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Abstract

In this work, we consider the distributed optimization of non-smooth convex func-
tions using a network of computing units. We investigate this problem under two
regularity assumptions: (1) the Lipschitz continuity of the global objective function,
and (2) the Lipschitz continuity of local individual functions. Under the local regu-
larity assumption, we provide the first optimal first-order decentralized algorithm
called multi-step primal-dual (MSPD) and its corresponding optimal convergence
rate. A notable aspect of this result is that, for non-smooth functions, while the

dominant term of the error is in O(1/
√
t), the structure of the communication

network only impacts a second-order term in O(1/t), where t is time. In other
words, the error due to limits in communication resources decreases at a fast rate
even in the case of non-strongly-convex objective functions. Under the global reg-
ularity assumption, we provide a simple yet efficient algorithm called distributed
randomized smoothing (DRS) based on a local smoothing of the objective function,

and show that DRS is within a d1/4 multiplicative factor of the optimal convergence
rate, where d is the underlying dimension.

1 Introduction

Distributed optimization finds many applications in machine learning, for example when the dataset
is large and training is achieved using a cluster of computing units. As a result, many algorithms were
recently introduced to minimize the average f̄ = 1

n

∑n
i=1 fi of functions fi which are respectively

accessible by separate nodes in a network [1, 2, 3, 4]. Most often, these algorithms alternate between
local and incremental improvement steps (such as gradient steps) with communication steps between
nodes in the network, and come with a variety of convergence rates (see for example [5, 4, 6, 7]).

Recently, a theoretical analysis of first-order distributed methods provided optimal convergence rates
for strongly-convex and smooth optimization in networks [8]. In this paper, we extend this analysis to
the more challenging case of non-smooth convex optimization. The main contribution of this paper is
to provide optimal convergence rates and their corresponding optimal algorithms for this class of
distributed problems under two regularity assumptions: (1) the Lipschitz continuity of the global
objective function f̄ , and (2) a bound on the average of Lipschitz constants of local functions fi.

Under the local regularity assumption, we provide in Section 4 matching upper and lower bounds
of complexity in a decentralized setting in which communication is performed using the gossip
algorithm [9]. Moreover, we propose the first optimal algorithm for non-smooth decentralized
optimization, called multi-step primal-dual (MSPD). Under the more challenging global regularity
assumption, we show in Section 3 that distributing the simple smoothing approach introduced in [10]
yields fast convergence rates with respect to communication. This algorithm, called distributed

randomized smoothing (DRS), achieves a convergence rate matching the lower bound up to a d1/4

multiplicative factor, where d is the dimensionality of the problem.
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Our analysis differs from the smooth and strongly-convex setting in two major aspects: (1) the naïve
master/slave distributed algorithm is in this case not optimal, and (2) the convergence rates differ
between communication and local computations. More specifically, error due to limits in communica-
tion resources enjoys fast convergence rates, as we establish by formulating the optimization problem
as a composite saddle-point problem with a smooth term for communication and non-smooth term
for the optimization of the local functions (see Section 4 and Eq. (21) for more details).

Related work. Many algorithms were proposed to solve the decentralized optimization of an average
of functions (see for example [1, 11, 3, 4, 12, 2, 13, 5]), and a sheer amount of work was devoted to
improving the convergence rate of these algorithms [5, 6]. In the case of non-smooth optimization,
fast communication schemes were developed in [14, 15], although precise optimal convergence rates
were not obtained. Our decentralized algorithm is closely related to the recent primal-dual algorithm
of [14] which enjoys fast communication rates in a decentralized and stochastic setting. Unfortunately,
their algorithm lacks gossip acceleration to reach optimality with respect to communication time.
Finally, optimal convergence rates for distributed algorithms were investigated in [8] for smooth and
strongly-convex objective functions, and [16, 17] for totally connected networks.

