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Abstract This paper presents an optimal nonconforming adaptive finite element
algorithm and proves its quasi-optimal complexity for the Stokes equations with
respect to natural approximation classes. The proof does not explicitly involve the
pressure variable and follows from a novel discrete Helmholtz decomposition of devi-
atoric functions.
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1 Introduction

The convergence and the optimality of conforming adaptive finite element methods
(FEM) for Poisson-type problems have recently been established and we refer to the
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landmarks [2,12,18,23,26]. The extension to nonconforming methods for the same
class of problems has been established thereafter in [7,10,20,25] based on the concept
of quasi-orthogonality.

Although convergence and optimality of adaptive (nonconforming) finite element
methods are well understood in the elliptic setting, the literature regarding convergence
and analysis of adaptive methods for the Stokes problem is still rare. One reason might
be the lack of a concept of (quasi-)orthogonality which is a key tool in the existing
analysis of adaptive nonconforming methods for the Poisson problem [10,20]. Early
work [6] for the Stokes problem even suggested an Uzawa algorithm with Poisson
solves to circumvent this difficulty.

This paper concerns the optimality of the adaptive mesh-refinement in the noncon-
forming Crouzeix–Raviart finite element method (NCFEM) for the Stokes equations
[14] based on the a posteriori error estimator of [17]. The first convergence and opti-
mality result for an adaptive NCFEM for the Stokes problem was included in the
technical report [21] (see [22] for a published version) while similar convergence and
optimality analysis appeared recently in [5]. However, there is a gap in the complexity
analysis of [5] (the estimate in line 23 on page 983 in the last step of the proof of
Lemma 5.2 involves some constant C = C(H/h) which depends on the ratio of the
two mesh-sizes and so cannot be used in the proof of Theorem 5.4 where h � H
indicates an arbitrary refinement of H over many levels). In contrast to [5,21,22], the
present work bases on a novel discrete Helmholtz decomposition of piecewise constant
deviatoric matrices. Helmholtz decompositions have been used already in [24,25] to
analyze adaptive nonconforming methods for the Poisson problem and in [16] for lin-
ear elasticity. Moreover, our analysis comes without the error in the pressure variable
which makes it very brief and neat compared with [5,21,22].

The adaptive NCFEM is based on sequences of shape-regular triangulations T�,
discrete spaces V� := CR1

0(T�) × CR1
0(T�) and Q� := P0(T�) ∩ L2

0(�), and the
discrete bilinear forms

aNC(�)(u�, v�) =
∫

�

D�u� : D�v� dx and

bNC(�)(u�, q�) =
∫

�

q�div�u� dx

for u�, v� ∈ V� and q� ∈ Q�. Given some right-hand side F ∈ V ∗
� , the discrete

solution (u�, p�) ∈ V� × Q� satisfies, for all (v�, q�) ∈ V� × Q�, that

aNC(�) (u�, v�) + bNC(�)(v�, p�) + bNC(�)(u�, q�) = F(v�).
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The corresponding adaptive algorithm is based on a bulk criterion for the contribution

η2
�(T ) := |T | ‖ f ‖ L2(T )

2 + |T |1/2
∑

E∈E(T )

‖[∂u�/∂s]E‖2
L2(E)

for a triangle T with area |T | and edges E ∈ E(T ); [∂u�/∂s]E denotes the jump of
the tangential components of the piecewise constant gradient D�u� along any edge
E ∈ E�.

The proposed algorithm Acrfem of Subsect. 2.2 is quasi-optimally convergent
with respect to some natural approximation class As and its semi-norm |·|As for some
s > 0 in the following sense. Given the exact velocity u and exact pressure p, the
generated sequences of triangulations (T�)� and discrete solutions (u�, p�)� satisfy on
any level � ∈ N0, that the number of triangles |T�| of T� is bounded like

|T�| − |T0| ≤ Copt|(u, p, f )|As
−1/s (1.1)

×(‖Du − D�u�‖2
L2(�)

+ ‖p − p�‖2
L2(�)

+ osc2 ( f, T�)
)−1/(2s)

.

The convergence rate s is optimal in the sense that |(u, p, f )|As is the infimum of all
upper bounds of

N s inf
|T |−|T0|≤N

(‖Du − DT uT ‖2
L2(�)

+ ‖p − pT ‖2
L2(�)

+ osc2 ( f, T )
)1/2

over all N ∈ N where T is an arbitrary admissible triangulation refined from T0 (cf.
Remark 2.1 for an explanation) with less than or equal to N + |T0| triangles and with
associated discrete solution (uT , pT ). The computed triangulation T� is optimal up
to the factor Copt � 1 and hence called quasi-optimal.

