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Abstract

Responding to emergencies in Alpine terrain is quite challenging as air ambulances 
and mountain rescue services are often confronted with logistics challenges and 
adverse weather conditions that extend the response times required to provide life-
saving support. Among other medical emergencies, sudden cardiac arrest (SCA) is 
the most time-sensitive event that requires the quick provision of medical treatment 
including cardiopulmonary resuscitation and electric shocks by automated external 
defibrillators (AED). An emerging technology called unmanned aerial vehicles (or 
drones) is regarded to support mountain rescuers in overcoming the time criticality 
of these emergencies by reducing the time span between SCA and early defibrilla-
tion. A drone that is equipped with a portable AED can fly from a base station to the 
patient’s site where a bystander receives it and starts treatment. This paper consid-
ers such a response system and proposes an integer linear program to determine the 
optimal allocation of drone base stations in a given geographical region. In detail, 
the developed model follows the objectives to minimize the number of used drones 
and to minimize the average travel times of defibrillator drones responding to SCA 
patients. In an example of application, under consideration of historical helicopter 
response times, the authors test the developed model and demonstrate the capabil-
ity of drones to speed up the delivery of AEDs to SCA patients. Results indicate 
that time spans between SCA and early defibrillation can be reduced by the optimal 
allocation of drone base stations in a given geographical region, thus increasing the 
survival rate of SCA patients.
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1 Introduction

In recent years, tourism in the Alps has gained increased popularity through 
easier access to previously untouched regions for mountaineers. Simultaneously, 
the number of medical incidents in mountainous regions has increased sharply 
(https ://kurie r.at/chron ik/oeste rreic h/rekor djahr -fuer-bergr ettun g-8-000-mensc 
hen-gebor gen/232.405.161). Under these circumstances, emergency response is 
quite challenging, as response teams are often confronted with severe logistics 
challenges and weather conditions that cause long response times for life-saving 
support.

Among the different sets of medical emergencies (e.g., accidents while moun-
tain biking, climbing, rafting, etc.), sudden cardiac arrest (SCA) accounts for 
a remarkable proportion of lethal events. For instance, in the last 10 years 707 
people died in the Austrian Alps, with 37% due to SCA representing the high-
est proportion of all lethal incidents (https ://www.alpin esich erhei t.at/data/docs/
press eauss endun g). The immediate stop of cardiac activity during SCA leads 
to a rapid collapse of all vital organ processes and further, inevitably, death if 
untreated. The European Resuscitation Council (ERC) provides evidence-based 
guidelines for the best available treatment of an SCA event, namely early rec-
ognition and call for help, immediate cardiopulmonary resuscitation (CPR), as 
early as possible electrical defibrillation with an automated external defibrilla-
tor (AED), professional advanced life support, and standardized post-resuscita-
tion care (Monsieurs et  al. 2015). The latter two steps in this chain of survival 
require well-educated emergency medical service (EMS), and their effectivity is 
largely dependent on the previous steps, because the EMS measures will inevi-
tably arrive after a certain time delay. However, immediate response to an SCA 
event can only be provided by bystanders. According to the currently valid for-
mula from Larsen et al. (1993), survival rates decline at a rate of approximately 
8-16% per minute without CPR and electrical defibrillation. If CPR and electri-
cal defibrillation are performed properly, survival rates decline less dramatically 
at approximately 3-4 % per minute. In this context, bystander use of an AED is 
associated with better survival and functional outcomes (Pollack et al. 2018). Par-
ticularly, the rapid use of an AED—even without CPR—seems to be beneficial 
and can enhance the life expectancy of SCA patients more than twofold (Capucci 
et al. 2016). According to Nichol et al. (1999), early defibrillation should be per-
formed within a time interval of 6 min as survival rates up to this threshold are 
nearly constant and sharply decrease if no shock is provided within 6 min. In 
urban areas, programs that have been established to provide bystanders quick 
access to AEDs in public places have led to an increased number of survivors 
after SCA in public locations (Investigators 2004; Weisfeldt et al. 2010). Moreo-
ver, a dense EMS network guarantees best available life support with little time 
delay. In urban regions, recommendations set the time between EMS notification 
and EMS arrival to a maximum of 20 min which is almost impossible to fol-
low in rural areas (Bos et al. 2015). However, responding to a patient with SCA 
in Alpine regions is often extremely challenging due to rough terrain. Difficult 

