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Abstract. Active adaptive management (AAM) is an approach to wildlife management
that acknowledges our imperfect understanding of natural systems and allows for some
resolution of our uncertainty. Such learning may be characterized by risky strategies in the
short term. Experimentation is only considered acceptable if it is expected to be repaid by
increased returns in the long term, generated by an improved understanding of the system. By
setting AAM problems within a decision theory framework, we can find this optimal balance
between achieving our objectives in the short term and learning for the long term. We apply this
approach to managing the translocation of the bridled nailtail wallaby (Onychogalea fraenata),
an endangered species from Queensland, Australia. Our task is to allocate captive-bred
animals, between two sites or populations to maximize abundance at the end of the
translocation project. One population, at the original site of occupancy, has a known growth
rate. A population potentially could be established at a second site of suitable habitat, but we
can only learn the growth rate of this new population by monitoring translocated animals. We
use a mathematical programming technique called stochastic dynamic programming, which
determines optimal management decisions for every possible management trajectory. We find
optimal strategies under active and passive adaptive management, which enables us to examine
the balance between learning and managing directly. Learning is more often optimal when we
have less prior information about the uncertain population growth rate at the new site, when
the growth rate at the original site is low, and when there is substantial time remaining in the
translocation project. Few studies outside the area of optimal harvesting have framed AAM
within a decision theory context. This is the first application to threatened species translocation.

Key words: active adaptive management; Bayesian statistics; bridled nailtail wallaby; decision theory;
Onychogalea fraenata; optimization; Queensland, Australia; reintroduction; stochastic dynamic program-
ming; translocation; wildlife management.

INTRODUCTION

Managers of natural systems must make difficult

decisions in the face of considerable uncertainty. This

uncertainty presents itself in three ways (Parma and

NCEAS Working Group on Population Management

1998). First, process uncertainty comes from variability

and unpredictability in natural processes that are

beyond the manager’s control. For example, a wildlife

manager cannot predict a population growth rate that is

highly weather dependent. Second, model uncertainty

arises from an inability to understand exactly how a

system works, for example, knowing how a species will

respond to changes in habitat availability. Finally,

observational uncertainty comes from our inability to

directly and precisely measure the state of a system, such

as the number of individuals of a particular species in a

predefined area.

One way to deal with uncertainty when managing is to

take an adaptive management approach. Adaptive

management recognizes uncertainty and can reduce

model uncertainty if that reduction can improve future

performance (Walters 1986). It involves specifying a

number of candidate hypotheses or models of how the

system is functioning, and updating the level of belief in

each model as the results of management are observed.

There are two forms of adaptive management: passive

and active. The difference between the two lies in

whether the learning potential of management actions is

considered when making decisions. In passive adaptive

management, learning is valued, but is not part of the

management plan. In active adaptive management

(AAM), the ability to learn influences management

decisions: there is a balance between achieving the

objective in the present and learning for improved

management in the future.
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Although AAM has been widely advocated for

wildlife management (Parma and NCEAS Working

Group on Population Management 1998, Shea et al.

2002, Aldridge et al. 2004, Folke et al. 2004, Grafton

and Kompas 2005, Takagawa et al. 2005, Morita et al.

2006, Schmiegelow et al. 2006), its application has been

limited (Lee 1999, Allan and Curtis 2005); exceptions

include Sainsbury (1991) and Walters et al. (1993).

Existing management cultures may not encourage the

acknowledgment of uncertainties (MacDonald and Rice

2004, Allan and Curtis 2005). Experimental actions can

be perceived as failures or bad management when there

are short-term losses, even if this outcome reduces model

uncertainty (Lee 1999). The cost of forgoing returns

during short-term experimentation may be too great,

particularly when the ecological ‘‘short-term’’ translates

to years or even decades (Walters et al. 1993). In cases

where there is a clearly defined objective, decision theory

offers a rational and transparent framework for AAM.

We can determine the precise amount of learning that

will be repaid by improved future management, maxi-

mizing expected returns over the entire time frame in

question. A careful choice of time horizon and discount

factor indicates the level of tolerance for short-term

losses (Walters and Green 1997).

Decision theory is a formal approach to decision

making that involves clearly specifying objectives and

acknowledging uncertainty (Clemen 1996, Shea and

NCEAS Working Group on Population Management

1998). It can be implemented with qualitative methods

or complex mathematical tools (Shea and NCEAS

Working Group on Population Management 1998,

Possingham et al. 2001). A decision-theoretic approach

requires a clear statement of management objectives, a

list of management options, identification of the

important variables to monitor, and at least one

plausible description of the dynamics of the system

(Shea and NCEAS Working Group on Population

Management 1998). A quantitative decision-theoretic

approach to adaptive management has been applied

extensively to problems of optimal harvest, particularly

of fish (Walters and Hilborn 1976, Smith and Walters

1981, Walters 1981, Walters et al. 1993) and waterfowl

(Nichols et al. 1995, Williams and Johnson 1995,

Johnson and Case 2000). However, only recently has it

has been applied to other areas of wildlife management,

such as designing marine reserves (Gerber et al. 2005),

managing forests to maintain old-growth habitat

(Moore and Conroy 2006), and planning revegetation

(McCarthy and Possingham 2007).

In this paper we optimize the AAM of bridled nailtail

wallaby (Onychogalea fraenata) translocation, as an

extension of the translocation problem described in

Rout et al. (2007). AAM has been advocated repeatedly

for species translocations (Sarrazin and Barbault 1996,

Brook et al. 2002, Stockwell and Leberg 2002, Hirzel et

al. 2004, Seddon et al. 2007), although it is seldom

applied (Blumstein 2007). A recent exception is Arm-

strong et al. (2007), who applied an AAM approach to

the reintroduction of the New Zealand Hihi to Mokoia

Island. Although the reintroduction itself failed, the use

of an AAM approach allowed them to gain useful

information from the process, which they then utilized in

reintroductions of the species to other islands. However,

their adaptive management manipulations were based

on more traditional experimental design, rather than a

decision-theoretic approach.