This paper is organized in the following way. The weak formulation, the algorithm,
the definition of the approximation class As and the main theorem of this paper are
stated in Sect. 2. The a posteriori error estimator is analyzed in Sect. 3 with the discrete
Helmholtz decomposition and discrete reliability. Section 4 is devoted to the proof of
the contraction property and its fundamentals such as estimator reduction and quasi-
orthogonality. Section 5 concludes the proof of the main theorem on robust optimal
convergence rate.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces and their
norms is employed;

∫
denotes the integral mean and L2

0(�) := {v ∈ L2(�)| ∫
�

v = 0}.
The formula A � B represents A ≤ C B for some mesh-independent, positive generic
constant C ; A ≈ B abbreviates A � B � A. By convention, all generic constants do
not depend on the mesh-size h� but they may depend on the fixed coarse triangulation
T0 and its interior angles. The 2×2 unit matrix is denoted by I2 and the Euclid product
of matrices by colon, e.g., A : B = ∑2

j,k=1 A jk B jk for A, B ∈ R
2×2; tr(A) := A : I2

names the trace of A and dev(A) := A − 1
2 tr(A)I2 the deviatoric part of A. The

measure |·| is context-sensitive and refers to the number of elements of some finite set
or the length of an edge or the area of some domain.
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2 Model Stokes problem

2.1 Weak formulation and discretization

The two-dimensional motion of a viscous incompressible fluid in a polygonal simply
connected Lipschitz domain � ⊂ R

2 can be modeled by a velocity field u : � → R
2

and a pressure distribution p : � → R which satisfy the Stokes equations under the
standard no-slip boundary condition

−�u + ∇ p = f
div u = 0

}
in �, u = 0 on ∂�, (2.1)

where f ∈ L2(�; R
2) is a given force density.

Given bilinear and linear forms

a(u, v) :=
∫

�

Du : Dv dx, b(u, q) :=
∫

�

qdivu dx, F(v) :=
∫

�

v · f dx

for u, v ∈ V := H1
0 (�; R

2), q ∈ Q := L2
0(�), the weak formulation of (2.1) seeks

a pair (u, p) ∈ V × Q that satisfies the mixed variational problem

a(u, v) + b(v, p) = F(v) for all v ∈ V ;
b(u, q) = 0 for all q ∈ Q.

(2.2)

Let T� be some regular triangulation of � into closed triangles T ∈ T� with piece-
wise constant mesh-size h�. The set E� contains all edges of T�, E�(�) all interior edges
and E�(∂�) all edges on the boundary; the set of edges of a triangle T is denoted with
E(T ). Moreover, let N� be the set of all nodes in T� and E�(z) the set of edges that
share the node z ∈ N�. For interior edges, [·]E := ·|T+ − ·|T− denotes the jump across
the edge E = T+ ∩ T− shared by the two elements T± ∈ T�, and ωE := int(T+ ∪ T−).
If E ∈ E�(∂�) the jump [·]E := ·|T+ is the restriction to the one element T+ ∈ T�(E)

and ωE := int(T+). In addition, for any edge E ∈ E�(�), mid(E) names its midpoint
and νE = νT+ is the unit normal vector exterior to T+ along E and τE is the unit
tangential vector along E |T+ .

Throughout the paper, the discrete spaces read

P0(T�) :=
{
v� ∈ L2(�)

∣∣∣ v�|T is constant for all T ∈ T�

}
,

P1(T�) :=
{
v� ∈ L2(�)

∣∣∣ v�|T is affine for all T ∈ T�

}
,

CR1(T�) :=
{
v� ∈ P1(T�)

∣∣∣∣ v� is continuous in mid(E)

for all E ∈ E�(�)

}
,

CR1
0(T�) :=

{
v� ∈ CR1(T�)| v�(mid(E)) = 0 for all E ∈ E�(∂�)

}
,

V� := V (T�) := CR1
0(T�) × CR1

0(T�),

Q� := Q(T�) := P0(T�) ∩ L2
0(�).
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Let D� and div� denote the piecewise action of the gradient and the divergence with
respect to the triangulation T�. Let

aNC(�)(u�, v�) :=
∫

�

D�u� : D�v� dx for all u�, v� ∈ V�

define the discrete energy scalar product on V� and let

bNC(�)(v�, q�) :=
∫

�

q�div�v� dx for all v� ∈ V�, q� ∈ Q�

define the discrete counterpart of the bounded bilinear form b.
The discrete Friedrichs inequality [9, (10.6.14)] shows that aNC(�) is positive defi-

nite, and hence, defines a norm |||·|||NC(�) := ‖D�·‖L2(�) on V�. Moreover, the inf-sup
stability of b yields discrete inf-sup stability of bNC(�) [14]. Thus, there exists a unique
discrete solution (u�, p�) ∈ V� × Q� with

aNC(�)(u�, v�) + bNC(�)(v�, p�) = F(v�) for all v� ∈ V�; (2.3a)

bNC(�)(u�, q�) = 0 for all q� ∈ Q�. (2.3b)

With the present choice of Q� = P0(T�)∩ L2
0(�), the discrete conservation of volume

(2.3a) implies div�u� = 0. Set

Z� := Z(T�) := {
v� ∈ V�

∣∣ div�v� = 0
}

as the subspace of discrete divergence free velocities in V�. Then, the solution u� ∈ Z�

of the discrete system (2.3) uniquely solves

aNC(�)(u�, z�) = F(z�) for all z� ∈ Z�.

