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Optimal Adaptive Cruise Control with Guaranteed

String Stability

CHI-YING LIANG1 and HUEI PENG2

SUMMARY

A two-level Adaptive Cruise Control (ACC) synthesis method is presented in this paper. At the upper
level, desired vehicle acceleration is computed based on vehicle range and range rate measurement. At the
lower (servo) level, an adaptive control algorithm is designed to ensure the vehicle follows the upper level
acceleration command accurately. It is shown that the servo-level dynamics can be included in the overall
design and string stability can be guaranteed. In other words, the proposed control design produces
minimum negative impact on surrounding vehicles. The performance of the proposed ACC algorithm is
examined by using a microscopic simulation program—ACCSIM created at the University of Michigan.
The architecture and basic functions of ACCSIM are described in this paper. Simulation results under
different ACC penetration rate and actuator/engine bandwidth are reported.

 1. INTRODUCTION

Adaptive Cruise Control (ACC) systems were proposed as an enhancement to
classical cruise control systems for ground vehicle speed regulation. ACC system
controls the vehicle speed to follow a driver’s set value when no lead vehicle is in
sight. When a slower leading vehicle is present, the ACC controlled vehicle will
follow the lead vehicle at a safe distance. ACC research first began in the 1960s [1],
and has received evergrowing attention in the last decade. Their commercial
implementation is not possible until recently with significant progresses in sensors,
actuators, and other enabling technologies.

It has been shown that PID or its variations produce satisfactory control results [2].
ACC algorithms of more complex forms have also been proposed and analyzed ([3],
[4], [5]). Two large-scale field tests were also performed recently ([8], [9]), with
regular drivers driving ACC vehicles on normal highways. Preliminary test results
have shown that these simple ACC control algorithms work reliably in real traffic
conditions.
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A two-level approach is commonly used for ACC control design. At the higher
level, desired force or acceleration is computed based on vehicle range, range rate
and other signals. At the lower (servo) level the throttle/brake are manipulated to
follow the desired force or acceleration command closely. It should be noted that this
two-level design concept is also common in automated highway research [10]
although in a slightly different form. This two-level approach will be adopted in this
paper as well. A major contribution that differs this paper from previous research,
however, is that the effect of ACC on surrounding vehicles will be addressed
explicitly. In our two-level design, the upper level controller addresses the
performance of other vehicles and the ACC design will have guaranteed string
stability.

The “string stability” problem has been studied as early as 1977 [11]. A platoon of
vehicles are said to be string stable if, under no other excitations, the range errors
decrease as they propagate along the vehicle stream. In mathematical terms, if the
transfer function from the range error of a vehicle to that of its following vehicle has
a magnitude less than or equal to 1, it is string stability [15]. To achieve string
stability with constant inter-vehicle spacing, vehicle-to-vehicle communication was
shown to be necessary [12]. Yanakiev and Kanellakopoulos [14] used a simple
spring-mass-damper system to demonstrate the idea of string stability and show the
string-stability criterion for constant time-headway and variable time-headway
policies. Swaroop and Hedrick [15] showed that if the coupling between two vehicles
is weak enough, the controlled system is string stable. This conclusion implies that
there is a trade-off between traffic-friendliness and vehicle speed regulation
performance.

Although the criteria for guaranteed string-stability are well known, no synthesis
method has been proposed. The choice of the control gains is mostly based on trial-
and-error. In this paper we propose an optimal control strategy which can be used to
obtain the gains of the upper-level ACC controller. The cost function of this
optimization problem consists of penalty for the range and range rate error terms for
all the vehicles in the string. Therefore, string stability is guaranteed. This problem
was solved by applying a time-space transformation technique proposed by Levin and
Athans [1]. In their study, the optimal controller was assumed to use the information
of all the vehicles in the string. In other words, they solved a centralized control
problem. A decentralized technique was developed later by K. C. Chu [13] for
coupled dynamic systems. In this paper, we apply the formulation proposed by Chu
to the ACC problem. The result is a decentralized algorithm suitable for ACC
implementation. In other words, only local range and range rate signals are needed
for the control of individual vehicles. The performance of the controller can be
adjusted by changing the penalty coefficients of the cost function, just like standard
LQ optimization problems.

