
 ompmer

Optimal algorithms
for symmetry
detection in two and
three dimensions*

Jan D. Wolter , Tony C. Woo2 ,

and Richard A. Volz 1

1 Department of Electrical Engineering
and Computer Science,

2 Department of Industrial
and Operations Engineering,
The University
of Michigan Ann Arbor,
MI 48109, USA

Exact algorithms for detecting all ro-
tational and involutional symmetries in
point sets, polygons and polyhedra are
described. The time complexities of the
algorithms are shown to be O(n) for
polygons and O(nlogn) for two- and
three-dimensional point sets. O(n logn)
time is also required for general polyhe-
dra, but for polyhedra with connected,
planar surface graphs O(n) time canbe
achieved. All algorithms are optimal in
time complexity, within constants.

Key words: Symmetry - Similarity
Computational geometry - Pattern
matching - Graph isomorphism

~ N OBJECT IS SYMMETRICAL IF ITS SHAPE IS

unchanged under an affine transform.
This paper presents optimal algorithms
to find several types of symmetry for

polygons, point sets, and polyhedra - point, line
and plane symmetries.
The authors originally encountered the need for
computing symmetry in a robotics application,
in which a set of images of polyhedra were
generated for the training of a vision system
(Wolter etal. 1985). Knowledge of the sym-
metry of the object was necessary to eliminate
redundant orientations. Because of its potential
capability in data extraction and data compac-
tion, symmetry is useful for solving problems in
image analysis and computer graphics. Several
algorithms for detecting symmetry in images
have appeared in the literature. Davis (1977)
described a method for finding lines of sym-
metry in images by clustering local symmetries.
Parvi and Dutta Majumder (1983) detected ap-
proximate lines of symmetry in chain coded
polygons. Friedberg and Brown (1984) used
moments to find lines of skewed symmetry.,
Johansen et al. (1984) have presented algorithms
based on the boundary representations of ob-
jects which may be used to detect symmetries.
They extend an algorithm by Tanimoto (1981)
to encode polygons or polyhedra into nonde-
terministic finite state automata. This requires
O(n z) states for polyhedra, and 0(21/") states for
polyhedra, where n is the number of verties.
This paper presents a set of algorithms for solv-
ing the following class of problems. Given
either a point set or a boundary representation
of a polygon or polyhedron, all rotational and
involutional symmetries are found. For po-
lygons and polyhedra with connected, planar
surface graphs, O(n) operations are used. For
all other structures, O(n log n) operations are
required. All algorithms are shown to be op-
timal within a constant. These algorithms are
based on the algorithm for linear time polygon
similarity published by Manachar (Manachar
1976; Akl 1978; Bykat 1979) and on the algo-
rithm for linear time graph isomorphism by
Hopcroft and Wong (1974). The computational
model used throughout this paper is an RAM-
based algebraic decision tree (Lee and Preparta
1984).

* Work on this paper was partially supported by the Air

Force Office of Scientific Research under contract num-

ber F4920-82-C-0089. Work by the first author was
supported through an IBM Graduate Pre-Doctoral Fel-
lowship

The Visual Computer (1985) 1:37~48 3 ~
�9 Springer-Verlag 1985

Definitions

In this paper a d-dimensional object H is de-

fined as a set of points {Pl, P2 } in d-dimen-
sional space. The t ransform of an object T(/7)
is the object {T(pl), T(p2), ...}. 17 is symmetri-

cal under the t ransform T, if T(/7)=/7.
The transforms of interest in this paper fall in
two classes: rotat ional transforms and invo-

lutional transforms. Let Ra, 0 denote a rotat ion
t ransform of 0 degrees about the (d - 2) -

dimensional axis a. All possible rotat ional sym-
metry transforms can be written as

Ca, k=-Ra, 36o/k where k is a natural number. If
/7 is symmetrical under Ca, k then a is called a
"k-fold point of rotat ional symmetry" in two

dimensions, or a "k-fold line of rotat ional sym-

metry" in three dimensions. Note that the

t ransform Ca, 1 is the identity transform. A one-

fold axis of symmetry is called a trivial axis,

since every object 17 has such a symmetry.

The second class of t ransforms are involutional
transforms, denoted Zb, k, where b is a (d - 1) -
dimensional axis, and k is a natural number. In

two dimensions, only Zb, 1 is defined. This de-
notes a reflection through the line b. If a two-

dimensional (2D) point set is symmetrical under
Zb, 1, then b is called a "line of reflectional
symmetry." In three dimensions, let b be a
plane, and let 6 be a line perpendicular to b.

Then the t ransform Z b k is a ro t a t i on of 360/k
degrees a round the line b, followed by a re-
flection through the plane b. If a / 7 is symmetri-

cal under Zb, k, then a line 5 is said to be a "k-
fold line of involutional symmetry." Zb, 1 and
Zb, z are of particular interest. Zb, 1 is pure re-

flection through the plane b, and if 17 is sym-
metrical under that transform, b is said to be a

"plane of reflective symmetry." Note that Zb, 1
is self-inverse. Zb, 2 is equivalent to inversion
through the point where b intersects 5. We call
such points "points of inversional symmetry."

