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Abstract

We develop a general randomized technique for solving implicit linear programming problems,
where the collection of constraints are defined implicitly by an underlying ground set of elements.
In many cases, the structure of the implicitly defined constraints can be used to obtain faster linear
program solvers.

We apply this technique to obtain near-optimal algorithms for a variety of fundamental problems
in geometry. For a given point set P of size n in Rd, we develop algorithms for computing geometric
centers of a point set, including the centerpoint and the Tukey median, and several other more
involved measures of centrality. For d = 2, the new algorithms run in O(n log n) expected time,
which is optimal, and for higher constant d > 2, the expected time bound is within one logarithmic
factor of O(nd−1), which is also likely near optimal for some of the problems.

1. Introduction

Parametric search In the 1980s, Nimrod Megiddo came up with an ingenious technique for solv-
ing efficiently many geometric optimization problems. This parametric-search technique [AS98, Meg83]
works by parallelizing a decider procedure for the problem (i.e., an algorithm that can solve the deci-
sion problem associated with the optimization problem), and conceptually running it on the unknown
parameter being the optimal value. One then simulates the execution of this parallel algorithm. This
reduces to resolving a large batch of parallel comparisons performed by the algorithm (i.e., the critical
values of the problem), which is done by performing a binary search over these critical values using a
sequential decider algorithm. The details of the resulting algorithm, being a mixed simulation of a par-
allel algorithm, tends to be convoluted, complicated and counter-intuitive. Nevertheless, this technique
provides the optimal or fastest deterministic algorithm for many geometric optimization problems.
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Linear programming (LP) Remarkably, in roughly the same time, Nimrod Megiddo [Meg84] came
up with a linear time algorithm for linear programming in constant dimension. His algorithm shares
some ideas with his parametric search technique. This algorithm can be dramatically simplified (and
in practice sped up) by using randomization [Sei91, Kal92, Cla95, MSW96]. Here is a quick sketch of
Seidel’s algorithm [Sei91]—it randomly permutes the constraints, inserts them one by one, and checks
whether an inserted constraint violates the current optimal solution. If so, it recurses on the offending
constraint (and the prefix of the constraints inserted so far). The probability that the ith constraint
violates the current solution is O(1/i), which implies that the expected number of recursive calls in the
top level is O(log n). Since the violation check takes constant time, and the recursion depth is bounded,
this readily implies a running time that is near linear. A somewhat more careful analysis shows that
the expected running time is linear.

Randomization for parametric search It is by now well known [OV04] that randomization can be
used as a replacement to parametric search, resulting in simpler (and in many cases faster) algorithms.
In particular, Chan [Cha99a] identified a surprisingly simple and efficient algorithmic technique that
can be used to solve many of these geometric optimization problems (it is similar in spirit to Seidel’s
algorithm for LP). Specifically, imagine a maximization problem where one has a fast decider algorithm
that can tell us whether a given value is larger or smaller than the optimal value of the given instance.
Furthermore, assume that the problem at hand can be (quickly) divided into a small number (e.g.,
constant) of smaller instances, such that the value of one of these instances is the desired optimal value,
and all the other instances have values that are not larger. Chan’s algorithm now randomly orders
these subproblems, and solves the problem recursively on each subproblem, but only if the (fast) decider
indicates that the current subproblem contains a higher value solution than the one found so far. If
there are t subproblems, the algorithm in expectation performs only O(log t) recursive calls. The result
is a significantly simpler randomized algorithm (which uses the decision algorithm only as a black box),
which is also faster and has none of the logarithmic-factor slowdowns that parametric-search suffers
from.

In this paper, we develop a generalization of the above randomized optimization technique. This
generalized technique is interesting in its own right, as it can handle certain linear programming (LP)
problems, where the constraints are too numerous to be explicitly stated and are thus specified implicitly.
We apply this technique to a variety of problems, discussed next.

1.1. Motivation & problems studied

1.1.1. Tukey depth

Definition 1.1. Given a set P of n points in Rd, the Tukey depth of a point p ∈ Rd is

min
h+: halfspace containing p

|P ∩ h+|.

The task at hand is to compute a Tukey median , that is, a point p ∈ Rd with maximum Tukey
depth. By the centerpoint theorem, there is always a point of Tukey depth ≥ n/(d+ 1) in Rd.

Notions of depths for point data sets are important in statistical analysis. The above definition
(also called location depth, data depth, and halfspace depth) is among the most well-known and was
popularized by John Tukey [Tuk75], who suggested using the corresponding depth contours (boundaries
of regions of all points with equal depth) to visualize data. A Tukey median can serve as a point
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Figure 1.1: (A) Points. (B) Median lines and the extremal yolk. (C) All lines and the egg. (D) Points
with the extremal yolk and the egg.
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estimator for the data set (a “center”) which is robust against outliers, does not rely on distances, and
is invariant under affine transformations [RR98, RR96, Sma90].

Because of the applications to statistics, the issue of designing efficient algorithms to find Tukey
medians and their relatives—for example, a point with maximum Liu/simplicial depth, minimum Oja
depth, or maximum convex-layers/peeling depth, and a line or flat with maximum regression depth—has
attracted a great deal of attention from researchers in computational geometry. See [ACG+02, ALST03,
BE02, GSW92, KMR+08, LS00, LS03a, LS03b, MRR+03] for the definitions of these concepts and
relevant algorithms.

1.1.2. Voting games and the yolk

Suppose there is a collection of n voters in Rd, where each coordinate represents a specific ideology. In
each coordinate, each voter has a value representing their stance on a given ideology. One can interpret
Rd as a policy space, and each point in Rd represents a single policy. In the Euclidean spatial model, a
voter p ∈ Rd always prefers policies which are closer to p under the Euclidean norm. For two policies
x, y ∈ Rd and a set of voters P ⊂ Rd, x beats y if more voters in P prefer policy x compared to y. A
plurality point is a policy which beats all other policies in Rd. For d = 1, the plurality point is the
median voter (when n is odd) [Bla48]. However for d > 1, a plurality point is not always guaranteed
to exist [Rub79]. It is known that one can test whether a plurality point exists (and if so, compute
it) in O(dn log n) time [BGM18]. Note that the plurality point is a point of Tukey depth dn/2e—in
general this is the largest possible Tukey depth any point can have; while the centerpoint is a point that
guarantees a “respectable” minority of size at least n/(d+ 1).

Since plurality points may not always exist, one generalization of a plurality point is the yolk [McK86].
A hyperplane is a median hyperplane if the number of voters lying in each of the two closed halfspaces
(bounded by the hyperplane) is at least dn/2e. The yolk is the ball of smallest radius intersecting all
such median hyperplanes. Note that when a plurality point exists, the yolk has radius zero (equivalently,
all median hyperplanes intersect at a common point).

In terms of real world politics, one can think of the yolk as representing an area of ambiguity where
the policy of a political party might be located. Such an ambiguity might be intentional, or the natural
consequence of forming a party made out of people with differing views.

We also consider the following restricted problem. A hyperplane is extremal if and only if it passes
through d input points, under the assumption that the points are in general position. The extremal
yolk is the ball of smallest radius intersecting all extremal median hyperplanes. Importantly, the yolk
and the extremal yolk are different problems—the radius of the yolk and extremal yolk can differ [ST92].

1.1.3. The egg of a point set

A problem related to computing the yolk is the following: For a set of n points P in Rd, compute the
smallest radius ball intersecting all extremal hyperplanes of P (i.e., all hyperplanes passing through d
points of P ). Such a ball is the egg of P . See Figure 1.1 for an illustration of the yolk and egg of a
point set.

1.1.4. Linear programs with many implicit constraints

Many of the problems discussed above (e.g., computing the Tukey median or egg of a point set) can be
written as an LP with Θ(nd) constraints, defined implicitly by the point set P . One can apply Seidel’s
algorithm [Sei91] (or any other linear time LP solver in constant dimension) to obtain an O(nd) expected
time algorithm for our problems. However, as each d-tuple of points forms a constraint, it is natural to

4



ask if one can obtain a faster algorithm in this setting. Specifically, we are interested in the following
problem: Let I be an instance of a d-dimensional LP specified via a set of n entities P , where each
k-tuple of P induces a linear constraint in I, for some (constant) integer k. The problem is to efficiently
solve I, assuming access to some additional subroutines. (We would also be interested in the more
general settings where not all the tuples induce constraints.)

1.2. Previous work

1.2.1. On computing a Tukey median

For dimension d = 1, a Tukey median corresponds to the standard median, and can be computed in
linear time [CLRS01], with the maximum depth being (exactly) dn/2e.

For d > 1, the maximum Tukey depth is between dn/(d+ 1)e and dn/2e. The lower bound follows
from the existence of a centerpoint , which follows from Helly’s theorem. A centerpoint has depth at
least dn/(d+ 1)e. The first nontrivial algorithmic result in the plane, by Cole et al. [CSY87], presented
an algorithm for computing a centerpoint in O(n log5 n) time, using a two-level application of parametric
search [Meg83]. Cole’s refined parametric-search technique [Col87] subsequently reduced the time bound
to O(n log3 n). Later, an O(n) time algorithm for centerpoints in the plane was discovered by Jadhav
and Mukhopadhyay [JM94], using a clever prune-and-search approach. This algorithm does not solve
the (more general) Tukey median problem.

In 1991, Matoušek [Mat90] described an algorithm that decides, in O(n log4 n) time, whether the
maximum Tukey depth is at least a given value k, using also a two-level parametric search as a subroutine.
His algorithm constructs a description of the entire region of all points at depth at least k. Consequently,
a binary search over k yields the maximum Tukey depth and a Tukey median in O(n log5 n) time.

In 2000, Langerman and Steiger [LS00] obtained a faster decision algorithm with an O(n log3 n)
running time by using an alternative to parametric search. This algorithm avoids constructing the
entire depth region. The additional binary search then leads to an O(n log4 n) time bound for Tukey
median. Subsequently, Langerman and Steiger [LS03b] showed that the Tukey median problem itself can
be solved in O(n log3 n) time. Some extra logarithmic factors seem inherent in their binary-search-like
approach. There is an Ω(n log n) lower bound on the time complexity of (i) computing the maximum
Tukey depth, (ii) deciding whether the maximum depth is at least k, (iii) the depth value of just a single
point q, or (iv) finding a Tukey median that is extreme along a given direction [ALST03, LS00]. We
conjecture that the Ω(n log n) lower bound holds for finding an arbitrary Tukey median as well.

Extensions to d = 3 were also considered. An O(n2 polylogn) algorithm for computing a 3-
dimensional centerpoint was given by Naor and Sharir [NS90]. More recently, Agarwal, Sharir, and
Welzl [ASW08] and Oh and Ahn [OA19] gave more near-quadratic algorithms (with extra no(1) or poly-
logarithmic factors) for computing the entire region of all points of depth at least k in 3 dimensions.

Note that the problem is difficult because of our insistence on using exact depth values. Approximate
versions of the problem can be solved considerably more quickly; for example, see [CEM+96, HJ19,
Mat90].

1.2.2. On computing the yolk

Both the yolk and the extremal yolk have been studied in the literature. The first polynomial time exact
algorithm for computing the yolk in Rd was by Tovey in O

(
n(d+1)2

)
time—in the plane, the running time

can be improved to O(n4) [Tov92]. Following Tovey, recent results have focused on computing the yolk
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d = 2 (1 + ε)-approx Exact Our results (Exact)

Extremal yolk O(nε−3 log3 n)
[BCG19]

O(n4/3 log1+ε n)
[BGM18]

O(n logn)
Theorem 6.9

Yolk O(n log7 n log4 ε−1)
[GW19b]

O(n4/3 log1+ε n)
Variant of [BGM18]

O(n logn)
Theorem 7.5

d ≥ 3

Extremal yolk ? O(nd)
Known techniques

O(nd−1 logn)
Theorem 6.9

Yolk ? O(nd)
Known techniques

O(nd−1)
Theorem 7.5

Table 1.1: Some previous work on the yolk and our results. Existing algorithms are deterministic, while
the running time of our algorithms holds in expectation.

in the plane. In 2018, de Berg et al. [BGM18] gave an O(n4/3 log1+o(1) n) time algorithm1 for computing
the yolk. The running time follows from the best known upper bound on the number of combinatorially
distinct median lines, which is O(n4/3) [Dey98]. Obtaining a faster exact algorithm remained an open
problem. Gudmundsson and Wong [GW19a, GW19b] presented a (1 + ε)-approximation algorithm with
O(n log7 n log4 ε−1) running time. An unpublished result of de Berg et al. [BCG19] achieves a randomized
(1 + ε)-approximation algorithm for the extremal yolk running in expected time O(nε−3 log3 n).

