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Abstract

The problem of simultaneously identifying arid controlling a time-
varying, perfectly-observed linear system is posed. The parameters are
assumed to obey a Markov structure and are estimated with a Kalman filter.
The problem can be solved conceptually by dynamic programning, but even
with a quadratic loss function the analytical computations cannot be
carried out for rrcre than one step because of the dual nature of the
optimal control law. All approximations to the solution that have been
proposed in the literature, and two approximations that are presented
here for the first time, are analyzed. They are classified into dual
and non-dual methods. ialytical comparison is untractable; hence
Monte Carlo siirailations are used. A set of experiments is presented in
which five non-dual methods are compared. The numerical results indicate
a possible ordering anong these approximations.
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1. INTRODUCTION

Economic science attempts to ui-iderstand the economic behaviour of

individual units like the household and the finn as well as their aggregates.

There is huge diversity in the ways of people and firTrs, hence there is a

lot of uncertainty inherent in any economic system. The difficulty of

understanding economic behaviour is compounded by the fact that attitudes

change, and technological innovations and political factors tend to always

change the status quo. We live in a changing wcirld and we rrn.ist find ways

to understand, describe, and deal with these changes.

To date nost quantitative economic res.earch has dealt with system

no1e1s in which the structure is completely fixed and is not allzed to

change. There has been a lot of worc, under the name of econometrics,

that has dealt with constant parameter estirrtion of econometric rrcdels.

A very good indicator of the state of the art is the book by Theil (1971).

Recently there has been some research into the development of

methods of describing and estimating changing parameters. The work of

Rosenberg (1968), Cooley (1971) and Sarris (1973) are representative of

the research to date.

This paper deals with policy in the presence of structLa'al

uncertainty as evidenced by parameter variations. There has been some

research into the problem of policy forrmilation in the presence of

constant but unknocin system parameters. Prescott (1967) was the first
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economist to deal with such an "adaptive" problem. Since then McRai

(1972), Poporic (1972), Rauser and Freebairn (1973), and Chc.z (1973)

have also dealt with the same problem.

The problem of controlling a plant with unknown parameters is

not new to engineers. Fel'dbaum (1960 a, b, 1961 a, b) was the first

one to analyze the complexities of "learning while controlling," i. e. the

dual nature of control. Since then there have been rnnnerous bcoks

(Sworder (1966), Fel 'dbaum (1966), Poki (1967) ) and papers (see ref. 16

for an extensive bibliography) dealing with policy in the presence of

uncertain parameters. Hciever, there have been very few papers,

addressing therrselves specifically to the problem of controlling a system

whose parameters are varying in a random fashion. Exceptions are the

papers by Wieslander and Wittenmerk (1971) and Wouters (1972), in which

some nirical results were given. The papers by Bar-Shalom and S ivan

(1969), Tse and Athans (1972), Tse et. al. (1973 a,b) also treated time

varying parameters althou the nunerical results reported were for

systeirs with constant parameters.

In this paper we attempt to unify inst of the methods available

for controlling systerrs with parameter adaptation. To this end we shall

consider only systeirs with perfect state inforrration. We shall extend

the methods that have been developed for the constant parameter case, to

include the varying parameter case. We shall also propose some new
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methods. In section 2 we present the problem to be tackled. Section

3 analyzes the estintion technique for the time varying parameters.

Section '4 presents the general method of solution and indicates the

difficulties of applying it to our problem. In section 5, we present

the ideal case of )cn parameters and one control technique based on

it. In section 6 we present four non-dual control methods and try

to indicate their shortcomings. In section 7 we present three dual

methods, one of which is presented here for the first time. Section

8 presents some Monte Carlo comparisons of the non-dual methods, and

in secdon 9 we sunimerize the results and indicate directions for

further research.
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2. STATEMENT OF TI-I PBLIEM

Our purpose is to analyze and compare various methods so we

shall try to keep the complexity of the systerr to be analyzed, miniiral.

Generalizations of the methods to nre complicated probleirs are straight

forward in rrcst cases. We shall confine ourselves to discrete time linear

systeme described by the folling equations.

xt+iAtxt+Btut+CtZt+€t (1)

Hx + Vt
(2)

where

- is the niobservable state vector at time t

Ut - is a vector of policy or control variables at time t
z - is a vector of exogenous variables

- is the vector of state measurements at time t' v - are vectors of system and measurement noises respectively.

The rrodel as stated in (1) and (2) is general enough to include

many engineering ncdels of interest and also reduced form econometric

nodels. Hiever, it is still too general for our purposes. Therefore,

we shall consider the folliing nodel composed of the rrost elementary

building blocks.

y+iat+btut+t (3)

where - is the perfectly observed scalar state

- is a scalar control

- is scalar system noise.

The irodel in (3) is a special case of airrost every nodel that has been

dealt with in the literature. Hence we can compare many methods at this

level.



— 5—

The state will be measured exactly. Let us denote by yt
u the foUcdng quantities

t-.u =
{u0,u1 u} (5)

The controls

where is
the state at

ut's.
Then

V. For the
At

to the follcwing form.

(6)

•

{ut} will be restricted
t t-lu (y,u )

a function to be chosen. Let Y denote the set in which

time t is restricted to lie, and V the set of allcxjable

is a function from
Y0 x Y1.. .x Y V x V1 . . .V1 -'

purses of this paper Y = V R for all i.
tine zero we shall assusne that the folling quantities

are ]CKWn;
N

y0, p(c0, C1 , e) N(O,a 2)*

p(a0,b0)
N

0
Lo

The obj ective is to chaos e the functions y,
such that the folliing cost criterion is minimized.

V(y0) = E {: y? +

l•.' 1N-l

(6a)

* p(.) denotes a probability density and N (a ,b) denotes a norl densitywith mean a and variance b.
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Notice that the problem is still not completely forjnilated because

we do not kncii hci a and bt are going to vary. We shall impese the

follciiflg a-priori probabilistic structure on the pararrterS.

ati [at + [0 (7)

btj Lbtlj j
or if we denote by Pt [a bt' * and w = n

+ w1 (8)

s is the stcture propes ed by s eerg (1968) and S ais (1973).

In order for the problem to be completely specified the joint

probability density of W0, WN
must be given. Since we do not

know a-priori how the parameters vary it is not trivial to specify this

quantity. For the purposas of this paper we shall ke the following

assumption
N

p(W0, W1 w) E N(O,R) (9)
1=1

where

R

o\

(10)

The choice of appropriate R will not be discussed in this paper.