We examine the AAM of the translocation of bridled

nailtail wallabies, an endangered species found in central

Queensland, Australia. Once believed to be extinct,

bridled nailtail wallabies were rediscovered at a single

location in what is now Taunton National Park. They

have since been successfully translocated to Idalia

National Park and Avocet Nature Refuge, and a

substantial captive population has been established

(Johnson 2003, Lundie-Jenkins and Lowry 2005). To

satisfy the conditions of recovery, as specified in its

2005–2009 Recovery Plan, the species needs to be

reestablished at two more sites (Lundie-Jenkins and

Lowry 2005).

METHODS

We construct an AAM plan for a manager who must

choose where to translocate wallabies over time, with a

choice of two possible sites. We assume that the

manager has good knowledge of population growth at

the first site. A second new site is available for

translocations, but there is limited information on its

suitability as habitat for this species. The only way to

learn about its suitability is to translocate there and

monitor the outcome. The choice of whether to invest

translocated animals in the original site or the new site

depends heavily on what the population growth rates are

at the two sites (Rout et al. 2007). How much effort

should be put into learning about the new site, as

opposed to just managing with the information already

available? This scenario allows us to look directly at

learning and managing in an AAM context.

Formulating the problem

Assume that wallabies from a captive source popula-

tion can be translocated to two different sites. The captive

population produces two ‘‘excess’’ individuals available

for translocation in each time step. The growth rate of

our population at the ‘‘original’’ translocation site is

known, whereas the growth rate is uncertain at the other

‘‘new’’ site, and we will have opportunities to learn its

value by translocating animals to that site and following

their fate. Management must decide where to translocate

available captive animals, and we represent this decision

with variable d (the number of individuals translocated to

the new site). Both animals can be translocated to the

original site (d¼ 0), both can be translocated to the new

site (d¼ 2), or one animal can be translocated to each site

(d¼ 1).
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Population dynamics

We use a first-order Markov chain stochastic popu-

lation model to describe the dynamics of each popula-

tion. We label the new and original populations A and

B, respectively, and limit them to maximum sizes of KA

and KB. This population size limit can be interpreted as

the carrying capacity of each population site. We only

track female wallabies: there are nAt females in popula-

tion A at time t, and nBt females in population B at time

t. Each time step in the SDP is equal to four months. In

each time step, animals are translocated, then the entire

population is subject to natural mortality, and then

there is reproduction. Translocated animals experience

the same mortality rate as the rest of the population; we

assume that there is no additional mortality associated

with translocation. The translocation project runs for

four years, or 12 time steps (T ¼ 12).

Stochastic births and deaths in the populations are

represented using matrices, with elements that give the

probability of shifting from one population size to

another within a time step. Both populations A and B

have the same recruitment matrix L. (It is simple to

construct different recruitment matrices for each site if it

is relevant to the translocated species.) A female can give

birth to a maximum of one newborn in a time step. This

occurs with a probability k, and there is a probability f

that the newborn will be female. Because we assume a

female cannot have more than one newborn in a time

step, the probability that a single female has i female

newborns in a time step is

bi;1 ¼

ð1� kÞ þ kð1� f Þ if i ¼ 0

kf if i ¼ 1

0 otherwise:

8

>

>

<

>

>

:

Following from this, the probability that j females have i

female newborns is

bi; j ¼
ib1;1 þ ð j � iÞb0;1 if i � j

0 otherwise:

(

At population densities close to the carrying capacity K,

reproduction is truncated to ensure that the population

does not exceed its carrying capacity. Each element lm,n

of the recruitment matrix L is the probability that the

population changes from n to m individuals due to

reproduction:

lm;n ¼

bm�n;n if n � m,K

1�
X

K�1

i¼n

bi�n;n if m ¼ K

0 if m, n or m.K:

8

>

>

>

<

>

>

>

:

Population B has a known mortality rate lB. Each

element sBi;j of the survival matrix SB is the probability of

j individuals surviving to become i individuals in the next

time step, where i and j are both �KB. This is given by

the binomial probability

sBi; j ¼

j

i

� �

l
j�i
B ð1� lBÞ

i
if 0 � i � j

0 otherwise:

8

<

:

The Markov chain transition matrix for this population

from time step (t) to time step (t þ 1) is MB ¼ LSB, the

matrix product of the recruitment matrix L and the

survival matrix SB. We do not consider processes of

immigration and emigration, because, in cases of

threatened species with isolated translocation sites and

low population densities, dispersing animals are unlikely

to survive and reproduce.

We chose demographic parameters within reasonable

ranges for bridled nailtail wallabies, as outlined in Table

1. The birth probability for both populations (k) is kept

constant at 0.9, and we examine three possible mortality

rates for population B (lB): 0.4, 0.3, and 0.2. The per

capita growth rate r of population B can be approxi-

mated as the expected number of female offspring

resulting from one female (Tenhumberg et al. 2004):

r ¼
X

KB

i¼1

imB
i;1

where mB
i;1 is an element of the transition matrix MB. We

thus examine situations in which population B is known

to be decreasing (lB¼ 0.4, r¼ 0.87), roughly stable (lB¼

0.3, r ¼ 1.015), or increasing (lB ¼ 0.2, r ¼ 1.15).