1.2.3. On computing the egg

The egg of a point set in Rd can be computed by solving a linear program with Θ(nd) constraints.
The egg is a natural extension to computing the yolk, and thus obtaining faster exact algorithms is
of interest. The authors are not aware of any previous work on this specific problem. Bhattacharya
et al. [BJMR94] gave an algorithm which computes the smallest radius ball intersecting a set of m
hyperplanes in O(m) time, when d = O(1), by formulating the problem as an LP (see also Lemma 6.4).
However we emphasize that in our problem the set of hyperplanes is implicitly defined by the point set
P , and is of size Θ(nd) in Rd.

1.3. Our results

In this paper we develop a generalized technique for solving LPs with many implicitly defined constraints.
The new technique has specific requirements to be met so it can be used, and these are spelled out in
Section 4.1.1. Informally, these requirements are:
(I) The problem can be solved in constant time for constant size instances.
(II) Given a candidate solution for an instance of size n, one can verify that it is optimal, in D(n)

time.
(III) One can break the given instance, in D(n) time, into a constant number of smaller (by a constant

factor) instances, such that the union of the implicit constraints they induce is the set of original
constraints.

(IV) The function D(n) grows fast enough.

Under these requirements, the implicit LP problem can be solved in O
(
D(n)

)
time.

1Actually the running time can be slightly improved to O(n4/3), using a known randomized algorithm for median levels
in the plane [Cha99b].
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In Section 4 we state the technique and prove the key result (Theorem 4.5). The technique builds
on the work of Chan [Cha99a] and leads to efficient algorithms for the following problems. Throughout,
let P ⊂ Rd be a set of n points in general position:

(A) In Section 5 we show that the point of maximum Tukey depth can be computed in O(nd−1 +n log n)
expected time. As the problem of detecting affine degeneracies (the existence of d points on a
common hyperplane) among n points in Rd−1 is believed to require Ω(nd−1) time [Eri99] and can
be reduced to computing the maximum Tukey depth in Rd, our result is likely to be optimal for
d ≥ 3 as well. Note that as a byproduct, we get an improved O(n2) time randomized algorithm for
centerpoints in R3.

(B) In Section 5.1.4 we show how to compute in the plane the convex polygon forming the points of
Tukey depth at least k. The new algorithm has running time O(n log2 n), and improves over the
work of Matoušek [Mat90], that worked in O(n log4 n) time.

(C) The yolk of P can be computed exactly in O(nd−1 + n log n) expected time. The extremal yolk can
be computed in O(nd−1 log n) time. Hence in the plane, the yolk can be computed in O(n log n)
expected time. This improves all existing algorithms (both exact and approximate) [Tov92, BGM18,
GW19b, GW19a, BCG19] for computing the yolk in the plane, and our algorithm easily generalizes
to higher dimensions. See Table 1.1 for a summary of our results and previous work.

(D) By a straightforward modification of the above algorithm, in Lemma 6.10, we prove that the egg of
P can be computed in O(nd−1 log n) expected time.

(E) Let Hk(P ) be the collection of all open halfspaces which contain more than n − k points of P .
Consider the convex polygon Tk =

⋂
h∈Hk(P ) h. Observe that T1 is the convex hull of P , with

T1 ⊇ T2 ⊇ · · · . The centerpoint theorem implies that Tn/(d+1) is non-empty (and contains the
centerpoint). The Tukey depth of a point q is the minimal k such that q ∈ Tk \ Tk+1.

When Tk is non-empty, the center ball of P is the ball of largest radius contained inside Tk. For
Tk empty, we define the Tukey ball of P as the smallest radius ball intersecting all halfspaces of
Hk(P ).

In Section 8 we show that the Tukey ball and center ball can both be computed in Õ
(
kd−1

[
1 +

(n/k)bd/2c
])

expected time (see Lemma 8.5 and Lemma 8.8, respectively), where Õ hides polylog
terms. In particular, when k is a (small) constant, a point of Tukey depth k can be computed in
time Õ(nbd/2c). As mentioned above, for k ≤ n/(d + 1), the centerpoint has Tukey depth ≥ k. As
such, the issue here is computing such a point (and not deciding its existence). This improves on
the algorithm for computing a point of Tukey depth at least k, when k � n.

(F) In Section 9, we present the last application: Given a set L of n lines in the plane, the crossing
distance between two points p, q ∈ R2 is the number of lines of L intersecting the segment pq.
Given a point q ∈ R2 not lying on any lines of L, the disk of smallest radius containing all vertices
of A(L) within crossing distance at most k from q can be computed in O(n log n) expected time.
See Lemma 9.1.

Paper organization We provide some needed preliminaries in Section 2. We study some variants
of LP-type problems in Section 3 – specifically, ranking and batched LP-type problems. The main
technique is presented in Section 4. We present an algorithm for the Tukey depth problem in Section 5.
The algorithm for the extremal yolk is presented in Section 6. The algorithm for the continuous yolk
is presented in Section 7. The algorithms for Tukey ball and center ball are presented in Section 8. In
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Section 9, we present the algorithm for computing the smallest disk within certain crossing distance.
We conclude in Section 10 with a few final remarks.

2. Preliminaries

Notation Throughout, the O notation hides factors which depend (usually exponentially) on the
dimension d. Additionally, the Õ notation hides factors of the form logc n, where c is a constant that
may depend on d.

2.1. Duality

Definition 2.1 (Duality). The dual hyperplane of a point p = (p1, . . . , pd) ∈ Rd is the hyperplane
p? defined by the equation xd = −pd +

∑d−1
i=1 xipi. The dual point of a hyperplane h defined by

xd = ad +
∑d−1

i=1 aixi is the point
h? = (a1, a2, . . . , ad−1,−ad).

Fact 2.2. Let p be a point and let h be a hyperplane. Then p lies above h ⇐⇒ the hyperplane p? lies
below the point h?.

Given a set of objects T (e.g., points in Rd), let T ? = {x? | x ∈ T} denote the dual set of objects.

2.2. k-Levels

Definition 2.3 (Levels). For a collection of hyperplanes H in Rd, the level of a point p ∈ Rd, denoted
by level(p), is the number of hyperplanes of H lying on or below p. The bottom k-level of H is the
(closure of the) union of points in Rd which have level equal to k, and let Bk(H) denote the set of all
such points. The (bottom) (≤ k)-level of H is the union of points in Rd which have level at most k.
Let B<k(H) =

⋃k−1
i=0 Bi(H).

The top k-level is defined analogously (i.e., all points that have k hyperplanes above them). We
denote the top k-level by Tk(H). Let T<k(H) =

⋃k−1
i=0 Ti(H).

By Fact 2.2, if h is a hyperplane which contains k points of P lying on or above it, then the dual
point h? is a member of the k-level of P ?.

2.3. Zones of surfaces

For a set of hyperplanes H, denote the arrangement of H by A(H) (see, e.g., [BCKO08]).

Definition 2.4 (Zone of a surface). For a collection of hyperplanes H in Rd, the complexity of a cell ψ in
the arrangement A(H) is the number of faces (of all dimensions) which are contained in the closure of
ψ. For a (d − 1)-dimensional surface γ, the zone Z(γ,H) of γ is the subset of cells of A(H) which
intersect γ. The complexity of a zone is the sum of the complexities of the cells in Z(γ,H).

The complexity of a zone of a hyperplane is known to be Θ(nd−1) [ESS93]. For general algebraic
surfaces it is larger by a logarithmic factor. Furthermore, the cells in the zone of a surface can be
computed efficiently using lazy randomized incremental construction [BDS95].
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Lemma 2.5 ([APS93, BDS95]). Let H be a set of n hyperplanes in Rd and let γ be a (d − 1)-
dimensional algebraic surface of degree δ. The complexity of the zone Z(γ,H) is O(nd−1 log n), where the
hidden constants depend on d and δ. The collection of cells in Z(γ,H) can be computed in O(nd−1 log n)
expected time.

2.4. Cuttings

Definition 2.6 (Cuttings). Given n hyperplanes in Rd, a (1/c)-cutting is a collection of interior disjoint
simplices covering Rd, such that each simplex intersects at most n/c hyperplanes.

Lemma 2.7 ([Cha93]). Given a collection of n hyperplanes in Rd, a (1/c)-cutting of size O(cd) can
be constructed in O(ncd−1) time.

2.5. LP-type problems

An LP-type problem, introduced by Sharir and Welzl [SW92], is a generalization of a linear program.
Let H be a set of constrains and f be an objective function. For any B ⊆ H, let f(B) denote the value of
the optimal solution for the constraints of B. The goal is to compute f(H). If the problem is infeasible,
let f(H) =∞. Similarly, define f(H) = −∞ if the problem is unbounded.

Definition 2.8. Let H be a set of constraints, and let f : 2H → R ∪ {∞,−∞} be an objective function.
The tuple (H, f) forms an LP-type problem if the following properties hold:
(A) Monotonicity. For any B ⊆ C ⊆ H, we have f(B) ≤ f(C).
(B) Locality. For any B ⊆ C ⊆ H with f(C) = f(B) > −∞, and for all s ∈ H, f(C) <

f(C + s) ⇐⇒ f(B) < f(B + s), where B + s = B ∪ {s}.

A basis of a set H ′ ⊆ H is an inclusion-wise minimal subset b ⊆ H ′ with f(b) = f(H ′). The com-
binatorial dimension δ is the maximum size of any feasible basis of any subset H ′ of H. Throughout,
we consider δ to be a constant. For a basis b ⊆ H, a constraint h ∈ H violates the current solution
induced by b if f(b+ h) > f(b). LP-type problems with n constraints can be solved in randomized
time O(n), hiding constants depending (exponentially) on δ [Cla95], where the bound on the running
time holds with high probability.

Remark 2.9. The aforementioned algorithms for solving LP-type problems require certain primitives to
be provided, such as testing for a basis violation, and computing the basis for a small set of constraints.
In the following, we assume that such primitives are provided when considering any LP-type problem.

3. Variants of LP-type problems

3.1. Ranking LP-type problem

Let H be a set of constraints, and assume that each constraint h has an associated rank r(h) ∈ R+

(importantly for our purposes, the ranks are not necessarily distinct). Assume that (H, f) forms an
instance of LP-type (minimization) problem. This instance might not be feasible (i.e., f(H) = +∞),
so consider the parameterized instance. Here, for a number α ∈ R, we consider the LP-type problem
instance I(α) formed by the set of constraints

H≥α = {h ∈ H | r(h) ≥ α} .

9



Let ζ(H) be the minimum positive real value of α such that H≥α is feasible. For a set of constraints
B ⊆ H, consider the target function g(B) = (α, β), where α = ζ(B) and β = f(B≥α). Let ≺ be the
lexicographical ordering of R2 (i.e., (x, y) ≺ (x′, y′) ⇐⇒ x < x′ or [x = x′ and y < y′]). The new
optimization problem (H, g), is to compute g(H). Thus computing the minimum α, such that H≥α is
feasible, and the associated original LP value for this subset. We refer to (H, g) as the ranking problem
associated with (H, f).

Lemma 3.1. Given an LP-type problem (H, f) of combinatorial dimension d, with associated ranks on
the constraints of H, the ranking problem (H, g) is an LP-type problem of combinatorial dimension d+1.

Proof: The proof is straightforward, and we include it only for the sake of completeness.
The basis of g(H) is a minimal set b ⊆ H, such that g(b) = g(H). A constraint x ∈ H violates b,

if r(x) ≥ r(b) and f(b+ x) > f(b), where r(b) = minh∈b r(h). As such, a basis of the ranking problem,
is a basis of the original problem with potentially one additional constraint that realizes/records the
minimum realizable rank subset.