In the past, ACC algorithms were evaluated either using a complex vehicle model
with only two vehicles (a lead vehicle and a controlled vehicle) or a simplified
vehicle model with a string of identical vehicles. In this research, we propose to use a
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microscopic simulator, which makes it possible to study the effect of the most
important disturbance—lane changes. In this simulation program, the vehicle
longitudinal dynamics is simple, but a complex lane change behavior is included. A
two-lane closed-circuit highway is constructed in which autonomous lane changes
will occur. The fact that we are simulating individual vehicles enables us to study
safety and traffic flow characteristics more accurately.

The remainder of this paper is organized as follows: string stability analysis of a
platoon of vehicles is shown in Section 2. In Section 3, a synthesis method for ACC
control algorithm with guaranteed string stability is presented. ACCSIM—a micro-
scopic simulation tool we developed to evaluate various ACC systems is described in
Section 4. A servo-level control design is also presented to confirm that the servo-
level dynamics can be robustly regulated. Representative simulation results are given
in Section 5. Finally, conclusions are drawn in Section 6.

 2. STRING STABILITY ANALYSIS OF A CONSTANT-HEADWAY
ACC POLICY

Consider a platoon of identical ACC-controlled vehicles running on the highway in a
string (see Fig. 1). This platoon is said to be string stable if the transfer function from
the range error of a vehicle to that of its following vehicle has a magnitude less than
or equal to one. For each vehicle, define

xi : the position of the ith vehicle
vi : the velocity of the ith vehicle
ui : acceleration command of the ith vehicle (from the upper level ACC)
Ri : ≡ xi −1 − xi , range signal measured by the ith vehicle
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Fig. 1. Schematic diagram of the vehicle string.

We consider a simple proportional control algorithm where the only feedback
signals available are range and range rate signals. Under these assumptions that, an
ACC algorithm adopts a constant-separation policy (i.e., the desired range is a
constant distance), the vehicle platoon cannot be string stable. In the following, we
will assume that the constant-headway policy is adopted, the stability of the vehicle
string is analyzed.

2.1. Ideal vehicles

For a constant-headway ACC, the control objective is to maintain the same speed as
the preceding vehicle and keep the time headway at a constant value where the time
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headway hi is defined as 
i

i
v
R

ih = . For ideal vehicles, the acceleration command is

followed exactly, i.e., ii xu ��= . The control laws for the ith and (i-1)th vehicles are thus
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> . This implies that the feedback gain 2K  should

be large enough to ensure string stability. The time headway also plays an important
role. When 2K  is limited in magnitude by practical reasons (sensor noise, etc.), a

large time headway should be used.

2.2 Vehicles with servo-loop dynamics

When the servo-loop is described by a first-order lag system )(1
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For string stability, K1 and K2 have to satisfy one of the following two constraints:
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 3. OPTIMAL ACC ALGORITHM WITH GUARANTEED STRING STABILITY

Assuming that the dynamics of a single vehicle is described by

kkkkk uBxAx +=� (9)

where kx  denotes the state vector of the kth vehicle (not just the travel distance). The
feedback signals depend on the states of more than one vehicle and thus in general
could have the form

∑
∞

−∞=
−=

j
jjkk xGy (10)

For simple proportional control based on range and range rate signals, the control law
becomes

kkkkdkkk yKvvKvhxxKu ⋅≡−⋅+−−⋅= −− )()( 1211   (11)

An optimal control framework can then be formulated to minimize the range and
range rate errors for all the vehicles in the string. The performance index is defined
as:
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where the coefficients q1, q2 and r can be selected for performance/effort trade-off.
Eq.(12) can be rewritten as
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The major technical challenge is then to compute the control gains ( 1K  and 2K )

given the weighting coefficients q1, q2 and r.