Any transform Ra, k or Zb, k leaves at least one

point fixed in space. If an object is symmetrical

under a transform, it can be shown that the
centroid 7 of the object m u s t be a fixed point
under that transform. Since the centroid can be
calculated in linear time, it is a very convenient
starting point from which to search for symme-

tries.
A rotat ional t ransform Ra, o can be expressed as
a composi te of two reflectional transforms,

Zb, 1 ~ 1, such that b and c intersect at a to
form an angle of 0/2 degrees. Because of this,
any object with more than one reflectional sym-
metry must also be rotat ionally symmetric.

The symmetries which may occur together form

symmetry groups. All possible symmetry groups

for two and three dimensions have been for-

mally classified (Martin 1982; Lockwood and
Macmil lan 1978).

Basic ideas

The algori thms in this paper will all follow the
same general outline, which consists of three
steps:
1. O R D E R : sort the points of the object into

cycles

2. E N C O D E : encode each cycle into a string of

symbols

3. C H E C K : test the symmetry of the encoded
string

Before describing the specific algori thms in de-

tail, we will define the structures produced by
the O R D E R and E N C O D E steps. In these de-

finitions, T is the set of all symmetry transforms
to be tested for.

The O R D E R step takes the vertex set, P c H ,
and forms it into a cycle F = (c o , cl, . . . , c~_1),
where each c i is one of the n elements of P.
This ordering is a cycle when it has the proper-

ty that if H is symmetrical under any transform

T~T such that T(ci)=cj, then for all k, T(ci+k)
=cj+ k. (Note that in this paper, all addit ions
a n d subtractions in subscripts are assumed to

be done with the appropria te modulus , in this
case, n.)
The E N C O D E step converts a cycle F into a

finite string S on an infinite alphabet. Each
element c~ in the cycle will be encoded into an
m-tuple of symbols s~, such that for any trans-

form T~T under which P is symmetric, if T(q)
= c j, then s i = sj. Fur thermore , the string should

be such that two objects /71 and /72 have en-
codings which are cyclic permutat ions of each
other if, and only if, for some T~T, T(/71)=/7 2.
In other words, it must contain enough infor-
mat ion about the original object //1 to allow
the construct ion of an object /72 which is
equivalent to /71 under some t ransform in T.
The C H E C K step makes use of the properties

38

of the encoded string to locate all t ransforms in

T which are symmetries for the object. This
includes several different tests for different kinds
of symmetry, but all are variations of the ro-
tat ional similarity test of Manachar (1976). His

a lgor i thm is as follows.

Algorithm O: similarity of cycles

Problem O: Given two encoded cycles, S and T,

check if S is a cyclic permuta t ion of T, i.e., if

there is any k such that

(sk, sk+ 1 sk+,_ 1) = (to , t l , . . . , t ,_ 1)

To solve this problem, a substring pat tern
matching a lgor i thm such as that of Knu th et al.
(1977) is used. Given two strings of total length
m on a possibly infinite alphabet, the Knu th
algori thm finds the first occurrence of one in

the other in O(m) time.
Algor i thm 0 then consists of two main steps.

First, we construct the following two strings, A

and B, from the encoded cycles, S and T.

A = (So, s l , . . . , s ,_ 1)

B = (t 0 , t 1 , - . . , tn_ 1 , t0 , t l , . . . , tn_ 2)

Second, we use the string pat tern matching al-

gor i thm to determine whether A is a substring
of B. If it is, then S is a cyclic permuta t ion of T.

Algorithm 1:
symmetry of a polygon

Problem 1. Given a planar polygon, find all

rotat ional and reflectional transforms under
which it is symmetric.
A polygon is represented by a sequence of n

points (vertices), P=@o,Pa , P , - 1) , and n
line segments (edges), E = (eo, 1, el, 2, . . . ,
e,_ 1, 0), such that the edge el, i+1 has endpoints
Pl and p i+ 1. This representat ion is un ique up
to a cyclic permuta t ion of E and P.

Polygon ORDER

Theorem 1.1. cycle property of polygons. 7he
vertex list P of a polygon is a cycle for rotation
transforms.

Proof. Since an edge connects Pi and Pi+ 1, and
the polygon is symmetrical under the t ransform

T, there must be an edge connecting p j = T(pi)
and T(pi+ 1). Thus T(pi+ 1) equals either Pj+I or

P j-1. The latter case can be excluded, because

the vorticity of the triangle (7, Pi, Pi+ 1) would be
opposite that of (T(7), r(pz), r(p~+l)), and this
is impossible if T is a rota t ion transform. Thus,

we have that T(pi+ 1)=p j+ 1, which by induct ion

implies that T(Pi+k)=Pj+k, SO P satisfies the
cycle condition.
Due to Theorem 1.1, the O R D E R step of the
a lgor i thm is unnecessary for a polygon, since

the vertex list P already forms a valid cycle.