We now verify the required LP properties from Definition 2.8:
(A) Monotonicity: For any B ⊆ C ⊆ H, let α be the minimum value such that C≥α is feasible for

f . Clearly, B≥α ⊆ C≥α, which implies that B≥α is feasible for f . That is, we have g(B) � g(C).

(B) Locality: Consider any B ⊆ C ⊆ H with g(C) = g(B) � (0,−∞).

Consider any s ∈ H, such that (α, β) = g(C) ≺ g(C + s) = (α′, β′). If α = α′ then β =
f(B≥α) < f(B≥α + s) = β′. The locality of f implies that f(C≥α) < f(C≥α + s). This implies
that g(B) ≺ g(B + s), which implies the locality property.

Otherwise, α′ > α. This implies that C≥α + s is not feasible, which implies f(C≥α) < f(C≥α + s).
By the locality of f , we have that f(B≥α + s) > f(B≥α). But that readily implies that g(B+ s) �
g(B) = (α, β).

As for the other direction, if g(B) ≺ g(B+s) then by monotonicity, we have that g(C) ≺ g(C+s),
which implies locality.

3.2. Batched LP

Intuitively, one can group constraints of an LP-type problem so that each group form its own “constraint”,
and the modified problem remains an LP-type problem. This is captured by the following definition.

Definition 3.2 (Batched LP-type problems). Let (H, f) be an LP-type problem. A batched LP-type prob-
lem is defined by the constraint set 2H and the objective function F : 22H → R ∪ {∞,−∞}. For
non-empty B1, . . . , Bm ⊆ H, define F({B1, . . . , Bm}) := f(B1 ∪ . . . ∪Bm).

Lemma 3.3. Let (H, f) be an LP-type problem of combinatorial dimension δ, and let H = 2H . Then
(H,F) is an LP-type problem with combinatorial dimension δ.

Proof: The proof of this lemma is straightforward – we provide a proof for the sake of completeness,
but the reader is encouraged to skip it. For any sets B ⊆ C ⊆ H, we have that

F(B) = f(∪B) ≤ f(∪C) ≤ F(C),

by the monotonicity of f , see Definition 2.8, where ∪B = ∪X∈BX. This readily implies the monotonicity
of F.
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solveLPType(b0,Υ1, . . . ,Υm)
// b0: initial basis
〈Υ′1, . . . ,Υ′n〉: random permutation of Υ1, . . . ,Υm.
for i = 1 to m do

if violate(Υ′i, bi−1) then
ti ← compBasis(bi−1,Υ

′
i)

bi ← solveLPType(ti ∪ b0,Υ
′
1, . . . ,Υ

′
i)

else
bi ← bi−1

return bn

Figure 3.1: The algorithm for solving LP-type problems.

For any B ⊆ C ⊆ 2H with F(C) = F(B) > −∞, and for all S ∈ H, we have that

F(C) < F(C + S) ⇐⇒ f(∪C) < f(∪C ∪ S) ⇐⇒ f(∪B) < f(∪B ∪ S) ⇐⇒ F(B) < F(B + S),

by the locality of f . This implies the locality of F.
As for the combinatorial dimension, consider any family of sets

B = {B1, . . . , Bm} ⊆ H,

and let X = {x1, . . . , xt} be the basis of f(∪iBi). By assumption, t ≤ δ. Assume, for simplicity of
exposition, that xi ∈ Bi, for all i. We have that Z = {B1, . . . , Bt} is a basis for B, for F, as

F(B) = f(∪iBi) = f(X) ≤ F(Z) ≤ F(B) =⇒ F(Z) = F(B).

That readily implies that the combinatorial dimension of (H,F) is δ.

3.3. Solving LP-Type problem for bundles using Seidel’s algorithm

Let I = (H, f) be an instance of an LP-type problem with combinatorial dimension δ.

Definition 3.4. Given a set H of constraints, a subset of Υ ⊆ H is a bundle . A collection Υ1, . . . ,Υn of
bundles is a cover of H if

⋃
i Υi = H.

For a given cover Υ1, . . . ,Υn, and a basis b, assume that one can compute the basis of b ∪ Υi in
D time, for any i, by calling a procedure compBasis. Furthermore, assume that one can also check if
any of the constraints of Υi violates b, in D time, by calling a procedure violate. It is natural to ask if
one can solve I quickly. This question makes sense if D is sublinear in the number of constraints in a
bundle.

We are going to use a variant of Seidel’s algorithm for solving LP-type problems, which also works
for violator spaces [Sei91, Har11, Har16] (other algorithms for solving LP-type problems can be used
here). For the sake of completeness, we next sketch this algorithm. See also Figure 3.1.

The input is an initial basis b0 (made out of at most δ constraints), and n bundles of constraints
Υ1, . . . ,Υn. The algorithm picks uniformly at random a permutation π of JnK = {1, . . . , n}. In the
ith iteration, the algorithm adds Υ′i = Υπ(i) to the current set of constraints, maintaining the optimal
solution to Xi = {Υ′1, . . . ,Υ′i}∪ b0. To this end, the algorithm maintains a basis bi ⊆ Xi of the solution
for the constraints of Xi. Initially, the algorithm sets b0 = b.

11



In the beginning of the ith iteration, the algorithm uses the violation test (i.e., violate) to decide
if any of the constraints of Υ′i violates bi−1. If there is no violation, the algorithm sets bi to bi−1,
and continues to the next iteration. Otherwise, the algorithm computes the basis ti of bi−1 ∪ Υ′i by
calling compBasis. The algorithm then computes bi by calling itself recursively with the initial “basis”
ti ∪ b0 and the bundles Υ′1, . . . ,Υ

′
i (this second call is on LP-type instance with smaller combinatorial

dimension). At the end, the algorithm returns bm as the basis of the solution.
The correctness of this algorithm is immediate by interpreting this problem as an instance of batched

LP. See Lemma 3.3. In particular, in this variant of the algorithm, the depth of the recursion is at most
δ [Har16], and as such the initial “basis” set is of size at most δ2 (i.e., constant). We need the following
well known result.

Lemma 3.5 ([SW92, Har11, Har16]). The input is an instance I = (H, f) of an LP-type problem
with constant combinatorial dimension δ. In addition, the input also includes a cover H by n bundles
Υ1, . . . ,Υn, and procedures violate and compBasis as described above, where each call takes D time.
For this input, the above algorithm computes the optimal solution to I in O(nD) time, and O

(
(δ logm)δ

)
calls to compBasis.

Remark 3.6. It is possible to further reduce the number of calls to compBasis to O(δO(δ) logm) by using
Clarkson’s randomized LP algorithm [Cla95] instead of Seidel’s, though such an improvement will not
be needed in our applications.

4. An optimization technique for implicit LP-type problems

The main challenge in implementing the algorithm of Section 3.3 for bundles is that we need to provide
the procedures violate and compBasis. A natural approach, if we have a way to break a bundle into
subbundles, is to use recursion. For this scheme to make sense, the number of constraints defined by a
bundle has to be defined implicitly, and be superlinear in the number of entities defining a bundle.

4.1. Settings and basic idea

4.1.1. Instance of implicit LP

Let (H, f) be an LP-type problem of constant combinatorial dimension δ. Let ψ be an integer constant
and η > 1 be another constant. For an input space Π, suppose that there is a function g : Π → 2H

which maps inputs to sets of constraints. Furthermore, assume that for any input P ∈ Π of size n, we
have the following properties:
(P1) When n = O(1), a basis for g(P ) can be computed in constant time.
(P2) We are given a violation test that, for a basis b, decides if b satisfies g(P ) in D(n) time. (Let

violate be the name of this procedure.)
(P3) In D(n) time, one can construct sets P1, . . . , Pψ ∈ Π, each of size at most n/η, such that

g(P ) =
⋃ψ
i=1 g(Pi).

(P4) The function D(n)/nε is monotonically increasing for some constant ε > 0.
The above is an instance of the implicit LP problem.

Remark 4.1. Note that the above condition on D(n) in particular implies that for any 1 ≤ k ≤ n, we
have D(n/k)/(n/k)ε ≤ D(n)/nε, i.e., D(n/k) ≤ D(n)/kε.
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4.1.2. An assumption

An annoying technicality is that to bound the running time of the resulting algorithm, we need a strong
assumption on the parameters used in the above instance. We tackle issue next, but the casual reader
can safely skip to Section 4.1.3.

Specifically, for fixed constants ε ∈ (0, 1), and c > 1, the required property is that

c logδ ψ

ηε
< 1, (4.1)

where ψ is the number of sets in the partition, and n/η is the bound on the size on each set of the
partition, see (P3). If the given instance does not have this property, then one can modify the instance,
to get a new instance that has this property, as testified by the following.

Lemma 4.2. Consider a fixed constant ε ∈ (0, 1), and some fixed constant c > 1. Given an instance of
implicit LP, one can create a new instance such that Eq. (4.1) holds. The asymptotic running time of
the new partition procedure is the same.

Proof: The idea is to apply the decomposition recursively for, say, i levels. We get sets P1, . . . , Pm ⊆ P ,
with m ≤ ψi, where each set is of size at most n/ηi. This yields a finer decomposition into a larger
number of smaller sets, and we can use this decomposition in the above settings. Then

c
logδ ψi

ηεi
= c

iδ logδ ψ

ηεi
< 1,

by choosing i to be a sufficiently large constant (depending only on ψ, η, δ, ε, c), since η > 1. Thus, using
this decomposition with ψi sets, and shrinking factor ηi, implies a new instance of the problem that
satisfies the claim.

4.1.3. Example: Egg in the plane

Consider the egg problem in the plane, as defined in Section 1.1.3. The input space Π is a set of n points
P in the plane. For a pair of points p, s ∈ P , consider the line ` with equation αx + βy + γ = 0 that
passes through these two points, where α2 + β2 = 1. Consider a point c = (x, y, r) in three dimensions.
The point c encodes a disk of radius r centered at (x, y). This disk intersects ` if and only if

−r ≤ αx+ βy + γ ≤ r.

This condition corresponds to two linear inequalities, and let g
(
{p, s}) denote the set of these two

inequalities. For a set Q ⊆ P , the associated set of linear constraints is

g
(
Q) =

⋃
p,s∈Q,p6=s

g
(
{p, s}).

Thus, to compute the smallest disk intersecting all the lines induced by P , we need to solve the three-
dimensional LP defined by the constraints of g

(
P )—computing the feasible point with minimum z

coordinate. This LP can be solved in quadratic time in a straightforward fashion—here we are interested
in solving this problem more quickly.

We next verify that the above settings apply. First, the problem can be solved in constant time for
a constant size point set. Next, given a basis (i.e., a disk o in this case), and a set Q of points, one can
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Figure 4.1: Finding an induced line avoiding the disk is equivalent to computing two arcs that intersect
but do not contain each other in the associated circular arc graph.

check (in near linear time) whether two points of Q induce a line that avoids the disk o. An algorithm
for this problem is described, in somewhat more abstract settings, in Section 6.2. In this specific case,
one can define a circular arc graph on the boundary of o (see Figure 4.1), where each point p outside o
induces an arc of all the points on the disk boundary that see p. On this circular arc graph it is enough
to decide if there are two arcs that intersect but do not contain each other, and this can be done, in
O(n log n) time, using “sweeping”. As such, in this case, we have property (P2) with D(n) = O(n log n).

The divide property, i.e., (P3), is surprisingly straightforward in this case. Partition the point set
P into b helper sets Q1, . . . , Qb with |Qi| ≥ bn/bc, for i ∈ JbK = {1, . . . , b}. For any pair {i, j} ∈

(JbK
2

)
define the point set Pi,j = Qi ∪Qj. Thus, the constructed sets are the members of

{
Pi,j

∣∣ {i, j} ∈ (JbK
2

)}
.

As such, ψ =
(
b
2

)
and η = b/2. Clearly, for any pair of points {p, s} ∈

(
P
2

)
, there are indices i, j, such

that p, s ∈ Pi,j. This implies that g(P ) = g
(⋃

i,j Pi,j
)
.

The combinatorial dimension of the associated LP is 3. We can specifically choose b = 3, but if we
want to satisfy Eq. (4.1) directly without invoking Lemma 4.2, we can pick the smallest b such that
c log3

(
b
2

)
/(b/2)ε < 1.