2 Distributed optimization setting

Optimization problem. Let G = (V, E) be a strongly connected directed graph of n computing

units and diameter ∆, each having access to a convex function fi over a convex set K ⊂ R
d. We

consider minimizing the average of the local functions

min
θ∈K

f̄(θ) =
1

n

n
∑

i=1

fi(θ) , (1)

in a distributed setting. More specifically, we assume that each computing unit can compute a
subgradient ∇fi(θ) of its own function in one unit of time, and communicate values (i.e. vectors

in R
d) to its neighbors in G. A direct communication along the edge (i, j) ∈ E requires a time τ ≥ 0.

These actions may be performed asynchronously and in parallel, and each machine i possesses a
local version of the parameter, which we refer to as θi ∈ K.

Regularity assumptions. Optimal convergence rates depend on the precise set of assumptions
applied to the objective function. In our case, we will consider two different constraints on the
regularity of the functions:

(A1) Global regularity: the (global) function f̄ is convex and Lg-Lipschitz continuous, in the
sense that, for all θ, θ′ ∈ K,

|f̄(θ)− f̄(θ′)| ≤ Lg‖θ − θ′‖2 . (2)

(A2) Local regularity: Each local function is convex and Li-Lipschitz continuous, and we

denote as Lℓ =
√

1
n

∑n
i=1 L

2
i the ℓ2-average of the local Lipschitz constants.

Assumption (A1) is weaker than (A2), as we always have Lg ≤ Lℓ. Moreover, we may have Lg = 0
and Lℓ arbitrarily large, for example with two linear functions f1(x) = −f2(x) = ax and a → +∞.
We will see in the following sections that the local regularity assumption is easier to analyze and
leads to matching upper and lower bounds. For the global regularity assumption, we only provide an

algorithm with a d1/4 competitive ratio, where d is the dimension of the problem. Finding an optimal
distributed algorithm for global regularity is, to our understanding, a much more challenging task and
is left for future work.

Finally, we assume that the feasible region K is convex and bounded, and denote by R the radius of a
ball containing K, i.e.

∀θ ∈ K, ‖θ − θ0‖2 ≤ R , (3)

where θ0 ∈ K is the initial value of the algorithm, that we set to θ0 = 0 without loss of generality.

Black-box optimization procedure. The lower complexity bounds in Theorem 2 and Theorem 3
depend on the notion of black-box optimization procedures of [8] that we now recall. A black-box
optimization procedure is a distributed algorithm verifying the following constraints:
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1. Local memory: each node i can store past values in a (finite) internal memory Mi,t ⊂ R
d

at time t ≥ 0. These values can be accessed and used at time t by the algorithm run by node
i, and are updated either by local computation or by communication (defined below), that is,
for all i ∈ {1, ..., n},

Mi,t ⊂ Mcomp
i,t ∪Mcomm

i,t . (4)

2. Local computation: each node i can, at time t, compute a subgradient of its local function
∇fi(θ) for a value θ ∈ Mi,t−1 in the node’s internal memory before the computation.

Mcomp
i,t = Span ({θ,∇fi(θ) : θ ∈ Mi,t−1}) . (5)

3. Local communication: each node i can, at time t, share a value to all or part of its neighbors,
that is, for all i ∈ {1, ..., n},

Mcomm
i,t = Span

(

⋃

(j,i)∈E

Mj,t−τ

)

. (6)

4. Output value: each node i must, at time t, specify one vector in its memory as local output
of the algorithm, that is, for all i ∈ {1, ..., n},

θi,t ∈ Mi,t . (7)

Hence, a black-box procedure will return n output values—one for each computing unit—and our
analysis will focus on ensuring that all local output values are converging to the optimal parameter of
Eq. (1). For simplicity, we assume that all nodes start with the simple internal memory Mi,0 = {0}.
Note that communications and local computations may be performed in parallel and asynchronously.