Polygon ENCODE

The E N C O D E step generates a two-tuple of
measures for each point which describes the

location of that vertex. For a measure to be a

candidate for inclusion in the encoding, it

should be invariant under rotation. These are

measures of the location of the point relative to

the centroid or relative to adjacent points of the

polygon. Possibilities include:

M 1. Distances between adjacent vertices
M2. Distances of vertices from the centroid
M 3. Angles formed by edges at each vertex

M4. Angles formed at the centroid by two ad-

jacent vertices
In his polygon similarity algorithm, Bykat

(1979) uses measures M1 and M2. However,

these do not yield a unique encoding. Figure l a

shows a polygon with vertices al, a2, a3, bl, b 2,

cl, c 2 and c3, such that

centroid (a 1 , a 2, aa)= centroid (b l; b2)

= centroid (c 1, c2, c3)=7

4('a I �9 ~3
a b

Fig. l a, b. Non-uniqueness of length-radius encoding for
polygons

3 9

Figure l b is the same polygon but with the

coordinates of points c 1, c 2 and c 3 reflected
through the line (bl, b2). Both figures have the
same centroid and edge lengths, and corre-

sponding points are the same distance from the

centroid, yet the polygons are not similar.

Manachar (1976) encodes each vertex of the
polygon cycle into a two-tuple containing mea-

sures M 1 and M 3. Thus

s i = (dist (Pl, Pi+ 1), angle (Pi- 1, Pi, Pi+ 1))

This plainly satisfies both the requirement that
vertices which can be mapped into each other
by a symmetry transform have the same encod-
ing, and the requirement that the polygon be
completely described by the encoded string.

Constructing the string S = (S1 , S2, . . . , Sn_ 1)

takes only linear time.

An encoding using M2 and M4 is very con-

venient if the polygon is specified in polar coor-

dinates about the centroid. This case will arise
as part of the point set symmetry algorithm.

Polygon CHECK

To check for the rotational symmetry of a poly-
gon, we need only to make a slight modifica-

tion to algorithm 0. Let S be the encoded cycle

of the polygon. We search for

A = (So, s l , . . . , s ,_ 17

in the string

B'=(s l , . . . ,S,_l , S0, St, " " , s , - t)

If A first occurs in B' at offset k - 1 then the
polygon must have n/k-fold rotational sym-

metry. At least a one-fold symmetry will be
found for any polygon, since, if A is found
nowhere else in B', it will be found at offset n

--1.
Having found the rotational symmetries of the
polygons, we now test for the reflectional sym-

metries.

Theorem 1.2. reflection and rotation in polygons.

Iet P be a polygon with centroid 7, and b be an

arbitrary line containing 7. 7hen there exists an

angle o f rotation 0 such that R~ o ~ Zb, 1 (P)= P if,
and only if, P has a some line oy symmetry c.

Proof. If the polygon is symmetrical under the
reflection transform Zc, 1 then

P=Z ,

Any arbitrary reflection transform Zb, 1 is self-
inverse. So

P = Zc, 1 ~ Zb, 1 ~ Zb, 1 (P)

Suppose b and c intersect at 7 forming an angle

0/2. Then, their composition is R~, 0. Then

P = R~, o o Zb, 1 (P)

On the other hand, if the polygon has no line of

symmetry, the reversal of the above argument
leads to a contradiction.

Using this theorem, we can test for lines of
symmetry by reflecting one copy of the polygon

about any line b containing the centroid and
then using algorithm 0 to see if it can be ro-

tated onto the original polygon.
The reflection of the polygon can be found sim-
ply by taking the vertices in the order op-

posite to that given in P. It would be possible
to repeat the ENCODE step for the reversed
polygon, but it is more efficient to construct it
directly from the forward encoded cycle. For

example, if the encoding is based on measures
M 1 and M3, then the reversed encoding R of S

would have terms

r i = (dist (Pn-i, Pn-i- 1),
angle (P,-i+ 1, Pn-i, Pn- i - 1))

Thus R can be found simply by rearranging the
terms of the encoding S described above.

Since we know that the polygon has k-fold ro-
tational symmetry, the CHECK algorithm for
reflectional symmetry can be improved by look-
ing at only k symbols in the string. The test is
then to use algorithm 0 to find if string

S ' = (So, sl, . . . , sk_ 1)

is cyclically similar to

R ' = (r o , q , . . . , r k _ l)

If a match between these strings is found index
j, and k - j is odd, then there is a line of sym-

metry bisecting the angle at P(k-j-1~/2. If k - j is

even, it bisects the edge connecting P(k-j-2)/2

and PXk-j~/Z" The k - 1 other lines intersect the
first hne at the centroid, forming angles of
360/k degrees. Thus, reflectional symmetry can

4 0

be found in O(k) operations after O(n) process-
ing to find the rotational symmetry.

Algorithm 2 a
symmetry of a 2D point set

Problem 2a. Given a finite 2D point set, find
all rotations and reflections under which that

point set is symmetrical.
A d-dimensional point set (d >0) is any set of n

points P={Po, Pl , . . . ,P,-1} in d-dimensional
space. No ordering of the points is assumed.

Theorem 2.1. complexity of point set symmetry
testing. To find the symmetries of a d-dimensional
point set, f2(n log n) operations are required.

equivalence problem. Suppose there are n/2
points in each set. To verify that two sets are
equivalent, it is necessary to find which of the
(n/2)! permutations of the first set forms the
second. The decision tree for this problem is

identical to that for comparison sorting (Aho
et al. 1974); so that, as in comparison sorting,
O(n logn) time is required. The 1D point set is
a special case of all higher dimensional prob-
lems, so this lower bound applies in all dimen-
sions.
We will now develop an algorithm to find the
symmetries of a 2D point set in O(n logn) time.
It will be based on the same three steps used in
the polygon algorithm.