4.2. The algorithm for solving implicit LP

4.2.1. The algorithm in detail

The basic idea is to modify the algorithm of Section 3.3 so that compBasis is implemented recursively,
via refinement of the current bundle. So, the input is a set of n elements P ⊆ Π, and the task is to solve
the LP-type problem defined by the set of constraints g(P ). For any set Q ⊆ P , let b(Q) denote the
basis of size at most δ for the constraint set g(Q). By requirement (P2), given a basis b, we can decide
if f
(
b∪ g(Q)

)
> f(b) by calling violate.

The main algorithm, solveBatchLPT(b, R1, . . . , Rm), is given an initial basis b ⊆ H, and m
subsets of P . It returns the basis t⊆ H for the constraint set g(R1) ∪ . . . ∪ g(Rm) ∪ b. This algorithm
implements solveLPType modified to use the implicit representation – depicted in Figure 4.2. To
solve the LP-type problem of interest, invoke compBasis(P, b), where b is some initial basis. Note,
that compBasis and solveLPType are mutually recursive calling each other in turn. Importantly, the
sizes of the subproblems decreases down the recursion, implying that this algorithm indeed terminates.

4.2.1.1. Implementing compBasis(P, b) Here, P is a set of n entities, and b is an initial basis.
The goal is to compute the basis for the set b∪ g(P ). If P is of constant size, we solve the associated
LP-type problem in O(1) time.

Otherwise, using the partition algorithm provided as part of the instance (i.e., (P3)) compute sets
R1, . . . Rψ ⊆ P , each of size at most n/η. The problem is reduced to computing a basis for the set
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solveBatchLPT(b0, R1, . . . , Rm) // b0: initial basis
〈R′1, . . . , R′n〉: random permutation of R1, . . . , Rm.
for i = 1 to m do

if violate(R′i, bi−1) then
ti ← compBasis(bi−1, R

′
i)

bi ← solveBatchLPT(ti ∪ b0, R
′
1, . . . , R

′
i)

else
bi ← bi−1

return bn

Figure 4.2: The main procedure for solving the implicit LP-type problems.

g(R1) ∪ . . . ∪ g(Rψ). Specifically, one need to compute a basis for the set {g(R1), . . . , g(Rψ)} of ψ
elements. By Lemma 3.3, this new problem remains an LP-type problem of combinatorial dimension δ.
As such, we can invoke the subroutine solveBatchLPT(b, R1, . . . , Rψ) to solve the extended LP-type
problem, and return the required basis.

4.2.2. Analysis

The procedure compBasis is recursive, with the top most call being of depth zero, which in turns calls
solveBatchLPT. which in turn might call compBasis (these calls are of depth one), and so on.

Lemma 4.3. A call to compBasis of depth i (might) result in a call to solveBatchLPT. This call
to solveBatchLPT triggers, in expectation, O(logδ ψ) calls to compBasis of depth i + 1, and cδψ
violation tests (at this level of the recursion—we are ignoring such calls performed in lower levels of the
recursion).

Proof: The procedure compBasis calls solveBatchLPT on newly broken implicit sets of constraints
R1, . . . , Rm, where m ≤ ψ. By Lemma 3.3, the LP-type problem defined by the “meta” constraints
g(R1), · · · , g(Rm) is an LP-type problem of dimension δ. We now interpret all the recursive calls to
compBasis of depth i + 1, as being basis calculations for solveBatchLPT. Under this interpretation
this is simply Seidel’s algorithm. Now, Lemma 3.5 readily implies both claims.

Lemma 4.4. For an input of size n, the expected running time of compBasis is O
(
D(n)

)
.

Proof: Let Tcb(n) be the expected running time of compBasis with an input of size n. Similarly, let
Tlp(n) be the expected running time of solveBatchLPT, where each input set is of size at most n (note
that the number of input sets m ≤ ψ). We thus have that Tcb(n) = O(1) for n ≤ O(1) and otherwise,
we have that

Tcb(n) = O
(
D(n)

)
+ Tlp(n/η).

Now, Lemma 4.3 implies that

Tlp(n) = O
(
ψD(n) + Tcb(n) logδ ψ

)
= O

(
ψD(n) +

(
D(n) + Tlp(n/η)

)
logδ ψ

)
,

yielding the following recurrence, for some constant c:

Tlp(n) ≤
(
c logδ ψ

)
Tlp(n/η) +O(ψD(n)).
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Recall that Requirement (P4) (by Remark 4.1) implies that D(n/ηi) = O(D(n)/ηεi). Expanding the
recurrence gives

Tlp(n) = O
( ∞∑
i=0

(
c logδ ψ

)i
ψD
(
n/ηi

))
≤ O

(
ψ

∞∑
i=0

[c logδ ψ

ηε

]i
D(n)

)
= O

(
ψD(n)

)
,

by Eq. (4.1). To use the later, we might need to modify the given instance of implicit LP as described
in Lemma 4.2.

We thus have proved our main theorem:

Theorem 4.5. Let (H, f) be an LP-type problem of constant combinatorial dimension δ. Let ψ, η > 1
be fixed constants. For an input space Π, suppose that there is a function g : Π→ 2H which maps inputs
to constraints. Furthermore, assume that for any input P ∈ Π of size n, properties (P1)–(P4) hold.
Then a basis for g(P ) can be computed in O

(
D(n)

)
expected time.

4.3. Some applications

To illustrate the versatility of the new result, we briefly sketch a few applications where some known
results can be re-derived.

4.3.1. Linear programming queries

We first consider the problem of preprocessing a set H of n halfspaces in Rd, so that we can quickly
answer linear programming queries, i.e., find a point in the intersection of H maximizing any given
linear function. Matoušek [Mat93] applied a multi-level parametric search to reduce the problem to
membership queries : preprocess H so that we can quickly decide whether a query point lies in the
intersection of H. Our technique easily gives a simpler randomized reduction:

Corollary 4.6. If there is a data structure for membership queries with P(n) preprocessing time and
D(n) query time, then there is a data structure for linear programming queries with O(P(n)) preprocess-
ing time and O(D(n)) query time, assuming that P(n)/n1+ε and D(n)/nε are monotonically increasing
for some constant ε > 0.

Proof: We build a data structure for linear programming queries for the given set H as follows: arbitrar-
ily divide H into two subsets H1 and H2 of size n/2; store H in the stated data structure for membership
queries; recursively build a data structure for H1 and for H2. The preprocessing time satisfies the recur-
rence P ′(n) = 2P ′(n/2) + O(P(n)), which yields P ′(n) = O(

∑
i 2

iP(n/2i)) = O(
∑

i 2
iP(n)/2(1+ε)i) =

O(P(n)).
To answer a linear programming query, we can immediately apply Theorem 4.5 with δ = d. Here, Π

consists of all sets H that arise in the recursion, and we define g(H) = H. When H is divided into H1

and H2, we have g(H) = g(H1) ∪ g(H2) trivially, and so we can set ψ = η = 2.

The above reduction is similar to an earlier reduction from ray shooting queries to membership
queries [Cha99a]. For linear programming queries, similar results were obtained earlier by a different
randomized method by Chan [Cha96]. The method here uses randomization only in the query algorithm,
not the preprocessing, although the previous method can be derandomized more effectively, as shown
by Ramos [Ram00].
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4.3.2. Minimum diameter of moving points

As another example, consider the following problem: We are given a set P of n linearly moving points
p1, . . . , pn in d dimensions, i.e., each pi is a function mapping a time value t ∈ R to a point pi(t) = ai+bit
for some ai, bi ∈ Rd. We want to find a value t ∈ R that minimizes the diameter of the point set at time
t, i.e., that minimizes maxi,j ‖pi(t)− pj(t)‖.

Gupta et al. [GJS96] applied parametric search to get an O(n log3 n)-time algorithm for the two-
dimensional problem. Clarkson [Cla97] later described a randomized O(n log n)-time algorithm in di-
mension d ≤ 3, but this result follows easily from Theorem 4.5:

Corollary 4.7. Given n linearly moving points in two or three dimensions, we can find the time value
that minimizes the diameter in O(n log n) expected time.

Proof: For each pair of moving points {pi, pj}, define the following constraint in two variables t and y:
‖pi(t)−pj(t)‖2 ≤ y. Here, y represents the square of the diameter. Note that each such constraint forms
a two-dimensional convex set. Let g(P ) be the set of all O(|P |2) such constraints formed by all pairs
in P . The problem is equivalent to minimizing y over all (t, y) ∈ R2 subject to the constraints in g(P ).
This is a convex program with combinatorial dimension δ = 2.

Testing whether a given basis satisfies g(P ) amounts to testing whether a given (t, y) satisfies ‖pi(t)−
pj(t)‖2 ≤ y for all pi, pj ∈ P , i.e., whether the diameter of the points {pi(t) : pi ∈ P} exceeds

√
y. The

diameter of a point set (at a fixed time) in dimension d ≤ 3 can be computed in O(n log n) time by
known algorithms [CS89, Ram01]. Thus, Property (P2) holds with D(n) = O(n log n).

The divide property (P3) is easy to verify: As before, we can partition the point set P into three
subsets P1, P2, P3 of equal size and express g(P ) as the union of g(P1 ∪ P2), g(P2 ∪ P3), and g(P1 ∪ P3),
with ψ = 3 and η = 3/2.

4.3.3. Inverse parametric minimum spanning trees

Eppstein [Epp03] considered the following inverse parametric minimum spanning tree problem: We are
given a connected, undirected, parametric graph G = (V,E) with n vertices and m edges, where the
weight we of each edge e ∈ E is a linear function in d variables (i.e., parameters). We are also given a
spanning tree T . The goal is to find values t1, . . . , td (if they exist) such that T is the unique minimum
spanning tree (MST) of G when the d variables are set to t1, . . . , td.

Corollary 4.8. The inverse parametric minimum spanning tree problem can be solved in O(m) expected
time for any constant d.

Proof: It is well known that in a (non-parametric) graph G = (V,E), the tree T is the unique MST of
G if and only if for every non-tree edge e = uv ∈ E − T , every edge e′ on the path from u to v in T has
smaller weight than e.

For each pair of a non-tree edge e = uv ∈ E − T and a tree edge e′ ∈ T such that e′ lies on the
path from u to v in T , define a (linear) constraint we′(t1, . . . , td) + z ≤ we(t1, . . . , td), where z is an extra
variable. Let g(G, T ) be the set of all such O(mn) constraints. The problem reduces to maximizing
z subject to the constraints in g(G, T ), and checking that the maximum is positive. This is a linear
program with combinatorial dimension δ = d+ 1.

Testing whether a given basis satisfies g(G, T ) amounts to testing whether T is the unique minimum
spanning tree of G after setting the d variables to t1, . . . , td and adding z to all tree edge weights. This
can be done in O(m) expected time by Karger, Klein, and Tarjan’s randomizedMST algorithm [KKT95],
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or more directly, by a known MST verification algorithm such as [Kin97]. Thus, Property (P2) holds
with D(m) = O(m).

To establish the divide property (P3), we partition E − T into two subsets S1 and S2 of equal size,
and partition T into two subsets T1 and T2 of equal size. For each i, j ∈ {1, 2}, define a graph Gij formed
by keeping the edges from Si ∪ T and then contracting all edges in T − Tj; similarly define the tree T ′j
formed by keeping the edges from T and contracting all edges in T − Tj. Then g(G, T ) is the union of
g(Gij, T

′
j) over all i, j ∈ {1, 2}. Thus, we have ψ = 4 and η = 2.

In the journal version of his paper [Epp03], Eppstein claimed the above result by using the original
optimization technique of [Cha99a], but with this less powerful technique, it is less clear how to design
an efficient decider.

5. Tukey depth as an implicit LP

5.1. Finding a point of a given depth k

Let P be a given non-degenerate set of n points in Rd, and let k be a parameter. Here, we consider the
problem of finding a point with Tukey depth at least k, minimizing a linear function, if such a point
exists.

5.1.1. Tukey depth, duality and levels

Here, we provide some background on the Tukey depth (see Definition 1.1).

