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ABSTRACT

Semidefinite Programming(SDP) is one of the strongest al-
gorithmic techniques used in the design of approximation al-
gorithms. In recent years, Unique Games Conjecture(UGC)
has proved to be intimately connected to the limitations of
Semidefinite Programming.

Making this connection precise, we show the following re-
sult : If UGC is true, then for every constraint satisfaction
problem(CSP) the best approximation ratio is given by a
certain simple SDP. Specifically, we show a generic conver-
sion from SDP integrality gaps to UGC hardness results for
every CSP. This result holds both for maximization and min-
imization problems over arbitrary finite domains.

Using this connection between integrality gaps and hard-
ness results we obtain a generic polynomial-time algorithm
for all CSPs. Assuming the Unique Games Conjecture, this
algorithm achieves the optimal approximation ratio for ev-
ery CSP.

Unconditionally, for all 2-CSPs the algorithm achieves an
approximation ratio equal to the integrality gap of a natural
SDP used in literature. Further the algorithm achieves at
least as good an approximation ratio as the best known algo-
rithms for several problems like MaxCut, Max2Sat, MaxDiCut
and Unique Games.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Non Numerical Algorithms and Problems

General Terms
Algorithms, Theory.
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1. INTRODUCTION

A Constraint Satisfaction Problem(CSP) A is specified by
a finite domain [¢] = {0,1,...,¢ — 1} and a set of predi-
cates P. Every instance of the problem A consist of a set
of variables V, and a set of constraints on them. Each con-
straint consists of a predicate from P applied to a subset
of variables. The objective is to find an assignment to the
variables that satisfies the maximum number of constraints.
The arity k of the CSP A is the maximum number of inputs
to a predicate in P. A large number of the fundamental op-
timization problems such as Max3Sat, MaxCut are examples
of CSPs.

For most natural CSPs, it is N P-hard to find the opti-
mal assignment. To cope with this intractability, the focus
shifts towards approximation algorithms achieving provable
guarantees. In this light, it is natural to ask the following
question : “For a given CSP A, what is the best approrima-
tion to the optimum that can be efficiently computed?”

Over the past decade, this question has been answered
successfully for many important CSPs like Max3Sat [10, [11]
with matching approximation algorithms and N P-hardness
results. Despite the success, the approximability of many in-
teresting CSPs like MaxCut and Max2SAT still remain open.
Towards obtaining tight inapproximability results, the Unique
Games Conjecture was introduced by Khot [12]. An equiv-
alent statement of the Unique Games Conjecture (UGC) is
as follows:

Unique Games Conjecture[12] (equivalent version)

For any 6 > 0, there is a large enough number p such that
: Given a set of linear equations of the form x; — x; = ¢
mod p, it is NP-hard to distinguish between the following
two cases:

e There is a solution to the system that satisfies 1 — §
fraction of the equations.

e No solution satisfies more than a 0 fraction of the equa-
tions.

The conjecture remains a notorious open problem in hard-
ness of approximation. Assuming the Unique Games Con-



jecture, tight hardness results have been shown for many
CSPs like MaxCut [13], Max2Sat [I] and Max-k-CSP|[20, 3].

A salient feature of UGC hardness results is their connec-
tion to Semidefinite programming(SDP), or more precisely
its limitations. On one hand, the UGC hardness results ex-
actly match the approximation factors obtained using SDPs.
Moreover, the parameters of the hardness reduction are de-
rived from hard instances to SDPs.

The connection between UGC hardness and SDPs is most
apparent in the case of 2-CSP problems over the boolean do-
main. A 0.878 hardness for MaxCut[13] was obtained using
the hard instances for the Goemans-Williamson Max Cut al-
gorithm. The tight hardness result for Max-2-SAT obtained
in [I] crucially used SDP vectors that are hard to round.
This connection to SDP gaps is also highlighted in the case
of MaxCutGain[14] : a variant of MaxCut. Generalizing
this line of work, Austrin [2] showed tight Unique Games
hardness results for every 2-CSP over the boolean domain
under certain additional conjecture.

1.1 Results

Making the connection between SDPs and Unique Games
hardness precise, we obtain tight hardness results and round-
ing schemes for every CSP. In order to describe our results,
we will need a few definitions.

A Generalized Constraint Satisfaction Problem (GCSP)
is similar to a CSP, but with the predicates replaced by
more general “payoff functions”. A payoff function returns
an arbitrary real value in [—1, 1] instead of a boolean {0, 1}.
The objective is to find an assignment to variables that
maximizes the total payoff. By allowing the payoff func-
tions to take negative values, even minimization problems
can be formulated as GCSP problems. Some examples of
GCSP include maximization problems like Max3Sat MaxCut,
Max2SAT, Max-k-Cut and minimization problems like
MultiwayCut and MetricLabeling.

Instead of total payoff, we will always refer to the ex-
pected payoff which is defined as : total payoff divided by
the number of payoff functions. For the purpose of comput-
ing approximation ratios, the two notions are equivalent.
Note that the expected payoff is always a real number in
[—1,1].

For every GCSP A, there is a natural generic SDP relax-
ation SDP(I) shown in Figure 1. This relaxation is similar
to the SDP used for Max3Sat in Karloff et.al. [11]. In case of
2-CSPs, the relaxation SDP(I) reduces to SDP(II), which
is similar to ones already appeared in literature [5, [7, [16]
. Further for boolean 2-CSPs, SDP(I) reduces to the well
known SDP(III) [17, 4] also shown in Figure 1.

For a GCSP problem A, define Sa(c),Ua(c) as follows:
Sa(c) : Roughly, Sa(c) is the integrality gap curve of SDP(I).
More precisely, Sa(c) is the minimum value of the integral
optimum over all instances ¢ with SDP value c.

Ua(c) : The unique games hardness curve for the problem A.
Specifically, Ua(c) is the best polynomial time computable
assignment on instances with objective value ¢, assuming
the Unique Games Conjecture is true.

