
Optimal Adaptation Trajectories for Block-Request
Adaptive Video Streaming

Konstantin Miller∗, Nicola Corda†, Savvas Argyropoulos†, Alexander Raake† and Adam Wolisz∗
∗Technische Universität Berlin, Germany

Email: {konstantin.miller, adam.wolisz}@tu-berlin.de
†Telekom Innovation Laboratories (T-Labs), Berlin, Germany

Email: {nicola.corda, savvas.argyropoulos, alexander.raake}@telekom.de

Abstract—Block-Request Adaptive Streaming (BRAS), in form
of its most prominent representative HTTP-Based Adaptive
Streaming (HAS), is about to become the dominating technology
for video delivery over the Internet. One of the challenges in
the development of BRAS clients is the design of mechanisms
that dynamically adapt the streamed video quality to network
conditions, in order to maximize user’s Quality of Experience
(QoE).

The main contribution of this paper is an approach to
calculating optimal adaptation trajectories. This approach not
only allows to benchmark the performance of any streaming
client, it also provides the possibility to study the impact of the
networking environment, and of configuration parameters such
as the start-up delay, number of available video representations,
etc., on the achievable streaming performance. Since, to the best
of our knowledge, there exist no widely accepted or standard
approach to measure QoE for BRAS, we alternatively maximize
the average video bit-rate, minimize the number of quality
switches, and impose a hard constraint on the absence of re-
buffering events.

Further, we evaluate two HAS clients, Microsoft Smooth-
Streaming and our own streaming client that supports the
recently adopted HAS standard Dynamic Adaptive Streaming
over HTTP (DASH), in an indoor Wireless Local Area Network
(WLAN) emulated with a high degree of precision. We compare
their performance with the optimal client, and explore the
configuration parameter space of the DASH client.

Finally, we evaluate the impact of start-up delays and num-
ber of available video representations on achievable streaming
performance.

I. INTRODUCTION

Recently, video streaming has become one of the biggest
sources of traffic on the Internet [1]. Fast home broadband con-
nections, connected TV sets, and the spread of WiFi/3G/4G-
enabled mobile terminals are among the key drivers/enablers
for its growing popularity. In addition to faster connections,
technological improvements in video coding and video de-
livery have made it possible for more users to watch video
content online.

Due to the extreme heterogeneity of end-user devices and
types of network connections, it is not possible to use the same
representation of a video for each streaming session. It must
be adapted to capabilities of the device, such as processing
power and display properties, and to network conditions such
as available bandwidth, latency, jitter, and packet loss rate on
network path(s) from the content source(s) to the video client.
Moreover, it is not sufficient to perform the configuration once

for each streaming session. A user might, e.g., experience con-
tinuous throughput fluctuations ranging from tens of kilobits
to tens of megabits per second. This effect is especially visible
in the more and more deployed case of wirelessly connected
users. Even in an indoor residential or office WLAN, the static
user is typically exposed to interference, cross-traffic, and
fading effects. The link quality fluctuations are even stronger in
the case of mobile users. Thus, it is necessary to continuously
adapt the representation of the video in order to achieve a
satisfactory QoE.

Recently, HAS, a variant of BRAS, has become one of the
dominating technologies for adaptive video streaming. With
BRAS, the video is segmented in chunks of several seconds
duration, and each segment is available at the content source(s)
in several representations, each representation providing a
different encoding bit-rate. Further, each segment starts with a
random access point of the stream, thus allowing a video client
to concatenate segments from different representations during
the playback. With HAS, a video client issues HTTP GET or
GET RANGE requests to download individual segments. The
meta information about available segments and representations
is downloaded by the client prior to starting the streaming
session in form of an XML file, called Manifest or Media
Presentation Description (MPD) file.

One of the benefits of HAS is that it is leveraging on the
ubiquitous and highly optimized HTTP delivery infrastructure,
including Content Delivery Networks (CDNs), caches, proxies,
etc. Also, HTTP is usually allowed to traverse Network
Address Translation (NAT) devices and firewalls, in contrast
to other application layer protocols. Further, HAS has good
scalability properties since the streaming logic resides within
the client, thus relieving the server from keeping extensive
state, performing adaptation tasks, etc.