The carrying capacities of the populations, KA and

KB, are both set at 30 individuals. These were not chosen

as realistic population limits for bridled nailtail walla-

bies, but are rather an upper limit on what we can

reasonably compute with the program. To ensure that

this does not bias our conclusions, we analyze results for

when the original population is both far from and close

to its carrying capacity, to examine its effect on the

optimal strategies.

TABLE 1. Reasonable ranges for demographic parameters of bridled nailtail wallabies

Parameter Definition Established range Source

k birth rate (probability of a female giving
birth to one offspring in a 4-month period)

0.89–1.00 Johnson (1997), Fisher et al. (2000)

f ratio of female to male newborns 0.5 McCallum et al. (1995)
lB mortality rate (probability of an individual

dying in a 4-month period)
0.01–0.46 Fisher (1998), Fisher et al. (2000),

Pople et al. (2001)
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To describe our limited knowledge of the mortality

rate in population A (lA), we use a beta probability

distribution. It has the following density function (with

shape parameters a and b):

f ðlAÞ ¼
la�1

A ð1� lAÞ
b�1

Bða; bÞ

where B(a, b) is a beta function that acts as a

normalizing constant. Constructing the survival matrix

for population A is more complicated than for

population B due to the uncertain mortality rate lA.

Because we do not know the mortality rate exactly, we

cannot construct the survival matrix SA exactly. Instead

we must integrate over all possible values for lA,

weighting by the probability that each is the true

mortality rate (using the beta distribution). After some

algebraic manipulation (see Appendix A), the expected

survival matrix for population A can be shown to be

ElAðs
A
h;nAt þd

ja; bÞ

¼

nAt þ d � hþ a� 1

nAt þ d � h

 !

hþ b� 1

h

� �

nAt þ d þ aþ b� 1

nAt þ d

 ! h � nAt þ d

0 h . nAt þ d

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(when we assume that a and b are positive integers),

where sA
h;nAt þd

is the probability that nAt þ d wallabies at

time t become h wallabies at time tþ 1 due to mortality

(h � nAt þ d). ElA (.) is the expected value taken over all

possible values of mortality rate lA. We only consider

cases where the beta parameters a and b are positive

integers. In Appendix A, we give an alternative

formulation for any positive real a and b.

We assume that animals translocated to the new site

are monitored for the time step of their translocation,

and we receive data on whether they survive that time

step. These translocated individuals have the same

mortality rate as the rest of population A, and can thus

be viewed as a sample of the larger population. (If

translocation increases mortality, the mortality rate of

translocated animals is then a conservative estimate of

the mortality of the larger population.) Data on the

death and survival of translocated animals give us

further information about the mortality rate lA, which

can be combined with the present understanding of the

mortality rate (a beta distribution) using Bayes’ theo-

rem. The monitoring of death and survival is a type of

binomial sampling, which is known to be a conjugate for

a beta prior distribution (Casella and Berger 1990). This

means that the posterior combination of new data and a

beta prior is also a beta distribution with different

parameters. We can therefore update our knowledge of

the mortality rate quite easily: for binomial sampling

with g deaths and d� g survivors from n translocations,

the beta distribution can be updated as (aþ g, bþ d� g)

(McCarthy 2007). That is, to update the mortality rate,

we add the number of animals that die to a, and add the

number of animals that survive to b.

Parameters a and b can take any positive value, yet it

is necessary to choose a finite set of values at which to

calculate the optimal management strategy. Throughout

the four-year translocation project there is a maximum

of 22 opportunities to learn about the new site

(translocation occurs in time steps 1 to 11; in each,

two animals at most can be translocated to the new site).

If we were to begin the translocation project with a

uniform beta distribution (a¼ 1, b¼ 1), and we have at

most 22 learning opportunities, we could arrive at any

combination of a¼1, 2, . . . and b¼1, 2, . . . such that aþ
b � 24. To allow for other more informative prior

distributions, we imposed a much higher ceiling of 52 on

a þ b. Any additional data obtained that would cause

the parameters to violate this condition are ignored. We

analyze results only up to aþ b � 24 to ensure that this

upper bound on learning does not interfere with the

strategies observed.

Finding the optimal management strategy

To determine the optimal management decisions, we

use a mathematical method known as stochastic

dynamic programming, or SDP. SDP determines the

exact optimal decision for each possible management

state, which in this case is defined by the number of

animals at each site. It can be applied to any stochastic

system with a finite number of states, and where

sequential decisions are made (Bellman 1957, Mangel

and Clark 1988, Lubow 1996). SDP has been applied to

ecological management problems such as harvesting a

wild population (Walters 1981, Johnson et al. 1997),

biocontrol (Shea and Possingham 2000), fire manage-

ment (McCarthy et al. 2001), allocation of conservation

effort (Yokomizo et al. 2003, Wilson et al. 2006), and

landscape reconstruction (Westphal et al. 2003), as well

as translocation (Lubow 1996, Tenhumberg et al. 2004,

Rout et al. 2007).

The first step of any optimization is to define the

objective. We aim to maximize the total number of

animals in both populations at the end of the

translocation period. That is,

VðT; a; b; nAT ; nBTÞ ¼ nAT þ nBT ð1Þ

where V is the value of the strategy. We subsequently

calculate the value of the optimal strategy at earlier time

steps in the translocation project (assuming that all

subsequent decisions are optimal) as the expected total

population size at terminal time T. Stochastic dynamic

programming produces state-dependent optimal deci-

sions, which in this case means that an optimal decision

is found for each population state, i.e., for every possible

number of animals in each population (nAT , n
B
T), and a

range of states of belief regarding the uncertain

mortality rate (positive integer values of a and b such

that aþb � 52). At the terminal time T, the final reward

TRACY M. ROUT ET AL.518 Ecological Applications
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is calculated for each population state based on the

objective function. The SDP then steps backward, to

evaluate each possible decision for each possible state in

the previous time step, using transition probabilities

given by the population models. Of all the possible

decisions to be made, the one that yields the highest

expected returns is selected as the optimal decision for

that system state at that time step.

