartz force sensor, +/- 100 lbs, 50 mV/lb	1
PCB Piezotronics, Model 208C04, Multi-purpose ICP quartz force sensor, $+/-500 ~ l b s, ~ 10 ~ m V / l b ~$	2
PCB Piezotronics, 20 ft., 10 ft., \& 6 ft. coaxial cables, 10-32 plug to BNC plug, and BNC plug to BNC plug	28
MCM Electronics, Model 24-795, 12 ft. coaxial cable (RG58), BNC plug to BNC plug	15
OMEGA Engineering, Inc., Model SG1-KIT, Complete strain gage application kit	1
OMEGA Engineering, Inc., Model SG-6/120-LY13, Foil strain gages, package of 10	5
DL Instruments, LLC., Model 4302, Dual electronic filter (low pass)	2
Techkor Instrumentation, Model MEPTS-9000, Multichannel universal signal conditioning amplifier, 9000B Wheatstone bridge amp. (strain gage)	1
Gateway, Model P5-150, Desktop personal computer, 150 MHz, 32 MB RAM, Windows 95 OS, MATLAB software, SIMULINK software	1
DSPACE, Inc., Model DS1102 PPC, Controller board, dSPACE Implementation software, Control Desk software	1
	1

Scaled tailboom Finite Element Model (FEM) mode shape

Scaled tailboom model experimental mode shapes

Scaled tailboom model experimental mode shapes

PROFESSIONAL EXPERIENCE

Rotorcraft Center of Excellence and, Structural Dynamics and Controls Laboratory Pennsylvania State University, University Park - 1996 to 2002:

- Graduate Research Assistant performing research on the active control of rotorcraft airframe vibrations.
- Dissertation: Optimal Actuator Placement And Active Structure Design For Control Of Helicopter Airframe Vibrations

Automotive Safety Analysis, Rockville, MD - 1992 to 1996:

- Staff Engineer performing forensic investigations, accident reconstruction, occupant kinematic analysis, crashworthiness assessments, and expert testimony.

PennsyIvania Transportation Institute

Pennsylvania State University, University Park - 1991 to 1992:

- Engineering Associate for the bus testing program. Developed testing procedures and implemented improvements to accelerated life testing procedures of mass transit buses. Researched, designed, constructed, and implemented an electronic fuel measuring system for alternative fuels.
Pennsylvania State University, University Park - 1990 to 1991:
- Graduate Research Assistant for the bus testing program. Developed a technique to correlate the severity of an accelerated life test to the probable service life environment of mass transit buses.
- Thesis: An Acceleration-Based Correlation For Accelerated Testing Of Heavy Duty Vehicles

CertainTeed Corporation, Blue Bell, PA - 5/90 to 9/90:

- Engineering Intern for the Insulation Group. Conducted research projects to determine the mechanical properties of fiberglass insulation, and developed a mathematical model to predict the mechanical response of fiberglass insulation to high density packaging. Designed and constructed a device to compress a sample of fiberglass insulation and electronically monitor the long term effects of induced compression.

International Paper Co., Lock Haven, PA - 5/89 to 9/89:

- Engineering Intern for the Maintenance Department. Responsible for the preparation of proposals for construction projects that included a lubrication storage facility, employee safety equipment, and office renovations. Assisted the preventative maintenance team with the vibration analysis of rotating machinery.

Pennsylvania Department of Transportation - $5 / 88$ to $9 / 88$ and $5 / 87$ to $9 / 87$:

- Engineering Intern for the Clearfield District. Inspected paving operations to assure that daily highway construction conformed to state specifications.

EDUCATION

- Ph.D., Mechanical Engineering, The Pennsylvania State University, Aug. 2002, GPA = 3.8/4.0
- M.S., Mechanical Engineering, The Pennsylvania State University, Dec. 1991, GPA = 3.9/4.0
- B.S., Mechanical Engineering, The Pennsylvania State University, May 1990, GPA = 3.5/4.0
- B.A., Mathematical Arts and Sciences, Lock Haven University, May 1990, GPA $=3.3 / 4.0$

