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Abstract

We study the question of closeness testing for two
discrete distributions. More precisely, given samples
from two distributions p and q over an n-element set,
we wish to distinguish whether p = q versus p is at
least ε-far from q, in either `1 or `2 distance. Batu
et al [BFR+00, BFR+13] gave the first sub-linear time
algorithms for these problems, which matched the lower
bounds of [Val11] up to a logarithmic factor in n, and a
polynomial factor of ε.

In this work, we present simple testers for both
the `1 and `2 settings, with sample complexity that is
information-theoretically optimal, to constant factors,
both in the dependence on n, and the dependence on ε;
for the `1 testing problem we establish that the sample
complexity is Θ(max{n2/3/ε4/3, n1/2/ε2}).

1 Introduction

Consider the following natural statistical task: Given
independent samples from a pair of unknown distribu-
tions p, q, determine whether the two distributions are
the same versus significantly different. We focus on the
most basic (and well-studied) setting in which both p
and q are discrete distributions supported on a set of
size n. For a parameter 0 < ε < 1, we want to distin-
guish (with probability at least 2/3, say) between the
case that p = q and the case that p and q are ε-far
from each other, i.e., the `1 distance between p and q is
at least ε. We will henceforth refer to this task as the
problem of closeness testing for p and q.
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We would like to design an algorithm (tester) for
this task that uses as few samples as possible and is
computationally efficient (i.e., has running time poly-
nomial in its sample size). One natural way to solve
this problem would be to get sufficiently many samples
from p, q in order to learn each distribution to accuracy
O(ε), and then check closeness of the corresponding hy-
pothesis distributions. As natural as it may be, this
testing-via-learning approach is quite naive and gives
suboptimal results. We note that learning an arbitrary
distribution over support of size n to `1 distance ε re-
quires Θ(n/ε2) samples (i.e., there is an upper bound
of O(n/ε2) and a matching information-theoretic lower
bound of Ω(n/ε2)). One might hope that a better sam-
ple size bound could be achieved for the closeness testing
problem, since this task is, in some sense, more specific
than the general task of learning. Indeed, this is known
to be the case: previous work [BFR+00] gave a tester
for this problem with sample complexity sub-linear in n
and polynomial in 1/ε.

Despite its long history in both statistics and com-
puter science, the sample complexity of this basic task
has not been resolved to date. While the dependence
on n in the previous bound [BFR+00] was subsequently
shown [Val08, Val11] to be tight to within logarithmic
factors of n, there was a polynomial gap between the up-
per and lower bounds in the dependence on ε. Due to
its fundamental nature, we believe it is of interest from
a theoretical standpoint to obtain an optimal sample
(and time) algorithm for the problem. From a practical
perspective, we note that in an era of “big data” it is
critical to use data efficiently. In particular, in such a
context, even modest asymptotic differences in the sam-
ple complexity can play a big role.

In this paper, we resolve the complexity of the
closeness testing problem, up to a constant factor, by



designing a sample-optimal algorithm (tester) for it
whose running time is linear in the sample size. Our
tester has a different structure from the one in [BFR+00]
and is also much simpler. We also study the closeness
testing problem with respect to the `2 distance metric
between distributions. This problem, interesting in
its own right, has been explicitly studied in previous
work [GR00, BFR+00].

As our second contribution, we design a similarly
optimal algorithm for closeness testing in the `2 norm.
In this `2 setting, we show that the same sample com-
plexity allows one to “robustly” test closeness; namely,
the same sample complexity allows one to distinguish
the case that ||p−q||2 ≤ ε from the case that ||p−q||2 ≥
2ε. This correspondence between the robust and non-
robust closeness testing in the `2 setting does not hold
for the `1 setting: the lower bounds of [VV11b] show
that robust `1 testing for distributions of support size
n requires Θ( n

logn ) samples (for constant ε), as opposed

to the Θ(n2/3) for the non-robust testing problem. One
may alternately consider “robust” closeness testing un-
der the `2 norm as essentially the problem of estimating
the `2 distance, and the results of Proposition 3.1 are
presented from this perspective.

Algorithmic ideas developed for the closeness test-
ing problem have typically been useful for related test-
ing questions, including the independence of bivariate
distributions (see e.g. [BFF+01, BKR04]). It is plausi-
ble that our techniques may be used to obtain similarly
optimal algorithms for these problems, but we have not
pursued this direction.

Before we formally state our results, we start by
providing some background in the area of distribution
property testing.

Related Work. Estimating properties of distribu-
tions using samples is a classical topic in statistics
that has received considerable attention in the theoret-
ical CS community during the past decade; see [GR00,
BFR+00, BFF+01, Bat01, BDKR02, BKR04, Pan08,
Val08, Ona09, Val11, VV11a, VV11b, DDS+13, Rub12,
BNNR11, ADJ+11, ADJ+12, LRR11, ILR12, AIOR09]
for a sample of works and [Rub12] for a recent survey
on the topic. In addition to closeness testing, various
properties of distributions have been considered, includ-
ing independence [BFF+01, Ona09], entropy [BDKR02],
and the more general class of “symmetric” proper-
ties [Val08, VV11a, VV11b], monotonicity [BKR04],
etc.