Another important feature of HTTP is its deployment on top
of the Transmission Control Protocol (TCP). From the point
of view of adaptive streaming, this carries both advantages
and disadvantages. On the one hand, TCP offers built-in
congestion control and congestion avoidance mechanisms, that
are necessary to maintain the stability of the network, as well
as to ensure some sort of fairness of resource allocation among
competing flows. It also offers reliable communication by
means of retransmitting lost packets, which enables usage of
efficient video compression technologies that are particularly



sensitive to packet losses (the loss of an I-frame may result
in several seconds of corrupted playback). On the other hand,
retransmission of lost packets results in delaying further pack-
ets, which makes TCP less suitable for low-delay streaming.
Further, TCP reacts to packet losses and to sporadic transmis-
sion delay peaks by reducing its sending rate, unnecessarily
degrading the QoE of a streaming session. Finally, the complex
dynamics of TCP make throughput estimation and prediction,
which are essential for fast and robust adaptation of video
quality, more challenging.

Currently, there are several popular commercial implemen-
tations of the HAS technology, including Microsoft Smooth-
Streaming (MSS), Adobe Dynamic Streaming (ADS), Apple
HTTP Live Streaming (HLS), as well as a number of develop-
ments reported in the research literature. Despite the growing
attention from the research community, however, there exist
several open issues.

One of them involves the methodology for performance
evaluation of streaming clients. In a typical performance
evaluation, we either compare an approach to some predefined
requirements, or we measure its gain w.r.t. some state-of-the-
art solutions, or we compare its performance to the maximum
performance that can be achieved in a certain setting. There
exist, however, no widely accepted benchmarks to measure
the performance of BRAS clients in best-effort networks.
Neither is any of the existing clients widely accepted as a basis
for performance comparison. Finally, little has been done on
developing approaches to calculating optimal performance of
a BRAS client in a given setting. Such an approach, however,
would not only allow to benchmark the performance of any
streaming client, it would also allow to study the impact of the
networking environment and of configuration parameters such
as the start-up delay, number of available video representa-
tions, etc., on the streaming performance. The first contribution
of this paper addresses this issue by presenting an approach
to calculate optimal adaptation trajectories, given the complete
information on the throughput process (that is, the amount of
data that can be downloaded until time t, for each t).

This approach can be used in three different ways. First, we
can calculate an optimal trajectory for a throughput process
that was recorded by a streaming client during a streaming
session. In many cases, however, streaming clients introduce
delays between subsequent requests so that we no longer can
calculate an optimal trajectory from the recorded throughput
since we do not know which throughput the client could
have achieved during the gaps. Thus, instead of using a trace
recorded by a streaming client, we might use a trace recorded
by a continuous TCP flow under the same network conditions.
Finally, optimal trajectories can be calculated for artificial
throughput processes in order to study the impact their features
have on the optimal performance.

As a second contribution, we evaluate two HAS clients:
Microsoft SmoothStreaming and our own streaming client
supporting the recently adopted HAS standard DASH. Due to
the immense heterogeneity of possible deployment scenarios
for video streaming clients, it is challenging to perform a

solid performance evaluation, since it would require various
test runs in very different networking environments. Wireless
networks, however, are among the most challenging environ-
ments for streaming. In addition to cross-traffic, the throughput
in, e.g., a WLAN is impacted by fading effects, packet losses,
Media Access Control (MAC) layer retransmissions, etc. The
usage of TCP as transport protocol makes the resulting net-
work dynamics even more complex. Thus, we selected for the
evaluation an indoor WLAN cell, which we emulated with a
high degree of precision. We compare the trajectories of the
two clients with the optimum and explore the parameter space
of our DASH client w.r.t. its performance in wireless networks.

The structure of the paper is as follows. In Section II,
we review the related work. In Section III, we present the
optimization metric that we use and our approach to cal-
culating optimal adaptation trajectories. In Section IV, we
briefly present the two streaming clients used for performance
evaluation. Section V presents the setting and the results of
the evaluation. Finally, Section VI concludes the paper.

II. RELATED WORK

An approach to calculating optimal adaptation trajectories
using a Markov decision process is presented by Jarnikov et
al. [2]. With this approach, an optimal strategy is calculated for
a given distribution function of segment download times. The
objective function is a linear function giving constant penalty
to playback interruptions and changes of video quality, and a
reward proportional to the selected video quality. The authors
perform a numerical evaluation of the approach using fixed,
uniform and normal distributions of the available bandwidth.
A potential limitation of this approach is that temporal corre-
lation of segment download times is not considered.