It is discussed sorrjhat by Sarris (1973).

The problem can now be stated in full.

* (') denotes transposition
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Find the optirrnn V*(y0) where

V*(y0) = mm E { 'E 1
yj + + r'u ) } (11)

1 0

subject to the stochastic constraints,

+
+ btut + (12)

Pt = -i + (13)

where c} and are series of white nonr1 random variables with the

properties

p( ct) = N(O,a) (1')

p(Wt) N(O, R) (15)

= ç( c)P(w) (16)

and the system initial conditions are,

y0
- kncn (17)

p(p0) N ( , M0) (17a)

In the sequel we will abuse the notation a little by writingl , UN_i in place of Io,Yi 1N-i 1Ii (ii).
wiU be done for the reader's convenience.
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3. BAYESIPN TIMAITON OF THE VAR'ING PARAMFE

As will be seen scon, the solution of the prthlem stated in

section 2 will require the kn.iiedge of the joint conditional distribution

of the parameters at and bt, conditioned on the data up to the time t.

In this section we shall examine a way of obtaining this distribution,

which we shall denote by p( P1Y ,ut_l).

The distribution at time zero is nonmal as seen in (17 a). Assir

that the conditional distribution p( ut_i) is nonral with mean

denoted by and symmetric covariance matrix denoted by Mt_itt_i.

The relevant equations for the next stage are

Pt + w1 (18)

zp + (19)

where we have denoted

z N'- u (20)

We can use standard Bayesian analysis to find the density p(pt/yt+,ut)

p(p /yt41,ut)
,u ' (21)

[p(y/p,y ,u )p(p/y ,u )cpt

m (18) we see that the density p(p/ytut) = p(pttyt,ut)
is normel with mean equal to P-i--. and covariance matrix

Mt,t_i
= Nt_itt_i + R (22)

yt Ut) is also nonrl from (19). The density in (21) is there-

fore normal. Its mean and coyariance matrix, after some calculations,
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are given by the fo11ing fonnulas.

tit Mt,t [M_1
+ 1z (23)

+ 1z' z (24)
t

The folliing imatrix inversion lemma will help us render (23) and (24)

identical to the standard Kalmen filter equations.

Lemma 1. (Matrix Inversion Lenma). If

s + AR 1B]
—

then

S M - MA [R + BMAJ
-l

BM.

Proof. The proof is by direct compctation and is omitted.

With the help of this len (24) can be rewritten.

,r2 I—i-
Mt,t

= Mt,ti -
Mt,t iZt L + ZtMt,tiZtJ ztMt,t_i (25)

This along with (22) are the well kncwn updating equations for the

ovariances of the Kalmen filter adapted to our problem. We notice

that since Mt,t_i is symmetric then Mt is also srtric. We nai

substitute in (23) the expression for Mtit foiffld in (25). We obtain

after some menipulation

t,t Pt,t-i
+ Nt,tiz( + ztMt,tizTt)_l(yt÷i - zpi1) (26)

Which is the standard KaJ.jman updating formula. Equations (23) and (24)

will be useful later.
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4. SOLIJftON VIA DYNAMtC PROGR1ING

The problem that was stated in section 2 can in principle be

solved via dynamic programming. We state nci the form that the stochastic

dynamic prograiming uations take. We can write:

N-i
V*(y0) min E' E (y2 + ru/yN_l,uN_ (27)

u0, u1 u11 i 0 1+1 1

We shall ni state a theorem, which can be found in strm (1970, oh. 8),

that will be crucial.

Theorem 1. Let E [./y denote the conditional mean given y. Assune

that the function f(y,u) = E[l(x,y,u)/y') has a unique miniam with

respect to ucV for all ycY. Let u°(y) denote the value of u for which

the minimum is achieved. Then

n El(x,y,u) E1(x,y,u°(y)) E' in E [1(x,y,u)/y]
u(y) y u

N-i
Using this theorem and noticing that E [ E (y? + + ru2) N-i N-2i/y ,ui= 0

is quadratic with respect to therefore having a uuque minimi.ni we

can write
N-i

V*(y0) mm E' nin E[ (y?
ru' N—l N_23 }(28)

i=l i" ,u
U0,U1,... UN2 UN2 0
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NcM we invoke the principle of optimality, and noticing that the first

N-i texirs in the si.mtion of (28) do not involve UN1 , we write:

N-2

V*(y0)
= mm E { E (y1 + ru?) + mm EJ + ruNlIy,uJ}

UOUi,...UN_2 1=0 UN_i

ntin E' { E (y?1 + ru) + v*yN_l) } (29)
Uo,Ul,...UN2

it
where we have denoted:

N-i
V*(yt) mm E { E + ru)/yt,ut_l}

Ut,Ut+l,...UN_l

By the reasoning used above it is quite straightforward ncw

to prove the folling recursive relation:

V*(yt) = E '{ y÷1 + ru + V*(yt)/yt,ut_l} (30)
Ut

Equation (30) is the well kricwn recursive relation of stochastic dynamic

programming. If we can solve it then our problem will be solved.

At time N-i (30) becomes:

.. N—l . 2 2 N—i N—2V (y ) = mm E + r1/y ,u }

UN-i

min E {(_1y_1 + b 1u21 + + 2a lbN iUN l'Nl +

UN_i

N-i + 2_lUN_icN_l) + 1iN_i,N_2}
=
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- . r 2 2 N—i N—2 2 2 N—i N—2
- nun LYN_1E(_lh1' U ) + uiE(bNi/y ,U ) +

+ + 2lyNiE(lbN_iIyN_i,uN_2)
+ _] (31)

The miniiami of the above expression is easy to find since the quantity inside

the brackets is a quadratic in UN1•

r 2 N-i N—2 i —i N—i N-2
= — 1r + E(bNl/y ,u )j E(aNibNi/y U N1 (32)

v*(y) KN1 'N1 + (33)

where

KN_i E(1/yN_l,u2) - [r + E(b/y',u2)J _(11/yN_i,uN2)2 (3)

(35)

Equation (33) might icok like a quadratic y but a quick iook at (3t4.)

will convince the reader that KN1 is a quite complicated function of

(c.f. uations (25)(26)). It thus becomes impossible to carry the

backward induction any further than already done.

It is our purpose in this paper to examine and compare sioptirr1

techniques to solve the problem posed in section 2. This will be done in

the next fei sections.