3.1. Optimal ACC algorithm

To solve the optimization problem described above, a bilateral z transformation
technique [13] is applied. This transformation is defined as follows:
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where z is a “space advance” operator and corresponds to moving upstream in the
vehicle string (see Fig. 1). An inverse z transformation is also defined:
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where the path of integration is the unit circle in the complex plane. Notice that the
inverse z-transformation will be denoted as 

k
⋅  in the remainder of this paper.

Converting Eqs.(9)-(11) and (13) into the z domain, we have

)()()()()( zuzBzxzAzx +=�        (16)

)()( zKyzu = (17)

)()()( zxzGzy = (18)

dtzuzRzuzxzQzxJ TT

00
11 )()()()()()(

2

1
∫

∞ −− +=  (19)

From Eqs.(16)-(18), we have )()]()()([)( zxzKGzBzAzx +=� . Define D(z,K)=A(z)+

B(z) KG(z), x(z) is then given by its initial condition 
00 )()( =≡

t
zxzx  from

)()),(exp()( 0 zxtKzDzx ⋅⋅=        

The performance index (19) can then be written as

∫
∞

−− ⋅⋅⋅=
0

0

1
00

1 ))()()),(exp(),()),((exp(
2

1
dtzxzxtKzDKzMtKzDrJ TT   (21)

where )()()()(),( 1 zKGzRKzGzQKzM TT−+= . Assuming that the initial states of

the vehicles are randomly distributed, an initial-state independent optimization
problem can then be defined which minimizes a slightly different cost function:
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Eq.(22) can be written as
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where the matrices ),( KzP  and ),( KzL  are solved from the following algebraic
equations:

0),(),(),(),(),( 1 =++ − KzMKzPKzDKzDKzP T     (25)

0),(),(),(),( 1 =++−
n

T IKzLKzDKzDKzL          (26)

The optimal gain can be calculated numerically from Eqs.(23)-(26). Although the
string stability condition is not explicitly addressed in the proposed control formu-
lation, it is indirectly guaranteed in the cost function formulation. In the following
theorem we will prove that when the optimal control gains K* exist, they will
guarantee string stability.
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Theorem 1 For ideal servo-loop dynamics, i.e., 
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K* which minimize the performance index Ĵ  in Eq.(22) will result in a string stable
ACC design.
Proof: The state )(zx  is dependent on its initial condition according to
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[ )),(exp( tKzD ⋅ ] is bounded, Ĵ  is thus bounded. Therefore, the optimal control

parameters K* which minimize the performance index ˆ J  will produce a string stable
design.

3.2. Ideal vehicles

When the servo-loop is perfect, i.e., the vehicle acceleration follows the acceleration

command from the upper level exactly, we have 
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results are shown below. Figure 2 shows the contour plot of the performance index Ĵ
for q1 = q2 = r = 1 and 4.1=dh . The solid line at the lower left corner shows the

string stability criterion 
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for a set of 36 different q1, q2 combinations on the 21 KK −  plane. The optimal

algorithm always produce string-stable control gains as the Theorem has predicted.

Fig. 2. Contour plot of the performance Index
(ideal vehicles).

Fig. 3. Optimal control parameters plot (ideal
vehicles).

3.3. Vehicles with servo-loop dynamics

When the servo-loop is imperfect, the optimal ACC design needs to take the servo-
loop dynamics into consideration. We consider the case when the servo-loop

dynamics can be approximated by a first-order lag, i.e., 
sa

a
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k
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1  where ak  is

the vehicle acceleration and kda  is the acceleration command from the upper-level.