2.2 Acrfem

This subsection presents an optimal adaptive algorithm Acrfem with an error estima-
tor based on triangles.

123



C. Carstensen et al.

Remark 2.1 The result of Refine is the smallest shape-regular refinement T�+1 of T�

without hanging nodes using NVB, where at least the refinement edges of the marked
elements E(M�) are refined, cf. [1]. Up to rotations, all admissible refinements of a
triangle T ∈ T� are depicted in Fig. 1 and depend on the set of its edges E(T ) that
have to be refined. The refinement edge E(T ) of each triangle is accented in Fig. 1.
In case that all edges E(T ) have to be refined either bisec3(T ) or bisec5(T ) can be
applied.

2.3 Approximation class and main result

Here and throughout the paper, f ∈ L2(�; R
2), and the oscillations of f with respect

to some subset F ⊆ T� read

osc2
� := osc2 ( f, T�) with osc2 ( f,F) :=

∑
T ∈F

osc2 ( f, T )

Fig. 1 Possible refinements of a triangle T in one level using NVB
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and, for any subset ω ⊆ �,

osc ( f, ω) := |ω|1/2 ‖ f − fω‖L2(ω) with fω :=
∫

ω

f dx := |ω|−1
∫

ω

f dx .

The definition of quasi-optimal convergence is based on the concept of approxima-
tion classes. For s > 0, let

As :=
{
(u, p, f ) ∈ H1

0 (�; R
2) × L2

0(�) × L2(�; R
2)

∣∣ |(u, p, f )|As
< ∞

}

with |(u, p, f )|As
defined by

sup
N∈N

(
N s inf

|T |−|T0|≤N

(|||u − uT |||2NC(T ) + ‖p − pT ‖2
L2(�)

+ osc2 ( f, T )
)1/2

)
.

In the infimum, T runs through all admissible triangulations that are refined from T0
by NVB (cf. Fig. 1) and that satisfy |T | − |T0| ≤ N .

Remark 2.2 For the Poisson problem, [13] shows that in the definition of the approxi-
mation class above the error of the Crouzeix–Raviart approximation might be replaced
by the best approximation error (see also [19]). By similar techniques it can be shown
that for any solution (u, p) of (2.2) with right-hand side f ∈ L2(�; R

2)

|(u, p, f )|As
≈ sup

N∈N

(
N s inf

|T |−|T0|≤N
inf

(v,q)∈V (T )×Q(T )

(|||u − v|||2NC(T )

+‖p − q‖2
L2(�)

+ osc2 ( f, T )
)1/2

)
.

Hence, the approximation class As might be replaced by the standard one [12].

The main theorem of this paper states optimal convergence rates of algorithm Acr-
fem. Let ceff, Crel, and Cqo denote the constants from Theorem 3.1 and Lemma 4.3
below, and let (T�)� be the sequence of triangulations generated by Acrfem with
discrete velocities (u�)� and pressures (p�)� from (2.3).

Theorem 2.1 (Optimal convergence) Let (u, p) be the exact solution of (2.2) with
right-hand side f . If (u, p, f ) ∈ As then, for any bulk parameter 0 < θ < θ0 :=
min

{
1, ceff/(Cdrel + Cqo + 1)

}
, algorithm Acrfem generates sequences of triangu-

lations (T�)� and discrete solutions (u�, p�)� of optimal rate of convergence in the
sense that

|T�| − |T0| �
(
|||u − u�|||2NC(�) + ‖p − p�‖2

L2(�)
+ osc2 ( f, T�)

)−1/(2s)
.

The proof of Theorem 2.1 follows in Sect. 5 based on the preparations in Sects. 3
and 4.
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3 A posteriori error analysis

This section recalls some robust a posteriori error analysis of the Stokes problem. The
following theorem states efficiency, reliability, and discrete reliability for the estimator
η� from Algorithm Acrfem.