3 Distributed optimization under global regularity

The most standard approach for distributing a first-order optimization method consists in computing
a subgradient of the average function

∇f̄(θ) =
1

n

n
∑

i=1

∇fi(θ) , (8)

where ∇fi(θ) is any subgradient of fi at θ, by sending the current parameter θt to all nodes,
performing the computation of all local subgradients in parallel and averaging them on a master node.
Since each iteration requires communicating twice to the whole network (once for θt and once for
sending the local subgradients to the master node, which both take a time ∆τ where ∆ is the diameter
of the network) and one subgradient computation (on each node and performed in parallel), the time
to reach a precision ε with such a distributed subgradient descent is upper-bounded by

O

(

(RLg

ε

)2

(∆τ + 1)

)

. (9)

Note that this convergence rate depends on the global Lipschitz constant Lg, and is thus applicable
under the global regularity assumption. The number of subgradient computations in Eq. (9) (i.e. the
term not proportional to τ ) cannot be improved, since it is already optimal for objective functions
defined on only one machine (see for example Theorem 3.13 p. 280 in [18]). However, quite surpris-
ingly, the error due to communication time may benefit from fast convergence rates in O(RLg/ε).
This result is already known under the local regularity assumption (i.e. replacing Lg with Lℓ or
even maxi Li) in the case of decentralized optimization [14] or distributed optimization on a totally
connected network [17]. To our knowledge, the case of global regularity has not been investigated by
prior work.

3.1 A simple algorithm with fast communication rates

We now show that the simple smoothing approach introduced in [10] can lead to fast rates for error
due to communication time. Let γ > 0 and f : Rd → R be a real function. We denote as smoothed
version of f the following function:

fγ(θ) = E [f(θ + γX)] , (10)

where X ∼ N (0, I) is a standard Gaussian random variable. The following lemma shows that fγ is
both smooth and a good approximation of f .
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Algorithm 1 distributed randomized smoothing

Input: approximation error ε > 0, communication graph G, α0 = 1, αt+1 = 2/(1 +
√

1 + 4/α2
t )

T =
⌈

20RLgd
1/4

ε

⌉

, K =
⌈

5RLgd
−1/4

ε

⌉

, γt = Rd−1/4αt, ηt =
Rαt

2Lg(d1/4+
√

t+1

K )
.

Output: optimizer θT
1: Compute a spanning tree T on G.
2: Send a random seed s to every node in T .
3: Initialize the random number generator of each node using s.
4: x0 = 0, z0 = 0, G0 = 0
5: for t = 0 to T − 1 do
6: yt = (1− αt)xt + αtzt
7: Send yt to every node in T .

8: Each node i computes gi =
1
K

∑K
k=1 ∇fi(yt + γtXt,k), where Xt,k ∼ N (0, I)

9: Gt+1 = Gt +
1

nαt

∑

i gi
10: zt+1 = argminx∈K ‖x+ ηt+1Gt+1‖22
11: xt+1 = (1− αt)xt + αtzt+1

12: end for
13: return θT = xT

Lemma 1 (Lemma E.3 of [10]). If γ > 0, then fγ is
Lg

γ -smooth and, for all θ ∈ R
d,

f(θ) ≤ fγ(θ) ≤ f(θ) + γLg

√
d . (11)

Hence, smoothing the objective function allows the use of accelerated optimization algorithms and
provides faster convergence rates. Of course, the price to pay is that each computation of the smoothed
gradient ∇f̄γ(θ) = 1

n

∑n
i=1 ∇fγ

i (θ) now requires, at each iteration m, to sample a sufficient amount
of subgradients ∇fi(θ+ γXm,k) to approximate Eq. (10), where Xm,k are K i.i.d. Gaussian random
variables. At first glance, this algorithm requires all computing units to synchronize on the choice
of Xm,k, which would require to send to all nodes each Xm,k and thus incur a communication cost
proportional to the number of samples. Fortunately, computing units only need to share one random
seed s ∈ R and then use a random number generator initialized with the provided seed to generate
the same random variables Xm,k without the need to communicate any vector. The overall algorithm,
denoted distributed randomized smoothing (DRS), uses the randomized smoothing optimization
algorithm of [10] adapted to a distributed setting, and is summarized in Alg. 1. The computation of a
spanning tree T in step 1 allows efficient communication to the whole network in time at most ∆τ .
Most of the algorithm (i.e. steps 2, 4, 6, 7, 9, 10 and 11) are performed on the root of the spanning
subtree T , while the rest of the computing units are responsible for computing the smoothed gradient
(step 8). The seed s of step 2 is used to ensure that every Xm,k, although random, is the same on
every node. Finally, step 10 is a simple orthogonal projection of the gradient step on the convex set K.
We now show that the DRS algorithm converges to the optimal parameter under the global regularity
assumption.