One of the first theoretical CS papers that ex-
plicitly studied such questions is the work of Batu et
al [BFR+00] (see [BFR+13] for the journal version).
In this work, the authors formally pose the closeness

testing problem and give a tester for the problem with
sub-linear sample complexity. In particular, the sam-
ple complexity of their algorithm under the `1 norm

is O(n
2/3 logn
ε8/3

). A related (easier) problem is that of
uniformity testing, i.e., distinguishing between the case
that an unknown distribution p (accessible via samples)
is uniform versus ε-far from uniform. Goldreich and
Ron [GR00], motivated by a connection to testing ex-
pansion in graphs, obtained a uniformity tester using
O(
√
n/ε4) samples. Subsequently, Paninski gave the

tight bound of Θ(
√
n/ε2) [Pan08]. (Similar results are

obtained for both testing problems under the `2 norm.)
Acharya et al. [ADJ+12] also considered the prob-

lem of `1 closeness testing, but from a rather different
“competitive analysis” perspective, constructing a sin-
gle tester that is competitive against all testers from a
broad class, even those with, essentially, knowledge of
the underlying distributions built-in. The form of our
`1 tester is very similar to that proposed in their work,
and we discuss this connection and the intuition behind
such an estimator in Section 2.

Notation. We write [n] to denote the set {1, . . . , n}.
We consider discrete probability distributions over [n],
which are functions p : [n]→ [0, 1] such that

∑n
i=1 pi =

1. We will typically use the notation pi to denote the
probability of element i in distribution p. The `1
(resp. `2) norm of a distribution is identified with
the `1 (resp. `2) norm of the corresponding n-vector,
i.e., ‖p‖1 =

∑n
i=1 |pi| and ‖p‖2 =

√∑n
i=1 p

2
i . The

`1 (resp. `2) distance between distributions p and q
is defined as the the `1 (resp. `2) norm of the vector
of their difference, i.e., ‖p − q‖1 =

∑n
i=1 |pi − qi| and

‖p − q‖2 =
√∑n

i=1(pi − qi)2. For λ ≥ 0, we denote by
Poi(λ) the Poisson distribution with parameter λ.

Our Results. Our main result is an optimal algorithm
for the `1-closeness testing problem:

Theorem 1.1. Given ε > 0 and sample access to
distributions p and q over [n], there is an algorithm
which uses O(max{n2/3/ε4/3, n1/2/ε2}) samples, runs
in time linear in its sample size and with probability at
least 2/3 distinguishes whether p = q versus ‖p− q‖1 ≥
ε. Additionally, Ω(max{n2/3/ε4/3, n1/2/ε2}) samples
are information-theoretically necessary.

The lower bound is obtained by leveraging the
techniques of [Val11] to show that Ω(n2/3/ε4/3) is a
lower bound, as long as ε = Ω(n−1/4) (see Section 4 for
the proof). On the other hand, the sample complexity
of `1-closeness testing is bounded from below by the
sample complexity of uniformity testing (for all values
of n and ε > 0), since knowing that one distribution
is exactly the uniform distribution can only make the



testing problem easier.
Hence, by the result of Paninski [Pan08], it follows

that Ω(
√
n/ε2) is also a lower bound. The tight lower

bound of Ω(max{n2/3/ε4/3, n1/2/ε2}) follows from the
fact that the two functions intersect for ε = Θ(n−1/4).
Hence, our algorithm of Theorem 1.1 is optimal (up to
constant factors) for all ε > 0.

Our second result is an algorithm for “robustly”
testing the closeness of a pair of distributions with re-
spect to `2 distance, which is also information theoret-
ically optimal for all parameters, to constant factors.
The parameter b in the following theorem upper-bounds
the `2 norm-squared of each distribution, which allows
the theorem to be more finely tuned to the cases when
testing should be easier or harder.

Theorem 1.2. For two distributions p, q, over [n] with
b ≥ ||p||22, ||q||22, there is an algorithm which distin-
guishes the case that ||p − q||2 ≤ ε from the case that
||p−q||2 ≥ 2ε when given O(

√
b/ε2) samples from p and

q with probability at least 2/3. This is information the-
oretically optimal, as distinguishing the case that p = q
from the case that ||p − q||2 > 2ε requires Ω(

√
b/ε2)

samples.

We note that both the upper and lower bounds of
the above theorem continue to hold if b is defined to
be an upper bound on ||p||∞, ||q||∞; the upper bound
trivially holds because, for all p, ||p||22 ≤ maxi pi, and
the lower bound holds because the specific lower bound
instance we construct consists of nearly uniform distri-
butions for which ||p||22 ≥ maxi pi/2. See Proposition 3.1
and the discussion following it for analysis of our algo-
rithm as an estimator for `2 distance.

The `2 → `1 testing approach. Recall that the `1
closeness tester in [BFR+00] proceeds in two steps: In
the first step, it “filters” the elements of p and q that are
“b-heavy”, i.e., have probability mass at least b – for an
appropriate value of b. (This step essentially amounts
to learning the heavy parts of p and q.) In the second
step, it uses an `2 closeness tester applied to the “light”
parts of p and q. The `2 tester used in [BFR+00] is a
generalization of a tester proposed in [GR00].

Using such a two step approach, Theorem 1.2 can
be used as a black-box to obtain an `1 closeness tester
with sample complexity O(n2/3 log n/ε2). This can fur-
ther be improved to O(n2/3/ε2) by improving the “fil-
tering” algorithm of [BFR+00]; in Appendix A we de-
scribe an optimal “filtering” algorithm, which might be
applicable in other settings. Curiously, since the sam-
ple complexity of both the improved filtering algorithm,
and the `2 tester are optimal, the corresponding sam-
ple complexity of O(n2/3/ε2) for the `1 testing problem
seems to be the best that could possibly be achieved

via this reduction-based approach. This suggests that,
in some sense, our novel (and more direct) approach un-
derlying Theorem 1.1 is necessary to achieve the optimal
ε-dependence for the `1 testing problem.

Structure of the paper. In Section 2 we present our
`1 tester, and in Section 3 we present our `2 tester.
In Section 4 we prove the information theoretic lower
bounds, establishing the optimality of both testers. The
details of the reduction–based (though suboptimal) `1
closeness tester can be found in the appendix.