Passive adaptive management

Although we are principally concerned with optimiz-

ing active adaptive management, we first calculate the

equivalent optimal passive adaptive strategies. These are

essential for identifying situations in which it is optimal

to learn under AAM. By comparing optimal strategies,

we can find situations where it is optimal to add to the

new population under active adaptive management, but

not under passive adaptive management; these are

decisions driven by the need to learn.

The dynamic programming equation for passive

adaptive management is

Vðt; a; b; nAt ; nBt Þ

¼ max
d¼ 0;1;2f g

X

KA

i¼0

X

KB

j¼0

X

nAt

h¼0

X

d

g¼0

Vðt þ 1; a; b; i; jÞ

3Elðs
A
h;nAt

ja; bÞElðs
A
d�g;dja; bÞlAi;hþd�gm

B
j;nBt þ2�d

where V is the expected final population size (across

both sites) under optimal passive adaptive management,

and it depends on the current time step in the

translocation project (t), current knowledge about the

mortality rate in population A (a beta distribution with

parameters a and b), and the current size of each

population (nAt and nBt ). It is found by determining the

expected final population sizes under each possible

translocation choice d and choosing the maximum.

These expected values are calculated by weighting all of

the possible outcomes over the next time step by their

probability of occurrence and summing the results. The

SDP is calculated backward, so it begins by calculating

the expected value V in the final time step T of the

translocation project (Eq. 1). It then steps back to the

previous time step T� 1, to calculate the expected final

population sizes under each possible translocation

choice, and finds the translocation for each state that

will give the highest expected final population size. It

continues to step backward, repeating this process and

finding the optimal translocation d for each state in each

time step.

We assume we observe that g of the d animals

translocated to population A die within the time step.

Population A has size i in year tþ 1, while population B

has size j. The probability of population B having size j

is the probability of nBt þ 2 � d animals after

translocation becoming j animals through births and

deaths, and this can be read from the matrix MB. To

investigate the size of population A at time tþ 1, we use

the expected survival matrix to determine the probability

that h of the initial nAt animals survive, and the

probability that d � g of the d translocated animals

survive. Examining these probabilities separately is not

necessary under passive adaptive management, but

allows the beta distribution to be updated under active

adaptive management, as we will describe. The surviving

hþ d� g individuals reproduce to become i animals, and

the probability of this occurring is read from the

recruitment matrix L.

Our observation that g of the d animals translocated

to population A die within the time step gives us new

information about the mortality rate of population A.

However, as previously mentioned, the learning poten-

tial of actions is not considered when determining the

value of a management decision under passive adaptive

management. Hence, a and b are not updated with this

new information when finding the optimal decision.

When putting these optimal decisions into practice, new

information about the mortality rate would not be

ignored. In each time step, we would implement the

optimal decision for the current state, which includes the

current estimate of the new population mortality rate

(described by a and b). If we were to learn new

information about this mortality rate, in the next time

step we would implement the optimal decision for the

new estimate of the mortality rate. Thus learning may

still occur, but under passive adaptive management the

optimal decisions do not take into account the value of

learning.

Active adaptive management

The dynamic programming equation for active

adaptive management is

Vðt; a; b; nAt ; nBt Þ

¼ max
d¼ 0;1;2f g

X

KA

i¼0

X

KB

j¼0

X

nAt

h¼0

X

d

g¼0

Vðt þ 1; aþ g; bþ d � g; i; jÞ

3Elðs
A
h;nAt

ja; bÞElðs
A
d�g;dja; bÞlAi;hþd�gm

B
j;nBt þ2�d:

This is the same as for passive adaptive management,

except that a and b are updated with new information

that we receive from translocating to population A.

Consequently, our updated understanding of the mor-

tality rate in population A is a beta distribution with

parameters a þ g and b þ d � g.

RESULTS

We present optimal translocation strategies as a

function of the expected mortality rate E(lA) ¼ a/(a þ
b) and (a� 1)þ (b� 1), rather than considering a and b

directly. The expected mortality rate is our best point

estimate of the true underlying mortality rate at any

time, whereas (a � 1) þ (b � 1) gives the number of

observations made if we begin with a uniform (a¼b¼1)
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prior distribution for the mortality rate. Thus, it is a

measure of the confidence we have in our estimated

mortality rate. Furthermore, we focus our discussion of

results on the optimal balance between learning and

managing for a translocation project. We aim to answer

this question: When should we learn to improve future

management and when should we just manage as best

we can with the information we have? Due to the

complexity of the SDP and the volume of results

generated, it is impossible to display the optimal

management strategies in their entirety. Instead we

focus on overall patterns in the results and illustrate our

discussion with relevant examples.

Passive adaptive management

The optimal translocation to population A under

passive adaptive management depends only on the

expected mortality rate, and not on the uncertainty

around that mortality rate ([a� 1]þ [b� 1]); see Figs. 1

and 2. If both sites are empty at the start of the

translocation project (t ¼ 1), optimal passive adaptive

decisions are not affected by the carrying capacity of the

original site (Fig. 1a, c, e). In this case, the expected

mortality rate informs translocation decisions in the

same way that the known mortality rate did previously

(Rout et al. 2007). Generally, the optimal passive

adaptive strategy is to translocate both wallabies to

the site with the lowest (expected) mortality rate (Fig.