Our first result is a generic conversion from SDP inte-
grality gaps to UG hardness results for any GCSP problem.
Assuming the UGC, we show that the best approximation
to every GCSP problem A is given by SDP(I).

THEOREM 1.1. (UGC Hardness) For every constant n >
0, and every GCSP problem A:

Ua(e) <Salec+mn) +1 Ve e [—1,1)

Qualitatively, the result shows that if UGC is true, then
SDP(I) is the strongest SDP for every GCSP. Thus if UGC
is true, then stronger SDPs obtained through the Lovasz-
Schriver, Lasserre and Sherali-Adams hierarchies do not yield
better approximation ratios for any GCSP.

Surprisingly, the soundness analysis of the above reduc-
tion yields an efficient algorithm for every GCSP. This im-
plication was independently observed by Yi Wu.

THEOREM 1.2. (Rounding Scheme) For every GCSP prob-
lem A and constant n > 0, the rounding scheme Round out-
puts a solution of value at least Ua(c —n) — 1 on input an
instance with SDP value ¢ € (—1,1].

The running time of the algorithm Round is given by
C(n,A) - O(n°) where c is a fixed constant and C(n, A) is
a constant depending on 7 and the problem A. Roughly
speaking, for every GCSP, the algorithm achieves the opti-
mal approximation under the Unique Games Conjecture. In
fact, for every CSP the algorithm achieves the best approx-
imation ratio assuming UGC.

COROLLARY 1.3. Assuming UGC, for every CSP A and
every n > 0, the Round procedure obtains an approzimation
ratio which is within n of the optimal polynomial time algo-
rithm.

Most SDP rounding schemes in literature [9, [17} 4} 5 7, [11]
project the SDP vectors in to a few random directions and
then use the projections to obtain an assignment to the CSP.
Roughly speaking, the algorithm Round proceeds as follows
: Project the vectors along constant number(depending on
n) of random directions, Compute a polynomial F on the
projections and perform simple randomized rounding on the
output of the polynomial. We show that for every instance of
the CSP, there exists a polynomial F, for which the rounding
performs well. The algorithm Round goes over all possible
polynomials F and outputs the best solution.
Unconditional Results:

Using the Unique games integrality gap of Khot-Vishnoi
[16], we convert the UG hardness results to integrality gaps
for SDP(II) and SDP(III). Following the chain of implica-
tions, one obtains the following unconditional result:

THEOREM 1.4. Unconditionally, for every GCSP problem
A with arity 2 and every n > 0, the algorithm Round on an
instance with SDP wvalue ¢, outputs a solution of value at
least Sa(c—n) — n

COROLLARY 1.5. Unconditionally, for every 2-CSP and

n > 0, the Round scheme achieves an approrimation ratio
within n of the integrality gap of SDP(II) and SDP(III).

To the best of our knowledge, the semidefinite programs
SDP(II) and SDP(III) are the stronger than all SDPs used
for 2-CSP algorithms in literature. Thus, the algorithm
Round achieves at least as good an approximation ratio as
the best known algorithm for several 2-CSPs like MaxCut
[9], Max2Sat [17], Unique Games [5] and MaxDiCut [17] un-
conditionally.



Traditionally, SDP rounding schemes are different for each
CSP with a fairly involved analysis at times. Further the
proof that a rounding scheme achieves the integrality gap
consists of two steps : 1) Show that the scheme achieves a
ratio . 2) Exhibit an integrality gap of a.

In this light, it is interesting that Round yields a uniform
rounding scheme for all CSPs. Further, the proof that Round
achieves the integrality gap for 2-CSPs is an indirect proof.
The proof does not explicitly obtain the value of the inte-
grality gap or the approximation ratio. Instead, one shows
that if the algorithm achieves a ratio of a on a particular
2-CSP instance @, then it is possible to construct another
instance ® which has an integrality gap of a.

On the flip side, the proof does not yield the exact value
of the approximation ratio or the integrality gap. However,
by harnessing the connection between integrality gaps and
dictatorship tests we give algorithms to compute integrality
gap of SDP(II) and SDP(III) for 2-CSP problems A.

THEOREM 1.6. Given a 2-CSP problem A, the integrality
gaps of SDP(11) and SDP(III) for A can be approximated to
an additive error of n. The running time of the computation
depends only on m and the domain size q.

Note that integrality gaps are defined to be worst case
ratio of SDP optimum and the integral optimum over all
possible instances - an infinite set. Hence apriori, it is un-
clear whether integrality gaps can be computed at all.

Techniques and Limitations

The crucial ingredient in our proofs is the Invariance Prin-
ciple : a generalization of the Central Limit Theorem. Specif-
ically, the principle is a generalization of the following fact
: Sum of a large number of {—1,1} random variables has
roughly the same distribution as the sum of a large number
of Gaussian random variables.

The invariance principle was first shown by V.I.Rotar [21].
More recently, it has been proved with quantitative bounds
in various settings in [19, [18] [6]. Apart from several other
interesting applications, it has fueled several developments
in hardness of approximation [13} 8] [1, 2, 3]. In this work,
we use the invariance principle for vector valued multilinear
polynomials derived recently by Mossel[18].

Most of the UG hardness results |13} 1] including the re-
cent work of Austrin [2] rely on Gaussian noise stability for
their soundness analysis. While noise stability arises natu-
rally in the case of several 2-CSPs, it is unclear how noise
stability bounds can be used to obtain hardness for arbi-
trary CSPs. Departing from this approach, we apply the
invariance principle directly, instead of using Gaussian noise
stability bounds. Specifically, we use the invariance princi-
ple to argue that if an instance ® has an integral optimum
a, then a specific dictatorship test constructed using ® has
a soundness at most a.

The reductions of this paper do not apply to CSPs where
either the domain size or the payoff grows with n - the input
size. Further we do not obtain any UGC hardness result that
grows with n. The reduction does not capture problems
with hard constraints like Vertex Cover and 3-Coloring. For
GCSP problems with negative payoffs, the additive error 1 in
the approximation guarantee in Theorem 1.2/ could possibly
overwhelm the approximation ratio.