Remark 5.1 (Maximum Tukey depth of random points). Let P be a set of n random points sampled uni-
formly from the unit square. Setting ε = O(1/

√
n), such a sample can be interpreted as an ε-sample for

the uniform measure of area. Specifically, it is known that a sample of size O(1/ε2) is an ε-sample, with
some constant probability φ close to one [Har11, Theorem 7.13], which readily implies that the point
(1/2, 1/2) has Tukey depth ≥ n/2−O(

√
n) (with probability φ).

No point can have Tukey depth exceeding n/2, so this example is close to tight. By the centerpoint
theorem, there is always a point in the plane of Tukey depth n/3, and in the worst case this is tight. As
such, the maximum Tukey depth is always in the range [n/3, n/2].

The following characterization of all point of Tukey depth k is well known—we include a proof for
the sake of completeness.

Lemma 5.2. Let H be the set of all open halfspaces that contains strictly more than n− k points of P
in them. Then Tk =

⋂
h+∈H h

+ is the set of all points of Tukey depth ≥ k.

Proof: Consider a point p of Tukey depth k, and assume, for the sake of contradiction, that p /∈ Tk.
But then, there exists an open halfspace h+ ∈ H that does not contain p. By construction h+ contains
t > n − k points of P . Let h denote the boundary hyperplane of h+. Let f be the hyperplane passing
through p that is a translation of h. Clearly, the closed halfspace bounded by f , that avoids h+, contains
p, but contains at most n − t < k points of P . But this implies that the Tukey depth of p is strictly
smaller than k (see Definition 1.1), a contradiction.

As for the other direction, consider any point p ∈ Tk, and assume, for the sake of contradiction,
that there is a halfspace h− that its boundary hyperplane passes through p, and it contains strictly less
than k points of P . By a small perturbation, one can assume that the boundary hyperplane h does not
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Figure 5.1: A set of thirty points, its dual, and the 12 and 18 levels. These two levels cannot be separated
by a line, as the maximum Tukey depth is 10 (realized by the centerpoint).

Figure 5.2: A set of n = 30 random points, its dual, and the 12 and 18 levels. These two levels can be
separated by a line, as the maximum Tukey depth is close to n/2 (see Remark 5.1).

contain any point of P . But then, the complement open halfspace h+ contains strictly more than n− k
points of P , and it avoids p. As h+ ∈ H, it follows that p /∈ Tk. A contradiction.

Understanding this intersection polytope is somewhat easier in the dual. See Definition 2.1. Let
H↑ (resp., H↓) be the set of all hyperplanes that bounds from below (resp., above) a halfspace which
contains strictly more than n−k points of P . A point p ∈ Tk lies above (resp., below) all the hyperplanes
of H↑ (resp., H↓).

The dual of H↑ is the set of points H?
↑ = {h? | h ∈ H↑}. As duality is order flipping (Fact 2.2), it

follows that all the points of H?
↑ lie (vertically) below the hyperplane p?. The set H?

↓ is defined in a
similar fashion, and the points of H?

↓ lie above the hyperplane p?.
Specifically, a point p = (p1, . . . , pd) induces in the dual the hyperplane p? with equation xd =

−pd +
∑d−1

i=1 xipi. The condition that a point s ∈ H?
↑ lies below the hyperplane p?, then reduces to the

linear inequality (the variables being the coordinates of p) that

sd ≤ −pd +
d−1∑
i=1

sipi,

As such, computing a point in Tk is no more than solving a linear program when each point of H?
↑ ∪H?

↓
induces a constraint. This LP computes a separating hyperplane between H?

↑ and H?
↓ .
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In the dual, the set of points P becomes a set of hyperplanes P ?. A hyperplane h ∈ H↑ in the dual
is a point h?, such that there are at least n− k hyperplanes of P ? strictly below it (in the xd direction).
The number of such hyperplanes is the level of the point. The set H↑ is thus the set of all the points that
have level strictly larger than n− k. The boundary of the closure of H?

↑ (resp., H?
↓ ) is the (n− k)-level

(resp., k-level).
In two dimensions, these levels are k-monotone polygonal curves. The complexity of the k-level can

be superlinear—a lower bound of n2Ω(
√

log k) is known [Tót01], and currently the best upper bound is
O(nk1/3) [Dey98]. As such, finding if there is a point of Tukey depth k is equivalent to deciding if there
is a line that separates the k-level from the (n− k)-level. In higher dimensions these levels are surfaces,
and one is looking for a hyperplane separating them.

In particular, this implies that to decide if there is a point of Tukey depth k, one can solve the LP
defined in the dual to decide if the k-level and the (n−k)-level are linearly separable. In two dimensions,
these two levels are polygonal curves, and it is enough to decide if their vertices are linearly separable.
See Figure 5.1 and Figure 5.2.

Since the two levels can be computed in roughly O(n4/3) time (and this also bounds the number of
their vertices), and linear programming in two dimensions works in linear time, it follows that one can
decide whether there is a point of Tukey depth k in roughly O(n4/3) time. To get a faster algorithm,
we deploy our implicit LP algorithm. Intuitively, the new algorithm computes an approximation of the
two levels, and thus computes a subset of the constraints of the explicit LP. The algorithm refines these
approximations in such a way that the resulting rougher LP has a solution if and only if the original LP
has the same solution.

5.1.2. The algorithm

To deploy our framework for implicit LP, we need a partition scheme and a verifier, which we provide
next.

5.1.2.1. Partitioning scheme A bundle (H,∇, τ) of constraints in the implicit LP (of separating
the two levels), is a simplex ∇, the subset

H = {h ∈ P ? | h ∩∇ 6= ∅} ,

and a number τ , which is the depth of a specific corner of ∇ in the original arrangement A = A(P ?).
This bundle contains all the constraints that define points of the k- and (n− k)-level of A that lie in ∇.
More broadly, given the bundle, one can compute the arrangement A ∩∇. Thus, with the information
provided, one can compute the level of all the points inside ∇ in A – one can compute A∩∇ and then
propagate the depth information from the specific corner of ∇.

A (1/r)-cutting restricted to the interior of ∇ can be computed in O(|H| rd−1) time, by Lemma 2.7.
Each cell in the cutting is a new bundle. Computing the depth of a point on the boundary of each
sub-simplex can be done easily in the same time bound. Each bundle has |H| /r hyperplanes in its
conflict list.

5.1.2.2. The verifier

Lemma 5.3. Let P ? be a set of n hyperplanes in Rd, and let t−, t+ be two numbers. Given a hyperplane h
one can decide in O(n log n+nd−1) time whether h separates the t−-level from the t+-level of A = A(P ?).
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Proof: Consider any hyperplane of P ? as bounding a halfspace that lies above it, and let H be the
resulting set of halfspaces. The depth of a point p is the number of halfspaces of H that contain p,
and is the level of the point in the arrangement A. Thus, it is enough to compute the range of depths
realized by points lying on h. The intersection of each d-dimensional halfspace of H with h is a (d− 1)-
dimensional halfspace of h. This range of depths can be computed by computing the arrangement of
these n induced halfspaces on the hyperplane h. As h is (d − 1)-dimensional, this requires O(n log n)
time if d = 2 (via essentially sorting), and O(nd−1) in higher dimensions.

Specifically, the algorithm computes for each face of the arrangement on h its depth, which results in
the range of depths of points on h. If the range lies outside [t−, t+] then h is not the desired separating
hyperplane.

Consider a bundle (H,∇, τ). Here, the algorithm maintains the set H ∩ ∇, and a corner p of ∇,
such that its level is τ . One can compute the range of levels realized on the faces of ∇ using Lemma 5.3.
Since the level of a point is monotone increasing along a vertical line, it follows that this provides the
range of levels realized also by the interior of ∇.

Given a hyperplane h, one needs to verify if it is feasible for this bundle. To this end, one can first
check if it intersects ∇. If not, then the computed range of levels realized in ∇ is sufficient to decide if
it is feasible as far as the levels inside ∇. Otherwise, the algorithm computes the level of some point
s ∈ ∇∩h, by computing how the level changes as one moves from p to s (as we know the level of p, and
as ps can intersect only hyperplanes in the set H ∩ ∇). Now, using Lemma 5.3 one can compute the
range of levels encountered on ∇∩ h, which is sufficient to verify whether h separates the desired levels
inside ∇. Note that if m = |H ∩∇|, then the running time of this algorithm is O(m logm+md−1).

5.1.2.3. Putting everything together We next deploy the algorithm of Theorem 4.5. In the dual,
we are solving an LP computing a hyperplane separating the k level from the (n− k) level. To this end,
we pick an arbitrary linear constraint on the LP that we are trying to (say) minimize. We sketched a
verifier, and a partitioning schemes, that for n hyperplanes, work in D(n) = O(n log n+nd−1) time. We
thus get the following.

Theorem 5.4. Let P be a set of n points in Rd, and let k be a parameter. One can compute a point in
Rd of Tukey depth at least k, if such a point exists, in O(n log n+ nd−1) expected time.

5.1.3. Computing a point of maximum Tukey depth

Having solved the problem of deciding whether the maximum Tukey depth is at least k, we consider the
problem of computing the maximum Tukey depth. Using binary search on top of Theorem 5.4 one can
compute a point with maximum Tukey depth (paying an extra log factor). However, one can do better
by considering the associated ranking LP problem (described in Section 3.1).

For a vertex p of A(P ?), its associated rank is r(p) = |n/2− level(p)|. The LP ranking problem, with
all the vertices of A(P ?) as constraints, is exactly the problem of finding a point of maximum Tukey
depth. By Lemma 3.1 this is an LP-type problem. The idea is now to solve this implicit LP using the
above machinery.

A basis now is a set of d + 1 vertices of A(P ?). It is easy to modify the algorithm, for solving this
implicit ranking LP problem, so that it explicitly computes the level of each vertex/constraint being
considered. As such, the rank of the basis is known. Now, such a basis defines a separating hyperplane
and it is supposed to separate specific levels as defined by its rank. Thus, the active constraints are
induced by the points on these active levels. Clearly, the verifier above works (unmodified) for this case,
as does the partition scheme. We thus get the following.
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Theorem 5.5. Let P be a set of n points in Rd. One can compute a point in Rd of maximum Tukey
depth, in O(n log n+ nd−1) expected time.

5.1.4. Computing a depth region in two dimensions

In two dimensions, our approach can speed up an existing algorithm by Matoušek [Mat90] for computing
the entire region of depth ≥ k (i.e., the convex polytope Tk in Lemma 5.2). The O(n log4 n) time bound
is improved to O(n log2 n).

Theorem 5.6. Let P be a set of n points in R2, and let k be a parameter. One can compute the region
Tk of all points in Rd of Tukey depth at least k in O(n log2 n) expected time.

Proof: Matoušek [Mat90] noted that the problem reduces to computing the upper hull of the k-level in
the dual plane. He described a divide-and-conquer algorithm to compute this “level hull”, using an oracle
for the following subproblem: given a set of n lines in the plane, a number k, and a vertical line `, find
the tangent of the upper hull at `. He applied a two-level parametric search to solve this subproblem in
O(n log3 n) time. By our approach, we can solve this subproblem in O(n log n) expected time: back in
primal space, the subproblem is equivalent to finding a point in the region Tk that maximizes a given
linear function. This is an implicit LP problem, and the method in this section yields an O(n log n)-time
randomized algorithm.

The overall running time of Matoušek’s divide-and-conquer algorithm is bounded by a logarithmic
factor times the running time of the oracle, and is thus O(n log2 n).

6. The extremal yolk as an implicit LP

6.1. Background

Definition 6.1. Let P ⊂ Rd be a set of n points in general position. A median hyperplane is a hyperplane
such that each of its two closed halfspaces contain at least dn/2e points of P . A hyperplane is extremal
if it passes through d points of P . The extremal yolk is the ball of smallest radius interesting all
extremal median hyperplanes of P .

We give an O(nd−1 log n) expected time exact algorithm computing the extremal yolk. To do so, we
focus on the more general problem.

Problem 6.2. Let Ek(P ) be the collection of extremal hyperplanes which contain exactly k points of P
on or above them. Here, k is not necessarily constant. The goal is to compute the smallest radius ball
intersecting all hyperplanes of Ek(P ).

We observe that computing the extremal yolk can be reduced to the above problem.

Lemma 6.3. The problem of computing the extremal yolk can be reduced to Problem 6.2.