Several studies present designs of heuristic adaptation strate-
gies. They are usually accompanied by more or less extensive
evaluations that, however, sometimes exhibit one or several
of the following deficiencies. Simulations and emulations are
sometimes too simplified, e.g., TCP and/or MAC layer behav-
ior is not modeled. In many cases, no cross-traffic is present,
throughput fluctuations are achieved by piecewise continuous
throughput limitations using traffic control tools like tc or
DummyNet. Another common drawback is an oversimplified
evaluation metric, such as, e.g., the total re-buffering time,
without taking into account the average video bit-rate, the total
number of quality switches, or the duration of the start-up
delay.

Tappayuthpijarn et al. [3] presented an adaptation heuristic
based on a prediction of layer 2 throughput in an Long-Term
Evolution (LTE) cell. The heuristic is evaluated by comparison
with non-adaptive streaming in an emulated LTE cell with 8
concurrent clients.

Zhou et al. [4] present an adaptation logic based on a
proportional derivative (PD) controller.

Evensen et al. [5] investigate mechanisms that allow to
aggregate bandwidth over multiple network interfaces in het-
erogeneous networks.



Müller et al. [6] evaluated the MSS, ADS, HLS, and their
own DASH clients in an emulated environment using three
application-layer traces recorded from a 3G connection while
driving on the freeway. The metrics were: (i) average bit-rate
during the streaming session, (i) number of quality switches,
and (iii) time spent in re-buffering.

Akhshabi et al. [7] experimentally evaluated the MSS,
ADS, and the Netflix HAS clients. The authors focus on
three aspects: reaction to persistent or short-term throughput
changes, the ability of two players to properly operate on a
shared network path, and if the player is able to sustain a
short playback delay and thus perform well with live content.
The authors identified significant inefficiencies in each of the
studied players.

Recently, performance and fairness issues with multiple
streaming clients competing for bottleneck bandwidth moved
into the focus of the research community. Several studies
specifically look into client design aspects affecting such
settings.

Jiang et al. [8] argue that the throughput estimation com-
ponent is crucial for the behavior of a streaming client and
compares 4 estimators, of which harmonic mean turns out to
perform best. The study also show that random instead of fixed
delays between subsequent requests improve performance
when multiple clients compete for bottleneck bandwidth.

Huang et al. [9] also analyze the impact, bandwidth esti-
mation techniques have on the behavior of streaming clients.
Further work is presented by Liu et al. [10], and Tian et
al. [11].

Studies that investigate QoE models for adaptive streaming
include Cranley et al. [12], Ninassi et al. [13], and Seufert et
al. [14].

III. OPTIMAL CLIENT

In this section, we present the optimization metric that
we use, and our approach to calculating optimal adaptation
trajectories.

The main challenge in designing efficient adaptation strate-
gies is that path throughput is a random process, whose value
is difficult to reliably predict for the relevant time horizon,
ranging from several seconds to several tens of seconds. (We
use the term ”throughput process” to denote the total amount
of data V (t) received by a client during the time [0, t].) The
question that we answer in this section is how to calculate an
optimal trajectory having perfect knowledge of V (t).

In order to address this question, we first need to select an
appropriate optimization objective. Main factors that influence
QoE include (i) duration and distribution of frozen frames,
(ii) properties of the adaptation trajectory, such as minimum
bit-rate, average bit-rate, frequency and magnitude of bit-rate
switches, and (iii) start-up delay. To the best of our knowledge,
there exist no widely accepted or standard QoE metric, which
quantifies human perception of all these factors together.
Therefore, we use the following objectives and constraints for
optimization of adaptation trajectories.

We use start-up delay as an independent variable, that is,
an optimal trajectory is calculated for a given start-up delay.
Further, we impose a hard constraint on the absence of buffer
underruns, meaning that an optimal trajectory is not allowed
to have buffer underruns. As for optimization objective, we
first maximize the average video bit-rate over the duration of
the streaming session. This maximization in general results in
a space of optimal solutions that are potentially prone to fre-
quent video quality fluctuations. Therefore, we subsequently
minimize the number of quality switches.