Remark. Throughout our technical sections, we em-
ploy the standard “Poissonization” approach: namely,
we assume that, rather than drawing k independent
samples from a distribution, we first select k′ from
Poi(k), and then draw k′ samples. This Poissonization
makes the number of times different elements occur in
the sample independent, simplifying the analysis. As
Poi(k) is tightly concentrated about k, we can carry
out this Poissonization trick without loss of generality
at the expense of only subconstant factors in the sam-
ple complexity, and adding only o( 1

poly ) probability of
failure.

2 Closeness testing in `1 norm

We begin by describing our `1 closeness testing algo-
rithm:

Input: A constant C and m samples from dis-
tributions p, q, with Xi, Yi denoting the number
of occurrences of the ith domain elements in the
samples from p and q, respectively.

1. Define

(2.1) Z =
∑
i

(Xi − Yi)2 −Xi − Yi
Xi + Yi

.

2. If Z ≤ C ·
√
m then output EQUAL, else

output DIFFERENT.

In Equation 2.1, we interpret terms where Xi =
Yi = 0 to be 0.

The following proposition characterizes the perfor-
mance of the above tester, establishing the algorithmic
portion of Theorem 1.1.

Proposition 2.1. There exist absolute constants C,C ′

such that the above algorithm, on input C and a set
of Poi(m) samples drawn from two distributions, p, q,
supported on [n], will correctly distinguish the case that



p = q from the case that ||p−q||1 ≥ ε, with probability at
least 2/3 provided that m ≥ C ′max{n2/3/ε4/3, n1/2/ε2}.

We will show that the error probability of the above
algorithm is O( 1

C2 ), hence for a suitable constant C
the tester succeeds with probability 2

3 . (Repeating the
tester and taking the majority answer results in an
exponential decrease in the error probability.)

The form of the right hand side of Eq. (2.1) is
rather similar to our `2 distance tester (given in the
next section), though the difference in normalization is
crucial. However, though we do not prove corresponding
theorems here, the right hand side of Eq. (2.1) can
have a variety of related forms while yielding similar
results, with possibly improved constants. For example,
one could use

∑
i |Xi − Yi| − f(Xi + Yi), where f(j) is

the expected absolute difference between the number of
heads and the number of tails in j fair coin flips, which
is
(

j−1
b(j−1)/2c

)
j

2j−1 .

Previously, Acharya et al. had analyzed a very sim-

ilar tester, of the form
∑
i
(Xi−Yi)2−Xi−Yi

Xi+Yi+1 in a different

setting of the closeness testing problem [ADJ+12]. The
numerator of this expression is naturally motivated as
a variant of a chi-squared test—the sum of the squares
of several independent expressions, each of which has
expectation 0. It is standard to analyze such tests by
bounding the expectation and variance of the computed
sum. In both our case and theirs, we must rescale the
terms in the sum so as to avoid the following case: de-
spite p and q being far from each other, there is a single
domain element i with most of the probability mass,
pi = qi = 1

2 , and the contribution of the ith term,
(Xi − Yi)2 −Xi − Yi, adds so much variance to the re-
sulting sum that we lose the ability to distinguish what
is happening on the rest of the domain. To avoid this,
we divide by (Xi + Yi)

α, where any α between 1
2 and

1 solves this problem. Thus, while the tester itself is
a natural choice, the very tight analysis is the surpris-
ing part of this work, in particular since previous at-
tempts at tight analysis used rather more complicated
testers [BFR+00].

In the remainder of this section we prove Propo-
sition 2.1. First, letting pi, qi respectively denote the
probabilities of the ith elements in each distribution,
note that if pi = qi then the expectation of the sum
in Eq. (2.1) is 0, as can be seen by conditioning the
summand for each i on the value of Xi + Yi: subject
to this, Xi, Yi can be seen as the number of heads and
tails respectively found in Xi + Yi fair coin flips, and
E[(Xi − Yi)2] is 4 times the variance of Xi alone, which
is a quarter of the number of coin flips, and thus the
expression in total has expectation 0.

When p 6= q, we use the following lemma to bound

from below the expected value of our estimator in terms
of ‖p− q‖1.

Lemma 2.1. For Z as defined in Equation 2.1, E[Z] ≥
m2

4n+2m‖p− q‖
2
1.

Proof. Conditioned on Xi + Yi = j, for some j, we
have that Xi is distributed as the number of heads in
the distribution Binom(j, pi

pi+qi
). For the distribution

Binom(j, α), the expected value of the square of the
difference between the number of heads and tails can
be easily seen to be 4j2( 1

2 − α)2 + 4jα(1 − α); we
subtract j from this because of the −Xi − Yi term in
the numerator of Eq. (2.1) to yield 4(j2 − j)( 1

2 − α)2,
and divide by j because of the denominator of Eq. (2.1)
to yield 4(j − 1)( 1

2 − α)2. Plugging in α = pi
pi+qi

yields (j − 1)(pi−qipi+qi
)2. Thus the expected value of the

summand of Eq. (2.1), for a given i, conditioned on
Xi + Yi = j is this last expression, if j 6= 0, and 0
otherwise. Thus the expected value of the summand
across all j, since E[j] = m(pi + qi), equals

m
(pi − qi)2

pi + qi
− (1− e−m(pi+qi))(

pi − qi
pi + qi

)2,

where we have used the fact that Pr[Xi + Yi = 0] =
e−m(pi+qi). Gathering terms, we conclude that the
expectation of each term of Eq. (2.1) equals

(2.2)
(pi − qi)2

pi + qi
m

(
1− 1− e−m(pi+qi)

m(pi + qi)

)
Defining the function g(α) = α

/(
1− 1−e−α

α

)
, this

expression becomes m2 (pi−qi)2
g(m(pi+qi))

, and we bound its

sum via Cauchy-Schwarz as

m2

(∑
i

(pi − qi)2

g(m(pi + qi))

)(∑
i

g(m(pi + qi))

)

≥ m2

(∑
i

|pi − qi|

)2

It is straightforward to bound g(α) ≤ 2+α, leading
to
∑
i g(m(pi+qi)) ≤ 4n+2m, since the support of each

distribution is at most n and each has total probability
mass 1. Thus the expected value of the left hand side

of Eq. (2.1) is at least m2

4n+2m (
∑
i |pi − qi|)

2
.