Point set ORDER

A A I ~ A
v w I v v " -

b

Fig. 2a, b. Complexity of symmetry detection

Proof. Consider a one-dimensional (1D) point
set whose centroid lies at the origin (Fig. 2a).
To test for reflectional symmetry through the
origin, we must determine if the set of absolute
values of the coordinates of points on the nega-
tive axis is equivalent to the set of coordinates
of points on the positive axis. This is a set

In the polygon problem the cycle of points was
given. For point sets it must be computed. Sup-
p~se the points are sorted by their polar coor-
dinates around the centroid, taking the angle as
the primary sort key and omitting any points at
the centroid. This produces a star-shaped poly-
gon in which the points are connected in
clockwise order around the centroid. If the
point set is rotated, this order will be preserved,
since each point is rotated by the same angle.

Thus a rotation which superimposes point i on
point j is a symmetry transform only if it also
superimposes point i + k mod n on point j + k

mod n, for all k. Therefore, this ordering of the
points qualifies as a cycle. Since the algorithm
requires sorting, its complexity is O(n log n).

In practice, this algorithm may have a serious
problem. Figure 3a shows a 2D point set with

./ .eb

a

b

b C

Fig. 3a-e. Effect of errors on point-set ORDER algorithm

41

the vertices sorted properly. But a very small

error in the location of point a or point b may

give rise to the cycle shown in Fig. 3b, which is

not symmetrical. This behavior makes the algo-
rithm very sensitive to round-off errors.

The problem of finding approximate symme-
tries i n point sets is beyond the scope of this

paper. However, we will describe a modification

to the algorithm which makes it more robust in
cases where the errors are much smaller than
the distances between points, as for round-off
errors. First, all points whose radii are equal

within some e are formed into cycles, and then
each cycle is sorted by angle. This produces a

set of cycles {F1,/'2, " " , Fro} instead of a single
cycle (Fig. 3c). This modified algorithm is

O (n log n).

Point set ENCODE

The algorithm to encode the cycles is essen-

tially the same as that in the polygon problem.
Each point is represented by the difference be-
tween the polar angle coordinates of the point

and its successor. The radii of the points need

not be included, since they are constant within
each cycle. Of course, other encodings could be

used.

Point set CHECK

The tests to check a cycle for rotational and

reflectional symmetry are exactly the same as
those for polygons. We must, however, apply
the tests to all cycles of the point set. Let cycle

F/have o~-fold rotational symmetry. The degree

of symmetry for the total point set is the great-

est common divisor of the orders of the rings, k

= GCD(o 1, o2, ..., %).

since log x < x, this is less than or equal to

max(~ rain(~ ..., oi- 1))
i = 2

Let m i be min(ol , ..., oi). Then m 1 =o 1 and

o i if max(o~i m i _ 1) =mi_ 1
m i =

mi- 1 if max (% m i_ 1) = ~

Thus m i for i > 2 is always the value not taken

by max(o i, m i_ 1). Therefore, every o i appears in
the sum exactly once except ram, and the pre-
vious sum is equal to

~ o i -min(o l , ---, %)
i = 1

This is less than o r equal to n, since each o~ is

less than or equal to the number of points in
cycle F~ and each point is in only one cycle.
Thus finding GCD(ot , o2, ..., %) requires O(n)
operations. From the case in which there is
only one point in each cycle, it can be seen that
this is, in fact, O(n). Thus the rotational sym-

metry can still be found in O(n) time, even
when there are multiple cycles.
Having done this, we can check the reflectional

symmetry of each cycle. If all have lines of
symmetry which are colinear, then the point set

has that line of symmetry. This can be done in

linear time, given that we know the rotational
symmetry of the point set and so need consider

only one line per cycle.
Thus, in two dimensions, all symmetries of a

point set can be found in O(n log n) operations.
(Only the O R D E R step actually requires
O(n log n) operations. The other steps are lin-
ear.) This is optimal, by Theorem 2.1.

Algorithm 2 b"
axial symmetry of a 3 D point set

Theorem 2.2. complexity of G CD. Finding
GCD(ol, 02, . . . , Ore) requires only linear time.

Proof. To find GCD (a, b) requires
O(logmax(a,b)) time (Aho etal. 1974; Knuth
1981), and GCD(a, b)<min(a, b). Thus the total
complexity is of an order less than or equal to

~ l o g max(oi, min(o 1, . . . , Oi: 1))
i = 2

Problem 2b. Given an axis and a 3D point set,
find the rotational symmetry of the polyhedron

about that axis, and find all planes of reflec-
tional symmetry containing that axis.
Note that in this section, only the symmetries
about a given axis are tested. The problem of
proposing lines of symmetry will be considered

in a later section.
All three steps for this algorithm are direct
extensions of the 2D ones. In the O R D E R step,

42

we first specify the points in a cylindrical coor-

dinate system whose origin is at the centroid,
and whose z-axis is parallel to the axis of ro-
tation. We can then sort the points by their

coordinates - first partitioning points whose ra-

dii and z-coordinates fall within some e of each
other into cycles, and then sorting each cycle by

the angle. This requires O(n log n) operations.