2. PROOF OVERVIEW

The central lemma of the paper is a conversion from in-
tegrality gaps to dictatorship tests. Towards stating the
lemma, we briefly describe the problem of dictatorship test-
ing. For the sake of exposition, we restrict our attention to
boolean CSPs.

A function F : {0,1} — {0,1} is said to be a dicta-
tor if the function is given by F(z) = z; for some fixed
i. The input to a dictatorship test consists of a function
F:{0,1}* — {0,1}. The objective is to query the function
F at a few locations, and distinguish whether the function is
a dictator or far from every dictator. The completeness of
the test is the probability of success of a dictator function,
while the soundness is the maximum probability of success
of a function far from every dictator.

Let ® be an instance of a GCSP A, with an SDP value
FRAC(®). For our applications, it is useful to work with
functions F taking values in interval [0, 1] instead of {0, 1}.
In this regard, we will extend the predicates P : {0,1}* —
{0,1} of the problem A, multilinearly to obtain functions
P:[0,1]" —[0,1].

Using the SDP solution to ®, we construct a dictatorship
test DICT s (see Figure 2) for functions F : {0, 1}* — [0,1].
The test DICT4 has the following properties:

e All the tests made by the verifier correspond to apply-
ing a predicate/payoff P which is part of ®. Thus if ®
was a MaxCut instance, the verifier’s tests will all be
of the form F(z) # F(y).

e The completeness of the test is nearly equal to the SDP
value. More precisely,

Completeness(DICTs) = FRAC(®) — 0¢,a(1)

where €, a are parameters independent of the size of
instance .

The influence of each coordinate is a measure of how far a
function F is from being a dictator. In this work, we will
use a slightly different notion of being far from a dictator
which we refer to as “(v, 7)-pseudorandom”.

The soundness analysis of DICTs is actually given by
an efficient algorithm. Specifically, for every function F :
{0,1}" — [0,1], we describe a efficient rounding scheme
Round#(Figure 3) for the GCSP problem A.

Let DICT(F) denote the performance of F on the test
DICTs. On the other hand, let Round#(®) be the perfor-
mance of function F in rounding the instance ®. Using the
invariance principle, we show the following main lemma.

LEMMA 2.1. ( Main Lemma : Integrality Gaps = Dicta-
torship Tests) If a function F : [q]® — Conv(Ay) is (7, 7)
pseudorandom with respect to a GCSP instance ® then

Round#(®) = DICT&(F) £ 0r,c,0,4(1)

For application to general CSPs, we show the above lemma
with the domain {0, 1} replaced by [g] and range replaced
by the g-dimensional simplex. The error term orc,a,(1)
can be made small with appropriately small choice of the
parameters T, €, , 7. We stress here that the choice of 7, ¢, «
and v does not depend on the size of the instance ®, but
only on the error bound required.

For every function F, we have Round #(®) < INT(®) where
INT(®) denotes the value of the integral optimum for ®. The
following corollary follows from the main lemma.



SDP(1I)

SDP(III
Maximize Z w{uﬂv}( Z P{1L71;}(i,j)ui~vj) (I1I)
{uv}ew i,j€lq] Maximize Zci(vo ;) + Z Aij (v - v5)
Subject to u; - v =0, ui-u; =0 Yu,v € V,i,7 € [q] i i,j€[m]
Z lui® =1 Yu eV
by Subject to (vo — vi) - (vo —v;) =0 Vi, j € [m]
2 .
|Zui—2v¢|2:0 Yu,v € V lvi|” =1 Vi € [m]
i€ld] i€lq]
SDP(I)
Maximize Z ws( Z Ps(ﬁ(s))X(S,ﬂ))
Sew Belq)®
Subject to V(i,e) * V(iye!) = 0 Vi € [m],c# ¢ €q]
> v =1 Vi € [m]
c€ld]
Z X(S,ﬁ) = U(s,c) " U(s’ ) VS e I/V7 S, s € S, c, c € [q]
BE(a]®,B(s)=c,B(s")=c’
* =1

Figure 1: Semidefinite Programs

COROLLARY 2.2. The soundness of the test DICTg is given
by Soundness., - (DICT¢) < INT(®) + 0r,¢,a,(1)

In [Section 5|, we sketch the proof of the main lemma for a
specific example GCSP : MaxCut.

UGC Hardness: Using standard techniques, dictatorship
tests can be converted in to UG hardness results. Specifi-
cally we show the following;:

LEMMA 2.3. (Dictatorship Tests = UG Hardness)
Let ® be any instance of GCSP problem A. Assuming the
Unique Games Conjecture, for every n > 0, given an in-
stance ® of the problem A it is NP-hard to distinguish be-
tween:

e The optimal assignment for ® has value at least
Completeness(DICTs) — n = FRAC(®) —

o Fvery assignment has value at most
Soundness., - (DICTs) + 7

The details of this reduction are described in [Section 6. By
definition of the SDP integrality gap curve Sa(c), there ex-
ists instances ®* with SDP value equal to ¢, while the in-
tegral optima is arbitrarily close to Sx. The above lemmas
(2.1)2.3) applied to the instance ®*, yield a proof of [Theo-
rem 1.1l
Algorithm : Fix an instance ® of the problem GCSP with
SDP value c. From Lemma 2.3, one can show a UGC hard-
ness of Completeness(DICTg) = ¢ versus Soundness,, - (DICTg).
By definition, Ua(c) is the best possible UG hardness result
on instances with value ¢. This implies that
Soundness,, - (DICTs) > Ua(c). Thus there exists some (v, 7)-
pseudorandom function F such that DICTs(F) > Ua(c).
Applying/Lemma 2.1}, this implies Round #(®) > Ua(c). Sum-
marizing, there exists a function F which yields a rounding
of value at least Ux(c) on the instance ®.