1a, c, e). If the original population is stable or increas-

ing, optimal passive adaptive decisions are slightly

affected by the carrying capacity of the new site (Fig.

1c, e). If the new site has a very low estimated death rate,

instead of translocating both animals to the new

population it is best to translocate one animal into each

population. This is because the new site is expected to

grow at such a rate that it will reach its carrying capacity

within the translocation period, so the benefit of adding

extra animals is diminished.

If the original population has a high mortality rate of

0.4, the passive adaptive decisions are not affected by the

number of wallabies in that population (compare Fig. 1a

and b). However, if the original population has a lower

mortality rate, optimal passive adaptive decisions when

it is close to carrying capacity are significantly different

than those when it is empty. If the original population is

stable (lB ¼ 0.3), it is optimal to translocate to the new

site if it is expected to have a mortality rate of 0.37 or

less, 0.07 higher than when the original site is empty

(compare Fig. 1c and d). If the original population is

increasing (lB ¼ 0.2), it is optimal to translocate to the

new site if it is expected to have a mortality rate of 0.65

or less, 0.45 higher than when the original site is empty

(compare Fig. 1e and f). In both these cases, the original

population is likely to increase to carrying capacity

within the time horizon without the aid of translocation.

Any animals added to this population when it is at

carrying capacity have a mortality rate of 1. In general,

it is optimal to add to the population with the lowest

mortality rate. Thus, as the original population ap-

proaches carrying capacity it becomes optimal to

translocate individuals to the new site over a broader

range of (expected) mortality rates. The optimal passive

adaptive strategy is thus driven only by the expected

growth rates of the two sites in relation to their carrying

capacities, not by the uncertainty in the unknown

mortality rate at the new site.

Learning for active adaptive management

By comparing the passive and active adaptive

strategies, we can determine the importance of learning

about the mortality at the new site. The passive and

active adaptive strategies show a marked difference in

the early stages of the translocation project. For

example, consider that both sites are empty, and the

original population has a high mortality rate of 0.4 (Fig.

1a). There are many instances in which it is optimal to

translocate to the new site under the active adaptive

strategy, but not under the passive adaptive strategy.

This is because the passive adaptive strategy is to

translocate to the site with the lowest (expected)

mortality rate and maximize expected population

growth over the translocation project. However, under

the active adaptive strategy it is sometimes optimal to

translocate to the new site even when we suspect it has

the lower population growth rate, so that we can learn

more about the mortality rate there. Any losses incurred

by translocating to a site with a higher mortality rate are

outweighed by the benefit to future management of

reducing uncertainty about the true mortality rate at the

new site. Put more simply, the optimal decisions in these

instances are driven by a need to learn.

Effect of prior knowledge on learning

As we would expect, it is more beneficial to learn

when the estimated mortality rate at the new site is

highly uncertain. For example, consider again that both

sites are empty at the start of the translocation project,

and the original population has a high mortality rate of

0.4 (Fig. 1a). When we have a low amount of prior

information from which to estimate the new site

mortality rate ([a � 1] þ [b � 1] ¼ 1), we translocate to

the new site up to an expected mortality rate of 0.67.

Thus, if we are very uncertain, it is best to learn about

the new site if we think it may have a mortality rate up

to 0.27 higher than the mortality rate of the original

population. When we have a large amount of prior

information ([a� 1]þ [b� 1]¼22, for example) and thus

have more confidence in our estimate of the mortality

rate, it is best to learn about the new site up to an

estimated mortality rate of 0.46, only 0.06 higher than

the mortality rate of the original population.

Effect of mortality rate at the original site on learning

The importance of learning is also affected by the

mortality rate of the original population. In Fig. 1 we

compare strategies across different mortality rates for
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the original population, at the start of the translocation

project. If the original population is empty and has a

mortality rate of 0.4 (Fig. 1a), we learn about the new

site if it has an estimated mortality rate up to 0.27 higher

than the original population. If the original population

is empty and has a mortality rate of 0.3 (Fig. 1c), we

learn about the new site if it has an estimated mortality

rate up to 0.2 higher. If the original population is empty

FIG. 1. Adaptive translocation strategies at the beginning of the project (t¼ 1) when the new site is empty (nA
1
¼ 0), where nAt is

the number of females in population A at time t. The original site (nB
1
) is either empty (a, c, e) or consists of 20 wallabies (b, d, f).

Shading indicates the optimal passive adaptive strategy: translocate both wallabies to the new site (d¼2, dark shading), one wallaby
to each site (d ¼ 1, light shading), or both wallabies to the original site (d ¼ 0, no shading), where d is the number of individuals
translocated to the new site. Symbols indicate the optimal active adaptive strategy: translocate both wallabies to the new site (d¼ 2,
solid circles), one wallaby to each site (d ¼ 1, triangles), or both wallabies to the original site (d ¼ 0, crosses). Three different
mortality rates for the original population (lB) are shown: 0.4 in the top row, 0.3 in the middle row, and 0.2 in the bottom row.
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and has a mortality rate of 0.2 (Fig. 1e), we learn about

the new site if it has an estimated mortality rate up to

0.05 higher. Thus, the extent of learning decreases as

the mortality rate of the original population decreases.

If the original population has a low mortality rate,

there is less pressure to explore the alternative.