To ENCODE a cycle, each point can be repre-
sented by the difference between its cylindrical
angle coordinate and that of the succeeding

point in the cycle. The other two coordinates
are already guaranteed to be equal within e for

all points in a cycle. This requires O(n) oper-
ations.

Finally, the CHECK step is exactly the same as
that in the 2D case, so the total complexity of

the algorithm to find all 2D symmetries of a

3 D point set is O (n log n).

Algorithm 3a:
axial symmetry of a polyhedron

Problem 3a. Given an axis and a polyhedron,
find the rotational symmetry of the polyhedron

about that axis, and find all planes of reflec-
tional symmetry containing that axis.

A general polyhedron is a set of polygon sets
(faces) in 3D space such that an edge (pi,p4)

occurs at most once among all the faces, and if

it does occur, then (pj, pi) is also an edge of

exactly one face. This definition forces the sur-
face to be oriented and closed, but does not
rule out self-intersections or disconnected sur-
faces.

Theorem 3.1. complexity of polyhedron symmetry
testing. For general polyhedra, Problem 3a re-
quires at least (J(n log n) operations.

Proof. Suppose Problem 3a could be solved in
less than O(nlogn) operations. Given a 1D
point set (as in Fig. 2a), we could, in linear

time, construct a polyhedron (Fig. 2b) with the
same symmetries as the point set. Thus, if there
were a solution for Problem 3a which took less
than O(nlogn) operations, Problem 2a could
also be solved faster than O(nlogn). This con-
tradicts Theorem 2.1, and makes ~(n log n) the
lower bound on Problem 3a.

The implication of Theorem 3.1 is that, for gen-

eral polyhedra, no O R D E R algorithm can be
written that is better than the one described for
3D point sets. However, if we restrict our atten-

tion to polyhedra whose surface graphs are

connected (Harary 1969), then the O R D E R

step can be performed in linear time.

Polyhedron ORDER

We begin with the observation that a nontrivial
line of symmetry can intersect the surface of a
polyhedron in only one of three ways. It may

intersect a vertex, the midpoint of an edge, or
the centroid of a face. In each case the points

topologically adjacent to the point of intersec-
tion must be symmetrical about the axis. These

vertices will be used to form a cycle F 1. If the
intersection point is on a face or a vertex, the

ordering of the vertices in the cycle can be
taken from the clockwise list of adjacent ver-

tices. If the intersection point is on an edge,
then there are only two adjacent points, so
either ordering will do.

If we define the vertices in F1 to be at graphical
distance one from the point of intersection, then

all vertices Pi~F1 which are connected by an
edge to a vertex pjeFa are a distance two from
the point of intersection, and will form the cycle

F 2. Similarly, the set of points whose distance in
the surface graph from the intersection point is

k (i.e., those that are connected by edges to

points at distance k - 1 but not to points at
distance less than k - 1) must also be symmetri-

cal about the axis and will be placed in cycle

The ordering of I] is known, and the ordering

of each subsequent cycle can be deduced from
the previous cycle. Each point in Fk+ ~ is, by

definition, edge-connected to some point in F k.
These edges define a many-to-many mapping

between the points of the cycles. We use

geometrical information to distinguish one of
these edges for each point in Fk+ 1. To do this,

we define a function A (p~, Pi) whose value is the
three-tuple of Cartesian coordinates of the

point Pi in the coordinate system whose origin
is at p j, whose z-axis is directed parallel to the

axis of rotation, and whose y-axis intersects the
axis of rotation. This value is unique for all

edges adjacent to p j, and symmetrical points

43

have exactly the same set of values for their

adjacent points. Thus, for each point pj in Fk+ 1,
we distinguish the adjacent point p~ in F k, which

has the lexicographical m i n i m u m value for

A (p j, Pi). This defines a mapping under which

each point in I~+ 1 maps into exactly one point

in F k. The points in Fk+ ~ are placed in the same
order as the corresponding points on Fk, with
those that map to the same point in F k placed
in their clockwise order about that point.

Let P= {Pl, P2, ..., P,-1} be the vertex set of
the polyhedron. Suppose that succ(i,j), the in-

dex of the clockwise successor of point pj

a round point p~, and pred(i,j), the counter-

clockwise successor of point pj around Pi, are
computable in constant time. Then cycles of

symmetrical points about the given axis can be

constructed by the following algorithm. This

a lgori thm constructs the m cycles /'1, if2, "",/'m
in the correct order in O(n) time.

The following lemmas and theorems lead to a
proof that the cycle construct ion algori thm is

linear in complexity and correct.

Lemma 3.2. During the execution of algori thm
O R D E R 3a, no vertex ever appears in two

cycles or more than once in a cycle.

Proof. In each place where a vertex is added
to any F~, it is first verified that the vertex was

marked U N S E E N before the insertion, and af-
terwards the U N S E E N mark is removed. The

exception to this is step 3b, which only moves
the vertex to the end of the list. Thus each

vertex is only inserted once.

Theorem 3.3. complexity of ORDER algorithm.
The complexity of algorithm ORDER 3a is linear
in the total number of edges E and the total
number of vertices K

Algorithm ORDER 3a: construction of cycles from connected polyhedron

initialize array cycle [0: n - 1]: = UNSEEN.

initialize array back [0: n - 11.
initialize l inked lists F t..,, empty.

for each Pi which lies on the axis,
cycle [i]: = ONAXIS.