Theorem 3.1 (Efficiency, reliability, discrete reliability) Let (u, p) be the exact solu-
tion of (2.2) with right-hand side f ∈ L2(�; R

2), and let (u�, p�) be the discrete
solution of (2.3). There exist positive constants ceff, Crel, Cdrel depending on T0 but
independent of the mesh-size h� such that

ceffη
2
� ≤ ‖Du − D�u�‖2

L2(�)
+ ‖p − p�‖2

L2(�)
+ osc2

� ≤ Crelη
2
� .

Furthermore, discrete reliability holds in the sense that

|||u�+k − u�|||NC(�+k) + ‖p�+k − p�‖L2(�) ≤ C1/2
drelη�(T� \ T�+k).

The proofs of efficiency and reliability in Theorem 3.1 are given in [17]. The proof of
discrete reliability follows from an orthogonal decomposition and a discrete Poincaré
inequality.

The discrete Helmholtz decomposition requires the following notation. Let R
2×2
dev

denote the trace-free 2 × 2 matrices and ZCR the discrete divergence free Crouzeix–
Raviart functions (with homogeneous Dirichlet boundary condition enforced point-
wise in the midpoints of boundary edges) with respect to some regular triangulation
T . Define

X :=
⎧⎨
⎩vC ∈ C(�; R

2) ∩ P1(T ; R
2)

∣∣∣∣∣∣
∫

�

vC dx = 0 and
∫

�

curl vC dx = 0

⎫⎬
⎭

with curl β := ∂β2

∂x1
− ∂β1

∂x2
and Curl β :=

(
− ∂β1

∂x2

∂β1
∂x1

− ∂β2
∂x2

∂β2
∂x1

)
for a vector field β =

(β1, β2) ∈ X .

Theorem 3.2 (Discrete Helmholtz decomposition of piecewise constant deviatoric
matrices) The decomposition

P0(T ; R
2×2
dev ) = DNC ZCR ⊕ dev Curl X

is orthogonal in L2(�; R
2×2
dev ).

The proof of Theorem 3.2 requires the tr-dev-div Lemma.

Lemma 3.3 (tr-dev-div Lemma) Any τ ∈ L2(�; R
2×2) with

∫
�

tr(τ ) dx = 0 satisfies

‖τ‖2
L2(�)

� ‖devτ‖2
L2(�)

+ ‖divτ‖2
H−1(�)

.
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Proof Proposition 3.1 in Sect. IV.3 of [3] contains this result for a symmetric τ , but
the proof applies verbatim to the situation of this lemma. ��
Proof of Theorem 3.2 Since, for any zC R ∈ ZCR and any βC ∈ X ,

∫

�

DNC zC R : dev Curl βC dx =
∫

�

DNC zC R : Curl βC dx = 0,

the decomposition is orthogonal. Moreover, the inclusion

DNC ZCR ⊕ dev Curl X ⊂ P0(T ; R
2×2
dev )

is obvious. Hence, it remains to prove that the dimensions of the two spaces coin-

cide. Since dim
(

P0(T ; R
2×2
dev )

)
= 3|T |, we need to show that dim(dev Curl X ⊕

dim ZCR) = 3|T |.
The operator dev Curl : X → P0(T�; R

2×2
dev ) is linear and injective. To prove injec-

tivity, let vC ∈ X with dev Curl vC = 0. Since
∫
�

tr(Curl vC ) dx = ∫
�

curl vC dx = 0
by definition of X , and since divCurl vC = 0, the trace-dev-div Lemma 3.3 implies
that Curl vC = 0. Since the integral mean of vC is zero, one concludes vC = 0.

The injectivity of dev Curl implies

dim(dev Curl X) = dim X = 2|N | − 3.

Since � is simply connected, ZCR is spanned by the |N (�)|+ |E(�)| basis functions
given in [8, Chapter III, §7]. Euler’s formula proves

dim(dev Curl X ⊕ dim ZCR) = dim(dev Curl X) + dim(ZCR) = 3|T |.

��
Lemma 3.4 (Discrete Poincaré inequality) Let α�+k ∈ CR1

0(T�+k) and α� ∈ CR1
0(T�)

with equal integral means
∫

E α�+k ds = ∫
E α� ds along any edge E ∈ E�. Then, for

any T ∈ T�, the following discrete Poincaré inequality holds

‖α�+k − α�‖L2(T ) � |T |1/2 ‖D�+kα�+k‖L2(T ) .

Proof The proof can be found in [25, Lemma 4.1] and is based on a result of [9]. ��
Proof of discrete reliability in Theorem 3.1 We will solely prove that

|||u�+k − u�|||NC(�+k) ≤ C1/2
drelη�(T� \ T�+k).