We now bound the variance of the ith term of Z.

Lemma 2.2. For Z as defined in Equation Eq. (2.1),

Var[Z] ≤ 2 min{n,m}+
∑
i 5m (pi−qi)2

pi+qi
.



Proof. To bound the variance of the ith term of Z, we
will split this variance calculation into two parts: the
variance conditioned on Xi+Yi = j, and the component
of the variance due to the variation in j. Letting

f(Xi, Yi) =
(Xi − Yi)2 −Xi − Yi

Xi + Yi
,

we have that

Var[f(X,Y )] ≤ max
j

(Var[f(X,Y )|X + Y = j])

+ Var
j

[E[f(X,Y )|X + Y = j]].

We now bound the first term; since (Xi − Yi)
2 =

(j−2Yi)
2, and Yi is distributed as Binom(j; qi

pi+qi
) where

for convenience we let α = qi
pi+qi

we can compute the

variance of (j− 2Yi)
2 from standard expressions for the

moments of the Binomial distribution as

Var[(j−2Yi)
2] = 16j(j−1)α(1−α)

(
(j − 3

2
)(1− 2α)2 +

1

2

)
.

We bound this expression, since α(1 − α) ≤ 1
4 and

j − 3
2 < j − 1 < j as j2(2 + 4j(1 − 2α)2). Because the

denominator of the ith term of Eq. (2.1) is Xi +Yi = j,
we must divide this by j2, make it 0 when j = 0, and
take its expectation as j is distributed as Poi(m(pi+qi)),
yielding:

Var[f(Xi, Yi)|Xi+Yi = j] ≤ 2(1−e−m(pi+qi))+4m
(pi − qi)2

pi + qi
.

We now consider the second component of the
variance—the contribution to the variance due to the
variation in the sum Xi +Yi. Since for fixed j, as noted
above, we have Yi distributed as Binom(j; qi

pi+qi
), where

for convenience we let α = qi
pi+qi

, we have

E[(Xi − Yi)2] =E[j2 − 4jYi + 4Y 2
i ]

=j2 − 4j2α+ 4(jα− jα2 + j2α2)

=j2(1− 2α)2 + 4jα(1− α).

As in Eq. (2.1), we finally subtract j and divide by j
to yield (j − 1)(1− 2α)2, except with a value of 0 when
j = 0 by definition; however, note that replacing the
value at j = 0 with 0 can only lower the variance. Since
the sum j = Xi+Yi is drawn from a Poisson distribution
with parameter m(pi + qi), we thus have:

Var [E[f(Xi, Yi)|Xi + Yi = j]] ≤ m(pi + qi)(1− 2α)4

≤ m(pi + qi)(1− 2α)2

= m
(pi − qi)2

pi + qi
.

Summing the final expressions of the previous two
paragraphs yields a bound on the variance of the ith
term of Eq. (2.1) of

2(1− e−m(pi+qi)) + 5m
(pi − qi)2

pi + qi
.

We note that since 1− e−m(pi+qi) is bounded by both 1
and m(pi + qi), the sum of the first part is bounded as∑

i

2(1− e−m(pi+qi)) ≤ 2 min{n,m}.

This completes the proof.

We now complete our proof of Proposition 2.1,
establishing the upper bound of Theorem 1.1.

Proof. [Proof of Proposition 2.1] With a view to-
wards applying Chebyshev’s inequality, we compare the
square of the expectation of Z to its variance. From
Lemma 2.1, the expectation equals(∑

i

(pi − qi)2

pi + qi
m

(
1− 1− e−m(pi+qi)

m(pi + qi)

))2

,

which we showed is at least m2

4n+2m‖p − q‖21; from
Lemma 2.2, the variance is at most

2 min{n,m}+
∑
i

5m
(pi − qi)2

pi + qi
.

We consider the second part of the variance expres-
sion. It is clearly bounded by 10m, so when m < n
the first expression dominates. Otherwise, assume that
m ≥ n. Consider the case when our bound on the ex-
pectation, m2

4n+2m‖p − q‖21, is at least 2, namely that

m = Ω(‖p− q‖−21 ). Thus, with a view towards applying
Chebyshev’s inequality, we can bound the square of the
expectation by:(∑

i

(pi − qi)2

pi + qi
m

(
1− 1− e−m(pi+qi)

m(pi + qi)

))2

≥
∑
i

(pi − qi)2

pi + qi
m

(
1− 1− e−m(pi+qi)

m(pi + qi)

)
· 2.