Theorem 1. Under global regularity (A1), Alg. 1 achieves an approximation error E
[

f̄(θT )
]

− f̄(θ∗)
of at most ε > 0 in a time Tε upper-bounded by

O

(

RLg

ε
(∆τ + 1)d1/4 +

(RLg

ε

)2
)

. (12)

More specifically, Alg. 1 completes its T iterations by time

Tε ≤ 40

⌈

RLgd
1/4

ε

⌉

∆τ + 100

⌈

RLgd
1/4

ε

⌉⌈

RLgd
−1/4

ε

⌉

. (13)

Comparing Eq. (13) to Eq. (9), we can see that our algorithm improves on the standard method when
the dimension is not too large, and more specifically

d ≤
(RLg

ε

)4

. (14)

In practice, this condition is easily met, as ε ≤ 10−2 already leads to the condition d ≤ 108 (assuming
that R and Lg have values around 1). Moreover, for problems of moderate dimension, the term
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d1/4 remains a small multiplicative factor (e.g. for d = 1000, d1/4 ≈ 6). Finally, note that DRS
achieves a linear speedup when communication through the whole network requires a constant time,
i.e., ∆τ = O(1), and the convexity of each local function fi is not necessary for Theorem 1 to hold.

Remark 1. Several other smoothing methods exist in the literature, notably the Moreau envelope [19]
enjoying a dimension-free approximation guarantee. However, the Moreau envelope of an average
of functions is difficult to compute (requires a different oracle than computing a subgradient), and
unfortunately leads to convergence rates with respect to local Lipschitz characteristics instead of Lg .

3.2 Optimal convergence rate

The following result provides oracle complexity lower bounds under the global regularity assumption,
and is proved in the supplemental material. This lower bound extends the communication complexity
lower bound for totally connected communication networks from [17].

Theorem 2. Let G be a network of computing units of size n > 0, and Lg, R > 0. There exists n

functions fi : R
d → R such that (A1) holds and, for any t < (d−2)

2 min{∆τ, 1} and any black-box
procedure one has, for all i ∈ {1, ..., n},

f̄(θi,t)− min
θ∈B2(R)

f̄(θ) ≥ RLg

36

√

1

(1 + t
2∆τ )

2
+

1

1 + t
. (15)

Assuming that the dimension d is large compared to the characteristic values of the problem (a
standard set-up for lower bounds in non-smooth optimization [20, Theorem 3.2.1]), Theorem 2
implies that, under the global regularity assumption (A1), the time to reach a precision ε > 0 with
any black-box procedure is lower bounded by

Ω

(

RLg

ε
∆τ +

(RLg

ε

)2
)

, (16)

where the notation g(ε) = Ω(f(ε)) stands for ∃C > 0 s.t. ∀ε > 0, g(ε) ≥ Cf(ε). This lower bound
proves that the convergence rate of DRS in Eq. (13) is optimal with respect to computation time and

within a d1/4 multiplicative factor of the optimal convergence rate with respect to communication.

The proof of Theorem 2 relies on the use of two objective functions: first, the standard worst case
function used for single machine convex optimization (see e.g. [18]) is used to obtain a lower bound
on the local computation time of individual machines. Then, a second function first introduced in [17]
is split on the two most distant machines to obtain worst case communication times. By aggregating
these two functions, a third one is obtained with the desired lower bound on the convergence rate. The
complete proof is available as supplementary material. Finally, note that, due to its random nature,
Alg. 1 is not per se a black-box procedure, and Theorem 2 does not apply to it. Lower bounds for
random algorithms are more challenging and left for future work.