However, if the original population has a higher

mortality rate, it becomes important to determine

whether a population established at the new site will

fare any better. It is also less risky to translocate to the

FIG. 2. Adaptive translocation strategies when the original population has a mortality rate of 0.3 (lB¼ 0.3) and the new site is
empty (nAt ¼ 0). Strategies are shown across time: at the start of the translocation project 3 years 8 months remaining, t¼ 1), in the
middle (2 years remaining, t¼ 5), and close to the end (8 months remaining, t¼ 10). The original site (nBt ) is either empty (a, c, e) or
consists of 20 wallabies (b, d, f). Shading indicates the optimal passive adaptive strategy: translocate both wallabies to the new site
(d ¼ 2, dark shading), one wallaby to each site (d ¼ 1, light shading), or both wallabies to the original site (d ¼ 0, no shading).
Symbols indicate the optimal active adaptive strategy: translocate both wallabies to the new site (d¼2, solid circles), one wallaby to
each site (d ¼ 1, triangles), or both wallabies to the original site (d¼ 0, crosses).
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new site if the benefit of translocating to the original

population is small.

This observation does not hold when learning is

influenced by the carrying capacity. Instances of

learning can increase as the mortality rate of the original

population decreases, if the original population is close

to its carrying capacity or likely to reach its carrying

capacity during the translocation period (Fig. 1b, d, f).

For example, consider that the original population has a

mortality rate of 0.2 at the start of the translocation

project. If it is empty, it is optimal to learn about the

new site if it has an estimated mortality rate of up to

0.25, which is 0.05 higher than under the passive

adaptive results (Fig. 1e). However, if the original

population is close to its carrying capacity, it is optimal

to translocate to the new site for the entire range of

estimated mortality rates, which is up to 0.35 higher

than under the passive adaptive results (Fig. 1f ). As

previously noted, any animals added to a population at

carrying capacity die immediately and are effectively

‘‘wasted.’’ Translocating to the new site (and learning

the population mortality rate there) is therefore encour-

aged when the original population is likely to achieve the

carrying capacity without translocation: the risk of

failing when learning is outweighed by the risk of

translocating to a full population. Translocation to the

new site also has the added benefit of improving future

management.

Effect of time remaining on learning

Instances of learning decrease as the translocation

project progresses through time. For example, consider

that the mortality rate of the original population is 0.3

and the new site is empty. If the original site is also

empty at the start of the translocation project, learning

is an important driver of optimal decisions up to an

expected new site mortality rate of 0.5 (Fig. 2a). By the

middle of the project, the extent of this learning

decreases (Fig. 2c), and close to the end of the project

(the second-to-last time step), learning only occurs up to

an expected new site mortality rate of 0.33 (Fig. 2e). In

the final time step of the project, no learning occurs at

all. Again, we can see that when the original population

is close to its carrying capacity, the range of expected

mortality rates over which it is optimal to translocate to

the new site is increased, and the range over which it is

optimal to learn is increased (Fig. 2b, d, f ). However, we

still observe the same pattern of decreased instances of

learning over time. The importance of learning decreases

over time because its potential benefit to future

management decreases. In the final time step there is

no prospect of future management, so there is no benefit

to learning.

Simulating active adaptive translocation

An example of the active adaptive management of a

translocation project is shown in Fig. 3. Initially, the

original and new sites hold 15 and 0 wallabies,

respectively. The mortality rate at the original popula-

tion is known to be 0.3; the mortality rate at the new site

is uncertain and a beta(3, 7) prior distribution is set for

it. This is a somewhat vague distribution with a mean of

0.3, attaching roughly equal weight to the possibilities of

an increasing or a declining population at the new site.

In the first three time steps, all captive wallabies are

translocated to the new site with the purpose of learning

the mortality rate at this site. All six translocated

wallabies survive their first time step in this new

environment, and the manager’s perception of the

mortality rate decreases. Furthermore, wallabies begin

reproducing at the new site. The manager is now

sufficiently confident that the new site is superior to

the original site and all wallabies are translocated to the

original population over the next three time steps.

However, by chance the new population actually

declines slightly, so the manager supplements the new

population. The new population thrives over the second

half of the project, and the estimated mortality rate for

the new population is refined to a value near 0.2 as the

translocation successes and failures are observed. The

original population has 20 wallabies at the end of the

project and the final population size at the new site is 27

wallabies, consisting of surviving translocated wallabies

and their offspring.

We generated multiple simulations of translocation

management over a range of parameter values (Appen-

dix B). Active adaptive management produced mean

final population sizes that were consistently greater than

or roughly equal to those from passive adaptive

management. The improvement of active over passive

adaptive management is generally only 1–3% but can be

as great as 20%. This occurs when the new site has an

underlying mortality rate of lA ¼ 0.2 while the original

population is known to be steady with lB ¼ 0.3. When

both sites are empty, an active adaptive manager will

translocate to the new site and quickly learn that a

population can grow rapidly there. By contrast, a

passive adaptive manager will spend much of the project

establishing a steady population at the original site

before translocating wallabies to the new site of

unknown quality.

DISCUSSION

We have constructed a translocation strategy that

incorporates uncertainty in the mortality rate of

translocated animals at a site. Under passive adaptive

management, the expected mortality rate at the new site

is treated as the true value when making decisions.

Under active adaptive management, there is opportunity

to learn the true mortality rate and improve future

management as a result. Learning is most beneficial to

management: (1) when the original population has a

high mortality rate; (2) when the original population is

likely to reach carrying capacity; (3) when the mortality

rate of the new site is highly uncertain; and (4) when

more time remains for the benefits of learning to be
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realized. The benefits to management can be significant:

our simulations show that learning can increase the final

number of animals by as much as 20%.

We have shown that the optimal strategies are

influenced by the imposed carrying capacity. The specific

carrying capacities imposed here are a necessity of the

computational method, and may not reflect the biolog-

ical reality for our case study of bridled nailtail

wallabies. By analyzing results for when the original

population is both far from and close to its carrying

capacity, we have been able to examine the effect of this

carrying capacity on the optimal strategies as well as the

extent of learning. We have focused mainly on the

carrying capacity of the original population, because we

expect that a population translocated entirely to a new

site is unlikely to approach such a limit over the course

of the project.