Since the upper bound of the pressure difference ‖p�+k − p�‖L2(�) is not needed in
the remaining analysis of this paper, its proof is omitted; it can be found in [21, Lemma
8.1].
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The discrete Helmholtz decomposition from Theorem 3.2 leads to αC R
�+k ∈ Z�+k

and βC
�+k ∈ C(�; R

2) ∩ P1(T�+k; R
2) with

∫

�

βC
�+k dx = 0,

∫

�

curl βC
�+k dx = 0, and

D�+ku�+k − D�u� = D�+kα
C R
�+k + dev CurlβC

�+k .

This implies

|||u�+k − u�|||2NC(�+k) =
∣∣∣
∣∣∣
∣∣∣αC R

�+k

∣∣∣
∣∣∣
∣∣∣2

NC(�+k)
+

∥∥∥dev CurlβC
�+k

∥∥∥2

L2(�)
. (3.1)

The nonconforming interpolation αC R
� =: INC

� αC R
�+k ∈ V� is defined uniquely by

∫
E

αC R
� ds =

∫
E

αC R
�+k ds for all E ∈ E�. (3.2)

In fact, since αC R
�+k ∈ Z�+k , we have αC R

� ∈ Z�. The identity (3.2) holds on either side
of each E ∈ E� and so

∫

E

[(αC R
�+k − αC R

� )D�u�]E · νE ds = 0 for all E ∈ E�.

Moreover, αC R
�+k = αC R

� on T ∈ T� ∩ T�+k . This leads to

∣∣∣
∣∣∣
∣∣∣αC R

�+k

∣∣∣
∣∣∣
∣∣∣2

NC(�+k)
=

∫

�

(D�+ku�+k − D�u�) : D�+kα
C R
�+k dx

=
∫

�

f · αC R
�+k dx −

∑
E∈E�

∫

E

[αC R
�+kD�u�]E · νE ds

=
∑

T ∈T�\T�+k

∫

T

f ·
(
αC R

�+k − αC R
�

)
dx

−
∑
E∈E�

∫

E

[(
αC R

�+k − αC R
�

)
D�u�

]
E

· νE ds

≤
∑

T ∈T�\T�+k

(
‖ f ‖L2(T )

∥∥∥αC R
�+k − αC R

�

∥∥∥
L2(T )

)
.

The combination of the aforementioned estimates and the discrete Poincaré inequality
of Lemma 3.4 results in

∣∣∣
∣∣∣
∣∣∣αC R

�+k

∣∣∣
∣∣∣
∣∣∣
NC(�+k)

� ‖h� f ‖L2(T�\T�+k )
. (3.3)
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The analysis of the second term on the right hand side of (3.1) requires the Scott-
Zhang [28] interpolation βC

� := I�β
C
�+k on T�. For its definition, one chooses an edge

E ∈ E�(z)∩(E� \ E�+k) for any z ∈ N� whenever possible. If E�(z)∩(E� \ E�+k) = ∅,
this choice is arbitrary. Then βC

� satisfies

∥∥∥βC
�+k − βC

�

∥∥∥
L2(E)

= 0 for all E ∈ E�+k ∩ E�.

A standard trace inequality on ωE in T�+k verifies

∥∥∥βC
�+k − βC

�

∥∥∥
L2(E)

� |E |1/2
∥∥∥βC

�+k

∥∥∥
H1(ωE )

for all E ∈ E�+k \ E�.

Since
∫
� (D�+ku�+k − D�u�) : CurlβC

� dx = 0, this leads to

∥∥∥dev CurlβC
�+k

∥∥∥2

L2(�)
=

∫

�

(D�+ku�+k − D�u�) : dev CurlβC
�+k dx

=
∫

�

(D�+ku�+k − D�u�) : Curl
(
βC

�+k − βC
�

)
dx

= −
∑

T ∈T�+k

∫

T

curl (D�+ku�+k − D�u�) ·
(
βC

�+k − βC
�

)
dx

+
∑

E∈E�+k

∫

E

[∂u�/∂s]E ·
(
βC

�+k − βC
�

)
ds

≤
∑

E∈E�+k\E�

‖[∂u�/∂s]E‖L2(E)

∥∥∥βC
�+k − βC

�

∥∥∥
L2(E)

�
∑

E∈E�+k\E�

|E |1/2 ‖[∂u�/∂s]E‖L2(E)

∥∥∥βC
�+k

∥∥∥
H1(ωE )

� η�(T� \ T�+k)

∥∥∥DβC
�+k

∥∥∥
L2(�)

.

Since
∥∥DβC

�+k

∥∥
L2(ωE )

�
∥∥dev CurlβC

�+k

∥∥
L2(�)

this proves

∥∥∥dev CurlβC
�+k

∥∥∥
L2(�)

� η�(T� \ T�+k). (3.4)

The combination of (3.1) and (3.3) - (3.4) concludes the proof. ��

4 Contraction property

The proof of optimality involves the contraction property for some linear combination
ξ� of the estimated error η2

� , the volume term ‖h� f ‖L2(�), and the error in the broken
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energy norm |||u − u�|||NC(�). A similar linear combination including the pressure error
was used earlier in [21, Theorem 4.4].