0
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5. OF1IMAL CONTROL WITH PEFFECLY KMCI4N PARAMETEI

In this sectial we shall assi.nne that the parameters a ,bt are

kricn with certainty during the whole interval tO,NJ. Equation (30) at

time N-i becomes:

N—i . 2 2 N—i N—2
V*(y ) mm E "N + ruNl/y ,u

mm E' { 1y1 + b11 + 2_1bN_l_iyN_1 +

21N1N1 + 2b _1CN_i + 1iN_i,N_2 }

+ b11 + 21bNi1yN1 + + J (36)

The above equation is a quadratic in UN1 so its minimum is easily foumd.

r 2 1—1- [I' + -1i _1bN_1yN_1

HNy + FN_l (38)

where
2 r 2 i—i 2 2

HN1 aNl - L r + bNl j aNlbNl

FNl 0

Let V*(y) H+121 + Then at time tj the dynairdc

progr'armiing recursion becomes
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V*(yJ) mm E[y?÷1 + ru +

mm [ci + H.1)(a?y? + b?u? + 2ab.uY
+ + ru J ('tO)

The miniraim of the above equation is again easily fomd:

u - Cr + (1 + H+1)b]
-l (1

+Hj+1)abY
(141)

V*(yj) + (142)

where

H (1 + H.1)a
- [r + (1 + H1)b J

-1(1 + H1)2ab (43)

F1 + (1 +
H1)cm

(144)

The equations (141)-.(4Lt) along with the initial conditions FN:O and

H :0 are the solution to the problem.
N

A suboptiil technique of solving the original problem is

based on (4l)-(144) and is usually referred to in the literate by the

name of certainty equivalence or enforced separation (from here on

abbreviated as CE). It is the follring,

a) At time k we are given the data and k_l hence the folling

quantities can be computed via the results of section 3:

k-1 I /k-l,bkli ' and Ik-l
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b) Equation ('+3) is solved bac]<ward from time N until time k+l with the

fo1ling conventions:

1) a ak/k_i)
b forallk4 <j< N-i
j - /k-l)

2)

Denote the solution by

c) The control at time k is found by the follci..ing equation:

+ (1 )b,kiJ _l(l + ('+

This soptiirl technique is usually the one against which rrst

people compare their suboptim1 methods. It is one of the simplest and

fastest suboptinal techniques and therefore it is attractive. It will

be compared with other suboptini1 methods at a later section. It is

interesting to see that if the parameters are ]<ncwn exactly CE reduces to

the true ntrol l (141).
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6. NON-DUAL SUBOPTIMAL MEIHOt6.

In this section we shall examine various suboptima]. techniques

that have been suggested in the literature. All these techniques will be

non-dual, in the sense that they calculate the control la.i at t k under
the assumption that there will be no further measurements after tinie k.

There are three rrain elements of a dual control. The first

which can be called the controlling element has to do with the effect of

the control on the criterion function and is the element that characteriz

all optimLnn controls, dual or not. The second characteristic is a

learning one, namely the infoxration that is accumulated over past controlling

stages is utilized to ijirove the present }aledge of the system. In

section 3 we analyzed the way that optimel learning will be achieved

in our problem. The third element, which we shall term the dual effect,

has to do with the experimental nature of the control. Choices of present

controls affect the futine probability densities of the urijczncwn parameters.

Hence a dual control can affect not only the present but also the

future learning of the system. It will be this element that will be

missing from the suboptimel methods presented in this section. In all

subsequent methods, learning will occur via the method descrised in

section 3.
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6.1 Wouters' Minirr&nrt Variance Control.

This method was proposed by Wouters (1972). It is quite simple.

The logic is the following. Suppose that the objective is to minimize

the index;
N

him 1 E y2(k) (146)

N-'° Nkl

then the control suggested by Wouters (to be denoted by the letter W) is

— ak/]<] (147)

bk/K_1

Notice that (146) is quite different than our objective (6).

It does not, for example, include penalty for the control. Wouters

used this technique to control systerrs with tirr varying parameters.

He showed via Monte Carlo experiments that the method is better than

no control at all.

6.2 Wies lander's and Wittenmerk 's Control.

This method (hereby denoted as WW) was proposed by Wieslander

and Witterumrk (1971). Their idea is the following. Since the reciasive

equation (30) cannot be solved analytically for rrre than one step,

assume that the next step is the final one. The index to be minimized

in their paper was Ey2(t). The control that they derived is the same
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one as in (32) with r 0

- [Eb,yk,(u) k_i)] _(bk/yk,(u)k_l)yk

In the experiments that they did they compared this control

law to no control at all, and it performed better. Since it is not

obvious that any control will perform better than no control, their

method deserves some attention. This as well as the previous method

ignores penalty in the control. Hever, in this case it is quite easy
to introduce control penalty. In fact the rrdified control law (to be

denoted by WM) is identical to the one in (32).

u - [r + E(/yk,(u)k_l) E(ab/yk,( )k_l)y (9)

It is interesting to notice that none of the previous three

methods reduce to the true control law, derived in section 5 (equation

(l)), when the pararrters are krown exactly. We nc examine a method

that has this desirable property.

6.3 Sequential Stochastic Control.

The logic for this method is that at time k all future

infortion is neglected. Hcwever, it is recognized that the pararrters
will be changing. The assiunption then is that the distribution of the

future values of the parameters will not be affected by the future

measurements. This assumption is similar to the one that assumes the•

future parameters to be random drawings from a distribution which

depends only on inforniation up to time k. The difference here is that



-19-

the distribution is different at every point in time. This method has

been mentioned by Yoshida and Nakamura (1973), but they have not analyzed

it carefully. We nc.i derive it in detail (the method will be abbreviated

by Si).
kk-l

Assume that we are at time k and we have observed y ,u

Hence we have computed /k1 and MK,.kl
with the help of the Bayesian

foniniias developed in section 3. The problem ncw is the foflcx'zing.

(loose . . u1 so as to minimize

k N-i
2 2 k 1

V(y ) E' { E (y + ru.)Iy k (50)

jk j+l

subject to

yi+l zP
+

j >k (Si)

p. =p. +w.j-l j—i

The assumption that we are iiking can na. be stated precisely.