For those i for which the multiplier(
1− 1−e−m(pi+qi)

m(pi+qi)

)
· 2 is greater than 1, we have

that the ith term here is greater than the ith term

of the expression for the variance,
∑
i
(pi−qi)2
pi+qi

m;

otherwise, we have 1 − 1−e−m(pi+qi)

m(pi+qi)
≤ 1

2 which implies

m(pi + qi) ≤ 2, and thus the sum of the remaining



terms is bounded by 2n, which is dominated by the
first expression in the variance, 2 min{n,m} in the
case under consideration, where m ≥ n. Thus we need
only compare the square of the expectation, which

is at least m2

4n+2m‖p − q‖21 = m2

O(max{n,m})‖p − q‖21,
to O(min{n,m}), yielding, when m < n a bound

m = Ω(n2/3/‖p − q‖4/31 ), and when m ≥ n a bound
m = Ω(n1/2/‖p − q‖21); note that in the latter case,
this implies m = Ω(‖p− q‖−21 ), which we needed in the
derivation above.

3 Robust `2 testing

In this section, we give an optimal algorithm for robust
closeness testing of distributions with respect to `2
distance. For distributions p and q over [n] with `22 norm
at most b (i.e.,

∑
i p

2
i ≤ b, and

∑
i q

2
i ≤ b), the algorithm

when given O(
√
b/ε2) samples will distinguish the case

that ||p − q||2 ≤ ε from the case that ||p − q|| ≥ 2ε,
with high probability. Since ||p||22 ≤ maxi pi, this
sample complexity is also bounded by the corresponding
expression with b replaced by a bound on the maximum
probability of an element of p or q. As we show in
Section 4, this sample complexity is optimal even for
the easier testing problem of distinguishing the case that
the `2 distance is 0 versus at least ε.

Our algorithm is a very natural linear estimator
and is similar to the `2 tester of [BFR+00].

Input: m samples from distributions p, q, with
Xi, Yi denoting the number of occurrences of the
ith domain elements in the samples from p and q,
respectively.
Output: an estimate of ||p− q||2.

1. Define Z =
∑
i(Xi − Yi)2 −Xi − Yi.

2. Return
√
Z
m .

The following proposition characterizes the perfor-
mance of the above estimator, establishing the algorith-
mic portion of Theorem 1.2 from the observation that
||p− q||24 ≤ ||p− q||22.

Proposition 3.1. There exists an absolute constant
c such that the above estimator, when given Poi(m)
samples drawn from two distributions, p, q will, with
probability at least 3/4, output an estimate of ||p −
q||2 that is accurate to within ±ε provided that m ≥
c
(√

b
ε2 +

√
b||p−q||24
ε4

)
, where b is an upper bound on

||p||22, ||q||22.

Proof. Letting Xi, Yi denote the number of occurrences

of the ith domain elements in the samples from p and
q, respectively. Define Z1 = (Xi − Yi)2 −Xi − Yi. Since
Xi is distributed as Poi(m · pi), E[Zi] = m2 · |pi − qi|2,
hence Z is an unbiased estimator for m2||p− q||22.

We compute the variance of Zi via a straightfor-
ward calculation involving standard expressions for the
moments of a Poisson distribution1 : Var[Zi] = 4(pi −
qi)

2(pi + qi)m
3 + 2(pi + qi)

2m2.
Hence

Var[Z] =
∑
i

Var[Zi]

=
∑
i

(
4m3(pi − qi)2(pi + qi) + 2m2(pi + qi)

2
)
.

By Cauchy-Schwarz, and since
∑
i(pi + qi)

2 ≤ 4b, we
have∑

i

(pi − qi)2(pi + qi) ≤
√∑

i

(p1 − qi)4
∑
i

(pi + qi)2

≤ 2||p− q||24
√
b.

Hence
Var[Z] ≤ 8m3

√
b||p− q||24 + 8m2b.

By Chebyshev’s inequality, the returned esti-
mate of ||p − q||2 will be accurate to within ±ε
with probability at least 3/4 provided ε2m2 ≥
2
√

8m3
√
b||p− q||24 + 8m2b, which holds whenever

m ≥ 6

√
b

ε2
+ 32

√
b||p− q||24
ε4

,

since m ≥ x+y implies m2 ≥ mx+y2, for any x, y ≥ 0.

A slightly different kind of result is obtained if we
parameterize by B = max{maxi pi,maxi qi} instead of
b—where we note that B ≥ b. We can replace the
Cauchy Schwarz inequality of the proof above with∑
i(pi − qi)2(pi + qi) ≤ 2B

∑
i(pi − qi)2 = 2B||p− q||22,

yielding, analogously to above, that the tester is accu-

rate to ±ε when given c(
√
B
ε2 +

B||p−q||22
ε4 ) samples. This

matches the lower-bound of Ω(
√
B
ε2 ) provided the second

term is not much larger than the first, namely when
||p−q||2

ε = O(B−1/2). Thus our algorithm approximates
`2 distance to within ε using the optimal number of
samples, provided the `2 distance is not a B−1/2 fac-
tor greater than ε. For greater distances, we have not
shown optimality.

1This calculation can be performed in Mathematica, for ex-
ample, via the expression Variance[TransformedDistribution[(X

- Y)ˆ2 - X - Y, {X \[Distributed] PoissonDistribution[m p], Y
\[Distributed] PoissonDistribution[m q]}]]



An O(n2/3/ε2) `1-tester. As noted in the introduction,
Theorem 1.2 combined with the two step approach
of [BFR+00], immediately leads to an `1 tester for
distinguishing the case that p = q from ||p − q||1 ≥
ε with sample complexity O(n2/3 log n/ε2). One can
use Theorem 1.2 to obtain an `1 tester with sample
complexity O(n2/3/ε2) – i.e., saving a factor of log n
in the sample complexity. While this does not match
the O(max{n2/3/ε4/3, n1/2/ε2}) performance of the `1
tester described in Section 2, the ideas used to remove
the log n factor might be applicable to other problems,
and we give the details in Appendix A.