In this case, three state variables need to be defined for each vehicle, i.e.,
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. The “Q” matrices of the performance index need to be inflated in size

(from 2x2 to 3x3) by adding zero elements. The optimization problem is otherwise
identical to the ideal-vehicle case. Example optimal ACC design results are shown
below. The time constant aτ  of the sub-loop dynamics is assumed to be 0.2 seconds.

Figure 4 shows the contour plot of the performance index Ĵ  for q1 = q2 = r = 1 and
4.1=dh . The solid line at the lower left and upper left corners show the string

stability criterion shown in Eq.(8). Figure 5 shows the optimal control gains for a set
of 49 different q1, q2 combinations on the 21 KK −  plane. Again, the optimal

algorithm always produces string-stable control gains. Under similar penalty
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weighting, it can be noticed that the control gains are always smaller than those of the
ideal-vehicle cases.

Fig. 4. Contour plot of the performance index (with
sub-loop dynamics).

Fig. 5. Optimal control parameters plot  (with
sub-loop dynamics).

 4. UOFM ACC SIMULATOR

A PC based simulation program ACCSIM (Adaptive Cruise Control SIMulator) has
been developed at the University of Michigan to study the effect of ACC on the host
vehicle as well as its surrounding vehicles. This is achieved by constructing a
simulator with multiple vehicles. Variables such as position, speed, acceleration and
lane locations of all the vehicles are simulated. The effect of ACC on safety, fuel
consumption and throughput thus can all be investigated at the vehicle levels. The
simulated highway is assumed to be a two-lane highway of 2km long with no on-off
ramps.

The highway is closed-loop in nature so that if the ACC algorithm results in string
instability, its effect will be amplified and become more visible.

The simulation program is divided into four parts: driver model, vehicle/sensor
model, ACC model, and the interaction model (see Fig. 6). The driver model consists
of a lane change model (for all vehicles) and a car-following model (only for
manually controlled vehicles). The parameters of the driver model are obtained from
field test data [6]. Details of this model can be found in [16]. The vehicles/drivers are
initialized at the beginning of the simulation with a set of attribute parameters such as
control type (manual vs. ACC), acceleration level, desired speed, desired headway,
etc. When the vehicle is controlled by ACC, the ACC algorithm described in the
previous section is used. The interaction model calculates the displacement, speed
and lane locations of all vehicles, and consists of a collection of algebraic and
integration routines. In the following, the vehicle dynamic model is described in
details.
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Fig. 6. ACCSIM--(a): architecture, (b): screen shot.

4.1. Vehicle model

The longitudinal vehicle model is adopted from a work by Sommerville [17]. Figure
7 shows the Simulink block diagram of the vehicle model. Major sub-models are
described in details below.

Engine model
A static look-up table is used to relate the engine states (throttle angle and engine
speed) with its combustion torque (in N-m). Linear interpolation is used between data
points. This engine map was obtained experimentally and the results were reported in
[17]. After the engine output torque is obtained, the engine speed is calculated from

Wt

Tp
T_tran

Engine
Model

Torque 
Converter

Model

theta

Throttle
Angle

We

2

v

Transmission
Model

Vehicle 
Dynamic

Model

1

a

Tt

Fig. 7. Block diagram of the vehicle model.
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ωωωθωω −−=�      (27)

where

θth = throttle angle,
ωe = engine speed,
ωt = torque converter turbine speed,
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Tp = load torque from torque converter pump (to be described below)
Je = engine inertia,
Te = engine combustion torque,
Ta = engine accessory and load torque,

Torque converter model
The torque converter provides smooth coupling between the engine and the
transmission. The pump side of the torque converter is connected to the engine and
the turbine side is connected to the transmission. The behavior of the torque converter
is modeled by a set of quadratic equations relating ωt (turbine speed) and ωp (pump
speed) to turbine and pump torque.