Proof: Suppose that n is even, and define the set Seven = {n/2, n/2 + 1, . . . , n/2 + d}. A case analysis
shows that any extremal median hyperplane h must have exactly m points of P above or on h, where
m ∈ Seven. Thus, computing the extremal yolk reduces to computing smallest radius ball intersecting
all hyperplanes in the set

⋃
m∈Seven

Em(P ).
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Figure 6.1: A disk and its dual.

When n is odd, a similar case analysis shows that any extremal median hyperplane must have
exactly m points above or on it, where m ∈ Sodd = {dn/2e , dn/2e+ 1, . . . , dn/2e+ d− 1}. Analogously,
computing the extremal yolk with n odd reduces to computing the smallest radius ball intersecting all
hyperplanes in the set

⋃
m∈Sodd

Em(P ).

We use Theorem 4.5 to solve Problem 6.2. To this end, we prove that Problem 6.2 is an LP-
type problem when the constraints are explicitly given (the following Lemma was also observed by
Bhattacharya et al. [BJMR94]).

Lemma 6.4. Problem 6.2 when the constraints (i.e., hyperplanes) are explicitly given is an LP-type
problem and has combinatorial dimension δ = d+ 1.

Proof: We prove something stronger, namely that the problem can be written as a linear program,
implying it is an LP-type problem. Let H be the set of n hyperplanes. For each hyperplane h ∈ H,
let 〈ah, x〉 + bh = 0 be the equation describing h, where ah ∈ Rd, ‖ah‖ = 1, and bh ∈ R. Because of
the requirement that ‖ah‖ = 1, for a given point p ∈ Rd, the distance from p to a hyperplane h is
|〈ah, p〉+ bh|.

The linear program has d+ 1 variables and 2n constraints. The d+ 1 variables represent the center
p ∈ Rd and radius ν ≥ 0 of the egg. The resulting LP is

min ν

subject to ν ≥ 〈ah, p〉+ bh ∀h ∈ H
ν ≥ −

(
〈ah, p〉+ bh

)
∀h ∈ H

p ∈ Rd.

As for the combinatorial dimension, observe that any basic feasible solution for the above linear
program will be tight for at most d + 1 of the above 2n constraints. Namely, these d + 1 hyperplanes
are tangent to the optimal radius ball, and as such form a basis b ⊆ H.

To apply Theorem 4.5 we need to: (i) design an appropriate input space, (ii) develop a decider, and
(iii) construct a constant number of subproblems which cover the constraint space. As in Section 5, the
algorithm works in the dual space. The following lemma shows that the dual of a ball b is the closed
region which lies between two branches of a hyperboloid. See Figure 6.1.

Lemma 6.5. The dual of the set of points in a ball is the set of hyperplanes whose union forms the
region enclosed between two branches of a hyperboloid.

23



∆′

∆′′

b?

∆ ∩ b?

Figure 6.2: The region ∆ ∩ (Rd \ b?) consists of (at most) two disjoint convex regions, ∆′ and ∆′′.

Proof: In Rd the hyperplane h defined by xd = β +
∑d−1

i=1 αixi, or more compactly 〈x, (−α, 1)〉 = β,
intersects a disk b centered at p = (p1, . . . , pd) with radius r ⇐⇒ the distance of h from p is at most
r. That is, h intersects b if

|〈p, (−α, 1)〉 − β|
‖(−α, 1)‖

≤ r ⇐⇒ (〈p, (−α, 1)〉 − β)2 ≤ r2 ‖(−α, 1)‖2

⇐⇒
(
pd − β −

d−1∑
i=1

αipi

)2

≤ r2(‖α‖2 + 1).

⇐⇒
(
pd − β −

∑d−1
i=1 αipi

)2

r2
− ‖α‖2 ≤ 1.

The boundary of the above inequality is a hyperboloid in the variables pd−β−
∑d−1

i=1 αipi and α1, . . . , αd−1.
This corresponds to an affine image of a hyperboloid in the dual space α×−β.

Throughout, let b? denote the region between the two branches of the hyperboloid dual to a ball b.

6.2. Solving the subproblem

We verify the requirements of Theorem 4.5 can be met. First, we develop the algorithm for the violation
test. As the algorithm works in the dual, each subproblem consists of a simplex ∆, the dual set of
hyperplanes H = P ? ∩∆ intersecting ∆, and a parameter u which is the number of hyperplanes lying
completely below ∆. Additionally, the given basis defines a ball b, which in the dual is the region b?.
One can verify in the dual, that the violation test must decide if there is a vertex of the k-level in the
region Rd \ b?.

Lemma 6.6. Given the input (H,∆, u) and the region b?, checking whether there is a vertex of A(H)
which has level k and lies inside Rd \ b? can be done in O(nd−1 log n) time.

Proof: Observe that ∆ ∩ (Rd \ b?) is the union of at most two convex regions. Indeed, the set Rd \ b?
consists of two disjoint connected components, where each component is a convex body. Intersecting
a simplex ∆ with each component of Rd \ b? produces two (disjoint) convex bodies ∆′ and ∆′′ (it is
possible that ∆′ or ∆′′ are empty). See Figure 6.2. Let ∆′ be one of these two regions of interest. The
algorithm will process ∆′′ in exactly the same way.
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Figure 6.3: Left: A convex region ∆′, with one line lying completely below ∆′ (u = 1). The shaded
regions are the cells of Z(∂∆′, H ′). The vertices of the cells in the zone Z(∂∆′, H ′) are highlighted.
Right: The vertices of Z(∂∆′, H ′) which are part of the 3-level and contained inside ∆′.

If ∆′ is empty, then no constraints are violated. Otherwise, we need to check for any violated
constraints inside ∆′. Let ∂∆′ denote the boundary of ∆′. DefineH ′ ⊆ H to be the subset of hyperplanes
intersecting ∆′. Observe that it suffices to check if there is a vertex v in the arrangement A(H ′) such
that: (i) v has level k in P ?, (ii) v is a member of some cell in the zone Z(∂∆′, H ′), and (iii) v is
contained in ∆′.

The algorithm computes Z(∂∆′, H ′). Next, it chooses a vertex v of the arrangement A(H ′) which
lies inside ∆′ and computes its level in H ′ (adding u to the count). The algorithm then walks around
the vertices of the zone inside ∆′, computing the level of each vertex along the walk. Note that the
level between any two adjacent vertices in the arrangement differ by at most a constant (depending on
d). If at any point we find a vertex of the desired level (such a vertex also lies inside ∆′), we report the
corresponding median hyperplane which violates the given ball b. See Figure 6.3 for an illustration.

The running time of the algorithm is proportional to the complexity of the zone Z(∂∆′, H ′). Be-
cause the boundary of ∆′ is constructed from d + 1 hyperplanes and the boundary of the hyperboloid,
Lemma 2.5 implies that the zone complexity is no more than O(|H|d−1 log |H|). As such, the algorithm
runs in time D(n) = O(nd−1 log n).

Lemma 6.7. Let P ⊂ Rd be a set of n points in general position. For a given integer k, one can
compute in O(nd−1 log n) expected time the smallest radius ball intersecting all of the hyperplanes of
Ek(P )

Proof: Apply Theorem 4.5. The violation test follows from Lemma 6.6. Constructing the subproblems
from a given input (H,∆, u) is done in the same way as Theorem 5.4. Compute a (1/c)-cutting (for
constant c sufficiently large) of H and clip the cutting inside ∆. For each cell ∆i in the cutting, compute
Hi = P ? ∩ ∆i and the parameter ui. This entire step can be performed in linear time. Hence, the
problem can be solved in O(D(n)) expected time, where D(n) = O(nd−1 log n).

Corollary 6.8. Let P ⊂ Rd be a set of n points in general position, and let S ⊆ JnK. One can compute
in O(nd−1 log n) expected time the smallest radius ball intersecting all of the hyperplanes of

⋃
k∈S Ek(P ).

Proof: The algorithm is a slight modification of Lemma 6.7. During the decision procedure, for each
vertex in the zone, we check if it is a member of the k-level for some k ∈ S. If S is of non-constant size,
membership in S can be checked in constant time using hashing.
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6.3. Computing the extremal yolk and the egg

Theorem 6.9. Let P ⊂ Rd be a set of n points in general position. One can compute the extremal yolk
of P in O(nd−1 log n) expected time.

Proof: The result follows by applying Corollary 6.8 with the appropriate choice of S. When n is even,
Lemma 6.3 tells us to choose S = {n/2, n/2+1, . . . , n/2+d}. When n is odd, we set S = {dn/2e , dn/2e+
1, . . . , dn/2e+ d− 1}.

Lemma 6.10. Let P ⊂ Rd be a set of n points in general position. One can compute the egg of P in
O(nd−1 log n) expected time.

Proof: The proof follows by Corollary 6.8 with S = JnK. (Alternatively, by directly modifying the
decision procedure to check if any vertex of the zone Z(∆′, H ′) lies inside ∆′.)

6.4. An algorithm sensitive to k

Here, we solve Problem 6.2 for the case that k � n. Recall that to compute the extremal yolk, we
reduced the problem to computing the smallest ball intersecting all hyperplanes which contain a fixed
number of points of P above or on them (see Lemma 6.3). In particular, we developed an algorithm for
Problem 6.2 and applied it when k is proportional to n.

To develop an algorithm sensitive to k, we use the result of Lemma 6.7 as a black box and introduce
the notion of shallow cuttings.

Definition 6.11 (Shallow cuttings). Let H be a set of n hyperplanes in Rd. A k-shallow cutting is
a collection of simplices such that: (i) the union of the simplices covers the (≤ k)-level of H (see
Definition 2.3), and (ii) each simplex intersects at most k hyperplanes of H.

Matoušek was the first to provide an algorithm for computing k-shallow cuttings of size O((n/k)bd/2c)
[Mat92]. When d = 2, 3, a k-shallow cutting of size O(n/k) can be constructed in O(n log n) time [CT16].
For d ≥ 4, we sketch a randomized algorithm which computes a k-shallow cutting, based on Matoušek’s
original proof of existence [Mat92].

Lemma 6.12 (Proof sketch in Appendix A). Let H be a set of n hyperplanes in Rd. A k-shallow
cutting of size O((n/k)bd/2c) can be constructed in O(k(n/k)bd/2c + n log n) expected time. For each
simplex ∆ in the cutting, the algorithm returns the set of hyperplanes intersecting ∆ and the number of
hyperplanes lying below ∆.

Let P ⊂ Rd be a set of n points and let H = P ? be the set of dual hyperplanes. The algorithm first
computes a k-shallow cutting for the top and bottom (≤ k)-levels for the given set of hyperplanes H
using Lemma 6.12. Let ∆1, . . . ,∆`, where

` = O((n/k)bd/2c),

be the collection of simplices in the cutting. For each simplex ∆i, we have the subset H ∩∆i and the
number of hyperplanes lying completely below H (which is at most k). For each cell ∆i, let g(∆i) be
the set of vertices of A(H) which have level k or n− k and are contained in ∆i.
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6.4.1. The algorithm

The algorithm computes the above shallow cutting, and treats each simplex as a bundle. We now apply
the algorithm of Section 3.3 to solve the batched LP problem defined by these bundles, except that we
delegate each basis calculation/verification to a call to the algorithm of Lemma 6.7, which involves a
single bundle (i.e., k hyperplanes).

Lemma 6.13. Let P ⊂ Rd be a set of n points in general position. For a given integer k, one can
compute in O

(
kd−1

(
1 + (n/k)bd/2c

)
log k + n log n

)
expected time the smallest radius ball intersecting all

of the hyperplanes of Ek(P ).

Proof: The algorithm is described above. The correctness is immediate from Lemma 3.5. As for the
running time, the algorithm performs O(`) basis calculations and violation tests, and each one takes
O(kd−1 log k) time, as this is the size of the conflict list of each bundle. This running time dominates
the time to compute the cutting, except for the O(n log n) additive term.

7. The (continuous) yolk as an implicit LP

7.1. Background

Definition 7.1. Let P ⊂ Rd be a set of n points in general position. The continuous yolk of P is the
ball of smallest radius intersecting all median hyperplanes of P .