4 Lower bounds

In this section, we present our lower bounds for closeness
testing under `1 and `2 norms. We derive the results of
this section as applications of the machinery developed
in [Val11] and [VV13].

The lower bounds for `1 testing require the following
definition:

Definition 4.1. The (k, k)-based moments m(r, s) of
a distribution pair (p, q) are kr+s

∑n
i=1 p

r
i q
s
i .

Theorem 4.1. ([Val11], Theorem 4.18) If distribu-
tions p+1 ,p+2 , p−1 , p−2 have probabilities at most 1/1000k,
and their (k, k)-based moments m+,m− satisfy

∑
r+s≥2

|m+(r, s)−m−(r, s)|
b r2c!b

s
2c!
√

1 + max{m+(r, s),m−(r, s)}
<

1

360
,

then the distribution pair (p+1 , p
+
2 ) cannot be distin-

guished with probability 13/24 from (p−1 , p
−
2 ) by tester

that takes Poi(k) samples from each distribution.

The optimality of our `1 tester, establishing the
lower bound of Theorem 1.1, follows from the following
proposition together with the lower bound of

√
n/ε2 for

testing uniformity given in [Pan08].

Proposition 4.1. If ε ≥ 43/4n−1/4, then Ω(n2/3ε−4/3)
samples are needed for 0-vs-ε closeness testing under the
`1 norm.

Proof. Let b = ε4/3/n2/3 and a = 4/n, where the
restriction on ε yields that b ≥ a. Let p and q be the
distributions

p = b1A + εa1B q = b1A + εa1C

where A, B and C are disjoint subsets of size (1 −
ε)/b, 1/a and 1/a—where the notation 1A denotes
the indicator function that is 1 on the set A. Then
‖p − q‖1 = 2ε. Let k = cn2/3ε−4/3 for a small enough

constant 0 < c < 1, so that ‖p‖∞ = ‖q‖∞ = b ≤ 1
1000k ,

since b ≥ a.
Let (p+1 , p

+
2 ) = (p, p) and (p−1 , p

−
2 ) = (p, q), so that

they have (k, k)-based moments

m+(r, s) = kt(1− ε)bt−1 + ktεtat−1 and

m−(r, s) = kt(1− ε)bt−1,

for r, s ≥ 1, where t = r + s. We have the inequality

|m+(r, s)−m−(r, s)|√
1 + max{m+(r, s),m−(r, s)}

≤ ktεtat−1√
kt(1− ε)bt−1

.

For t ≥ 2, it is at most kt/2εtat−1/b(t−1)/2 ≤
ct/24(2t−1)/3 (where we used that ε ≥ 4/n). Further,
when one of r or s is 0, the moments are equal, since p
and q are permutations of each other, yielding a contri-
bution of 0 to the expression of Theorem 4.1. Thus the
expression in Theorem 4.1 is bounded by O(c) as the
sum of a geometric series (in two dimensions), and thus
the distribution pairs (p, p) and (p, q) are indistinguish-
able by Theorem 4.1.

The optimality of our `2 tester will follow from the
following result from [VV13]:

Theorem 4.2. ([VV13], Theorem 3) Given a dis-
tribution p, and associated values εi ∈ [0, pi], define
the distribution over distributions, Qp,ε by the following
process: for each domain element i, randomly choose
qi = pi ± εi, and then normalize q to be a distribu-
tion. There exists a constant c such that it takes at least

c
(∑

i
ε4i
p2i

)−1/2
samples to distinguish p from a sample

drawn from a random element of Qp,ε with success prob-
ability at least 2/3.

The following proposition establishes the lower
bound of Theorem 1.2, showing the optimality of our
`2 tester. Note that if maxi pi ≤ b and maxi qi ≤ b,
then ||p− q||2 ≤

√
2b, hence the testing problem is triv-

ial unless ε ≤
√

2b.

Proposition 4.2. For any b ∈ [0, 1], and ε ≤
√
b, there

exists a distribution pb and a family of distributions Tp,ε
such that for a q ← T chosen uniformly at random, the
following hold:

• ||p||22 ∈ [b/2, b] and maxi pi ∈ [b/2, b] and with
probability at least 1 − o(1), ||q||22 ∈ [b/2, b] and
maxi qi ∈ [b/2, b].

• With probability at least 1− o(1), ||p− q||2 ≥ ε/2.

• No algorithm can distinguish a set of k = c
√
b

ε2

samples from q from a set drawn from p with



probability of success greater than 3/4, hence no
algorithm can distinguish sets of k samples drawn
from the pair (p, p) versus drawn from (p, q) with
this probability.

Proof. Assume for the sake of clarity that 1/b is an
integer. The proof follows from applying Theorem 4.2
to the distribution p consisting of 1/b domain elements
that each occur with probability b, and setting εi = ε

√
b.

Letting Q be the family of distributions defined in
Theorem 4.2 associated to p and the εi’s, note that
with probability 1 − o(1) it is the case that the first
and second conditions in the proposition statement are
satisfied. Additionally, the theorem guarantees that p
cannot be distinguished with probability > 2/3 from
such a q given a sample of size m provided that m <

c
(∑

i
ε4i
p2i

)−1/2
= c

√
b

ε2 .

Given an algorithm that could distinguish, with
probability at least 3/4 > 2/3 + o(1), whether ||p′ −
q′||2 = 0 versus ||p′ − q′||2 ≥ ε/2, using m = O(

√
b/ε2)

samples drawn from each of p′, q′, one could use it to
perform the above (impossible) task of distinguishing
with probability greater than 2/3 whether a set of
samples was drawn from p, versus a random q ← Q by
running the hypothetical `2 tester on the set of samples,
and a set drawn from p.
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Appendix

A An O(n2/3/ε2) `1-tester

In this section, we show how we to obtain an `1 closeness
tester with sample complexity O(n2/3/ε2), by using
essentially the same approach as [BFR+00].