The vector p of parameters at time j > k will be assumed to be a random

dr'iing from a Gaussian density with mean

j/k-l j-l/k-l
= (/k-1 (52)

and covariance matrix

Mj,k_l Mj_l/k_l
+ R •.. Mk/kl + (j—k)R (53)
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j j—l k k—i
Thus we approxirrte p (P /y ,u ) by p(p /y ,u ). The dynaniic prograrrining

E { a 1y2
+ b2

2 + + 2_ibN_1_iyN_i +- N-i N_1UN_l N i

V(y1) [y2Ni(a2Nl/ki + -iIk-i + u1[r +

(bl,kl + + a2 + 2iYNi(i/kibNl/kl

recursion nci can be analyzed. At the fisial tiir (30) becomes

2 N-i N-i
V*(YN_1) + -i / ,u }

2 N-i N—2
+ 2bNiicN_i + Ni' U }

2 k k-i
m [y1 E(aNlIy ,u ) + 1E(1/yk,ui) + a +

k k-i 2
,u ) + i'i

Let us nci decorripos e the matrix N. as foiiais:
J/k—l

Nj/ki (55)

(56)
+ -i/k- J

Referring to (10) and (55), (5'4) reduces to
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The control minimizing the above expression is

- [r + (b11 -l/k-lJ -l (& llbNl_l + -lc-lN-l
V*(yN_1) = + (58)

where

(aNlfk.l * N-l/k-l — L r + N1fkl + N-1/k-1

N-l/k-l-l-l + _1_l)2 (59)

= (60)
C

If we nci assm that

v*(yL) H.1y2.÷1 + (61)

then by an analysis identical to that of section 5 we derive the following:

u - {r + (1 +
H41)(bp_1

+ /k-lJ -l (1 + H÷1).

+ /k1 y (62)

V*(yj) = Hy + (63)

where

(1 + H+l)(a,kl +
M(k_l)

-

+ (1:4 H+l)(b,kl + -1
(1 + H1)2(a 1b + jIk-l

+ (1 +
H÷1) c (65)

=
FN

0 (66)
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The optimal control at time k is chosen as folics:

(67)

*
where u is derived recursively as above. After this control is applied

k+l is observed and the cycle is repeated to choose and so on

until time N-i. It is interesting to note that when the parameters

are knc.in exactly the control derived by this method is reduced to

the true optimal control described in section 6. When R = 0 or

equivalently when we assume that the parameters are constant, then

Si reduces to a method that has been analyzed anng others by oki

(1967), Bar-Shalom and Sivan (1969), and Prescott (1967).

6. Open Loop Feedback Opt irral (OLEO) Control.

This method has been analyzed by Tse and Athans (1972) and

Ku and Athans (1973). The assumption under which the control at tune

k is found is that the sequence Uk ,Uk+l UN1 will not depend

on any future data and hence can be found at time k by solving an

open loop control problem. Let us make this assunrption inure precise.

The problem to be solved at time k' is the following.

V (y ) irdn '{ E( y.1/y ,u
- + r E u2. 1 (68)

Uk,Uk+l UN_i j4z j:k

subject to

zip.
+ c 2

= + k (69)
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Notice that the expectation in (68) does not include the control teni.

This is because they are to be chosen in an open loop fashion. The

solution to this prcblem is quite complicated. We shall present here

an outline of it and we shall irntion the simplifications that were

employed by Tse and Athans, and Ku and Athans.

The problem in (68) and (69) can be solved via detenrilnistic

dynamic proarrming as folls. Denote by V (J) the quantity

Vy) E { Nl (v?+l +
UU4.1 ,UN1 1-J

mm E{ (y?÷1+ ru}Ik—l} (70)

uu+1 ij
Then the dynamic pr graming recursion is

V*(yj) mm E + ru + V(yIk—l ) (71)

Uj•
Notice that since E(.Ik—l) is kricwn at time k, (71) is a deterministic

dynamic prograning recursion.

At the final step we obtain

*N_l 2 2
V (y ) = mm E(yN +
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min E(1y1 + + 2lbNlUN1yNi +2_lYN_iCN_l +

UN-i

+ r1/k-l)
rnin{ E(a1y1/k-1) + u1 [r + E(b1/k-l)J +

UNl

2uN1E(aNibNlyNl/k_i) + } (72)

The optin.i OLFO uNl is

* —1

UN_i EN-i N-l (73)

where

r + E(b1/k-l) (74)

N-1 = E(aNlbNlyNl/k) (75)

=
E(a2N 1/k-i) - D1 f1 + (76)

Notice an interesting phenomenon. Since in the state equations

(69) a, b, and y are coupled in a nonlinear rrnner one cannot separate

E(a_1y1/k-l) for example into E(a1/k-l)E(y1/k-l). Hence no

interesting cancellations will occur in the steps prior to the last.

To illustrate this paint we will shi without proof (which is straight-

forwani) the OLFO control and the cost at time N-2.

—D N—2N—2

r + E(b2 + 12/k-l) - DlE2(llbN2_l) (78)

N-2 E(2bN2yN2 + l2bN2yN2/k_1) -

E(aMlbNlbN2fk_l ) (79)



—25—

*N._2 2 2 2 2 2 —12
V (y ) E(aN2yN2 + a1a2y2/k_l) - D

N_1E (aN ibM laN 2N 2/k-l) -

t: f_2
(80)

Thus we can see that the exact solution for the 0120 control

at time k becomes increasingly laborious as we proceed in the bac3iards

induction. The problem arises because we have assiied that aj as well

as b are random, and this introduces the nonlinearity in (69). Tse

and Athans (1972) assumed that only b is random while a is not. In such

a case

E(÷1/k—l) aE(Ik—l)
+ uE(b/k)

(81)
E(b. /k-i) E(b.Ik-1)

J+1 J

and therefore the conditional expectations evolve linearly, rrking the

bac1.iards induction of. reproducible form from step to step. Ku and

Athans (1973) on the other hand have used the approximation

E(Y+1Ik1) E(a./k-i)E(Ik-1)
+

uE(bIk-1) (82)

Their extensive 1bnte Carlo results shed that OLFO in conjifflction with

(82) performed slightly better than CE (or enforced separation, as they

called CE), for stable systerrs, but considerably worse than CE for uistable

aies.
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7. DUAL SUBOPINAL MEIHOLS.

Dual methods assume explicitly that the choice of the present

control will affect the future probability densities of the parameters.

Hence the control is inevitably a nonlinear fumction of the present state

and in rrcst cases quite a conplicatéd one too. We shall analyze three

quite different dual methods, the last one appearing here for the first

time.