In contrast to Definition 6.1, we emphasize that the (continuous) yolk must intersect all median
hyperplanes defined by P (not just extremal median hyperplanes).

As before, the algorithm works in the dual space. For an integer k, let Hk(P ) be the collection
of halfspaces containing exactly k points of P on or above it. Equivalently, P ? is the collection of
hyperplanes defined by P in the dual space, and

(
Hk(P )

)? is the k-level of P ?. Our problem can be
restated in the dual space as follows.

Problem 7.2. Let P be a set of points in Rd in general position and let k be a given integer. Compute
the ball b of smallest radius so that all points in the k-level of P ? are contained inside the region b?.

Let Lk(P ) =
(
Hk(P )

)? denote the set of all points in the k-level of P ?. Note that Lk(P ) consists of
points which are either contained in the interior of some `-dimensional flat, where 0 ≤ ` ≤ d− 1, or in
the interior of some d-dimensional cell of A(P ?).

We take the same approach as the algorithm of Theorem 6.9—building a decider subroutine, and
showing that the input space can be decomposed into subproblems efficiently. However the problem is
more subtle, as the collection of constraints (i.e., median hyperplanes) is no longer a finite set.

7.1.1. The input space

The input consists of a simplex ∆. The algorithm, in addition to ∆, maintains the set of hyperplanes

H = P ? ∩∆ = {h ∈ P ? | h ∩∆ 6= ∅} ,

and a parameter u which is equal to the number of hyperplanes of P ? lying completely below ∆.
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Figure 7.1: Left: A set of lines and the cells of the 3-level. Middle: A simplex ∆, with the portion of the
3-level inside ∆. Right: Triangulating the portion of the 3-level contained inside ∆. All red triangles
together with the lower-dimensional faces of the 3-level form the set of constraints g(∆).

7.1.2. The implicit constraint space

Each input ∆ maps to a region R which is the portion of the k-level Lk(P ) contained inside ∆. For each
d-dimensional cell in R, we compute its bottom-vertex triangulation (see, e.g., [Mat02, Section 6.5]),
and collect all of these simplices, and all lower-dimensional faces of R, into a set g(∆). See Figure 7.1.

Let Ξ be the collection of all simplices formed from d+ 1 vertices of the arrangement A(P ?). We let
H be the union of the sets g(∆) over all simplices ∆ ∈ Ξ. To see why this suffices, each simplex in the
input space is a simplex generated by a cutting algorithm. One property of cutting algorithms [Cha93] is
that the simplices returned are induced by hyperplanes of P ?. Indeed, each simplex has (at most) d+ 1
vertices, and upon inspection of the cutting algorithm, each vertex is defined by d hyperplanes of P ?.
There are a finite number of simplices ∆ to consider, and each ∆ induces a fixed subset of constraints
g(∆) ⊆ H.

As such, H forms our constraint set, where each constraint is of constant size (depending on d).
Clearly, a solution satisfies all constraints of H if and only if the solution intersects all hyperplanes in
the set Hk(P ). For a given subset C ⊆ H, the objective function is the minimum radius ball b such
that all regions of C are contained inside the region b?. In particular, the problem of computing the
minimum radius ball b such that b? contains all points of Lk(P ) in its interior is an LP-type problem of
constant combinatorial dimension.

7.2. The algorithm

7.2.1. Constructing subproblems

For a given input simplex ∆ (along with the set H = P ? ∩ ∆ and the number u) a collection of
subproblems ∆1, . . . ,∆ψ (with the corresponding sets Hi and numbers ui for i = 1, . . . , ψ) can be
constructed as described in Lemma 6.7, by computing a cutting of the planes H and clipping this cutting
inside ∆. In particular, we have that

⋃
i g(∆i) = g(∆). Strictly speaking, we have not decomposed the

constraints of g(∆) (as required by Theorem 4.5), but rather have decomposed the region which is the
union of the constraints of g(∆). This step is valid, as a solution satisfies the constraints of

⋃
i g(∆i) if

and only if it satisfies the constraints of g(∆).
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7.2.2. The decision procedure

Given a candidate solution b?, the problem is to decide if b? contains g(∆) in its interior. The decision
algorithm itself is similar as in the proof of Theorem 6.9. Consider the set ∆ ∩ (Rd \ b?), where ∆ is
a simplex, and observe that it is the union of at most two convex regions. Let ∆′ be one of these two
regions of interest. Observe that it suffices to check if there is a point on the boundary of ∆′ which is
part of the k-level. Let H ′ ⊆ H be the subset of hyperplanes intersecting ∆′.

To this end, compute Z(∂∆′, H ′). For each (d−1)-dimensional face f of ∆′, the collection of regions
Ξ = {f ∩ s | s ∈ Z(∂∆′, H ′)} forms a (d−1)-dimensional arrangement restricted to f . Furthermore, the
complexity of this arrangement lying on f is at most O(nd−1 log n). Notice that the level of all points in
the interior of a face of Ξ is constant, and two adjacent faces (sharing a boundary) have their level differ
by at most a constant. The algorithm picks a face in Ξ, computes the level of an arbitrary point inside
it (adding u to the count). Then, the algorithm walks around the arrangement, exploring all faces, using
the level of neighboring faces to compute the level of the current face. If at any step a face has level k,
we report that the input (∆, H, u) violates the candidate solution b?.

7.2.2.1. Analysis of the decision procedure We claim the running time of the algorithm is
proportional to the complexity of the zone Z(∂∆′, H ′). Indeed, for each (d − 1)-dimensional face f of
∆′ (where f may either be part of a hyperplane or part of the boundary of b?), we can compute the
set {f ∩ s | s ∈ Z(∂∆′, H ′)} in time proportional to the total complexity of Z(∂∆′, H ′) (assuming we
can intersect a hyperplane with a portion of a constant-degree surface efficiently). The algorithm then
computes the level of an initial face naively in O(|H ′|) time, and computing the level of all other faces
can be done in O(|Z(∂∆′, H ′)|) time by performing a graph search on the arrangement.

Because the boundary of ∆′ is constructed from d + 1 hyperplanes and the boundary of the hy-
perboloid, Lemma 2.5 implies that the zone complexity is bounded by O(|H|d−1 log |H|). As such, our
decision procedure runs in time D(n) = O(nd−1 log n).

7.2.2.2. A slightly improved decision procedure In R3, one can shave the O(log n) factor to
obtain an O(n2) expected time algorithm. We modify the decision procedure as follows, which avoids
computing the zone Z(∂∆′, H ′). For each 2D face f of ∆′, simply compute the arrangement of the set of
curves {f ∩ h | h ∈ H} on f in O(n2) time. As before, we perform a graph search on this arrangement,
computing the level of each face. If at any time we discover a point on the boundary of ∆′, of the desired
level, we report that the given input violates the given candidate solution.

For higher dimensions d ≥ 4, we can similarly avoid computing the zone. Recall that the goal is to
find a point p that lies in the intersection of the k-level with a (d−1)-dimensional face f of ∆′. Consider
the (unknown) cell γ containing p in the arrangement of {f ∩ h | h ∈ H} on f . Imagine moving p to lie
in an arbitrarily small neighborhood of the minimum point p′ in γ with respect to the xd coordinate.
The level of p remains unchanged by the move (and differs from the level of p′ by at most d).

• Case 1 : p′ is incident to at most d−2 hyperplanes in H. We can search for such a p′, by trying all
tuples of at most d− 2 hyperplanes. For each such tuple (h1, . . . , h`) with ` ≤ d− 2, we compute
all O(1) local xd-minima q of f ∩ h1 ∩ . . . ∩ h`. Next, we compute the level of q naively in O(n)
time. Finally, we examine the neighborhood of q. This takes O(nd−2 · n) = O(nd−1) time.

• Case 2 : p′ is incident to d− 1 hyperplanes in H. We try all tuples of d− 3 hyperplanes. For each
such tuple (h1, . . . , hd−3), we compute the two-dimensional arrangement of the set of curves

{f ∩ h1 ∩ . . . ∩ hd−3 ∩ h | h ∈ H}
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on the two-dimensional surface h1 ∩ . . . ∩ hd−3 ∩ f in O(n2) time. As above, we perform a graph
search on this arrangement, computing the level of each cell and each vertex in the arrangement,
and examine the neighborhood of each vertex. The total time is O(nd−3 · n2) = O(nd−1).

Thus, our improved decision procedure runs in time D(n) = O(nd−1) for any d ≥ 3.

Lemma 7.3. Problem 7.2 can be solved in O(n log n+ nd−1) expected time, where n = |P |.

Proof: Follows by plugging the above discussion into Theorem 4.5.

By modifying the decision procedure appropriately, we also obtain a similar result to Corollary 6.8.

Corollary 7.4. Let P ⊂ Rd be a set of n points in general position, and let S ⊂ JnK. The smallest ball
intersecting all hyperplanes in

⋃
k∈S Hk(P ) can be computed in O(n log n+ nd−1) expected time.

Theorem 7.5. Let P ⊂ Rd be a set of n points in general position. One can compute the yolk of P in
O(n log n+ nd−1) expected time.

Proof: The result follows by applying Corollary 7.4 with the appropriate choice of S. When n is even,
Lemma 6.3 tells us to choose S = {n/2, n/2+1, . . . , n/2+d}. When n is odd, we set S = {dn/2e , dn/2e+
1, . . . , dn/2e+ d− 1}.

8. The Tukey ball and center ball as implicit LPs

Here, we are dealing with an extension of Tukey depth (Definition 1.1). The set of all points with Tukey
depth ≥ k is the polytope Tk (see Lemma 5.2). Recall that by the centerpoint theorem Tn/(d+) is not
empty.

Definition 8.1. Let P ⊂ Rd be a set of n points in general position. For a parameter k ≤ n, the Tukey
ball of P is the smallest radius ball intersecting halfspaces in the set Hk(P ).

The Tukey median is a point in Rd with maximum Tukey depth. If the Tukey median of P has
Tukey depth k(P ), then for k > k(P ) the set Tk is empty—the Tukey ball has non-zero radius. When
k ≤ k(P ), Tk is non-empty, implying that the Tukey ball has radius zero.

Definition 8.2. Let P ⊂ Rd be a set of n points in general position. For a parameter k ≤ k(P ), the
center ball of P is the ball of largest radius contained in the region Tk.

Recently, Oh and Ahn [OA19] develop an O(n2 log4 n) time algorithm for computing the polytope
Tk in R3. In contrast, the center ball is the largest ball contained inside Tk, and we show it can be
computed in expected time O(n2 log n).

30



a− b−

c−

ρa

ρb

ρc

Figure 8.1: A ball and three lines. Each line induces a halfspace which lies below the line. In the dual,
this corresponds to three vertically upward rays.

8.1. The Tukey ball in the dual

For a set of n points P in general position, it suffices to restrict our attention to hyperplanes which
contain d points of P , and one of the open halfspaces contains more than n−k points of P . In the dual,
each point p ∈ P is mapped to a hyperplane p? (see Definition 2.1). A hyperplane h passing through d
points of P maps to a point h? which is a vertex in the arrangement A(P ?).

Recall that by Lemma 6.5, a ball b in the primal maps to the region enclosed by two branches of
a hyperboloid. Formally, the region b? is the collection of points (x1, . . . , xd) ∈ Rd satisfying has the
equation (xd/αd)

2−
∑d−1

i=1 (xi/αi)
2 ≤ 1, where α1, . . . , αd ∈ R define the hyperboloid, and are determined

by b. We say that a point (x1, . . . , xd) lies above the top branch of b? if the inequality

xd ≥ αd

√√√√1 +
d−1∑
i=1

(xi/αi)2

holds. A point lying below the bottom branch of b? is defined analogously.
Let h be a hyperplane. Suppose the open halfspace h− below h contains k points of P . In the dual, a

vertical ray ρh shooting upwards from the point h? intersects k hyperplanes of P ?. When a hyperplane
h intersects b in its interior, then b∩h− 6= ∅ and b 6⊆ h−. In the dual, b? contains the point h?, and the
upward ray ρh intersects the boundary of b? once. Alternatively, if b ⊆ h−, then in the dual the upward
ray ρh intersecting the boundary of b? twice (once each at the top and bottom branch). As such, if h−
is an open halfspace containing k points of P below it and does not intersect b, then the upward ray
ρh does not intersect the boundary of b?. Hence, ρh must lie entirely above the top branch of b?. See
Figure 8.1.