2
32

2
1

2
32

2
1

tptpt

tptpp

nnnT

mmmT

ωωωω

ωωωω

++=

++=
  (28)

The torque converter can operate in one of three modes: converter mode, coupling
mode and overrun mode. The mode and values of the parameters (m1, m2, m3, n1, n2,

and n3) are determined by the speed ratio 
p

tSR
ω
ω= :

SR < 0.842 : Converter mode

0.842≤SR≤1.0 : Coupling mode

SR > 1.0 : Overrun mode

Transmission model
The transmission is responsible for transferring engine torque to the driven wheels.
Its gear ratio is determined by the vehicle speed and engine/load state. The gearshift
in this model is based on symmetric linear shift lines described below:

1 ↔  2 shift, 2.8977.0 +⋅= θωT
2 ↔  3 shift, 1.16377.2 +⋅= θωT
3 →  4 shift, 8.22462.4 +⋅= θωT
4 →  3 shift, 6.9185.7 +⋅= θωT

where Tω is the transmission output speed (rad/sec) and θ  is the throttle angle (in
degrees).

Vehicle dynamics model
Vehicle speed is calculated from the following equation based on Newton’s second
law.
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)),((
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gbrrtetT
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TTrFvrTG
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v −−−−⋅= γωω�   (29)

where 
v = vehicle speed
r = tire radius
Mv = vehicle mass
GT = overall gear ratio
γ = aerodynamic drag coefficient
TT = torque from transmission
Frr = rolling resistance force
Tb = braking torque
Tg = torque due to road inclination

Simulation results of a step-throttle acceleration run (with all other disturbance inputs
set to zero) are shown in Figure 8.

(a) Vehicle velocity response       (b) Engine speed response

Fig. 8. Simulation results of the vehicle response under 15 degree throttle angle.

4.2. Servo-loop control design

As shown in section 3, the higher-level ACC design considers the behavior between
vehicles. A servo-level controller needs to be designed so that the acceleration
command is followed closely. Ideally, the servo-loop controller should be designed
so that its behavior is not only fast but also consistent. The vehicle model shown in
the previous section is used for final simulations. It is, however, too complicated for
control design purposes. A simpler model needs to be constructed. It is a well-known
fact that the relationship between throttle angle and vehicle speed can be

approximated by 
τθ /1+

=
s

KV v

th

 where vK  and τ  vary with vehicle speed V. Based

on this simplified model, an adaptive PI controller is implemented to compensate for
the variation of the vehicle parameters and to achieve steady-state tracking error. The
block diagram of the control sub-loop is shown in Figure 9.
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Fig. 9. Block diagram of the servo-loop system.

The objective of the servo-loop control design ( )(1 aaa d
a

−= τ
� ) is equivalent to

have )(1 VVV d
a

−= τ
� . This goal is achieved by an adaptive PI control algorithm. The

vehicle parameters vK  and τ  are estimated and the PI control gains are updated

accordingly. A standard Recursive Least-Squares (RLS) estimation method is used to
estimated the parameters vK  and τ . Because the vehicle parameters are time-

varying, the RLS method with a forgetting factor is used.
According to the string stability analysis results presented in section 2.2, for an

ACC system with a desired time headway of 1.4 sec, the servo-loop time constant τa

must be less than 0.7 sec for string stability. We designed the servo-loop controller so
that τa = 0.2 sec. The servo-loop system shown in Figure 9 is in fact a second-order
system. We place a pole at -1/τa (= -5.0) and the other (faster) pole at -10/τa so that
the overall response is dominated by the slower pole -1/τa. The RLS adaptive
algorithm is implemented in discrete time with a sampling rate of 10 msec.

The simulation results of the sub-loop controller tracking step changes of
acceleration command with magnitude of 0.1, 0.3, 0.5 and 0.7 m/s^2 at four different
vehicle speeds are shown in Figure 10. It can be seen that the vehicle speed responses
are all very close to the desired (first-order) form and the time constant for the 16
cases are all between 0.19 sec and 0.23 sec. In other words, the sub-loop controller
not only achieves the desired dynamics, its behavior is consistent across a wide range
of operating conditions.