7.1 One-Measurement-Optime]. Feedback Control.

This measurement was developed by Curry (1969-1970), and

has been recently used by Tse et.al. (1973), Tse and Bar—Shalom (1973),

Iausser and Freebaim (1973), and further analyzed by Early and Early

(1973). The idea is the fol1cxiing.

Suppese we chose uk . Then we could find the covariance of

k given {k ,k_i via (25). We could also assert that the

average value of k+1 would be

k+i k+l/k-l a/_i + bk/k 1 (83)

We could then consider the problem

k—, -

N-i
2 2 k— k-i—

V(y ,y1) iian E { E (y11 + ru)/y Yk+lU ,uk}
Uk+l ,UN1 ik+l
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with initial conditions

"k+l/k-l (8k)

k/k k/k—l
(85)

—l - —lM — M + , , (86)
k/k k/k-i ZkZk

where

LYk'] (87)

The above problem is solved via the OLFO rrthod and the following ninther

is computed.

V(yk,) + ri + VoLFO(yk,k÷l) (88)

Now a n value for is chosen and the whole procedure is

repeated. The usual procedure is to start with the CE control and then

search in the neighborhood so as to find a better control. The control

minimizing V(yk ,) is applied and the nthod is started an&i in the ne'c

tine step.

The nthod has at least one advantage, namely that it guarantees

a better control than the starting one which can be the CE one. Tse and

Bar-Shalom (1973) have shown numerical results in which this method was

better than CE by one order of magnitude.
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The rrin disadvantage of it is that in general it involves a

search in a rn-dimensional space, where m is the dtrrnsi-i of the ccntrol

vector. Unless the control space is bounded, this search will result

in a local rrn mum of V(yk) with respect to Uk. In addition, as was

seen in section 6. 4, the exact OLFO control is hanl to find and approxi-

n.tions might be used. In such cases the quantity V0 in (88) is

substituted by an approxinute one. Therefore, the minimization of (88)

with respect to will be an approxite one.

Modifications of this method are easy to visualize. One which

seens to us particularly appealing is to substitute for VOLFO in (88) the

quantity V1, namely the cost computed with the Si method analyzed in

section 6. 3. Without some numerical studies it is quite difficult to

assert a-priori which method would perform better.

The dual nature of the one-measurement-optimal feedback method

is menifested by the fact that the covariances of the parameters at time

k+l are explicit functions of the control applied at time k. The dependence

of the future covariances on the present control is nonlinear and quite

complicated. Thus since it is hard to compute the explicit dependence

analytically numerical evaluations have to be made. For on line

applications this can be quite costly.
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7.2 Adaptive Covariance thod.

This quite interesting rrthod was proposed by McRae (1972).

Here we shall present the mJn idea, and we shall extend her results

to our problem, and give them a shape suitable for ninrrical computation,

which she has not done.

Suppose we are at tirr k and we have observed and k_1.

We would like to choose u ,uk,... ,uNl so as to rninize the

quantity

N-i 2
V(yk) E { (y11 + /yk,Uk_l}

N-i ik
E{ E (y1 + r4)/k—l } (89)

i=k

subject to

zp + g j > k (90)

p(pk/k_i)
= N(pk/kl,M,k l (91)

Our fut 1aledge of the parameters p will be governed by the posterior

density of p given future data. From section 3 we kncw that the future

posterior densities of p will be norrr.l with means and covariances

evolving by the formulas:
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M1 [M-,_1P,_1
+ lz!y1J (92)

N' = N' + 1 ZTZ (93)
i/i G

C

pj/j_1
= P_l/_l (9k)

N.. =11. . +R (95)
J/J_l Ji/J'l

for j > k with initial conditions given in (91).

In vi of (90) the constraints (92)-(93) are stochastic. We

mike the folling appro±rtion similar to McRae '5, that renders the.m

deterministic. We asstune that the evolution of means and covariances

will be deterministic and given by the fo11iing formulas.

pj,j M1 [M_1p,_1 + E(lzty/k-l)] (96)

N' +
E[1 z'z /k_1J (97)

j/j j j
=

p.1151
(98)

N. . = M. . + R (99)
Jim.-1 J—l/Jl

Thus the future means and covariances are fiiictions of quantities that

are to be calculated at time k, i.e. Uk,Uk÷1...
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Let us analyze (96) a little further.

E(1 z'y /k-i) 1 Ez'E( /y,u)/k-l
2 jj£ c

1 E 1z'zE(p/yJuJ)/k_1]

E p 1k—i]
(100)

(ye
JJJ/J_i

Since p.,.1 is deterministic it can be factored out of (100).

Therefore, (96) becomes

p.,. M5,5 [1/j_1
+ E(lztz/k_l)J (101)

Equation (97) nci implies that

pj/j Pi/il Pu/u = •• k/k-1 (102)

Thus implicit in assumptions (96)-(99) is the fact that the future

mean is not affected by the controls but the future covariance is via

(97). The problem that we solve is the foi1cing.

Minimize V(yk) in(89) with respect to

subject to the stochastic constraints (90), and given that the future

densities of the parameters have means given by (102) and covariances
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by (97). The problem that we pose is both stochastic and deterministic

because half the constraints are stochastic, namely (90), and half

deterministic, naily (97). We solve it, foUaiing McRae, by applying

dynamic proairoiii.ng to a criterion which is (89) aunted by products

of the deterministic constraints and deterministic Laange multipliers.

The complete analysis is given in appendix A. The result is

that the controls u, ,u ,uMl are linear fiuictions of k

'N-l respectively with gains given by the solution of a two-point-

boundry-value (TPBV) problem. The complete set of equations is the folliing

(For prcof see appendix A).

u. —G1F y (103)
J j ii

2
b

G. r + (1 + K )(b + ) 1 L (lOLt)

J j+1 i/i—i i/i—i — j

(1 + K.1)(a.1 1b.1.
+ - 1L (105)

K. (1 + K. )(a? . + . ) - 1 - GT1F (106)
J j+l jlj—l 3/3—1 — j j j

C

L. (I + RN •)1 L. (I + M1.R)1 - M. .P. N. .x. (107)
J 3/3 j+1 j/j 3/] 3+1 J/] j+l

P. 1 -GF.
(108)

—GF. GT2F23] J

I
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x. E(y?/k—l) + x ti' P (p p' + M )} (109)
j—1 j—1 j—1/j—2 j—l/j—2 j—l/j—2

[a] jiji pjl/jl = /k-1 (110)

3/3

= + 1 Px (111)

N.,.1 M.11.1 + R (112)

The bounda contions are 0, l 0, /k1 and

The solutions of the above equations must be carried at each

step k and only uk applied to the system. Then a nz measurement is

taken and the procedure must be repeated. What is interesting about

this method is that the future controls are linear and influence all the

future covariances. We have not as yet examined nnnerical ways to

solve the above TPBV problem.