We will use the following notation. We denote by SMPD the
size of the MPD file. We denote by R the set of available
representations, by n the number of segments in the video,
and by τ the duration of the segments. (We assume the same
duration for all segments but the approach also works for
segments of different durations.) Further, we denote by Si,j

the size of segment i from representation j.
Obviously, the earliest time when the playback can start is

when the MPD file and the first segment of the representation
with the lowest bit-rate are downloaded. We denote this time
by TE . (A client does not always have to download the first
segment in the lowest representation. Still, given a throughput
process V (t), TE is always well-defined, and will be used in
the following as a reference.)

We define TS to be the time from the start of the download
(t = 0) until the playback is started. It must hold TS ≥ TE .
The important value for optimization, however, is not TS but
the time between the earliest possible time when the playback
can start and the actual start of playback, T̃S = TS − TE ,
which we define as the start-up delay. The reason is that the
time TE cannot be influenced by the client, while T̃S is a
configurable parameter of the client’s adaptation strategy.

The resulting playback deadlines for the individual segments
are given by Di = TS + (i− 1) · τ . The maximum amount of
data a video player can download until the playback deadline
of segment i is thus given by V (Di).

In order to formulate the optimization problem, we denote
by xij ∈ {0, 1} the optimization variables stating if the client
downloads segment i from representation j or not.

In the following, we first maximize the average video
bit-rate (which is equivalent to maximization of the total
amount of data downloaded by the video client), demanding
the absence of buffer underruns. We obtain the following
optimization problem.

(OP1) max
n∑

i=1

m∑

j=1

Sijxij (1)

s.t.
m∑

j=1

xij ≥ 1 for all i = 1, . . . , n

(2)
k∑

i=1

m∑

j=1

Sijxij ≤ V (Dk) for all k = 1, . . . , n

(3)



Here, constraint (2) ensures that each segment is down-
loaded from at least one representation, while constraint (3)
ensures that each segment is downloaded before its playback
deadline. Note that constraint (3) implicitly accounts for
the configured start-up delay (included in the definition of
playback deadlines Di).

Problem OP1 has in general a space of optimal solutions
that are more or less prone to video quality fluctuations.
Unnecessary quality switches, however, significantly impact
the QoE. Therefore, we subsequently solve the following
optimization problem OP2 in oder to select the optimum
solution of OP1 that has the minimum number of quality
switches. We denote by V ∗ the optimal objective value of
problem OP1.

(OP2) min
1
2

n−1∑

i=1

m∑

j=1

(xij − xi+1,j)2 (4)

s.t.
m∑

j=1

xij ≥ 1 for all i = 1, . . . , n

(5)
k∑

i=1

m∑

j=1

Sijxij ≤ V (Dk) for all k = 1, . . . , n

(6)
n∑

i=1

m∑

j=1

Sijxij ≥ V ∗ (7)

While constraints (5) and (6) are the same as constraints (2)
and (3) in OP1, constraint (7) ensures that the minimization
of the new objective function (4) (total number of quality
switches) does not result in a sub-optimal value for the average
video bit-rate.

The problem OP1 is known as a Multiple-Choice Nested
Knapsack Problem (MCNKP) [15], [16]. More precisely, it is
a special case, where the values of the items and the weights of
the items are equal. (This variant of the Knapsack Problem is
sometimes referred to as the Subset Sum Problem.) MCNKP
is NP-hard but there exist pseudo-polynomial time algorithms.
Problem OP2 is a Quadratic MCNKP. We solve both problems
with the software Gurobi [17].

IV. STREAMING CLIENTS

In the following we briefly present the two HAS clients we
selected for performance evaluation in wireless networks.

A. DASH client

The details on the adaptation logic of our DASH client are
provided in [18]. A prototype has been implemented as a plug-
in for the VLC player [19].

In short, the adaptation logic tries to maintain the buffer
level within a certain target interval [βmin, βmax]. If the buffer
level is below βmin, the video quality is increased step by
step, until the buffer level starts to rise. If the buffer is above
the middle of the target interval 0.5 · (βmin + βmax) but the
throughput is too low to switch to the next representation,

subsequent requests are delayed in order not to let the buffer
level rise. If, however, the throughput is high enough, no
delays are introduced, the buffer level rises above βmax, and
the video quality is decreased until the buffer level starts to
decrease again. The throughput is averaged over the last Δt

seconds. In order to avoid buffer underruns by all means, if
the buffer level falls below a configurable critical threshold
βcrit, the lowest video quality is selected immediately. An extra
start-up phase provides a fast ramp-up of the video quality to
the available throughput.