The idea of the algorithm Round is to search in the space
of all functions to find the best rounding function F. Note

that the space consists of [0, 1] valued functions on {0, 1}
for some constant R. Thus with appropriate discretization of
the space of all functions, we finish the proof of Theorem 1.2.
Unconditional Results: Towards obtaining unconditional
results, we convert UG hardness reductions back to integral-
ity gaps along the lines of Khot-Vishnoi [16]. We show the
following lemma:

LEMMA 2.4. (Dictatorship Tests = UG Hardness = In-
tegrality Gaps) Let ® be an instance of a GCSP problem A
with arity 2. For every n > 0, there exists an instance ®' of
the problem A such that the

FRAC(®') > Completeness(DICTs) —n = FRAC(®) — 7
INT(®') < Soundness, -(DICTs) + 7

Fix an instance ® of a GCSP A with SDP value c¢. Suppose
the algorithm Round outputs a solution with value s, then
for every function F, Round#(®) < s. By Lemma 2.1, this
implies that Soundness, r(DICTs) < s. Using the above
Lemma 2.4, we exhibit a gap instance ® with SDP value
¢ —n and integral value at most s + 7.

The Lemmas 2.1]12.4] together establish an equivalence be-
tween integrality gaps and dictatorship tests for 2-CSPs.
Thus the problem of finding the strongest integrality gap
instance reduces to the problem of finding the dictatorship
test(of a specific form) with the best soundness. The set of
dictatorship tests of a specific form on functions over the
finite domain [g]®, can be discretized easily. This forms the
outline of the proof of Theorem [1.6.

Parameters: The parameters 7,7, 7, a,d, k, R are all con-
stants independent of the size of the instance ® used in the
reductions. For a GCSP problem A with arity k over a do-
main of size ¢, to achieve an error 7 in the reductions above
Set a = ﬁﬁ = 1oo5 and v = 1f5. The value of 7
depending on €, « is given by the invariance principle. Fix

0 = ﬁn’ygkﬂ(mf and the alphabet size R of



the unique games instance large enough to achieve a 1 — §
completeness and soundness of §.

3. PRELIMINARIES

Let [¢] denote the set {0, ...,g—1}. Let A, = {eo, ..
denote the standard basis in RY, i.e e; is the vector with the
i 4+ 1’st coordinate equal to 1, while the remaining coordi-
nates are zero. Let Conv(Ag) denote the convex hull of the
vectors {eo, ..., eq—1}. To deal with CSPs over the alphabet
[q], we shall frequently use vector valued variables. To aid
in understanding, we will use bold face symbols to denote
multidimensional objects.

For a set of indeterminates {v1,...,vm} and a subset S C
[m], we shall use v|g to denote the set {v;|i € S}. For a
subset S C {1,...,m}, we shall use [¢]° to denote the set of

all mappings [¢]° = {8: S5 — [q]}

3.1 Generalized Constraint Satisfaction
Problems (Gcsp)
As a unifying framework for both maximization and min-
imization problems we define the GCSP problem.

DEFINITION 3.1. A Generalized Constraint Satisfaction Prob-

lem A is specified by A = ([q], P, k) where [¢q] = {0,1,...,q—
1} is a finite domain, P = {P : [¢]" — [-1,1]|t < k} is a
set of payoff functions. The maximum number of inputs to

a payoff function P € P is known as the arity of the problem
A.

DEFINITION 3.2. An instance ® of Generalized Constraint

Satisfaction Problem A = ([q], P, k) is given by ® = (V,Py, W)

where

o V:{yl,

e Py consists of the payoffs applied to subsets S of vari-
ables V of size at most k. More precisely, for a subset
S =1{s1,82,...,8: C{1,...,m}, the payoff function
Ps € Py is applied to variables yjs = (Ysys- -+ Ysy)-

,Ym} : variables taking values over [q].

e Positive weights W = {ws} satisfying doscv, sk WS =
1. By S € W, we denote a set S chosen from the prob-
ability distribution W .

The objective is to find an assignment to the variables that
mazimizes the total weighted payoff/expected payoff. i.e.
Maximize,

Esew [Ps(y|s)] = Z

SC[m],|SI<k

wsPs(y)s)

3.2 Semidefinite Program forccsp

Let & = (V, Py, W) be an instance of GCSP. The variables
of the SDP(I) are given by

e For each variable y; € V, introduce g variables

Vi = {0(:,0), V(5,1)s - - - » V(i,q—1) } taking values in {0, 1}.
In the intended solution, assigning the variable y; =
J € [q] translates to v; = ej, i.e v;;) = 1if I = j and

0 other wise.

e For every set S = {s1,...,s:} € W with a payoff Ps €
Py, introduce ¢" variables {X(s4)|8 € [¢°}. In the
intended solution, the variable X5 gy = 1 if and only
if for each s € S, ys = B(s).

'aeq*l}

The constraints of SDP(I) ensure that for each S, the vari-
ables X (g 3y form a probability distribution P s over the
partial assignments § € [q]s. Further, the inner products of
the vectors v(; ) are constrained to be consistent with the
distribution Ps.

For the purpose of our reductions, the SDP solution need
to satisfy the following special property for a constant o
independent of the size of instance .

DEFINITION 3.3. Fora > 0, the SDP solution {v(; ¢y, X(s,8)}

is said to be a-smooth if

min X >«
sewpelgs 0P 7
In general, the SDP solution for an instance ¢ need not
be a-smooth. We describe a smoothing operation in Section
7, thus showing:

LEMMA 3.4. For a GCSP instance ®, let {v(; ), X(s,8)}
be a solution with objective value FRAC(®) to SDP(I). For
any a < ﬁ, there exists an c-smooth solution {v(; .y, X(s )}

with an objective value at least FRAC(®) — 2aq”.

3.3 Unique Games

DEFINITION 3.5. An instance of Unique Games represented
asT'= (X UY, E,I (R)), consists of a bipartite graph over
node sets X,) with the edges E between them. Also part of
the instance is a set of labels (R) = {1,..., R}, and a set of
permutations myw : (R) — (R) for each edge e = (v,w) € E.
An assignment A of labels to vertices is said to satisfy an
edge e = (v,w), if Tow(A(v)) = A(w). The objective is to
find an assignment A of labels that satisfies the mazimum
number of edges.