Remark 2. The lower bound also holds for the average of local parameters 1
n

∑n
i=1 θi, and more

generally any parameter that can be computed using any vector of the local memories at time t: in
Theorem 2, θi,t may be replaced by any θt such that

θt ∈ Span

(

⋃

i∈V
Mi,t

)

. (17)

4 Decentralized optimization under local regularity

In many practical scenarios, the network may be unknown or changing through time, and a local
communication scheme is preferable to the master/slave approach of Alg. 1. Decentralized algo-
rithms tackle this problem by replacing targeted communication by local averaging of the values of
neighboring nodes [9]. More specifically, we now consider that, during a communication step, each
machine i broadcasts a vector xi ∈ R

d to its neighbors, then performs a weighted average of the
values received from its neighbors:

node i sends xi to his neighbors and receives
∑

j Wjixj . (18)

In order to ensure the efficiency of this communication scheme, we impose standard assumptions on
the matrix W ∈ R

n×n, called the gossip matrix [9, 8]:
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1. W is symmetric and positive semi-definite,

2. The kernel of W is the set of constant vectors: Ker(W ) = Span(1), where 1 = (1, ..., 1)⊤,

3. W is defined on the edges of the network: Wij 6= 0 only if i = j or (i, j) ∈ E .

Note that these assumptions are implied by symmetry, stochasticity and positive eigengap on I −W .

4.1 Optimal convergence rate

Similarly to the smooth and strongly-convex case of [8], the lower bound on the optimal con-

vergence rate is obtained by replacing the diameter of the network with 1/
√

γ(W ), where
γ(W ) = λn−1(W )/λ1(W ) is the ratio between smallest non-zero and largest eigenvalues of W ,
also known as the normalized eigengap.

Theorem 3. Let Lℓ, R > 0 and γ ∈ (0, 1]. There exists a matrix W of eigengap γ(W ) = γ, and n
functions fi satisfying (A2), where n is the size of W , such that for all t < d−2

2 min(τ/
√
γ, 1) and

all i ∈ {1, ..., n},

f̄(θi,t)− min
θ∈B2(R)

f̄(θ) ≥ RLℓ

108

√

1

(1 +
2t

√
γ

τ )2
+

1

1 + t
. (19)

Assuming that the dimension d is large compared to the characteristic values of the problem, The-
orem 3 implies that, under the local regularity assumption (A2) and for a gossip matrix W with
eigengap γ(W ), the time to reach a precision ε > 0 with any decentralized black-box procedure is
lower-bounded by

Ω

(

RLℓ

ε

τ
√

γ(W )
+
(RLℓ

ε

)2
)

. (20)

The proof of Theorem 3 relies on linear graphs (whose diameter is proportional to 1/
√

γ(L) where
L is the Laplacian matrix) and Theorem 2. More specifically, a technical aspect of the proof consists
in splitting the functions used in Theorem 2 on multiple nodes to obtain a dependency in Lℓ instead
of Lg . The complete derivation is available as supplementary material.

4.2 Optimal decentralized algorithm

We now provide an optimal decentralized optimization algorithm under (A2). This algorithm is
closely related to the primal-dual algorithm proposed by [14], which we modify by the use of
accelerated gossip using Chebyshev polynomials as in [8].

First, we formulate our optimization problem in Eq. (1) as the saddle-point problem in Eq. (21) below,
by considering the equivalent problem of minimizing 1

n

∑n
i=1 fi(θi) over Θ = (θ1, . . . , θn) ∈ Kn

with the constraint that θ1 = · · · = θn, or equivalently ΘA = 0, where A is a square root of the
symmetric matrix W . Through Lagrangian duality, we therefore get the equivalent problem:

min
Θ∈Kn

max
Λ∈Rd×n

1

n

n
∑

i=1

fi(θi)− tr Λ⊤ΘA . (21)

We solve it by applying Algorithm 1 in Chambolle-Pock [21] (we could alternatively apply composite
Mirror-Prox [22]), which is both simple and well tailored to our problem: (a) it is an accelerated
method for saddle-point problems, (b) it allows for composite problems with a sum of non-smooth and
smooth terms, (c) it provides a primal-dual gap that can easily be extended to the case of approximate
proximal operators. At each iteration t, with initialization Λ0 = 0 and Θ0 = Θ−1 = (θ0, . . . , θ0):