Locate any intersection between the axis and the polyhedral surface.

If the intersection is a vertex Pi,
for each pj adjacent to pi in clockwise order,

append pj to F 1.
cycle [j] : = 1, back [j] : = i.

If the intersection is the midpoin t of an edge (Pi, P j),

append Pi to F 1.
cyc le [i] := 1, back[i] : = j .

append pj to F1.
cycle [j]." = 1, back [j] : - i.

If the intersection is a face,
for each edge (pl, p j) in clockwise order about the face,

append p~ to F 1.

cycle [j] : = 1, back [j]." = i.

k : - -1
loop 1: while F k is not empty,
loop 2: for each point p~ in F k,

j." = succ(i, back [i]).

loop 3 : while j ~ back [iJ
step 3 a: if cycle L]] = UNSEEN,

append p~ to Fk+ 1.
cycle [j] : = k + 1. back [Jl" = i.

44

step 3b" else if cycle [j~ = k + 1 and A (p j, Pback[j]) > A (p j, Pi),
delete pj from Q+2,

append p; to Fk+ 1.
back [j-] ." = i.

j : = succ(i, j).

k . . = k + l .
m . . = k - 1 .

Proof Finding a point where the axis of ro-
tation intersects the surface is accomplished by

checking each face, edge, and vertex. The edge

and vertex checks each require constant time.
The face check is linear in the number of ver-

tices bounding the face, which, when totaled
over the polyhedron, add to 2E. The initial-

ization of F~ requires fewer than V compu-

tations.
Loop 2 iterates at most once per vertex. If the

algorithm ever iterates on a vertex in F~, that
vertex will still be in F~ when the algorithm

terminates, because that iteration and all sub-
sequent iterations operate only on Fj with j > i .
Thus, if loop 2 iterated more than once on the

same vertex, that vertex would appear more
than once among the final Fk'S. But Lemma 3.2

shows this to be impossible. Inner loop 3 it-

erates at most once per edge adjacent to each
vertex, or, in other words, twice on each edge.

Thus, the algorithm is linear on V and E.

where h_<k are not included. Points which ad-

join a previous point in Fk+ 1 for which the A
function is larger are not included. Points
which adjoin a subsequent point in Fk+ 1, for
which the A function is smaller, are removed.

Let Lk, ~ be the points of Kk, ~ which are actually

inserted, namely those points Ph at distance k
+1 from the intersection point for which

A(Ph, Ck, i) is equal to min(A(Ph,%l) for
O<_l<n k. Thus, the function A is defined to be
invariant under C, if C(Kk, i)=Kk, j, then

C(L k i)=Lk j and if C(c k i)=ck, j, then C(Lk, i)
=Lk'; , the concatination '

Fk+ l =Lk, o + Lk, l + ' " + Lk, m

must satisfy the cycle condition if F~ does. Fur-
thermore, the back-pointers for the points in

Lk, i point to Ck, i, SO if C(Ck+I,i)=Ck+I,j, then

C(bk+ 1, i)=bk+ 2, j"
This completes the induction step, and proves
the theorem.

Theorem 3.4. correctness of O R D E R algorithm.
All F~ constructed by the polyhedron O R D E R
algorithm 3 a are cycles.

Proof Let Fk = (Ck, o, % l , ' ' ' , Ck, nk) and let
the point's respective back-pointers as given by

back[7 be (bk, o, bk, 1 , . . . , bk , , ,) . It is easily
shown that F 1 is a cycle in all three cases. It is

also easily shown that, if the polyhedron is

symmetrical under the rotational transform C

and C(cl, i)=cl, j, then C(bl, i)=bl, J.
We need to show that if F k is a cycle then the
Fk+l, as constructed by the polyhedron OR-
DER algorithm, is also a cycle. We assume

further that, if the polyhedron is symmetrical

under C and C(G,i)=Ck, j, then C(bk, i)=bk, j.
Let Kk,~ be the list of vertices adjacent to % i
beginning with bk, i. These are the points in-
spected by loop 3. From the above, we can
conclude that if C(Ck, i)=Ca, j, then C(Kk, i)
=Kk, j. Not all points in Kk,~ are actually in-

serted in Fk+ 2 by loop 3. Points in some I~

Polyhedron ENCODE

The coordinates of the points can be encoded
in a manner similar to that used for point sets.
Each point is represented by a three-tuple com-
posed of its cylindrical angle coordinate, the

radius coordinate, and the z coordinate. In this

case the second two coordinates must be in-

cluded, because they may differ among points
in the same cycle.

In addition, each tuple must contain a list of
points which are connected to it by edges of the
polyhedron. The adjacent points should be
given strictly in clockwise order, so that the

locations of the faces can be deduced. They are
each represented by the three-tuple A(Pi, pj).
The lists of points are rotated so the point
back[i] is given first in each list. This ensures
that the list of points is the same for all similar
vertices. This encoding can be done in O(n)
operations.