Summarizing the above discussion, the problem of computing the Tukey ball is equivalent to the
following.

Problem 8.3. Let P ⊂ Rd be a set of n points in general position. The goal is to compute the ball b, of
smallest radius, such that (recalling Definition 2.3):
(I) each point of the top k-level Tk(P ?), the vertical upward ray intersects b?, and
(II) each point of the bottom k-level Bk(P

?), the vertical downward ray intersects b?.

Lemma 8.4. Let P ⊂ Rd be a set of n points in general position and k ≤ n a parameter. The Tukey
ball can be computed in O(nd−1 log n) expected time.
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Proof: The proof uses Theorem 4.5 to solve the dual problem (this problem is LP-type with constant
combinatorial dimension, where the constant depends on d). The input consists of a simplex ∆, the set
of hyperplanes H = P ? ∩∆ intersecting ∆, and the number of hyperplanes lying above and below ∆. A
given input can be decomposed using cuttings, as in the algorithms for Theorem 6.9, and Theorem 7.5.

We sketch the decision procedure. Given a candidate ball b, we want to decide if b? violates any
constraints induced by H. Equivalently, b? is an invalid solution if either condition holds: (i) there is a
element of Tk(P ?) which is above the top branch of b?, or (ii) there is a element of Bk(P

?) which is below
the bottom branch of b?. As such, a straightforward modification of the decision procedure described
in Lemma 6.6 yields a decider in O(|H|d−1 log |H|) expected time.

8.1.1. Improved algorithm

Lemma 8.5. Let P ⊂ Rd be a set of n points in general position and k ≤ n a parameter. The Tukey
ball can be computed in Õ

(
kd−1

(
1 + (n/k)bd/2c

))
expected time.

Proof: The algorithm is the same as described in Lemma 6.13 with a small change: compute a shallow
cutting for the top (≤ k)-level and bottom (≤ k)-level of P ?. Now run the randomized incremental
algorithm of Lemma 6.13 on these collection of simplices with Lemma 8.4 as a black box to solve the
subproblems of smaller size.

8.2. The center ball in the dual

For a parameter k, recall that our goal is to compute the largest ball which lies inside all open halfspaces
containing more than n− k points of P . From the discussion above, in the dual this corresponds to the
following problem.

Problem 8.6. Let P ⊂ Rd be a set of n points in general position. The goal is to compute the ball b of
largest radius such that:
(I) each point of the top k-level Tk(P ?) lies below the bottom branch of b?, and
(II) each point of the bottom k-level Bk(P

?) lies above the top branch of b?.

Lemma 8.7. Let P ⊂ Rd be a set of n points in general position and k ≤ n a parameter. The center
ball can be computed in O(nd−1 log n) expected time.

Proof: As usual, we use Theorem 4.5 to solve the dual problem (this problem is LP-type with constant
combinatorial dimension, where the constant depends on d). The input consists of a simplex ∆, the set
of hyperplanes H = P ? ∩∆ intersecting ∆, and the number of hyperplanes lying above and below ∆.
A given input can be decomposed using cuttings, as used in previous algorithms.

We sketch the decision procedure. We are also given a candidate ball b. The algorithm computes
the zone Z(∂∆, H) and computes the level of each vertex of Z(∂∆, H) inside ∆ (taking into account
the number of hyperplanes above and below ∆). If we find a vertex of either the top or bottom k-level
which also lies inside b?, we report the violated constraint. Otherwise, if we find a vertex of the top
k-level lying above the top branch of b? or a vertex of the bottom k-level lying below the bottom branch
of b?, then the solution b is also deemed infeasible. This decision procedure can be implemented in
O(|H|d−1 log |H|) expected time.
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z

Figure 9.1: A disk containing all vertices of A(L) lying within crossing distance at most three from z.

8.2.1. Improved algorithm

Lemma 8.8. Let P ⊂ Rd be a set of n points in general position and k ≤ n a parameter. The center
ball can be computed in Õ

(
kd−1

(
1 + (n/k)bd/2c

))
expected time.

Proof: The same argument for Lemma 8.5 applies here, using Lemma 8.7 as a black box to solve the
subproblems generated by the k-shallow cutting of the top (≤ k)-level and bottom (≤ k)-level.

9. Smallest disk of all vertices within crossing distance k

Let L be a set of lines in the plane. For two points p, z ∈ R2, the crossing distance dL(p, z) is the
number of lines of L intersecting the segment pz.

Given a point z ∈ R2 not lying on any line of L, and a parameter k, let

Sk(z) = {p ∈ V(A(L)) | dL(p, z) ≤ k}

be the set of vertices of A(L) with crossing distance at most k from z. The goal is to compute the
smallest disk enclosing all points of Sk(z), as shown in Figure 9.1.

Lemma 9.1. Let L be a set of n lines in the plane and let z ∈ R2 be a point not lying on any point of
L. In O(n log n) expected time, one can compute the smallest disk enclosing all vertices of A(L) within
crossing distance at most k from z.

Proof: When the constraints (points) are explicitly given, this problem is LP-type with constant combi-
natorial dimension. We now apply Theorem 4.5 to obtain an efficient algorithm for this problem:

1. Each subproblem consists of a simplex ∆, the set of lines L′ = L ∩ ∆, and a number u which is
the number of lines of L separating ∆ and z.2 Given a disk o defined by the basis, check if there
is a vertex of A(L′) which lies outside o and has crossing distance at most k from z.

To this end, compute the zone Z(∂∆, L′). The algorithm chooses a vertex v of Z(∂∆, L′) inside ∆
and computes dL(v, z) = dL′(v, z) + u. Next, walk around the set of vertices in Z(∂∆, L′)∩∆ and
compute the crossing values using previously computed crossing values. If at any time a vertex of
crossing value at most k which is outside o is encountered, report that o is an invalid solution.

2A line ` separates ∆ and z if they lie on opposite sides of `.

33



2. The subproblem (∆, L′, u) can be decomposed once again using cuttings. Compute a (1/c)-cutting
(for sufficiently large constant c) of L′ and clip the cutting inside ∆. For each cell ∆i in the cutting,
compute L′ ∩∆i and the number of lines separating ∆i from z.

The running time of the algorithm is dominated by the running time of the violation test, which
is proportional to the complexity of the zone Z(∂∆, L′). By Lemma 2.5, the violation test runs in
D(n) = O(n log n) time.

10. Conclusions

Since the conference version of [Cha04], several applications of the implicit LP technique have been
found. For example, see [ACSS06, BM19, EW07, Mor08].

The natural open problem is to improve the running times for computing the yolk (and extremal
yolk) even further. It seems believable, that for d > 3, the log factor in Theorem 6.9 might not be
necessary. We leave this as an open problem for further research.
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A. Proof sketch of Lemma 6.12

Let H be set of n hyperplanes in Rd. We focus on constructing a k-shallow cutting when d ≥ 4 (for
d < 4, we can construct shallow cuttings in O(n log n) deterministic time [CT16]). The original proof of
existence of k-shallow cuttings by Matoušek [Mat92] provides a randomized algorithm for constructing
such a cutting.

At a high level, the approach of Matoušek for constructing a k-shallow cutting is the following:
(I) Let R ⊆ H be a random sample of size n/k and compute a bottom-vertex triangulation of A(R).

Let Ξ denote the resulting set of simplices.
(II) Let Ξ′ ⊆ Ξ be the subset of simplices containing a point of level at most k (with respect to H).
(III) For each ∆ ∈ Ξ′, if ∆ intersects tk hyperplanes of H for some t > 1, compute a (1/t)-cutting of

the hyperplanes intersecting ∆ and clip the cutting inside ∆. Return this 2-level cutting as the
desired k-shallow cutting.

A.1. Computing the top-level cutting

The top-level cutting is computed via randomized incremental construction. The algorithm randomly
permutes the hyperplanes of H, label them h1, . . . , hn and let Hi = {h1, . . . , hi}. For i = 1, . . . , n/k, the
algorithm maintains a collection of simplices, formed from the arrangement A(Hi) and which contain a
point of level k (with respect to H). Each simplex ∆ maintains pointers to the subset of hyperplanes
{hi+1, . . . , hn} which intersect ∆ (this is the conflict list of ∆). Each hyperplane hj for j > i also
maintains reverse pointers to the set of simplices it intersects in the current triangulation. Finally, each
cell in the arrangement maintains the number of hyperplanes of H which lie strictly below it.

In an update step, insert the hyperplane hi. Using the reverse pointers, we determine the set of
simplices that are split by inserting hi into the current arrangement. Using these simplices, we can find
the cells that are split by hi. Fix a cell C intersected by hi and let HC ⊆ H \ Hi be the union of the
conflict lists over the simplices in C. Suppose C is split into two new cells C1 and C2. Assume C1 lies
above hi. We determine the number of planes lying below C1 (C2 can be handled symmetrically). Let v
be a vertex of C lying below hi. From v, we perform a graph search on the boundary of C to determine
the number of hyperplanes of HC lying strictly below C1 (adding the number of hyperplanes lying below
C to the count). If at any point this count is greater than k, we discard C1, as it does not cover the
(≤ k)-level. This process is repeated for all cells split by hi. At the end of the process, we triangulate
the newly created cells, and construct the conflict lists for the new simplices. See [BDS95, Section 5.4]
for details on how to efficiently maintain the conflict lists and arrangement incrementally.
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A.2. Refining the cutting

At the end of the process, the algorithm has a collection of simplices Ξ which cover the (≤ k)-level.
For each simplex ∆ ∈ Ξ, if ∆ has conflict list size tk for some t ≥ 1, compute a (1/t)-cutting for the
hyperplanes intersecting ∆ and clip the cutting inside ∆. This ensures that every simplex in the final
two-level cutting intersects at most k hyperplanes of H.

A.3. Analysis sketch

In each step of the randomized incremental algorithm, the total amount of work done is proportional to
the size of the conflict lists destroyed or created. Let Ξi denote the current collection of simplices at step
i, where Ξ = Ξn/k is the collection of cells in the top-level cutting at the end of the process. We first
analyze the total size of the conflict lists over all simplices in Ξi. For each ∆ ∈ Ξi, let w(∆) be the size of
the conflict list of ∆. For an integer t ≥ 1, let Ξi[t] = {∆ ∈ Ξi | (t− 1)k < w(∆) ≤ tk}. In the original
proof of the shallow cutting lemma Matoušek proved that, roughly speaking, the number of simplices
in Ξi with w(∆) ∈ ((t − 1)k, tk] is decays exponentially in t—formally E[|Ξi[t]|] = O(2−t |Ξi|) [Mat92,
Lemma 2.4]. Using this, one can bound the sum of the conflict list sizes as (see [BDS95, Theorem 3]
and [Har11, Theorem 8.8]):

αi := E

[∑
∆∈Ξi

w(∆)

]
= O(|Ξi| (n/i)) = O

(
ibd/2c(n/i)

)
.

Since the hyperplanes were randomly permuted, we have that that the amortized work done in the ith
step of the algorithm is O(αi/i) [BDS95, Theorem 5]. As such, the expected running time to compute
the top-level cutting is bounded by:

n/k∑
i=1

O
(αi
i

)
= O

 n/k∑
i=1

nibd/2c

i2

 = O

(
n

k
· n
(n
k

)bd/2c−2
)

= O

(
k
(n
k

)bd/2c)
,

where in the second inequality we use the assumption d ≥ 4. (For d < 4, the summation solves to
O(n log(n/k)).)

As for the second level cutting, fix a simplex ∆ ∈ Ξ[t] with weight w(∆) ∈ ((t−1)k, tk]. Computing a
(1/t)-cutting inside ∆ costs O(w(∆)td−1) = O(tdk) expected time [Cha93]. Thus, the expected running
time of the second-level cutting is bounded by O

(
k
∑∞

t=1

∑
∆∈Ξ[t] t

d
)
. Again, by the properties of

exponential decay [Mat92, BDS95, Har11] we have that

E

k∑
t≥1

∑
∆∈Ξ[t]

td

 = O
(
k(n/k)bd/2c

)
.

This completes the proof of Lemma 6.12.
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