Recall that the `1 closeness tester in [BFR+00]
proceeds in two steps: In the first step, it “filters”
the elements of p and q that are “b-heavy”, i.e., have
probability mass at least b – for an appropriate value of



b. (This step essentially amounts to learning the heavy
parts of p and q.) In the second step, it uses an `2
closeness tester to test closeness of the “light” parts of
p and q. (Note that in the second step the `2 tester
needs to be called with error parameter ε/

√
n.)

Our improvement over [BFR+00] is two fold: First,
we perform the first step (learning) in a more efficient
way (using a different algorithm). Roughly, this im-
provement allows us to save a log n factor in the sample
complexity. Second, we apply our optimal `2 tester in
the second step.

Regarding the first step, note that the heavy part
of p and q has support size at most 2/b. Roughly, we
show that the heavy part can be learned to `1 error ε
using O((1/b)/ε2) samples (which is the best possible)
– without knowing a priori which elements are heavy
versus light. The basic idea to achieve this is as follows:
rather than inferring all the heavy elements (which
inherently incurs an extra log(1/b) factor in sample
complexity, due to coupon collector’s problem), a small
fraction of heavy elements are allowed to be undetected;
this modification requires a more involved calculation
for heavy elements and a relaxed definition for light
elements.

The first step of our `1 test uses s1 = O((1/b)/ε2)
samples and the second step uses s2 = O(

√
b/ε̃2) sam-

ples, where ε̃ = ε/
√
n. The overall sample complexity is

s1 + s2, which is minimized for b = Θ(n−2/3) for a total
sample complexity of O(n2/3/ε2). We remark that since
the sample complexity of each step is individually opti-
mal, our achieved bound seems to be the best that could
possibly be achieved via this reduction-based approach,
supporting the view that, in some sense, the more di-
rect approach of Section 2 is necessary to achieve the
optimal dependence on ε.

In the following subsections we provide the details
of the algorithm and its analysis.

We start with the following definition:

Definition A.1. A distribution p is (b, C)-bounded if
‖p‖22 ≤ Cb.

A.1 Heavy elements. We denote by p̂ (resp. q̂) the
empirical distribution obtained after taking m indepen-
dent samples from p (resp. q). We classify elements into
the following subsets:

• Observed heavy H(p̂) = {i | p̂i ≥ b} versus
observed light L(p̂) = {i | p̂i < b}.

• Truly heavy H(p) = {i | pi ≥ b/2} versus truly
light L(p) = {i | pi < b/2}.

(Note the threshold for the observed distribution is b,
while for the true distribution is b/2.)

Consider the random variables

Di = |p̂i − q̂i| − |pi − qi|, D(A) =

∣∣∣∣∣∑
i∈A

Di

∣∣∣∣∣ .
We sometimes write D(AB) for D(A ∩B).

We will also use the shorthand Ĥ = H(p̂) ∪ H(q̂).
We want to show that

‖p̂− q̂‖H(p̂)∪H(q̂) ≈ε ‖p− q‖H(p̂)∪H(q̂)

with high probability. To do this, we use the bound

D(Ĥ) ≤D(ĤH(p)H(q)) +D(ĤH(p)L(q))(A.1)

+D(ĤL(p)H(q)) +D(ĤL(p)L(q)).

The first three terms on RHS of Eq. (A.1) will be
bounded by Corollary A.1 below. We start with the
following simple claim:

Claim A.1. For any i ∈ [n],

(A.2) E[D2
i ] ≤

pi + qi
m

.

Proof. Expand the LHS of Eq. (A.2) as

E(p̂i − q̂i)2 − 2|pi − qi|E|p̂i − q̂i|+ |pi − qi|2.

Since

E(p̂i − q̂i)2 = Var[p̂i − q̂i] + (E[pi − qi])2

=
pi(1− pi) + qi(1− qi)

m
+ |pi − qi|2,

the LHS of Eq. (A.2) is at most

pi + qi
m

− 2|pi − qi|(E|p̂i − q̂i| − |pi − qi|).

The result follows by the elementary fact E|X| ≥ |EX|
applied to X = p̂i − q̂i.

Corollary A.1. If we use m ≥ 4/(ε2bδ) samples,
then for any (possibly random) H ⊆ H(p), we have

D(H) ≤ ε

except with probability δ.

Proof. By Cauchy–Schwarz,

D(H)2 =

(∑
i∈H

Di

)2

≤ |H(p)|
∑

i∈H(p)

D2
i .

Now we take expectation on both sides. Since∑
i E[D2

i ] ≤
∑
i(pi + qi)/m ≤ 2/m, and |H(p)| ≤ 2/b,

we have E[D(H)2] ≤ ε2δ. Hence

Pr[D(H) ≥ ε] = Pr[D(H)2 ≥ ε2] ≤ δ

by Markov’s inequality.



We bound the last term on the RHS of Eq. (A.1)
by

D(ĤL(p)L(q)) ≤ D(H(p̂)H(q̂)L(p)L(q))

(A.3)

+D(H(p̂)L(q̂)L(p)L(q)) +D(L(p̂)H(q̂)L(p)L(q)).

The RHS will be bounded by Corollaries A.2 and A.3
below.

Claim A.2. For any pi ≤ b/2, any t ≥ 1, with m =
1/(ε2b) samples,

(A.4) Pr[p̂i ≥ tb]�
ε2

t2
pi
b
.