45

Polyhedron CHECK

The encodings produced by the previous step
use tuples of variable size to represent different

points. To show that it is still possible to run
the CHECK algorithm in linear time, we con-

struct a new string from the original and show

that it is linear in length. Let v~, 1, v~, 2,---, vi,,
be the elements of the ith tuple. Let M be a
value different from any vi, j. Consider the string

(M, vt, 1, ..., v1,,1, M, v2, 1, --.,v2,,2, "", M,

Vn, 1~ " " , ldn, n)

This has the same symmetry as the original
string. For each vertex, it contains one M and
three point coordinates. For each edge, it con-

tains two three-tuples, one associated with the
vertex on each end. Thus the total length is 4V
+2E, which is O(n). We can conclude that the

CHECK algorithm still operates in O(n) time.

Algorithm 3b:
symmetry of a polyhedron

Problem 3b. Given a polyhedron, whose surface

graph is connected and planar, find all invo-
lutional and rotational symmetries.
So far, we have considered only symmetry
about a gives axis. In this section we will show
that all symmetries can be found in linear time.

First, the problem of finding all lines of ro-

tational symmetry will be considered, followed

by the problem of finding all planes of invo-

lutional symmetry.
The possible arrangements of nontrivial lines of
symmetry in 3D space are fairly restricted.

These are designated as follows:
(k) One k-fold line of symmetry, as in a

regular k-sided regular cone
(2,2, k) One k-fold line of symmetry and k 2-

fold lines of symmetry uniformly spaced
in the plane perpendicular to the first

line, as in a k-sidered regular prism

(2, 3, 3) Four 3-fold lines and three 2-fold lines,
arranged as in a regular tetrahedron

(2,3,4) Three 4-fold lines, four 3-fold lines
and six 2-fold lines, as in a regular octahe-

dron or hexahedron

(2, 3, 5) Six 5-fold lines, ten 3-fold lines and fif-

teen 2-fold lines, as in a regular dode-

cahedron or icosahedron
For proof that this list is complete, see Lock-

wood and Macmillan (1978) or Martin
(1982).

For polyhedra whose surface graphs are planar,

it is possible to find the symmetry group of the
surface graph in linear time by making use of
the graph isomorphism algorithm of Hopcroft

and Wong (1974). This algorithm finds all iso-
morphisms between two planar graphs by reduc-

ing each graph to either a ring, a skein (the

dual of a ring), or one of the graphs corre-
sponding to the surface graph of a Platonic

solid. It can be shown that these reductions
never destroy a symmetry of the original graph,
though (if labeling is ignored) they may create
new symmetries. The symmetry group of the

surface graph can be derived from the reduced
graph, and the vertex, edge, or face intersected
by a given line can be found by backtracking

the reduction.

The polyhedron can have lines of symmetry

only where its surface graph does, but not all
symmetries of the surface graph need be sym-
metries of the polyhedron. In the following
three cases, it is shown that once the symmetry
group of the surface graph is known, all sym-

metries of the polyhedron can be found in lin-

ear time.
If the symmetry group of the surface graph is
(k) for some k > l , there is at most one axis, and
it must intersect the polyhedral surface in the
same place it intersects the surface graph. We

can then use the axial symmetry test (algorithm

O R D E R 3a) to check that axis.

If the symmetry group of the surface graph is
one of (2, 2, 2), (2, 3, 3), (2, 3, 4) or (2, 3, 5), then
the graph has a finite number of possible lines
of symmetry. Therefore, applying the axial sym-

metry algorithm to each line costs only linear

time.
This leaves only the case where the symmetry
group of the graph is (2, 2, k) for some k > 2. Let
a be the line corresponding to the k-fold line of

symmetry for the graph. Let z 1 and z 2 be the
first and last intersections between line a and

the surface of the polyhedron (these must be
vertices or centroids of edges or faces). Let O~ be
the plane perpendicular to a at the midpoint of
(Zl, z2). The actual rotational symmetry of line

46

a can be tested in linear time with algorithm

O R D E R 3a. However, applying algorithm 3a
to each of the other lines would require a total
of O(n 2) operations, since there may be O(n)

such lines.
We know from the surface graph that any other
lines must be two-fold lines. Any symmetry

transform around one of these lines must map

the point z 1 into the point z2, since we know
from the surface graph that they cannot be
similar to any other points on the polyhedron.
All other lines must thus lie in the plane ~, even

if the line a is only a one-fold line of symmetry.

Theorem 3.5. reflection and rotation in polyhe-
dra. I f a is a line, and ~ is the plane perpendicu-

lar to the line, then for any line b in a which
intersects a, there exists some angle 0 such that

R~,oO Cb, 2(P)=P if and only if P has a two-fold

line of symmetry c in plane a.