(a) Λt+1 = Λt − σ(2Θt+1 −Θt)A

(b) Θt+1 = argmin
Θ∈Kn

1

n

n
∑

i=1

fi(θi)− trΘ⊤Λt+1A⊤ +
1

2η
tr(Θ−Θt)⊤(Θ−Θt) ,

(22)

where the gain parameters η, σ are required to satisfy σηλ1(W ) ≤ 1. We implement the algorithm

with the variables Θt and Y t = ΛtA⊤ = (yt1, . . . , y
t
n) ∈ R

d×n, for which all updates can be made
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Algorithm 2 multi-step primal-dual algorithm

Input: approximation error ε > 0, gossip matrix W ∈ R
n×n,

K = ⌊1/
√

γ(W )⌋, M = T = ⌈ 4RLℓ

ε ⌉, c1 =
1−

√
γ(W )

1+
√

γ(W )
, η = nR

Lℓ

1−cK1
1+cK

1

, σ =
1+c2K1

τ(1−cK
1
)2

.

Output: optimizer θ̄T
1: Θ0 = 0, Θ−1 = 0, Y0 = 0
2: for t = 0 to T − 1 do
3: Y t+1 = Y t − σ ACCELERATEDGOSSIP(2Θt −Θt−1, W , K) // see [8, Alg. 2]

4: Θ̃0 = Θt

5: for m = 0 to M − 1 do
6: θ̃m+1

i = m
m+2 θ̃

m
i − 2

m+2

[

η
n∇fi(θ̃

m
i )− ηyt+1

i − θti
]

, ∀i ∈ {1, . . . , n}
7: end for
8: Θt+1 = Θ̃M

9: end for
10: return θ̄T = 1

T
1
n

∑T
t=1

∑n
i=1 θ

t
i

locally: Since AA⊤ = W , they now become

(a′) Y t+1 = Y t − σ(2Θt+1 −Θt)W

(b′) θt+1
i = argmin

θi∈K

1

n
fi(θi)− θ⊤i y

t+1
i +

1

2η
‖θi − θti‖2, ∀i ∈ {1, . . . , n} , (23)

The step (b′) still requires a proximal step for each function fi. We approximate it by the outcome of
the subgradient method run for M steps, with a step-size proportional to 2/(m + 2) as suggested

in [23]. That is, initialized with θ̃0i = θti , it performs the iterations

θ̃m+1
i =

m

m+ 2
θ̃mi − 2

m+ 2

[ η

n
∇fi(θ̃

m
i )− ηyt+1

i − θti
]

, m = 0, . . . ,M − 1. (24)

We thus replace the step (b′) by running M steps of the subgradient method to obtain θ̃Mi .

Theorem 4. Under local regularity (A2), the approximation error with the iterative algorithm of
Eq. (23) and (24) after T iterations and using M subgradient steps per iteration is bounded by

f̄(θ̄T )−min
θ∈K

f̄(θ) ≤ RLℓ
√

γ(W )

( 1

T
+

1

M

)

. (25)

Theorem 4 implies that the proposed algorithm achieves an error of at most ε in a time no larger than

O

(

RLℓ

ε

τ
√

γ(W )
+

(

RLℓ

ε

1
√

γ(W )

)2)

. (26)

While the first term (associated to communication) is optimal, the second does not match the lower
bound of Theorem 3. This situation is similar to that of strongly-convex and smooth decentralized
optimization [8], when the number of communication steps is taken equal to the number of overall
iterations.

By using Chebyshev acceleration [24, 25] with an increased number of communication steps, the
algorithm reaches the optimal convergence rate. More precisely, since one communication step is a
multiplication (of Θ e.g.) by the gossip matrix W , performing K communication steps is equivalent
to multiplying by a power of W . More generally, multiplication by any polynomial PK(W ) of
degree K can be achieved in K steps. Since our algorithm depends on the eigengap of the gossip
matrix, a good choice of polynomial consists in maximizing this eigengap γ(PK(W )). This is the
approach followed by [8] and leads to the choice PK(x) = 1 − TK(c2(1 − x))/TK(c2), where
c2 = (1 + γ(W ))/(1− γ(W )) and TK are the Chebyshev polynomials [24] defined as T0(x) = 1,
T1(x) = x, and, for all k ≥ 1, Tk+1(x) = 2xTk(x)− Tk−1(x). We refer the reader to [8] for more