Theorem 4.1 (Contraction property) Given some bulk parameter 0 < θ < 1 in (2.4),
and any Crel,�, ρ and Cqo from Theorem 3.1, and Lemmas 4.2–4.3, there exist positive
α, β, and 0 < � < 1 such that in Acrfem on each level � ∈ N0,

ξ2
� := η2

� + α ‖h� f ‖2
L2(�)

+ β |||u − u�|||2NC(�)

satisfies

ξ2
�+1 ≤ � ξ2

� .

The proof of the contraction property is based on the subsequent lemmas on the
estimator reduction and quasi-orthogonality.

Lemma 4.2 (Estimator reduction) For any 0 < δ < θ/(
√

2 − θ) with bulk parameter
0 < θ < 1 in (2.4) there exists some � > 0 such that η� reduces on each level � ∈ N0
of Acrfem with ρ := (1 + δ)(1 − θ/

√
2) < 1 in the sense of

η2
�+1 ≤ ρη2

� + � |||u�+1 − u�|||2NC(�+1) . (4.1)

Proof The proof is verbatim the same as that of Lemma 4.2 in [16] and, hence, not
repeated here. ��

The following lemma states quasi-orthogonality for the Stokes problem and
Crouzeix–Raviart FEM as in [16] for the pure displacement problem in elasticity. The
result will be essential for the proof of quasi-optimality below. Quasi-orthogonality
for the Poisson problem has been introduced in [10,11] and sharpened for mixed FEM
[4]. The sharpened form has been employed for nonconforming methods in [20] and
later in [7,24,25] for the Poisson problem and in [16] for linear elasticity.

For convenient reading the volume term on the elements of a subset F� ⊆ T� is
abbreviated by ‖h� f ‖2

F�
:= ∑

T ∈F�∩T�
|T | ‖ f ‖2

L2(T )
.

Lemma 4.3 (Quasi-orthogonality) There exists some positive constant Cqo, which
depends on T0 only, such that for admissible refinements T� of T0 and T�+k of T� and
the respective discrete velocities u� and u�+k fulfil quasi-orthogonality in the sense of

∣∣aNC(�+k) (u − u�+k, u�+k − u�)
∣∣ ≤ C1/2

qo |||u − u�+k |||NC(�+k) ‖h� f ‖T�\T�+k
.

Proof Let INC
� be the nonconforming interpolation operator as in (3.2) and INC

�+k

denote the standard nonconforming interpolation operator. Since
∫

E INC
�+ku ds =∫

E u ds for all E ∈ E�+k an integration by parts argument shows

D�+kINC
�+ku

∣∣∣
T

=
∫

T
Du dx for T ∈ T�+k .
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The interpolation operators lead to

aNC(�+k) (u − u�+k, u�+k − u�) =
∫

�

(Du − D�+ku�+k) : D�+k (u�+k − u�) dx

=
∫

�

D�+k

(
INC

�+ku − u�+k

)
: D�+ku�+k dx

−
∫

�

D�

(
INC

� (u − u�+k)
)

: D�u� dx .

The integral mean property of INC
� proves

INC
� u = INC

� INC
�+ku and div�INC

� u = div�+kINC
�+ku = 0.

Hence, with v�+k := INC
�+ku − u�+k ∈ V�+k ,

aNC(�+k) (u − u�+k, u�+k − u�)

= aNC(�+k)

(
u�+k, INC

�+ku − u�+k

)
− aNC(�)

(
u�, INC

�

(
INC

�+ku − u�+k

))

= F
(
v�+k − INC

�+kv�+k

)
.

Since INC
�+k sustains the integral mean on any E ∈ E�, Lemma 3.4 proves

∥∥∥v�+k − INC
�+kv�+k

∥∥∥
L2(T )

� |T |1/2 ‖D�+kv�+k‖L2(T ) for all T ∈ T�.

This concludes the proof,

∣∣aNC(�+k) (u − u�+k, u�+k − u�)
∣∣

�
∑

T ∈T�\T�+k

‖ f ‖L2(T ) hT

∥∥∥D�+k

(
INC

�+ku − u�+k

)∥∥∥
L2(T )

� ‖h� f ‖T�\T�+k
|||u − u�+k |||NC(�+k) .

��
Proof of Theorem 4.1 The following proof shows convergence of Acrfem and η�.
Given 0 < δ < θ(

√
2 − θ) and ρ = (1 + δ)(1 − θ/

√
2) < 1 from the estimator

reduction of Lemma 4.2, one can choose positive γ1, γ2 with

0 < γ2 < min

{
�,

1 − ρ

Crel

}
and 1 <

�

γ2
< γ1.
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With Cqo from Lemma 4.3, set

2�γ1Cqo < α and β := �(1 − γ −1
1 ).