 
Fig. 10. Simulation results of the sub-loop controller under step response.
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 5. SIMULATION RESULTS

The purpose of this simulation study is to investigate the performance of ACC control
algorithm under various penetration rate, and influence dynamics of the servo-loop on
overall ACC performance.

The simulation scenarios are as follows: on the 2km 2-lane test track, 50 vehicles
are created. Six runs were performed with different ACC penetration rate: 0%, 10%,
30%, 50%, 70% and 90%. The status of all the vehicles are recorded for a span of 2
hours. The vehicle desired speed, desired time headway, intention factor and safety
factor are initialized according to the statistical distribution described in a previous
paper [16]. Due to frequent lane changing, transient behavior (i.e., not platooning) of
the ACC system becomes important. Figure 11 shows the root-mean-square (RMS)
values of the range error, range rate error, and acceleration signal of manual vehicles
vs. ACC vehicles. It can be seen that ACC vehicles achieve marked improvement in
range and range rate with a significantly reduced acceleration level.
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Fig. 11. Simulation results of ACC vs. manual vehicles.

Figure 12 shows the cummulative percentage of Time-To-Collision (TTC) under
three ACC penetration rate: 0%, 50% and 90%. Under normal car-following
conditions, TTC should approach infinity. The percentage of time the vehicles on the
highway having a TTC less than, say, 5 seconds is a good index of safety. It can be
seen that when most of the vehicles are controlled by ACC, the possibility of having
TTC<5 seconds is greatly reduced.
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Fig. 12. Time-To-Collision of all vehicles.
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We subsequently study the effect of engin/actuator lag on the performance of ACC.
Three cases are simulated:
(a) Ideal vehicles/original control. In this case, the servo-level dynamics are assumed

to be ideal, and the optimal control ACC results in a control gain of K1 = 1.12 and
K2 = 1.70.

(b) Real vehicles/original control. In the simulations, the servo-level dynamics are
introduced. The ACC algorithm, however, still uses the original control gains K1 =
1.12 and K2 = 1.70.

(c) Real vehicles/new control. In this case, the ACC control design considers the
servo-level dynamics, and thus results in a new control gain (uses techniques
shown in Section 3.3).

The servo-level dynamics is assumed to be described by 
s2.01

1

+
 (which is

achievable by an adaptive control algorithm, see Section 4.2), the RMS values of the
range, range rate and acceleration signals are as shown in Table 1. It can be seen that

Table 1. Simulation results of three cases under servo-level dynamics 
sa

a
d 2.01

1
+=

(50 vehicles/ 2km/ 2 lanes, 50% penetration rate).

Case (a)
Ideal

vehicles
Original
control

Case (b)
Real

vehicles
Original
control

Case (c)
Real

vehicles
New

control

RMS of Range

Error (m)
21.22 32.11 22.29

RMS of Range

Error (m/s)
3.65 6.07 3.83

RMS of Accel.

(m/s^2)
0.74 0.83 0.77

if servo-level dynamics exist but are ignored in the ACC design (case (b)), the
performance may deteriorate significantly. When the ACC design considers servo-
level dynamics (case (c), K1 = 0.83 and K2 = 1.26), the performance becomes quite
similar to that of the ideal case (case (a)).

 6. CONCLUSIONS

In this paper, a control synthesis method was presented for the design of Adaptive
Cruise Control algorithms. This synthesis method is based on optimal control theory
applied to a space-transformed vehicle string. Due to the fact that the control signal
optimizes the range and range rate errors of all the vehicles in the string, string
stability is guaranteed. The resulted upper-level ACC control algorithm generates
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desired acceleration command, which is then followed by a servo-level controller.
Simulation were performed on a microscopic simulator which mimics a two-lane
highway. It is shown that the servo-level dynamics need to be considered in the
design of upper-level ACC to achieve optimal performance.
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