For a vertex v, we shall use N (v) to denote its neighborhood.
For the sake of convenience, we shall use the following ver-
sion of the Unique Games Conjecture[12] which was shown
to be equivalent to the original conjecture by [15].

CONJECTURE 3.6. (Unique Games Conjecture [12]) For
all constants § > 0, there exists large enough constant R
such that given a bipartite unique games instance I' = (X U
V,E, I ={m. : (R) = (R) : e € E}, (R)) with number of
labels R, it is NP-hard to distinguish between the following
two cases:

e (1—9)-satisfiable instances: There exists an assignment
A of labels such that for 1—0 fraction of verticesv € X,
all the edges incident at v are satisfied.

e Instances that are not d-satisfiable: No assignment sat-
isfies more than a 0-fraction of the edges E.

3.4 Noise Operators and Influences

Let Q denote a finite probability space with ¢ different
atoms {0, 1,...,¢—1}. Given a function F : [¢]® — Conv(4,),
it can be thought of as a function over the probability space
Qr.

DEFINITION 3.7. For a function F : Q% — Conv(A,),
define

Inf;(F) = E,[Var., [F]]

Here Var, [F] denotes the variance of F(z) over the choice
of the it* coordinate z;.



DEFINITION 3.8. For a function F : Q% — Conv(A,),
define the function Th—F as follows:

Ti-F(z") = B[F(z") | 2]
25 s equal to

z(l:) with probability 1 — e and with the remaining probability,
29 4s a random element from the distribution 2.

where each coordinate 7V ofiR = (5<1>7 o

Due to space constraints, we omit the proof of the following
simple fact used in the hardness reduction.

LEMMA 3.9. Given a function F : [q) — Conv(A), if
H =T1_F then

- 1
;Infi(H) S elnl/(1—¢)

4. DICTATORSHIP TESTS AND ROUNDING
SCHEMES

In this section, we show a generic conversion from an in-
stance ® = (V, Py, W) of GCSP A to a dictatorship test for
functions on [g]®. Let {v(s), X(s,5)} denote an a-smooth
solution for SDP(I) with objective value at least FRAC(®) —
2aq" (using Lemma 3.4).

For each set S € W, define the local probability distribu-
tion Ps as follows:

Pis(B)=Xsp  VBEd®

Let V = (y1,...,Ym) denote the variables in the GCSP
instance ®. For each ¢ € [m], Q; will refer to a probability
space with atoms {1,2,...,q}. In €, the probability of
occurrence of an atom c € [q] is given by |v(,)|°.

Fix a function F : [¢]® — Conv(A,). For each i, let F;
denote the function F interpreted as a function over the
product probability space QF.

A dictatorship test distinguishes between dictator func-

tions from functions far from every dictator. For j € {1,..., R},

the j’th dictator function is given by F(z) = e ;). We will
use a special definition for a function being far from a dic-
tator.

DEFINITION 4.1. A function F : [q] — Conv(A,) is said
to T-pseudorandom with respect to a subset S € W if for
each s € S the following holds:

Inf; (Th_Fs) <
jemax nf; (T4 )< T

DEFINITION 4.2. A function F : [q] — Conv(A,) is said
to be (v, T)-pseudorandom with respect to a GCSP instance
® = (V,Py, W) if the following holds: For a choice of subset
S CV from the probability distribution W, with probability
at least 1 — v, F is T-pseudorandom with respect to S.

The details of the dictatorship test DICTs and the rounding
scheme Roundz are described in Figures 2 and 3 respec-
tively. Due to space constraints, we omit the full proof of
Completeness and [Lemma 2.1l Instead, we will present the
proof sketch for a special case(MaxCut) in the next section.

5. MAIN LEMMA

Let ® = (V,E) denote an integrality gap instance for
MaxCut. Without loss of generality, we may assume that

DICTg Test

e Pick a subset S C {1,...,m} at random using
probability distribution W = {ws}. Let S =
{s1,82,...,8:} with S| = t.

.,%s, } from the product dis-

tribution P‘R:g, ie. Foreach 1 < 5 < R, Z‘(g) _

e Sample z;s = {2z, ..

{zé{),...,zﬁi)} is sampled using the distribution
Pis(8) = X(s.0)-

e For each s; € S and each 1 < j < R, sample Zﬁb as

follows: With probability (1 — €), 2§{) = zg) , and
with the remaining probability 5§{ )
from Q,.

is a new sample

e Query the function values F(zs,), ..., F(Zs,)-

e Return the Pay-Off : Ps (f(zgl), - ,}"(ist))

Figure 2: Dictatorship Test

the edges have weights w., and the weights form a probabil-
ity distribution W. Let {v1,...,vm} denote the SDP vectors
with objective value FRAC(®) for the following SDP:
1
Maximize §Ee:(i,j)EW [1 — ;- ’Uj] st JulP=1

The input to the dictatorship test DICTg is a function
F:{-1,1} — {~1,1}. Locally, for every edge e = (i, j) in
®, there exists a distribution over {—1, 1} assignments that
achieve the same value as the SDP. In other words, there
exists {—1,1} valued random variables z;, z; such that

1—1}i-Uj=E[l—Zi~Zj}

In case of MaxCut, local integral distributions exist even for
the simplest SDP. For a general 2-CSP over the boolean
domain, we need the triangle inequalities(SDP(III)) to en-
sure existence of local integral distributions. In general, the
smallest SDP that guarantees existence of local integral dis-
tributions suffices to obtain a dictatorship test. For each
edge e = (i,7), let Pe denote the local integral distribution.