details on the method. Finally, as mentioned in [8], chosing K = ⌊1/
√

γ(W )⌋ leads to an eigengap
γ(PK(W )) ≥ 1/4 and the optimal convergence rate.
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We denote the resulting algorithm as multi-step primal-dual (MSPD) and describe it in Alg. 2. The
procedure ACCELERATEDGOSSIP is extracted from [8, Algorithm 2] and performs one step of
Chebyshev accelerated gossip, while steps 4 to 8 compute the approximation of the minimization
problem (b’) of Eq. (23). Our performance guarantee for the MSPD algorithm is then the following:

Theorem 5. Under local regularity (A2), Alg. 2 achieves an approximation error f̄(θ̄T )− f̄(θ∗) of
at most ε > 0 in a time Tε upper-bounded by

O

(

RLℓ

ε

τ
√

γ(W )
+

(RLℓ

ε

)2
)

, (27)

which matches the lower complexity bound of Theorem 3. Alg. 2 is therefore optimal under the the
local regularity assumption (A2).

Remark 3. It is clear from the algorithm’s description that it completes its T iterations by time

Tε ≤
⌈

4RLℓ

ε

⌉

τ
√

γ(W )
+

⌈

4RLℓ

ε

⌉2

. (28)

To obtain the average of local parameters θ̄T = 1
nT

∑T
t=1

∑n
i=1 θi, one can then rely on the gossip

algorithm [9] to average over the network the individual nodes’ time averages. Let W ′ = I −
c3PK(W ) where c3 = (1 + c2K1 )/(1 − cK1 )2. Since W ′ is bi-stochastic, semi-definite positive
and λ2(W

′) = 1 − γ(PK(W )) ≤ 3/4, using it for gossiping the time averages leads to a time

O
(

τ√
γ ln

(

RLℓ

ε

))

to ensure that each node reaches a precision ε on the objective function (see [9] for

more details on the linear convergence of gossip), which is negligible compared to Eq. (27).

Remark 4. A stochastic version of the algorithm is also possible by considering stochastic oracles
on each fi and using stochastic subgradient descent instead of the subgradient method.

Remark 5. In the more general context where node compute times ρi are not necessarily all equal
to 1, we may still apply Alg. 2, where now the number of subgradient iterations performed by node i
is M/ρi rather than M . The proof of Theorem 5 also applies, and now yields the modified upper
bound on time to reach precision ε:

O

(

RLℓ

ε

τ
√

γ(W )
+
(RLc

ε

)2
)

, (29)

where L2
c = 1

n

∑n
i=1 ρiL

2
i .

5 Conclusion

In this paper, we provide optimal convergence rates for non-smooth and convex distributed optimiza-
tion in two settings: Lipschitz continuity of the global objective function, and Lipschitz continuity of
local individual functions. Under the local regularity assumption, we provide optimal convergence
rates that depend on the ℓ2-average of the local Lipschitz constants and the (normalized) eigengap
of the gossip matrix. Moreover, we also provide the first optimal decentralized algorithm, called
multi-step primal-dual (MSPD).

Under the global regularity assumption, we provide a lower complexity bound that depends on the
Lipschitz constant of the (global) objective function, as well as a distributed version of the smoothing

approach of [10] and show that this algorithm is within a d1/4 multiplicative factor of the optimal
convergence rate.

In both settings, the optimal convergence rate exhibits two different speeds: a slow rate in Θ(1/
√
t)

with respect to local computations and a fast rate in Θ(1/t) due to communication. Intuitively,
communication is the limiting factor in the initial phase of optimization. However, its impact
decreases with time and, for the final phase of optimization, local computation time is the main
limiting factor.

The analysis presented in this paper allows several natural extensions, including time-varying com-
munication networks, asynchronous algorithms, stochastic settings, and an analysis of unequal node
compute speeds going beyond Remark 5. Moreover, despite the efficiency of DRS, finding an optimal
algorithm under the global regularity assumption remains an open problem and would make a notable
addition to this work.
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