Proof. Note that p̂i has distribution Binom(m, pi)/m,
so by Chebyshev’s inequality,

Pr[p̂i ≥ tb] ≤Pr[|p̂i − pi| ≥ tb/2]

≤Var[p̂i]

(tb/2)2
≤ 4pi
m(tb)2

=
4ε2

t2
pi
b
.

Lemma A.1. For any δ > 0, for any ε � δ, using
m� 1/(ε2b) samples,

‖p̂‖L(p)H(p̂) ≤ ε

except with probability δ.

Proof.

E‖p̂‖L(p)∩H(p̂) =
∑
i∈L(p)

E[p̂i · 1p≥b]

=
∑
i∈L(p)

∑
j≥0

E[p̂i · 12jb≤pi≤2j+1b]

≤
∑
i∈L(p)

∑
j≥0

2j+1b · Pr[p̂i ≥ 2jb]

Eq. (A.4)

≤
∑
i∈L(p)

Cε2pi
b

∑
j≥0

2j+1b

22j
≤ 4Cε2.

By Markov’s inequality,

Pr
[
‖p̂‖L(p)H(p̂) ≥ ε

]
≤ 4Cε2

ε
= 4Cε ≤ δ.

Corollary A.2. For any δ > 0, any ε � δ, using
m� 1/(ε2b) samples,

D(H(p̂)H(q̂)L(p)L(q)) ≤ ε,

except with probability δ.

Proof. By the triangle inequality,

‖p− q‖H(p̂)H(q̂)L(p)L(q) ≤‖p̂− p‖L(p)H(p̂)

+‖q̂ − q‖L(q)H(q̂) + ‖p̂− q̂‖H(p̂)H(q̂)L(p)L(q).

The first two terms on the RHS are dominated by
‖p̂‖L(p)H(p̂) and ‖q̂‖L(q)H(q̂). By Lemma A.1,

‖p− q‖H(p̂)H(q̂)L(p)L(q) ≤ ‖p̂− q̂‖H(p̂)H(q̂)L(p)L(q) + ε

except with probability δ/2. We also get the reverse
inequality by swapping the roles of p− q and p̂− q̂.

Corollary A.3. For any δ > 0, any ε � δ, using
m� 1/(ε2b) samples,

D(H(p̂)L(q̂)L(p)L(q)) ≤ ε

except with probabilty δ.

Proof. It is easy to see that ||p̂i− q̂i| − |pi− qi|| ≤ p̂i for
i ∈ H(p̂)L(q̂)L(p)L(q). Hence

D(H(p̂)L(q̂)L(p)L(q)) ≤ ‖p̂i‖L(p)H(p̂),

and the result follows by Lemma A.1.

Applying Corollaries A.1, A.2 and A.3 to inequal-
ities Eq. (A.1) and Eq. (A.3), we have thus shown the
main theorem of this section.

Theorem A.1. For any δ > 0, any ε � δ, using
m� 1/(ε2bδ) samples,

‖p̂− q̂‖H(p̂)∪H(q̂) ≈ε ‖p− q‖H(p̂)∪H(q̂)

except with probability δ.

A.2 Light elements. We now deal with the light el-
ements. Let p′ be the low-frequency distribution con-
structed in Step 2 of the `1 tester (those elements with
empirical frequency at least b have their weights redis-
tributed evenly). It will be shown to be (O(b), O(1))-
bounded in Theorem A.2 below.

Theorem A.2. p′ is (2b,O(1/δ))-bounded except with
probability δ.

Proof. Let H = {i | pi ≥ 2b} and L̂ = {i | p̂i <
b and q̂i < b}. We wish to bound

(A.5) E

 ∑
i∈L̂∩H

pti

 =
∑
i∈H

pti Pr[i ∈ L̂]

by Ot(b
t−1). Indeed, writing pi = xib, the summand

pti Pr[i ∈ L̂] ≤ pti Pr[p̂i ≤ b] = pib
t−1·xt−1i bin(m, pi, < bm).



The factor

xt−1 bin(m, pi, < bm) ≤ xt−1i exp

(
−Cxi

8ε2

)
by a Chernoff bound and equals Ot(1) uniformly in
xi and ε. Hence Eq. (A.5) is Ot(b

t−1). By Markov’s
inequality,

(A.6)
∑

i∈L̂∩H

pti �t b
t−1/δ

except with probability δ.
Note that

p′i ≤
(
pi +

1

n

)
1i∈L̂ +

1

n
1i/∈L̂,

thus

‖p′‖tt ≤
∑

î∈L̂∩H

(
pi +

1

n

)t
+
∑
i/∈H

(
pi +

1

n

)t
+
∑
i/∈L̂

(
1

n

)t
.

Together with (r + s)t �t r
t + st and

∑
i(1/n)t ≤

1/nt−1 ≤ bt−1, it follows that ‖p′‖tt �t b
t−1/δ whenever

Eq. (A.6) holds.

Theorem A.3. There exists an algorithm `1-Distance-
Test that, for ε ≥ 1/

√
n, uses O(n2/3ε−2) samples

from p, q and has the following behavior: it rejects with
probability 2/3 when ‖p − q‖1 ≥ ε, and accepts with
probability 2/3 when p = q.

Proof. (Sketch) The algorithm proceeds as follows: We
pick b = n−2/3. We check if the “b-heavy” parts
H(p̂) ∪ H(q̂) of p and q are ε/2-far using Theorem
A.1. We then construct light versions p′ and q′ as
in [BFR+00]; these distributions are (b,O(1))-bounded
with high probability by Theorem A.2. Finally, we
check whether they are ε/2-far using Proposition 3.1
(where we set ε̃ = ε/

√
n). The number of samples

we need for both Theorem A.1 and Proposition 3.1 is
O(n2/3ε−2). This completes the proof.
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