DICTs (MaxCut Example)
e Pick an edge e = (4, j) from distribution W.

e Sample R times independently from the distribu-
tion P. to obtain zf = (zl(l), ..,zﬁR)) and z} =

(ZJ(-I), R z](.R)), both in {—1,1}%.

e Perturb each coordinate of zZ and zf independently
with probability € to obtain zZ, Zf.

o Test if F(z]') # F(z])

Arithmetizing the probability of success, we get
1 - -
DICT&(F) = SEE,p 11 Eyp on [1 - F(2) - 7] (1)
%] @ %]

Completeness : For the sake of exposition, let us assume
that the verifier does not perturb its queries. In other words,



we assume z; = z and if = zf. Consider the dictator

function given by F(z®) = 2(*). The probability of success
is given by:

Pr[ Success | = %EeEzR I [1 — zi(l) ,Z](_l)]
]

Observe that if the verifier decides to query the edge e =
(4,7) then it uses the distribution P, to generate each coor-
dinate of the query. Specifically, this means that the coor-
M) and z](l) satisfy:

i

dinates z
— 251) ~z](.1)] =1-wv; v

Substituting we get, Pr[ Success | = 1E. [1 — v ’l}j].
Hence if the verifier does not introduce noise, the probabil-
ity of success is exactly the same as the SDP value FRAC(®).
By making the noise parameter e sufficiently small, the prob-
ability of success can be made arbitrarily close to FRAC(®).
Soundness : Define the function H as follows:

H(z") = E[F(z")|2]

Essentially, H(z") is the expected value retrieved by the
verifier by querying F(z™) with noise added to input z”.
In a sense, the function H is a smooth version of F. The
functions H, F can be written as a multilinear polynomials
in the coordinates of z® = (z(V), ..., 2()). In fact, the mul-
tilinear polynomial is just given by the Fourier expansion of

H.

F(z) = Z]}g H AR H(z) = Z(l — el E, H 2

i€ o i€o

Let F(x), H(x) denote the multilinear polynomials in R
variables x = (azm, e ,m(R>) associated with F,H.
Rewriting the probability of success in Equation [1l we get
DICTo(F) = %EGEZZR,Z]R [1 — H(zF)- H(zf)]
Notice here that we are using the multilinearity of the func-
tion P(x,y) = 1 — xy to move the expectation over z", Zf
inside.

Define the Global Ensemble G as G = {v1-(,v2-C, ..., Um
¢} where ( is a random Gaussian vector of appropriate di-
mension. For convenience, let us denote ¢g; = v; - (. The
joint distribution of G = (¢1,92,-..,9m) over R™ matches
the first two moments with the local distributions P. for
each edge e = (4,7). Specifically, for any edge e = (i, j) the
following hold:

E[gi] = E[z] =0 Elg]] = Ezf] = 1
Elgig;] = Elziz;] = vi - v;
Consider the rounding scheme Roundr described below for

the special case of MaxCut. It is easy to check that the
expected value of the cut returned by Roundr is

1 * >k
Round#(®) = §EeEgR[1 —Di 'pj]

Let us suppose F is “pseudo-random” in the sense that it is
far from being a dictator. More precisely, the influence of
each coordinate on F is small. The function H being a noisy
version of F is also “pseudorandom”.

Round#z (MaxCut Example)

e Generate G = {gf, gf* ..., gl } by sampling R in-

dependent copies of G.

e Compute

pi=H(g)=> F [[o”

JjEoT
1 ifp>1
e Define p; = ¢ p;  ifp; € [-1,1]
1 ifpi< -1

e Assign vertex 4, the value 1 with probability (1 +
p;)/2 and —1 with the remaining probability.

We need to show that DICTs(F) =~ Roundz(®). Firstly,
let us denote by P : [~1,1]*> — [~1,1] the function given by
P(z,y) = 1—zy. Let us restrict our attention to a particular
edge e = (1,2). For this edge, we will show that

B, n .z [P(H(2l), H(z))] ~ Bgr o [PO1.03)]  (2)

By using the same argument over all the edges e, the re-
quired result follows.

Here is a rough statement of the invariance principle tai-
lored to the application at hand. We refer the reader to [19,
18] for an accurate description of the invariance principle.
(Invariance Principle) Let z = {z1,22} and G = {g1, 92}
be two sets of random variables with matching first and sec-
ond moments. Let 2%, G® denote R independent copies of
the random variables z and G.

Let H(x) be a low degree polynomial in 2R variables
{{:cgl), xgl)}, cey {ng), ng)}}. Further H is multilinear in
the following strict sense : Every monomial in H contains
at most one of {z\”, 25"} for every i.

Suppose H is far from every dictator, then the random
variables H(z™) and H(G™) have nearly the same distribu-
tion. More precisely, for every smooth function W,

E,n[V(H(z"))] ~ Eqr[¥(H(G"))]

The same holds even for a vector of multilinear polynomi-
als given by H = (Hy, Ha, ..., Ht).

While the function F could itself be of arbitrary degree, its
noisy version H behaves like a ‘low degree’ function. Hence
we can hope to apply the invariance principle on the poly-
nomial H.

The proof of Equation 2!is carried out in two steps.
Step I : The predicate/payoff is currently defined as P(z,y) =
1 — 2y in the domain [—1,1]>. We will extend it to a smooth
function over the entire space R?, with all its partial deriva-
tives up to order 3 bounded uniformly throughout R?. We
stress here that the function P(x,y) = 1 — xy by itself does
not have uniformly bounded derivatives in R2.

Let us think of H = (H(x1%), H(x¥)) as a vector of mul-
tilinear polynomials over variables {z1,z2}®. Apply the
invariance principle with the ensembles z = {z1,22} and
G = {g1,92}, for the vector of multilinear polynomials H
and the smooth function ¥ = P. This yields,

E,p . [P(H(2l), H(z5))| ~ Byp op [P(H(el), H(g))]



Step II : Notice that the values H(zf') and H(zd) are
always in the range [—1,1]. Applying invariance princi-
ple, the values H(gf?), H(g3') are also nearly always in the
range [—1,1]. Hence with high probability, we have p; = p}
and p2 = p5 in the Rounds subroutine. In fact, the in-
variance principle in [18] obtains precise upper bounds on
E[(p1 — p})?] and E[(p2 — p3)?]. Since P is smooth, and
p1,p2 are “very close” to pi,p5 we get

B, o [p(pl,m)] ~ Bgr gn [P(p’{,pZ)}

Combining steps I and II, we obtain the intended result.
In general, the invariance principle requires the ensembles of
random variables to be hypercontractive [19, [18]. In terms
of probabilities, this translates to the following constraint on
all the local probability distributions P|s : Every event with
non-zero probability in P|g, should occur with probability
at least « for some fixed . Hence the above reduction can
only apply to SDP solutions that are a-smooth.