Proof. If c is a two-fold axis of symmetry for P
then

P = Cc, 2 (P)

Let 8 be the plane containing c and perpendicu-
lar to a. Since it forms a 90 ~ angle with a, we

can write

P = Ze, 1 ~ Z~,, (P)

Let ~" be the plane containing b and perpendic-

ular to a. Since all reflection transforms are self-

inverse,

P = Ze, , o Z~,, 1 o Z~,, 1 o Zg~, 1 (P)

8 and ~" must both contain a. If they intersect at
an angle 0/2, then

P = Ra, o ~ Z~, l ~ Za, 1 (P)

6 is perpendicular to a and both contain line b,

so

P=Ra, o o Cb, 2(P)

If we assume that this relation holds for some P
with no line of symmetry c, the reversal of the
argument leads to a contradiction.
Using this theorem, we can find all lines of
rotation perpendicular to line a by rotating the
polyhedron 180 ~ about any line perpendicular
to a and then using the cycle similarity algo-
rithm to find if there are any rotations about a
under which the rotated polyhedron is similar

to the original. In this way, all k possible lines

of symmetry perpendicular to the graph's k-fold
line can be tested in linear time.
Once we have the lines of symmetry, it is not
difficult to find all involutions under which the

polyhedron is symmetrical. We can test for all

involutions Zb, k through a plane b by reflecting

the object through that plane, and using the

cycle similarity algorithm to determine if any

rotation about the line perpendicular to b
aligns the reflected object with the original ob-

ject. This test is linear.
Polyhedra with lines in classes (2, 2, 2), (2, 3, 3),

(2,3,4), or (2, 3, 5) have at most a constant
number of possible planes of symmetry, so all

can be tested in linear time. Polyhedra with

lines in classes (k) and (2,2, k) may have two

types of involutional symmetry. First, there may

be involutions through the plane perpendicular

to the k-fold line. This plane can be tested as
above. Second, there may be k planes of re-
flectional symmetry which contain the k-fold

line. These can be detected with the same algo-
rithm that was used to find lines of symmetry
for 2D polygons.

There remains only the case of polyhedra with
no lines of rotational symmetry. These may
have at most one plane of involutional sym-

metry. Its location may be guessed from the

surface graph's symmetry group as noted in the
previous paragraph, or, if the surface graph has

rotational symmetry group (1), the location may

be proposed by using the graph isomorphism
algorithm to find isomorphisms between the
surface graph and its reflection.

We find that it is possible to locate all symme-
tries for a polyhedron with a connected, planar
surface graph in linear time. For general poly-

hedra and 3D point sets we have seen that the
axial symmetry algorithm requires O(nlogn)

time. To find all symmetries for these objects,

we use the surface graph of the convex hull to
propose lines. The convex hull can be found in

O(n log n) time (Preparata and Hong 1977). This
leads to an O(n log n) algorithm for these ob-
jects.

Unfortunately, the graph isomorphism algo-
rithm of Hopcroft and Wong (1974) is very
complicated and has a rather large constant.
Although that algorithm could be somewhat
simplified for this application, its use may be
impractical.

47

Conclusion

It has been shown that, for polygons and poly-
hedra with connected, planar surface graphs, all

symmetries can be detected in linear time. For
point sets and general polyhedra O(n log n) time
is required. The O(nlogn) algorithms can be
quite easily extended to a wide variety of
geometrical structures without increasing the
complexity. All these algorithms have been
shown to be optimal.
While the asymptotic behavior of the algo-
rithms is good, the 3D cases share a rather
large constant because they require a graph iso-
morphism test. Thus, the full 3D symmetry al-
gorithms are of primarily theoretical interest.
The axial symmetry tests, however, are both
practical and useful.

Acknowledgement. The authors would like to thank Pro-
fessor John H. Remmers for his assistance with one of the
theorems in this paper.

References

Aho AV, Hopcroft JE, Ullman JD (1974) The design and
analysis of computer algorithms. Addison-Wesley,
Reading

Akl SG (1978) Comments on: G. Manacher. An appli-
cation of pattern matching to a problem in geometrical
complexity. Inf Process Lett 7:86

Bykat A (1979) On polygon similarity. Inf Process Lett
9:23-25

Davis LS (1977) Understanding shape: II symmetry. IEEE
Systems Man Cybernet 7:204-212

Friedberg SA, Brown CM (1984) Finding axes of skewed
symmetry. Proceedings of the IEEE Conference on
Pattern Recognition, pp 322-325

Harary F (1969) Graph theory. Addison-Wesley, Reading
Hopcroft JE, Wong JK (1974) Linear time algorithm for

isomorphism of planar graphs. Proceedings of the 6th
Annual ACM Symposion on Theory of Computing, pp
172-184

Johansen R, Jones N, Clausen J (1984) A method for
detecting structure in polyhedra. Pattern Recognition
2:217-225

Knuth DE, Morris JH, Pratt VR (1977) Fast pattern
matching in strings. SIAM J Computing 6:323-350

Lee DT, Preparata FP (1984) Computational geometry - a
survey. IEEE Yrans Comput 33:1072-1101

Lockwood EH, Macmillan RH (1978) Geometric sym-
metry. Cambridge University Press, Cambridge

Manachar GK (1976) An application of pattern matching
to a problem in geometrical complexity. Inf Process
Lett 5 : 6-7

Martin GE (1982) Transform geometry: an introduction to
symmetry. Springer, New York

Parvi SK, Dutta Majumder D (1983) Symmetry analysis
by computer. Pattern Recognition 16:63-67

Preparata FP, Hong SJ (1977) Convex hulls of finite sets
of points in two and three dimensions. Commun ACM
20:87-93

Tanimoto SL (1981) A method for detecting structure in
polygons. Pattern Recognition 13:387-394

Wolter JD, Volz RA, Woo TC (1985) Automatic genera-
tion of gripping positions. IEEE Trans Systems Man
Cybernet (in press)

Received February 25, 1985

48