Here and throughout let ε2
� := |||u − u�|||2NC(�) denote the discrete energy error

with respect to T�. The estimator reduction of Lemma 4.2, the quasi-orthogonality of
Lemma 4.3, and Young’s inequality show

η2
�+1 ≤ ρη2

� + � |||u�+1 − u�|||2NC(�+1)

≤ ρη2
� + �aNC(�+1) (u�+1 − u�, u�+1 − u�)

≤ ρη2
� + �aNC(�+1) ((u� − u) − (u�+1 − u), (u� − u) + (u�+1 − u))

+2�aNC(�+1) (u� − u�+1, u − u�+1)

≤ ρη2
� + �

(
ε2
� − ε2

�+1 + γ1Cqo ‖h� f ‖2
T�\T�+1

+ 1

γ1
ε2
�+1

)
.

Hence,

η2
�+1 + βε2

�+1 ≤ ρη2
� + �ε2

� + �γ1Cqo ‖h� f ‖2
T�\T�+1

.

Let

η2
�(E�) :=

∑
T ∈T�

|T |1/2
∑

E∈E(T )

‖[∂u�/∂s]E‖2
L2(E)

and recall ξ2
� := η2

� + α ‖h� f ‖2
L2(�)

+ βε2
� . Since the volume term satisfies

‖h�+1 f ‖2
L2(�)

≤ ‖h� f ‖2
L2(�)

− 1

2
‖h� f ‖T�\T�+1

, (4.2)

reliability γ2ε
2
� ≤ γ2Crelη

2
� proves

ξ2
�+1 ≤ (ρ + γ2Crel) η2

�(E�) + (� − γ2) ε2
�

+ (
�γ1Cqo − α/2

) ‖h� f ‖2
T�\T�+1

+ (α + ρ + γ2Crel) ‖h� f ‖2
L2(�)

.

This reads ξ2
�+1 ≤ �ξ2

� with

� := max

{
ρ + γ2Crel,

� − γ2

β
, 1 − 1 − ρ − γ2Crel

α + 1

}
< 1. ��

5 Proof of optimal convergence

This section is devoted to the proof of Theorem 2.1 and is based on the contraction prop-
erty (Theorem 4.1), the discrete reliability (Theorem 3.1), and the quasi-orthogonality
(Lemma 4.3) from the previous sections.
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For s > 0, consider the modified approximation class

Ãs :=
{
(u, p, f ) ∈ H1

0 (�; R
2) × L2

0(�) × L2(�; R
2)

∣∣|(u, p, f )|Ãs
< ∞

}

with

|(u, p, f )|Ãs
:= sup

N∈N

(
N s inf

|T |−|T0|≤N

(‖|u − uT ‖|2NC(T ) + ‖hT f ‖L2(�)2
)1/2

)
.

Proposition 5.1 Let (u, p) be the exact solution of (2.2) with right-hand side f ∈
L2(�; R

2), let T be some admissible triangulation that is refined from T0 by NVB,
and let (uT , pT ) be the corresponding discrete solution of (2.3). Then

|||u − uT |||2NC(T ) + ‖p − pT ‖2
L2(�)

+ osc2 ( f, T ) ≈ |||u − uT |||2NC(T ) + ‖hT f ‖2
L2(�)

holds with hidden constants that depend on T0 but not on the mesh-size hT .

Proof [17, Remark 3.2] shows

‖p − pT ‖L2(�) � |||u − uT |||NC(T ) + ‖hT f ‖L2(�) ,

which proves one inequality. The efficiency of ‖hT f ‖L2(�) up to oscillations (see
Theorem 3.1) proves the other inequality. ��

Proposition 5.1 yields |(u, p, f )|As
≈ |(u, p, f )|Ãs

. Hence, it suffices to prove

quasi-optimality with regard to Ãs .
Given positive ceff, Cqo, Cdrel, α, β, and � from Theorems 3.1 and 4.1 and Lemma

4.3, Cup arising from Proposition 5.1 in (5.4) below, and 0 < θ < θ0 ≤ 1 with
θ0 := min

{
1, ceff/(Cdrel + Cqo + 1)

}
, choose some τ with

0 < τ 2 < τ 2
0 := ceff − θ(Cdrel + Cqo + 1)

ceff + Cup(1 − θ)
< 1

and set

ε2 := τ 2

max{4, 16Cqo}
(|||u − u�|||2NC(�) + η2

�

) ≈ ξ2
� . (5.1)

Given this ε, the definition of Ãs above implies the existence of an admissible regular
triangulation Tε refined from T0 with

|||u − uε |||2NC(ε) + ‖hε f ‖2
L2(�)

≤ ε2 and |Tε | − |T0| � ε−1/s . (5.2)

In the last estimate, the factor |(u, p, f )|Ãs
is hidden in the generic constant behind

the symbol �. This factor is neglected in the sequel for brevity but enters at the end
as displayed in (1.1).
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The number of elements of the overlay T�+ε := Tε ⊕ T� (the coarsest triangulation
which refined Tε as well as T�) satisfies [15,12]

|T�+ε | − |T�| = |Tε ⊕ T�| − |T�| ≤ |Tε | − |T0| .