6. HARDNESS REDUCTION

In this section, we will make use of the dictatorship test
shown in [Section 4/ to obtain Unique Games based hardness
result, thus proving Lemma 2.3l

Let ' = (X UY, E, 11, (R)) be a bipartite unique games
instance. Further let ® = (V,Py,W) be an instance of a
GCSP problem A = ([q], P, k).

Starting from the unique games instance I', we shall con-
struct an instance ®(I") of the GCSP problem A. For each
vertex w € ), we shall introduce a long code over [q]*.
More precisely, the instance ®(I") is given by ®(I") = (¥ x
[q]%,P',W’). All the payoff functions in P’ will belong to Py,
ensuring that ®(T") is also an instance of the GCSP problem
A. Since the set of variables of ®(I") is given by ) x [¢]%, an
assignment to ®(I") consists of a set of functions,

F*: [q) — [q] wey
For each w € ), define F¥ : [¢]™ — Conv(A,) as follows:

for each

fw(z) = €fuw(z)

For a permutation 7 : {1,...,R} — {1,..., R} and z € [¢]%,
define 7 (z) as (w(z))m =20710) for all j € {1,...,R}.
For each v € X, define a function F* : [¢]" — Conv(A,),

F(2) = Buenw [F* (Tow(2))]

The basic idea behind converting a dictatorship test to Unique
Games hardness is similar to Khot et.al.[13]. Roughly speak-
ing, the verifier performs the dictatorship test DICT4 on the
functions F* for v € X. Note that the functions F" are
not explicitly available to the verifier. However, this access
can be simulated by accessing F* for a random neighbor
w € N(v).

Oracle(F?)

e On a query F"(z), Pick a random neighbor w €
N (v), and return F*(myw(2)).

Verifier(®(T"))

e Pick v € X at random.

e Perform the test DICTg on FY, by transferring each
of the queries to the Oracle(F?).

The queries of the Verifier(®(I")) through the oracle, trans-
late in to tests/payoffs over the functions F*. In turn, this is
equivalent to tests/payoffs on the values of functions F¥(z).
Summarizing, the set of all tests of the above verifier yield
a GCSP instance over the variables ) x [¢]%.

Let z1,...,2: € [q]R be random variables denoting the
query locations of Verifier(®(I")). Further let P denote the
payoff/test that the Verifier(®(I")) decides to perform on
these locations. Arithmetizing the expected payoff returned
by the verifier we get,

EvexEy Ey en) [P (fwl (Towy (Z1))s -+, F (Torwy (zt)))]

The payoff functions P are multilinear in the region Conv(A,).
The choices of the oracle w1, ..., w; € N(v) are independent
of each other, and the verifier’s query locations. In this light,
we can write the expected payoff as

EveXEzi |:P (Ew1 EN(v) []:wl (Tr'le (Zl))}v s

By en o [ (o, (2))))

Hence the expected payoff is just equal to Eycx [DICT & (F")]
Completeness: Let A be an assignment to the Unique
games instance I' such that the following holds: For at least
1 — § fraction of the vertices v € X all the edges incident
at v are satisfied. Let us call such vertices good vertices.
The assignment to the GCSP instance ®(I") is given by the
following set of functions : F*(z) = 2AW) o1 equivalently
F*(z) = e (aw) . For every good vertex v € X, we have:

]:U(Z) =Eyen() []:w(ﬂ'vw(z))]
=Euven) [ezw;},ww)))] = €x(A@D

In other words, the functions F* are dictator functions for
every good vertex v € X. With at least (1 — §) fraction of
the vertices being good, the expected payoff is at least

(1 —196) - (Completeness(DICTs)) +d - (—1)
> Completeness(DICT o) — 0c,5(1)

Soundness : Suppose there is an assignment to the vari-
ables Y x [¢]® whose payoff is greater than Soundness., - (DICTs)
+n. Then we have,

E,cx[DICT(F")] > Soundness, - (DICTs) + 7

As all the payoff functions are bounded by 1, for at least n
fraction of the vertices v € X, DICT&(F") >
Soundness, - (DICTg). Henceforth we refer to these vertices
as good vertices. By definition of Soundness, -(DICTg), for
every good vertex the function F* is not (vy, 7)-pseudorandom
with respect to ®.

Consider a good vertex v € X. For a random choice of sub-
set S C [m], from the probability distribution W, with prob-
ability at least -, the function FV is not 7-pseudorandom
with respect to S. By an averaging argument, there exists
a subset S such that for at least y-fraction of the good ver-
tices, the function F* is not 7-pseudorandom with respect
to S. Fix such a set S = {s1,...,s:}. For convenience, let
us denote Hy = Ti—_F, for eachv € YUY and s € S.

For each vertex v € X’ define the set of labels L(v) as

L(v) = {j|3s € S,Inf;(H;) > 7}
Similarly, for each w € ) define,
L(w) = {j|3s € S,Inf;(HY) > 7/3}



Round# Scheme
Input : A GCSP instance ® = (V,P, W) with a a-smooth SDP solution {v(; ), X(s,)}-

Sample R vectors (:(1)7 cee §<R) with each coordinate being i.i.d normal random variable.
For each ¢ € [m] do

e For all 1 < j < R and ¢ € [q], compute the projection hg‘z)c) of the vector v(; ) as follows:

h(j)

0 ifx<O
Joul@)=4z f0g<x<1
1 ifzx>1

D) =T v + (1= [0 = (T Vo)D) - V]

e Evaluate the function F with hggl) as inputs. In other words, compute p; = (p(;,0); - - - P(i,q—1)) as follows:
R .
b= Y FOIIA,
oElq] j=1

e Round p; to p; € Conv(A,) using the following procedure.