We used a beta distribution to represent our

knowledge of the uncertain parameter. In combination

with the binomial observation process, this allows us to

model belief of all values on the interval [0, 1] using only

two state variables, a and b, and to update model belief

simply. The approach reduces computational require-

ments substantially and has potential application in a

range of ecological management scenarios, such as

measuring revegetation success (McCarthy and Possi-

ngham 2007) and modeling transitions in population

size (Hauser and Possingham 2008).

There are several ways in which this framework could

be made more realistic. By assuming that translocated

animals have the same mortality rate as the larger

population, we do not account for any increase in

mortality caused by the translocation itself. We could

instead assume that there is some functional relationship

between the mortality rate of translocated animals and

that of the larger population. This would add complex-

ity to the model, and the method of updating the

expected mortality rate. We could also expand the

framework to account for uncertainty in more than one

model parameter. Incorporating uncertainty for more

parameters would entail adding at least two more states

to the SDP for each uncertain parameter, with each

addition creating a geometric increase in computational

requirements. Also, the results from such a program

would be extremely difficult to interpret, especially when

determining which factors drive optimal decisions. This

model also ignores the effect of environmental stochas-

ticity, such as the impact of weather on mortality.

Incorporating this would involve tracking a variable

mortality rate over time, which would also involve a

significant increase in computational requirements as

well as complexity of results. As with any model, there is

a trade-off between realism and simplicity. As the first

application of a Bayesian SDP to translocation, our

model is a simpler one that can be built upon. If the

complexity of this model were to be increased, it might

be more appropriate to use a different decision analysis

method to find an approximate rather than optimal

solution.

Our simulations required specifying a prior probabil-

ity for the mortality rate of the new site that could be

updated when learning. We tried to select a vague prior:

setting the mean of our prior to be 0.3 gives even weights

to the possibilities of a declining population and a

growing population. We could instead use a uniform

distribution, which gives an initial mean mortality rate

FIG. 3. An example simulation of active adaptive management of a four-year translocation project. (a) Number of wallabies at
the new site, nAt (solid line), number of wallabies at the original site nBt (long-dashed line), and d, the number of wallabies
translocated to the new site (short-dashed line). (b) Estimated mortality rate lA at the new site, denoted by the mean (solid line),
with 2.5th and 97.5th percentiles on the beta distribution (short-dashed lines). The true mortality rates of the populations at the
original and new sites are lB¼0.3 and lA¼0.2, respectively. Initially the original population consists of 15 wallabies, the new site is
empty, and the prior distribution for the uncertain mortality rate at the new site is Beta(3, 7).
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of 0.5. However, as the mortality rate values for the

original population range between 0.2 and 0.4, this

means that the new site initially would be considered less

suitable than the original site. Under passive adaptive

management (where the expected mortality rate is

treated as the true rate), the new site would never be

utilized. Under active adaptive management, there is still

an incentive to learn about the new site despite the prior

belief of a high mortality rate. In this case, active

adaptive management greatly outperforms passive

adaptive management because, through learning, the

new site can be discovered to be better than initially

thought. In general, it is intuitive that the experimental

approach of the active adaptive manager will perform

well if the new site is highly suitable and will cause

mortality when the site is unsuitable. This structured

decision theoretic approach indicates when a manager

should withdraw from an unsuitable site and utilize a

new suitable location for species translocation. When

applying these strategies in practice, ideally there might

be information about the species and habitat quality

that would allow the manager to construct a prior

appropriate to the specific situation.

The translocation of threatened species could be an

appropriate venue for the application of active adaptive

management. Because of its threatened status, it may

not be possible to delay the translocation of a species to

learn about the suitability of candidate translocation

sites. When managing in an actively adaptive way, this

learning is incorporated into the management process,

which can then begin without delay. By using decision

theory to find the best management strategies, experi-

mentation can be undertaken only when the benefits to

future management are greater than the risk of losing

animals.

ACKNOWLEDGMENTS

Many thanks to Mike Runge, Bruce Lubow, and Michael
Bode for helpful comments on this manuscript. Also thanks to
Mick McCarthy, Tracey Regan, Yvonne Buckley, and Tony
Pople for feedback on earlier versions of this work.

LITERATURE CITED

Aldridge, C. L., M. S. Boyce, and R. K. Baydack. 2004.
Adaptive management of prairie grouse: how do we get
there? Wildlife Society Bulletin 32:92–103.

Allan, C., and A. Curtis. 2005. Nipped in the bud: why regional
scale adaptive management is not blooming. Environmental
Management 36:414–425.

Armstrong, D. P., I. Castro, and R. Griffiths. 2007. Using
adaptive management to determine requirements of re-
introduced populations: the case of the New Zealand hihi.
Journal of Applied Ecology 44:953–962.

Bellman, R. E. 1957. Dynamic programming. Princeton
University Press, Princeton, New Jersey, USA.

Blumstein, D. T. 2007. Darwinian decision making: putting the
adaptive into adaptive management. Conservation Biology
21:552–553.

Brook, B. W., A. D. Griffiths, and H. L. Puckey. 2002.
Modeling strategies for the management of the critically
endangered Carpentarian rock-rat (Zyzomys palatalis) of
northern Australia. Journal of Environmental Management
65:355–368.

Casella, G., and R. L. Berger. 1990. Statistical inference.
Duxbury Press, Belmont, California, USA.