Let F := T� \ T�+ε denote the set of triangles in T� refined in T�+ε . The choice of Tε

with (5.1)–(5.2) implies

|F | ≤ |T�+ε | − |T�| ≤ |Tε | − |T0| � ε−1/s ≈ ξ
−1/s
� . (5.3)

Let ε2
� := |||u − u�|||2NC(�), ε2

ε := |||u − uε |||2NC(ε), and ε2
�+ε := |||u − u�+ε |||2NC(�+ε)

denote the discrete energy error with respect to T�, Tε , and T�+ε . Quasi-orthogonality
from Lemma 4.3, the discrete reliability of Theorem 3.1 and Young’s inequality show

ε2
� ≤ |||u�+ε − u�|||2NC(�+ε) + ε2

�+ε + 2C1/2
qo ε�+ε ‖h� f ‖2

F
≤ Cdrelη

2
�(F) + 2ε2

�+ε + Cqo ‖h� f ‖2
F

≤ (
Cdrel + Cqo

)
η2

�(F) + 2ε2
�+ε .

Let Fε := Tε \ T�+ε . Quasi-orthogonality from Lemma 4.3 and Young’s inequality
show

ε2
�+ε ≤ 2ε2

ε + 4Cqo ‖hε f ‖2
Fε

.

Since the volume term satisfies ‖h�+ε f ‖2
L2(�)

≤ ‖hε f ‖2
L2(�)

− 1
2 ‖hε f ‖2

Fε
,

ε2
�+ε ≤ max{2, 8Cqo}

(
ε2
ε + ‖hε f ‖2

L2(�)
− ‖h�+ε f ‖2

L2(�)

)

≤ τ 2

2
(ε2

� + η2
�) − max{2, 8Cqo} ‖h�+ε f ‖2

L2(�)
.

The combination of this upper bound for ε2
�+ε with the aforementioned estimate leads

to

(1 − τ 2)ε2
� ≤ (

Cdrel + Cqo
)
η2

�(F) + τ 2η2
� − max{4, 16Cqo} ‖h�+ε f ‖2

L2(�)
.

Due to Proposition 5.1 there exists some positive generic constant Cup such that

‖Du − D�u�‖2
L2(�)

+ ‖p − p�‖2
L2(�)

+ osc2
�

≤ Cup

(
‖Du − D�u�‖2

L2(�)
+ ‖h� f ‖2

L2(�)

)
. (5.4)
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This inequality plus efficiency of η2
� of Theorem 3.1 leads to

ceff(1 − τ 2)η2
� ≤ Cup

(
Cdrel + Cqo

)
η2

�(F) + Cupτ
2η2

�

+Cup

(
1 − τ 2

)
‖h� f ‖2

L2(�)

−Cup max{4, 16Cqo} ‖h�+ε f ‖2
L2(�)

.

Hence,

(
ceff(1 − τ 2) − Cupτ

2
)

η2
� ≤ Cup

(
Cdrel + Cqo

)
η2

�(F)

+Cup

(
1 − τ 2

)
‖h� f ‖2

F

+Cup(1 − τ 2 − max{4, 16Cqo}) ‖h� f ‖2
T�∩T�+1

.

Since the factor in front of ‖h� f ‖2
T�∩T�+1

is negative, this verifies

(ceff(1 − τ 2) − Cupτ
2)η2

� ≤ Cup(Cdrel + Cqo + 1 − τ 2)η2
�(F).

The choice of τ 2 < τ 2
0 implies that F fulfils the bulk criterion for θ ≤ θ0. Therefore,

|M�| ≤ |F | on any level � and with (5.3),

|M�| � ξ
−1/s
� .

Moreover, the overhead in the marking procedure is bounded in the sense of [2,27]

|T�| − |T0| �
�−1∑
j=0

∣∣M j
∣∣ . (5.5)

Since α, β > 0 are chosen according to contraction property of Theorem 4.1, the
assertion follows by (5.3)-(5.5). Indeed,

|T�| − |T0| �
�−1∑
j=0

ξ
−1/s
j � ξ

−1/s
�

�−1∑
j=1

�− j/(2s) � ξ
−1/s
� .
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