7.3 o—Step Optirrl Adaptive Control.

This method, to o kncledge has not been suggested before. The

idea is the follci.dng. Msir that we are at time k having observed

k,k_l. Then assune that optimization is to be done only for two rrcre

periods. Also assiniie that the one future value of the parameter b is

and equal to bk/k l Then carry out the two-step backward dynamic

pxgranining recursion. The assi.niiption that bk+l is constaiit and equal

to bk/k is sufficient to render the minimization with respect to

Uk equivalent to minizatim of a quadratic function of Uk.

v(yk) = min E + ru + v*(yk),k_l] (113)

Uk

where

V*(y) rain E [+2 + ru1/k (114)

At time k+l the minimization (ll'l) is straightforward. We obtain

(115)

where

Cr + (116)

!c +
V(y k+l 117

CY
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where

H ak+1/k + +1/k
- (r + b+) +lak+l/k

(118)

C (119)

At tine k we have

2 2
(y ) mm E [(1 + H)yk+i+ r + F/k_i] (120)

From section 3 we kncw that

c/k s/k-i
+ /k-1kkk/k-1 +

aE) k+1
- k-ik -bk/k_K)

(121)

+1/k /k /kT1
- (122)

If we substitute for in (12!) the innovation becomes

a]</)y] +
(b<

—

bk/k 1)Uk + Ck
(123)

We nake the assl2llption

(bk
—

bk/k_i)
= 0 (12'4)

which is what will render the prob1n tractable.
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Of course, if bk is a—priori kncn then the assumption (12'-i.) will be

a true fact, and not an approximation.

By substituting for ak+l/k,M+i/k in H, via (12l)-(122) and

substituting for k+1 in (120) we arrive at an expression whose con-

ditional expectation is easy to take. In addition the resulting

expression is quadratic in uk. The calculations are lengthy but

straightforward and they. are shcwn in appendix C. The optimizing

is
* -l

Uk -D kk (125)

where
()

r + (1 + +i/k/k-l + /k-l + r {a2k,kl

r + bk/k 1

(bkl + /k-l + X{E E(ak - K/k_l)hJ y +

+ /k-1 (126)

= k { (1 + ÷l,k1kP + r
L/k_1akbk_1)

+

r + /k1
L yE [akbk(ak - ak/kl)/klJ + E(ak/k_l)] +

2l)kE - akfl)k1} +
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2

- k/k_l)/k_Jc +
2ak/k_lbk/k_lX1o)

(126)

r + bk/k_i

where

Xk c—lk>'k/k—i + 2)l (127)

The control Uk is thus a highly nonlinear function of

We can also see that even if we rrke the assuntion that bk

to bkl/12
it is impossible to carry out one rrre recursive

dynamic pro'anining step because of the complex nonlinear dependence

of V (y ) on

This control 1 is dual and it takes into account futi.ae

adaptation of the mean but not the variance of a. It is quite simple

to compute since it does not involve the solution of any iterative

system of equations like the previous methods.
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8. NUMERICPJJ COIARISONS

In this section we sh the results of some initial Monte Carlo

comparisons of all the non-dual methods mentioned before except the

OLFO one, for which exact corrtputations are tedious as seen in section 6. Li.

and inexact computations give strange results (cf. Ku and Athans (1973)).

The methods compared are denoted by the fo11aiing initials:

T - Control with perfectly kricwn parameters (cf. section 5)

CE - Certainty equivalence method (cf. section 5)

W — Wouters' method (cf. section 6.1)
- Wieslander's and Wittennrk's method (cf. section 6.2)

WM — f'bdified WW (cf. equation (L1.9))

Si — Sequential stochastic control (cf. section 6.3)

For all the methods except T, which does not involve learning, the

parameter updating was done with the Kalman filter analyzed in section 3.

We n state the results for four experiments that were

conducted. Table 1 simrizes the conditions of each experiment. The

first colunui denotes a code name for the experiment. The second coli.nrn

denotes a code name for the tn.ie parameters used in generating the data.

The third coluun lists the covariances of the system error. The random

nibers that were created had the indicated covariances and were normal.

The N0 colurrm lists the initial covariance nitrix of the parameters. For

every run the initial values of the parameters were chosen by random

sampling from a normal density with mean p0, listed in the last colnm,

and covariance matrix M0.
The colunn labeled R lists the covariance

ntrices used for the error ter in the parameter equations (cf. (7) and
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(10)). The rerrining three coluirns list the nuither of runs, the initial

value of y0 and the control penalty r respectively. All runs were for

30 periods.

In experiment El the true parameter at was constant and the

true bt was a sl.i trend. In E2 the true at and bt were generated

using equation (7) with initial values (-.63,.083), as shn in the

last column of Table 1, and normel random errors with zero means and

covariances o .09 and .01. In E3 the true parameters were

both tine varying with some trends and sudden jumps. In E5 both

the parameters were constant with at equal to .7 and bt equal to -4•

In Table 2 we shc the average cost for the 20 runs. The

first thing that we notice is that the method performe quite well,

surpassed at some experiments only by Sl. We see that the W and WW

methods which are minimum variance ones involve excessively high

control cost. In experiment E2 the parameter at was umstable for

half of the controlling period, and we see that all suboptiinal methods

perfonn poorly. This is a disturbing fact and was also observed by

Ku and Athans (1973) in their simulations of the OLFO method.

Figures 1-12 shi the average control gains and the

average parameter estirrted resulting from the 20 Monte Carlo rums

of each experiment. it is interesting to notice that for E2 in

which, as seen in Table 2, none of the methods gave good controls,
U
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nevertheless the estirrates of the parameters are quite satisfactory.

In general W, M, and WM give the worst results with CE and Si aays

superior to those three. The experiments, hcever, did not result

in a distinct ordering of CE and Si.

There is still a lot of work to be done in arrtparing these

methods and corrparing them with the dual methods described in section 8.

The dual methods should give better results than the non-dual ones.

On the other hand the dual ones are all, with the exception of the

one described in section 7.3, quite costly.
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9. SUMMARY AND CONCLWIONS.