Clemen, R. T. 1996. Making hard decisions: An introduction to
decision analysis. Duxbury Press, Pacific Grove, California,
USA.

Fisher, D. 1998. Behavioural ecology and demography of the
bridled nailtail wallaby, Onychogalea fraenata. Dissertation.
University of Queensland, Brisbane, Australia.

Fisher, D. O., S. D. Hoyle, and S. P. Blomberg. 2000. Population
dynamics and survival of an endangered wallaby: a compar-
ison of four methods. Ecological Applications 10:901–910.

Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L.
Gunderson, and C. S. Holling. 2004. Regime shifts, resilience,
and biodiversity in ecosystem management. Annual Review
of Ecology, Evolution, and Systematics 35:557–581.

Gerber, L. R., M. Beger, M. A. McCarthy, and H. P.
Possingham. 2005. A theory for optimal monitoring of
marine reserves. Ecology Letters 8:829–837.

Grafton, R. Q., and T. Kompas. 2005. Uncertainty and the
active adaptive management of marine reserves. Marine
Policy 29:471–479.

Hauser, C. E., and H. P. Possingham. 2008. Experimental or
precautionary? Adaptive management over a range of time
horizons. Journal of Applied Ecology 45:72–81.

Hirzel, A. H., B. Posse, P.-A. Oggier, Y. Crettenands, C. Glenz,
and R. Arlettaz. 2004. Ecological requirements of reintroduced
species and the implications for release policy: the case of the
bearded vulture. Journal of Applied Ecology 41:1103–1116.

Johnson, F. A., and D. J. Case. 2000. Adaptive regulation of
waterfowl harvests: lessons learned and prospects for the
future. Transactions of the North American Wildlife and
Natural Resources Conference 65:94–108.

Johnson, F. A., C. M. Moore, W. L. Kendall, J. A. Dubovsky,
D. F. Caithamer, J. R. Kelley, and B. K. Williams. 1997.
Uncertainty and the management of mallard harvests.
Journal of Wildlife Management 61:202–216.

Johnson, P. M. 1997. Reproduction in the bridled nailtail
wallaby, Onychogalea fraenata Gould (Marsupialia: Macro-
podidae), in captivity. Wildlife Research 24:411–415.

Johnson, P. 2003. Kangaroos of Queensland. Queensland
Museum/Environmental Protection Agency of Queensland,
Queensland, Australia.

Lee, K. N. 1999. Appraising adaptive management. Conserva-
tion Ecology 3(2):3. hhttp://www.ecologyandsociety.org/
vol3/iss2/art3i

Lubow, B. C. 1996. Optimal translocation strategies for
enhancing stochastic metapopulation viability. Ecological
Applications 6:1268–1280.

Lundie-Jenkins, G., and J. Lowry. 2005. Recovery plan for the
bridled nailtail wallaby (Onychogalea fraenata) 2005–2009.
Environmental Protection Agency/Queensland Parks and
Wildlife Service, Brisbane, Australia.

MacDonald, G. B., and J. A. Rice. 2004. An active adaptive
management case study in Ontario boreal mixedwood stands.
Forestry Chronicle 80:391–400.

Mangel, M., and C. W. Clark. 1988. Dynamic modeling in
behavioral ecology. Princeton University Press, Princeton,
New Jersey, USA.

McCallum, H., P. Timmers, and S. Hoyle. 1995. Modeling the
impact of predation on reintroductions of bridled nailtail
wallabies. Wildlife Research 22:163–171.

McCarthy, M. A. 2007. Bayesian methods for ecology. Cam-
bridge University Press, Cambridge, UK.

McCarthy, M. A., and H. P. Possingham. 2007. Active adaptive
management for conservation. Conservation Biology 21:956–
963.

McCarthy, M. A., H. P. Possingham, and A. M. Gill. 2001.
Using stochastic dynamic programming to determine optimal
fire management for Banksia ornata. Journal of Applied
Ecology 38:585–592.

March 2009 525OPTIMAL ADAPTIVE TRANSLOCATION



Moore, C. T., and M. J. Conroy. 2006. Optimal regeneration
planning for old-growth forest: addressing scientific uncer-
tainty in endangered species recovery through adaptive
management. Forest Science 52:155–172.

Morita, K., T. Saito, Y. Miyakoshi, M.-A. Fukuwaka, T.
Nagasawa, and M. Kaeriyama. 2006. A review of Pacific
salmon hatchery programmes on Hokkaido, Japan. ICES
[International Council for the Exploration of the Sea] Journal
of Marine Science 63:1353–1363.

Nichols, J. D., F. A. Johnson, and B. K. Williams. 1995.
Managing North American waterfowl in the face of
uncertainty. Annual Review of Ecology and Systematics 26:
177–199.

Parma, A. M., and NCEAS Working Group on Population
Management. 1998. What can adaptive management do for
our fish, forests, food and biodiversity? Integrative Biology:
Issues, News and Reviews 1:16––26.

Pople, A. R., J. Lowry, G. Lundie-Jenkins, T. F. Clancy, H. I.
McCallum, D. Sigg, D. Hoolihan, and S. Hamilton. 2001.
Demography of bridled nailtail wallabies translocated to the
edge of their former range from captive and wild stock.
Biological Conservation 102:285–299.

Possingham, H. P., S. J. Andelman, B. R. Noon, S. Trombulak,
and H. R. Pulliam. 2001. Making smart conservation
decisions. Pages 225–244 in M. A. Soulé and G. H. Orians,
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APPENDIX A

Derivation of the expected mortality rate of population A (Ecological Archives A019-022-A1).

APPENDIX B

Summary statistics of translocation project simulations (Ecological Archives A019-022-A2).
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