Scale(xo, x1,...,2q-1) = {

pf = SC3|e(f[0,1] (p(i,O))7 B f[O,l](p(i,q—l)))

o Assign the GCSP variable y; € V the value j € [q] with probability p(; ;.

1

Tz (.%‘0, e .,xq_l)if ZZ ZTq 7& 0

N
(1,0,0,...,0)if 3,2, =0

Figure 3: Rounding Scheme

Consider the following Labeling for the unique games in-
stance I' : For each vertex v € X U)), assign a random label
from L(v) if it is nonempty, else assign a uniformly random
label.

At least n fraction of the vertices v € X’ are good vertices.
By the choice of S, at least «y fraction of the good vertices
v € X have a non-empty label set L(v). Fix a good vertex v
with a nonempty label set L(v). Consider a label j € L(v).
By definition of L(v) , we have Inf;(H}) > 7 for some s € S.
The function H is given by H;(z) = Ewen(w)[Hs (Tow(2))].
By convexity of influences, if Inf;(Hy) > 7 then

Euen)[Infr,, ) (H)] =7

Since the range of the function Hy is Ay, we have
Inf;(HY) < 2. Hence for at least 7/3 fraction of neighbors
w € N(v), Infr  ;y(H) > 5. Thus for at least 7/3 fraction
of the neighbors w € N(v), there exists j € [R] such that
j € L(v) and myw(j) € L(w). For every such neighbor w,
the eldge constraint 7., is satisfied with probability at least
L) [|L(w)]

From [Lemma 3.9, each function H:. can have at most
C(r,e) = m influential coordinates. Thus the max-
imum size of the label set L(v) is kC(7, €). In conclusion, the
expected fraction of unique games constraints satisfied is at
least 7 X v x 3 X k=2C(7,€)~2. For small enough choice of
unique games soundness ¢, the expected fraction of satisfied
edges exceeds J.

7. ALGORITHM

For every instance &, there is a canonical SDP solution
{v{i,e)» X(s,5)} which corresponds to a uniform distribution
on all the integral solutions. More precisely, call a SDP
solution integral if all the variables take {0,1} values. Since
SDP(I) is a convex program, there exists a feasible solution

Round Algorithm

Let S = {F1,...,Fm} be a set of functions such that for
every F : [q] — Conv(A,) there exists F; € S, satisfying
[Fi = Flloo < 5

e Smooth the SDP solution {v(; ), X(s )} as follows:

'U(i,c) — W”(i,c) (e} \/aqua’c)
k k %
X — (1 —aq")X(s,8 +aq" X(sg
Here o denotes the concatenation of two vectors.

e For each function F € Sk, run the subroutine
Round# on instance ®

e Output the solution with the largest objective value.

Figure 4: Algorithm

{v(i,e)» X(s,5)} that corresponds to the average of all the
integral solutions.

To apply Lemma 2.1, we need the SDP solution to be a-
smooth for some fixed constant . In general, the optimal
SDP solution need not be a-smooth for any fixed constant
a. In order to obtain an a-smooth solution, take a convex
combination of the SDP solution {v(; ), X(s,3)} with the
canonical SDP solution.

Using the fact that payoff functions are smooth, the fol-
lowing lemma can be shown(proof in full version):

LEMMA 7.1. For two functions F,F' : [q]" — Conv(Ay)
and a GCSP instance ®, we have

|[Round#(®) — Round 7/ (®)|| < O(|F" — Flloo)
where the constant in O depends on the GCSP problem A.



Among (v, 7)-pseudorandom functions, let F* be the func-

tion that achieves the optimal expected payoff. i.e. DICT¢(F™) =
Soundness, - (DICTs). There exists certain F; € S, which
is k-close to F*. By the above lemma, for sufficiently small

choice of k, the output of Round algorithm is at least

Soundness, - (DICTg) — 1. In conjunction with Lemmas 2.1
and 2.4, this completes the proofs of Theorems 1.2/ and [1.4L

8. CONSTRUCTING INTEGRALITY GAPS

Except for some minor modifications, the following theo-

rem is a direct consequence of [16].

THEOREM 8.1. For every 6 > 0, there exists a UG in-

stance, ' = (X UY,E, 11 = {me : [R] — [R] | e € E},[R)])

and vectors {w'} for every w € Y, i € [R] such that the

following conditions hold :

e Fuvery assignment satisfies < & fraction of constraints

II.
e For all w,wi,ws € Y,4,j € [R],
w'w! = 0.

I1]? = 1.

wt -w% >0
> w e
JE[R]

e The SDP wvalue is at least 1 — §:

Evex,wi,weeN(w) [Z w;fl(i) ,w;w(i)] >1-96
rER

Let ® be an instance of GCSP problem A of arity 2. Ap-
ply Theorem 8.1, with a sufficiently small ¢ to obtain a UGC
instance ' and SDP vectors {w’|w € ),j € [q]} U {I}. Con-
sider the instance ®(I") constructed by running the hardness
reduction inSection 6/on the integrality gap instance I'. The

variables of the instance ®(T") are given by Y x [¢]".

The program SDP(II) on the instance ®(I') contains g

vectors {ng’z)h’ € [q]} for each vertex (w,z) € Y X [g
Define a

and a special vector I denoting the constant 1.

]R

solution to SDP(II) as follows: Set the vector I to be the
corresponding vector in the instance I'. For each (w,z) €

Y x [q]" and i € [g]

ng‘z> = Z w’

2() =4

It is easy to check that the vectors ng’z) satisfy the con-

straints of SDP(I1) and have an SDP value close to FRAC(®).

On the other hand, the soundness analysis in [Section 6 im-

plies that the integral optimum for ®(I") is at most

Soundness, ;- (®) + 7. Details of proof of Lemma 2.4/ will

appear in the full version.
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