In this paper we have examined the problem of controlling a

system with parameters varying in a fashion unkncin to the controller.

We have surveyed all methods available for the solution of such problems

and we have extended some to fit our framework. We have also suggested

and analyzed two methods for the first time. One is a non-dual one (Si)

and the other is a dual one (see section 7.3). We have also presented

a numerical comparison of the non-dual methods, in which Sl was foumd,

along with enforced separation, superior to other non-dual methods

that have been suggested elsewhere.

A mejor problem with all the methods is that a-priori there is

complete ignorance about the evolution of the parameters. From

figures 5 and 6 it was seen that if the parameter variation happens to

be of the same form as the one assumed, then these parametErs are

estinted satisfactorily. Otherwise, we do not have large hope of

identifying them. This raises the whole issue of robust estintion for

some particular kind of parameter variation, it is not clear whether

it will give good results if the parameters evolve according to a

different structure. The ultirate goal, of course, is to optimize

the criterion. The interaction between identification and control might

be somewhat umderstood in the case of constant but urJin parameters,
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but it is not at all clear in the case of time varying parameters.

There is still a lot of research to be done in this area beginning with

mDre ecterisive comparisons of the dual and the non-dual methods,

extens ions to higher order systen, and examination of the interaction

between identification and control.



APPENDIX A

SOLUTION OF ThE ADAPTIVE COVARIANCE CONOL PROBLEM

In this appendix we present the solution to the problem posed

in section 7.2. The solution procedure foilcs the analysis of McRaé

(1972). The problem is the foilcx.ing.

Find uk,... ,UN1 where
* k N-1

V (y ) mm E' { Z (y1 + ru)/Jc-l} (A.1)
UkU]c+l14N_i ik

subject to

= zp + . j > k (A.2)

independent zero mean white noise with covariance

(A.3)

- - 1/1 = kIk-1 (A.)

Ms,. M,.1+ Eji z'z/k_l] j > k (A.5)

+ R i k (A.6)

z [y,u j >k (A.7)

We define a set of N-k+1 matrix Lange multipliers

k-i <j <N-i where L are all symmetric 2x2 matrices. We n form

the foiling Hamiltonian quantity.
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N-i

H(yk) E{ (y1 + ru?)/k—i} +

1k

E t{ L1
- (M.1111 + RY1 - E( 1 z'z/k—l)] I

E[y + ru ltr(L1zz)/k-l] + . } +
11

- Lk1M1/k1]

where

- L(M1111 + R)] (A.9)

We shall apply stochastic dynamic prograiruiing to the augented

criterion (A. 8). We shall be careful, hcwever, to simultaneously irripose

the constraints

aH(y') = 0 k <j <N—i (A.lO)

3/3

3Hyk) 0 k <j <N—i (A.ll)

(A. 10) and (A. ii) correspcnd to the state-costate equations for

The dynamic proaJTming recursion can now be written as follows

H*(yj) min { E fw. + H*(y)/j_iJ + (A.12)

Ui

for
k <j <N—i
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with

* N —1 —1
H (y E-1-i/N_i -i-l/k-l1

w y1 + ru? — 1tr(Lz'z) (A.l'4)

tr[L1M111
- L. (N. + (A.15)

E {.ii_iJ E (A.16)

The interesting thing about this arrangement is that we shall

be able to satisfy (A.iO) recursively as we proceed backwards.

At time N we have the cost H(yN) given in (A.13). We can

differentiate it with respect to Ml/Nl since this quantity will

appear only in H* (N)• Using (B. ) of appendix B, we have

3H(y ) H(y ) L1 + - DIAG(LN1) 0 (A.17)

N—i/N—i

since the are synetric (A. 17) is equivalent to

(A.18)

* N -l
H (y ) - trlk 1M k-i/k-i (A.19)

At time N-i the recs ion (A. 12) becomes

H(y1) mm '{ E [y + - 1tr(Ll1NizNl) +

UN_i cl

I_2MN_2/N_2 - -1-2/N-2 + R)'J} (A.2o
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Only the first three terns in (A.20) in1ve We paxtition the

ntrices L. and N. as follows

L L
L (A.21)

L LJJ J

1M. 1
J/J J/J

N.,. I (A.22)3] M1).I?.J/J 3/]

We nc expand (A. 20)

N-l-l/N2 + -l/N-2 + 2yNl1(aN1/N_2bN_1/N_2+
UNl

+ 1(r + b2Nl,I2 + -l/N-2 + 1 (1y1 + (A.23)

6

2L1y1_1 + + H(yN) + [_2M_2/N_2
- -l-2/N-2 +

By differentiation we find that the minimizing UN1 is

* —l
-G N_lFN_l7N_1

(A.2L)

where
r + -l/N-2 + -l/N-2 - 1 (A.25)
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_l/N_2bN_1/N_2 + -1/N-2 - 1 (A.26)

a2
C

We nc.i write H(yk) in a form that will help the differentiation

with respect to dictated by (A.lO)

H(yk) E y/k_l] + [ 2M 2/N 2
- + R)_1] +

(ter not involving L2/N2)

+ tr [2M2/N2 - -l-2/N-2 + R)J

+ (te without -2/N-2 E-l/N-2N-l/N-2 + -2/N-2 R)

• E(11/k-l) + tr - -l-2-2 + RY'J +

(tern without M2/N2) (A.27)

With the help of (B. 5) and (B. 6) we have

o _22/N2E(l_l/k_l)2/N2 +

ThN2/N2

DIAG {_2/N_2E 11 2/N2] _22 + DIAG(2) +
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2(1 + N-2/N-2 -l +

DIAG [1 + N-2/N-2 -l + M2/N_2R)'J (A.28)

Since all the ritrices are synutric, (A. 28) is equivalent to

the foflciing

+ N-2/N-2 -l + K_2/N_2R)
- 2/N_2E [1c_i)

MN 2/N 2
(A.29)

* N—iThe st H (y ) becous

H*(yN_l) 2 H*(yN) + 2M2/N2 -l2-2 R) (A. 30)

where

-l/N-2 + -l/N-2 -
2 _i - G1F1 (A.31)

So H(yM_l) is a quadratic in N1 and the recursion can continue.