The operation of the algorithm is similar to a PID controller
with hysteresis and some additional tweaks. It takes into
account the current throughput, its fluctuations, as well as
the buffer level, which can be interpreted as the integrated
mismatch between the throughput and the video bit-rate.
Further, instead of a target buffer level, it has a target interval.

In total, the algorithm offers 10 parameters that can be
tuned to optimize its behavior. They control its sensitivity to
bandwidth fluctuations, speed of convergence, efficiency of
bandwidth utilization, and the probability of buffer underruns.
See Miller et al. [18] for more details.

B. Microsoft SmoothStreaming client

The MSS streaming solution is supported by most major
Internet browsers and is deployed by several popular video on
demand websites. The MSS client was used in several studies
on BRAS client behavior and was found to outperform several
competing approaches.

Since the implementation of MSS is closed, the exact
operation of its adaptation logic is not known. However,
several aspects of its behavior could be observed in different
studies and also in our own experiments.

MSS client uses a fixed segment duration of 2 seconds. It
typically starts to request the first segment from the lowest
representation. It then switches between the representations
step by step in a smooth manner in order to avoid abrupt
changes of quality that might impact QoE. Further, the quality
is switched only when there is a certain probability that the
throughput can sustain the new video bit-rate.

The MSS client version we used (Silverlight 5.1.20125.0)
seems to maintain a target buffer level of approximately 30
seconds. Its operation can be split in two phases, buffering and
steady-state. In the buffering phase, the player will request the
segments as fast as possible to fill the buffer. In the steady-
state phase, the segments are requested every 2 seconds.

V. EVALUATION

In this section, we present the setting and the results of the
performance evaluation of the two selected HAS clients and
the optimum behavior, in a WLAN.

A. Setting

For the evaluation we emulate a typical Internet path starting
in an IEEE 802.11a WLAN in an indoor environment. We
use a site-specific model by Al-Bado et al. [20], implemented
in the NS-3 [21] network simulator. The emulated part of



Fig. 1. Evaluation setup. Clients and servers are interconnected via an
emulated IEEE 802.11a cell that is based on a site-specific model of the
Berlin Open Wireless Lab (BOWL) testbed [20].

the network is connected to PCs hosting client and server
software via two gigabit Ethernet interfaces, as shown in
Figure 1. The model consists of eight nodes and each of
the possible 56 unidirectional links is modeled separately. We
use seven nodes as stations and one as the access point. To
give an impression of the link qualities, a TCP transfer of
100MB of data between the access point and each individual
station achieves an average throughput of approximately (in
[Mbps]): 1.4, 1.7, 19, 19, 21, 21, 21. (These values refer to
TCP throughput of individual links in the absence of cross-
traffic.) The one-way delays on the emulated links connecting
the stations and the access points with Ethernet interfaces of
the emulation host were set to a constant value of 1 ms.

The video traffic was always routed via the station with the
second lowest maximum throughput of 1.7 Mbps. In addition
to the video traffic, we generated synthetic background traffic
mimicking the behavior of 14 HTTP clients, based on the
stochastic model from Pries at al. [22]. Each of the wireless
stations carried traffic of two such clients.

The video sequence that we used was Big Buck Bunny [23].
We encoded the raw video data in 6 and 14 representations,
distributing the target representation bit-rates logarithmically
between 100 kbps and 5 Mbps. We set the Group of Pictures
(GOP) size to 2 seconds, which is the maximum allowed
for MSS. The encoded data was split into segments and
two manifest files were generated, one for DASH and one
for MSS. We assured that the differences in segment sizes
between DASH and MSS was small enough to be negligible.
It constituted on average 0.17% and was bounded from above
by 1.34%. The distribution of segment sizes is illustrated in
Figure 2. The sequence is slightly longer than 596 seconds so
we obtained 298 full segments and one short segment, which
we omitted.

Note that bit-rate fluctuations across segments of the same
representation may significantly affect the performance of the
streaming client. Depending on the format of the manifest file,
the client might not know the actual segment bit-rate (and thus

Fig. 2. Video bit-rate variation: mean, minimum, maximum (the latter two
are shown as percentage of the mean). Mean video bit-rates were configured
to be logarithmically distributed between 100 kbps and 5 Mbps. (Note the
logarithmic scale of the y-axis.)

the segment size) in advance, but only the average bit-rate of
the representation. Due to variable bit-rate encoding, however,
the segment bit-rate may fluctuate by up to a factor of 10
and more. Our dataset was encoded such as to keep these
fluctuations small and thus they are bounded by 95% of the
mean, as shown in Figure 2.