Notice that the nonlinear dependence of on UN2 Uk
has dissappeared

with the introduction of the multiplier matrices. it is easy ncxi to

ite the eress ions for u.

u -GFy (A. 32)
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where

r + (1 +
K+1)(b,_1

+ /j—1 — : (A.33)

(1 + +
M,,51)

— I (A.3't)

K. (1 + K. )(a? . + . ) — 1 L — GF (A.35)
j+1 j/j—l j/j—l — j j j

a
C

L (I + RM,.)L.1(I + - M1.E(z.1z.÷1/k-1)M.1. (A.36)

The initial nditions are

'h1I—1° (A.37)

Along with (A. 4), (A. 5) and (A. 6) the above equations define

a complicated two-çxint-boundary-value (TPBV) problem. In order to define

the problem completely we need a way to evaluate

E(z:z./k-1 for alik <j <N-iJJ — —

We non provide such a recursion.

1 G1F
E(z.z.fk—1) ii 2 2

E (y.Ik—l) E P.E(y.Ik-l) (A.38)
—i —22

-G .F. G. F.
3] 3 3

E(y/k-1) a +



+ [P 1( l/j 2j + E(y1/k-l) (A.39)

Since E(y/k-l) y (A,39) is a well defined recursion. The TPBV

problem is now complete.



APPENDIX B

SOFT USEFUL MiTRIX DERIVATIVES

In this appendix we develop certain matrix derivatives that are

useful in the proofs of appendix A. Many formulas for matrix derivatives

have been rexr'ted by Athans and Schweppe (1965), and Athans (1967).

Hcever, those derivatives were applicable only to matrices whose elerents

are independent. Here we derive sorre formulas for synTnetric matrices.

Define the operator DIAG which operates on a square matrix A

and creates the fo11iing matrix

DIAG (A) a11 0

o a22 (B.1)

0

Let X be a ni matrix and let f(X) denote a scalar valued function of
2 . .the n elements of X. Then the matrix derivative of f is defined by

af(X) = f(X) 1 (B.2)
{ 3X)

so the matrix derivative of f is a matrix. We n state the fofldng

thorerr.

Theorem. Let X,B be synuietric nxi matrices. Then the foUing equalities

are tie
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atrX = I (B.3)

a trAX = A + A - DIAG(A) (B.'4)

ax

a trA(X + B)1 -(X + B)1A(X + B) - (X + B)A(X + B) +

ax

DIAG [cx + BYA(X + B)'] (B.5)

atrA [x' + B]
-1 + BX)A(I + ))_1 + (I + BX)'A (I + )_1 -

ax

DIAG [(I + BX)A(I + (B.6)

Before we proceed with the proofs we state for corrarison the corresponding

formulas for rr.trices whose elements are independent

3trX I (B.7)

a tx = A' (B.8)
ax

atrA(X + BY1 = -X + aA(X + B)] (B.9)

3trA( X1 + B) 1 fci + BXY1A(I + )Y'7 (B.1Q)
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Proof. (B.3) is trivial and we omit its proof.

(B.4): 0
trAX trA X trA

xij 1..
31 0

a.. + a.. Q.E.D.
13 Ji

(B.5): 1trA(X + B) trA (X + B) -trA(X + BY X(X +

Xij aXij Xij

-trA' + ( {j,i} 1.2.,. .,n.)

where

xx+ B)_1]
-tr'A' <jkx1i

- E a(X' +

1l kl
— {cx + B)1A(X + BY + Cx + BY-i A(X + B)_1] Q.E.D.
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(8.6): DtrA(X1 + B)_1 = trA a (X1 + B)'
ax.. ax..

1J 1J

-trA(X + B)1ax1(x + BY-
ax..

1]

+ B)XXX(X + B)
ax..

1J

trA(I + XB)' X(I + BXY1 and the analysis of
ax..

1J

the prf of (B.5) carries over.



APPENDIX C

COUTATION OF ThE IWO-STEP ADPFI'IVE CONTROL

In this appendix we carry out the calculations called for in
section 7.3. The problem is

2 2 2 1
V (y ) mm E + r'u + Hyk+l + F/k-i

j (C. 1)

We substitute (121) and (122) into (118) keeping in mind the assi.n-ription

(12'4). We obtain

2____ 22a -21H 2 /k-l + '' k/k-lkk'/k-1 + L -lk +
1k+1

2 2 2ir
k]

+ + G€ - + +

+ Iv+1/k (C.2)

We notice from (122) that +1/k does not depend on and is
kk-1

a function of (y ,u ) so we will not expand it further. To facilitate

the notation we shall define the quantity

Xk_ /k-lkk/k-1 + 2)-1 (C.3)

k k-iXk is a function of (y ,u ).

V(yk) ncw becorrs



-C2-

V(yk) E'{ru + F +(aqY + bu +c + 2abkykuk +

+ 2c k
+ +1( +

r + - c/k-1k + £k]
2 +

}Iy,u } -
[(ak - /k-1k +

k k-i -

+ F + { (1 + '+1/kk/k-i + /k-i +

r2 2
r

L_1_1
+ Ik-i +

fyE ja(ak - ak_1)(_1 +

r +

a bk/k-i + /k-i1 + 2ak,klykE [(ak - /k_l_1 } +

{ (1 + +1/kk/k-i + /k-i + r
[a2k,klb,k1

+

r + b1
+

[E
- y + (b/kl ÷ /k-iJ +

(i + +l/k)a + r [a_i + t/k-ik + +

r +
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{ (1 + +l,k)E(akbk/k_1) + r
[,k_lE(abk1k_1) +

r +
b1÷1

X fy [ak1ak -
ak/k_i) 1k-i] + GE(akbk/k_1) +

2aK/klXKYkE tk(ak - ak/k_i_1J } +

2Ykt

r
[2E [ak(ak - ak/k_i)Ik_1Jae k + +

r +

2 ( r >kE - ak/k_i)_hics + 2ak/k1bk/kla (C.)

(r + b+i

Equation (C. if) is a quadratic in u, so its minimization is
straightforward. We find

* 1u = -D k (C.5)

where (remembering that was assd equal to bk,,kl)

r + (1 + +i,k)(bk_l + k-1 + r ak/kl(bk/kl
r +

2+ /k-1 +
[E

- ak/k-i /k-iy + ccIk-1 + /k-1J (C.6)
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fk: k {(i + + r
2

[1E/k-i) +
r + bk/k 1

X2k fyE kbk< 1)2,k_il +

2,klykE [akbk( - ak/k 1)/k_1] } +

ykE [bkak - 1)_i]a + ak lbk_lXk (C.7)

r
k/k-i

The expectations appearing in and k are straightforward to compute

from the joint gaussian density of ak
and bk given (k ,k_1.
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