In order to have a fair comparison, we padded the DASH
manifest file with random characters to make it of the same
size as the joint size of the three files that need to be down-
loaded by the MSS client: the Hypertext Markup Language
(HTML) file, the Silverlight Application Package (XAP) file
and the manifest file.

In order to compare the performance of the MSS and the
DASH clients to the optimum, we proceeded as follows.
Each experiment with a video client was followed by an
experiment under the same conditions, where the video client
was replaced by a TCP flow lasting for the duration of the
video sequence. The throughput process of the TCP flow was
then used as input V (t) for optimization problems OP1 and
OP2, to calculate optimal adaptation trajectories. We didn’t use
the throughput process as recorded by the video client since it
may be suboptimal, because video clients typically introduce
gaps between subsequent requests in order to prevent their
buffer level from exceeding a certain threshold.

All experiments were repeated approximately 50 times.
Confidence intervals in some of the figures are omitted to
improve readability.



B. Experiment 1

In this experiment we evaluate two metrics. First, we study
the increase of optimal performance if we allow the client
a start-up delay (T̃S) of up to 60 seconds before starting the
playback. Second, we vary the number of representations from
6 to 14.

The results are plotted in Figure 3. The top figure depicts the
increase of the average video bit-rate of optimal trajectories
depending on the start-up delay, for two numbers of available
video representations: 6 and 14. The bottom figure depicts the
number of video quality switches. The confidence intervals are
for a confidence level of 95%.

We observe an initially perfectly linear dependency of the
average video bit-rate on the start-up delay, followed by a
saturation. Maybe somewhat surprisingly, the improvement
from a start-up delay of 60 sec is only around 12%.

Further, we observe no improvement from increasing the
number of used representations from 6 to 14. The reason is
that despite the high fluctuation of the wireless link throughput
(fading plus cross-traffic), 6 representations are enough to
utilize all the available bandwidth, as we will also see in
experiment 2. Note that in real deployment scenarios, a high
number of available video representations might be quite
unrealistic, since it results in higher encoding and storage costs
for content providers.

In order to speed-up calculations when solving the optimiza-
tion problem OP2, we allowed an absolute optimality tolerance
gap of up to 5 (that is, the actual optimum might be even lower
than the calculated value by at most 5). The average value for
the gap in experiment 1 added up to 1.83. For 6 representations
it was 1.51, for 14 representations it was 2.15, due to the higher
computational complexity. Thus, the higher amount of quality
switches for 14 representations might partially be explained
by the inexact calculations. An important insight, however, is
the remarkably small amount of switches required to achieve
optimal performance despite of a highly fluctuating network
throughput.

C. Experiment 2

In this experiment, we compare the performance of the MSS
client, and of the DASH client with different configurations,
with optimal performance.

In all configurations of the DASH client, the critical buffer
threshold was set to βcrit = 2s. The lower threshold βmin of
the target buffer interval varied between 5s and 20s. The size
B of the target buffer interval also varied between 5s and
20s. Further, we varied the time period Δt for averaging past
throughput from 5s to 10s. Other parameters were fixed to
the following values: α1 = 0.75, α2 = 0.8, α2 = 0.8, α2 =
0.8, α2 = 0.9 (see [18] for details).

Roughly speaking, the varied parameters influence the adap-
tation strategy in the following way. The lower threshold of
the target buffer interval influences the average buffer level.
Thus, low values increase the risk of buffer underruns but
they increase the ”liveness” of the streaming session, which
is important for transmission of live content. The size of the

Fig. 3. The figures illustrate the influence of the start-up delay and the
number of available video representations on optimal trajectories. The top
figure shows average video bit-rate, the bottom figure shows the number of
representation switches.

target buffer interval influences the sensitivity to throughput
fluctuations. Low values let the video client switch the video
quality more often in order to more closely follow throughput
fluctuations and thus increase the average video quality by bet-
ter utilizing the available bandwidth. On the other hand, high
values provide a more steady video quality. Δt has a similar
impact on the sensitivity to throughput spikes, especially to
positive ones, since the client uses average throughput from
past Δt seconds in order to decide if an increase of video
quality can be sustained by the network.

The results are shown in Figure 4a. We observe that the
DASH client always outperforms the MSS client w.r.t. the
average video bit-rate (78% to 90% of the optimum vs. 62%).
It also outperforms the MSS client w.r.t. the total duration
of frozen frames, and, for some of the configurations, w.r.t.
the number of quality switches. The evaluation suggests that
good values for the configuration of the DASH client are:
βmin = 10s, B = 20s, and Δt = 5s.

Note that the optimal trajectory is able to almost perfectly
utilize its fair share of the link capacity. Its average video bit-
rate almost equals the achievable TCP throughput on that link.
Also note that the average number of switches required by the
optimal trajectory is as low as approximately 2 (and, in fact,
might be even lower due to the tolerance gap allowed in the
optimization process).

Another interesting observation is that the DASH client is
able to achieve its performance with a lower average buffer
level than the MSS client. For the configuration, where the



(a) Performance of a single video client sharing a wireless cell with HTTP background traffic.

(b) Performance of two video clients sharing a wireless cell with HTTP background traffic.

(c) Fairness among two video clients sharing a wireless cell with HTTP background traffic.

Fig. 4. This figures compare the performance of the MPEG-DASH video client with different configurations and of the MSS client with optimal performance.
Figure (a) shows the average video bit-rate, the number of switches, the total re-buffering time and the average buffer level for the individual clients when
one client shares a wireless cell with HTTP background traffic. Figure (b) shows the performance metrics when two video clients share the wireless cell
with each other and with HTTP background traffic. Shown values are averages over multiple runs and over the two clients. In contrast, figure (b) shows the
difference among the two clients averaged over the individual runs in order to visualize fairness.



lower bound of the target interval is set to 5 seconds, the size
of the buffer interval is set to 20 seconds and the throughput
average is computed over the past 10 seconds, the DASH client
achieves a high average bit-rate, a low re-buffering time and
number of switches, with an average buffer level of approx.
17 seconds.

By analyzing the individual adaptation trajectories of the
DASH client we observe that some re-buffering events are
caused by segments whose size exceeds the average segment
size of the representation. Since the segment size of the
individual segments is not known to the client before it issues
the request, it might too late notice that it is not possible to
download the segment before its playback deadline. A possible
solution for this issue would be to retrieve the segment sizes
with little overhead via HTTP HEAD requests prior to starting
the streaming session or in parallel.

D. Experiment 3

In this experiment, we added a second video client in
addition to the setting used in experiment 2, in order to
evaluate the adaptation strategies w.r.t. fairness. The traffic of
the two clients were routed over the same wireless station.

Figure 4b shows various performance metrics as Figure 4a
did for the case of a single client, except that the values are
now averages over the runs and over the two clients. In fact,
we observe that the conclusions from experiment 2 still hold
for the two clients setting.

Figure 4c shows the differences w.r.t. the used metrics
between the clients, averaged over the runs. We observe
that optimal trajectories have almost perfect fairness since
all values are approximately 0. Further, we observe that the
fairness of our DASH client is comparable or better than that
of the MSS client.

VI. CONCLUSION

In order to provide a benchmark for evaluation of video
streaming clients, we come up with two optimization problems
that, given the complete knowledge of the throughput process
and the maximum tolerated start-up delay, allow to determine
an adaptation trajectory that maximizes average video bit-rate
over the whole streaming session, minimizes the number of
switches, and ensures the absence of buffer underruns.

Further, we evaluated the behavior of the widely deployed
MSS video streaming client and our own client supporting the
recently adopted DASH standard in a WLAN, and compared
their performance with the optimum. It turned out that our
client is able to outperform the MSS client in the evaluated
setting by achieving an average video bit-rate that is between
78% and 90% of the optimum, while MSS achieves approx-
imately 62%, with less quality fluctuations, less time spent
in re-buffering, comparable fairness when two clients share
a bottleneck link, and a lower average buffer level, which is
especially beneficial for live content.

Future work includes a study of adaptation strategies that,
based on short-term prediction of TCP throughput and subse-
quent solutions of presented optimization problems OP1 and

OP2 over small and medium time horizons, might increase the
client’s performance towards the achievable optimum. It also
includes performance evaluation under a broader spectrum of
network conditions.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2012 -
2017,” Cisco, White Paper, 2013.

[2] D. Jarnikov and T. Özçelebi, “Client Intelligence for Adaptive Streaming
Solutions,” Signal Processing: Image Communication, vol. 26, no. 7, pp.
378–389, Aug. 2011.

[3] K. Tappayuthpijarn, T. Stockhammer, and E. Steinbach, “HTTP-Based
Scalable Video Streaming Over Mobile Networks,” in Proc. of ICIP,
Brussels, Belgium, 2011.

[4] C. Zhou, X. Zhang, L. Huo, and Z. Guo, “A Control-Theoretic Approach
to Rate Adaptation for Dynamic HTTP Streaming,” in Proc. of VCIP,
San Diego, USA, 2012.

[5] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F. Hansen,
and P. Engelstad, “Using Bandwidth Aggregation to Improve the Per-
formance of Quality-Adaptive Streaming,” Signal Processing: Image
Communication, vol. 27, no. 4, pp. 312–328, Apr. 2012.

[6] C. Müller, S. Lederer, and C. Timmerer, “An Evaluation of Dynamic
Adaptive Streaming Over HTTP in Vehicular Environments,” in Proc.
of MoVid, New York, USA, 2012.

[7] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP,” in Proc.
of MMSys, San Jose, USA, 2011.

[8] J. Jiang, V. Sekar, and H. Zhang, “Improving Fairness, Efficiency, and
Stability in HTTP-Based Adaptive Video Streaming with FESTIVE,” in
Proc. of CoNEXT, New York, USA, 2012.

[9] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, Timid, and Unstable: Picking a Video Streaming Rate is
Hard,” in Proc. of IMC, Boston, USA, 2012.

[10] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj, “Rate Adapta-
tion for Dynamic Adaptive Streaming over HTTP in Content Distribution
Network,” Signal Processing: Image Communication, vol. 27, no. 4, pp.
288–311, Apr. 2012.

[11] G. Tian and Y. Liu, “Towards Agile and Smooth Video Adaptation in
Dynamic HTTP Streaming,” in Proc. of CoNEXT, New York, USA,
2012.

[12] N. Cranley, P. Perry, and L. Murphy, “User Perception of Adapting Video
Quality,” International Journal of Human-Computer Studies, vol. 64,
no. 8, pp. 637–647, Aug. 2006.

[13] A. Ninassi, O. Le Meur, P. Le Callet, and D. Barba, “Considering
Temporal Variations of Spatial Visual Distortions in Video Quality
Assessment,” IEEE J. Sel. Topics in Signal Processing, vol. 3, no. 2,
pp. 253–265, Apr. 2009.

[14] M. Seufert, M. Slanina, S. Egger, and M. Kottkamp, “To Pool or not to
Pool: A Comparison of Temporal Pooling Methods for HTTP Adaptive
Video Streaming,” in Proc. of QoMEX, Klagenfurt, Austria, 2013.

[15] R. D. Armstrong, P. Sinha, and A. A. Zoltners, “The Multiple-Choice
Nested Knapsack Model,” Management Science, vol. 28, no. 1, pp. 34–
43, 1982.

[16] E. Y.-H. Lin, “A Biblographical Survey on Some Well-Known Non-
Standard Knapsack Problems,” INFOR, vol. 36, no. 4, pp. 274–317,
1998.

[17] “Gurobi Optimizer.” [Online]. Available: http://gurobi.com
[18] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, “Adaptation Al-

gorithm for Adaptive Streaming over HTTP,” in Proc. of Packet Video
Workshop, Munich, Germany, 2012.

[19] “VLC multimedia player.” [Online]. Available: http://videolan.org/vlc/
[20] M. Al-Bado, C. Sengul, and R. Merz, “What Details Are Needed For

Wireless Simulations? - A Study of a Site-Specific Indoor Wireless
Model,” in Proc. of INFOCOM, 2012.

[21] “NS-3 Network Simulator.” [Online]. Available: http://nsnam.org
[22] R. Pries, Z. Magyari, and P. Tran-Gia, “An HTTP Web Traffic Model

Based On the Top One Million Visited Web Pages,” in Proc. of NGI,
Karlskrona, Sweden, 2012.

[23] “Big Buck Bunny video sequence.” [Online]. Available:
http://www.bigbuckbunny.org