https://kurier.at/chronik/oesterreich/rekordjahr-fuer-bergrettung-8-000-menschen-geborgen/232.405.161
https://kurier.at/chronik/oesterreich/rekordjahr-fuer-bergrettung-8-000-menschen-geborgen/232.405.161
https://www.alpinesicherheit.at/data/docs/presseaussendung
https://www.alpinesicherheit.at/data/docs/presseaussendung
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access to the patient’s site may lead to long response times for mountain res-
cue services and even ambulance helicopters, negatively affecting the chance to 
survive SCA events. Obviously, a reduction of the time between the SCA event 
and proper treatment including AED shock therapy and CPR is the only way to 
increase the survival rate of patients.

An emerging technology called unmanned aerial vehicles (UAV), or drones, is 
regarded to overcome the time criticality to respond to such emergencies in moun-
tainous regions. Drones are flying machines that operate autonomously or are tel-
eoperated by ground operators (Floreano and Wood 2015). The main drone types 
available on the market are fixed-wing systems (comparable to a miniature plane), 
multirotor systems, and hybrid systems with different specifications (i.e., payload, 
drop-off system, range) (Custers 2016). Conventional drones run on batteries to 
operate their engines and need to be recharged after they run out of power. There-
fore, base stations are used that allow autonomous wireless recharging without the 
need of active user intervention (Choi et al. 2016). Aside from military applications, 
drones are attracting increasing attention in commercial usage, including cargo 
delivery, mapping, target covering, or surveillance (Dorling et al. 2017; Di Franco 
and Buttazzo 2015; Murray and Chu 2015). From a logistical viewpoint, they offer 
the clear advantage of being able to travel to areas that are inaccessible for land-
based transportation at lower cost and risk compared to traditional means of trans-
port (e.g., helicopters) (Yildrim 2017). Recently, humanitarian organizations have 
also become aware of these advantages, as drones can contribute to more efficient 
emergency operations along the entire disaster management cycle, i.e., mitigation, 
preparedness, response, and recovery stages (Kakaes et al. 2015; Anbaroğlu 2019). 
Drones can assist in damage assessment, emergency items delivery, and search and 
rescue missions during the immediate response to earthquakes or avalanche events 
(Cui et al. 2015; Doherty and Rudol 2007; Mersheeva and Friedrich 2012; Câmara 
2014).

Particularly, the drones’ capability to transport various kinds of relief items to 
demand locations is of major interest in this study. Recent developments in drone 
technology enable not only the delivery of lightweight items (i.e., vaccines, blood 
samples, etc.) but even AEDs of heavier weight. In this regard, the drone either 
delivers an attached portable AED (e.g., LifeDrone AED, see Fig.  1) or both 

Fig. 1  AED attached to the 
drone (LifeDrone AED)
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modules are merged within one technical unit [e.g., Ambulance Drone developed by 
TU Delft (http://www.alecm omont .com/proje cts/drone sforg ood/)]. In practice, AED 
drones are activated once an alert arrives at the emergency coordination center. The 
required GPS (global positioning system) coordinates are either actively transmit-
ted by the bystander via a mobile phone app to the emergency coordination center 
or generated by tracking the mobile phone of the caller. The GPS data are then sent 
to the drone base station and processed by the defibrillator drone which departs to 
the patient’s site. Once the bystander receives the defibrillator drone, he/she discon-
nects the AED from it and starts adequate treatment. The possibility to disconnect 
the AED from the drone ensures that it can be transported even to forest areas where 
trees eventually hamper safe drone landings. With video transmission between the 
drone and emergency operators, the bystander is guided through the whole process 
of providing CPR and putting electrodes on the patient’s chest. This response sys-
tem could serve as an extension of ground-based (i.e., mountain rescue service) 
and air ambulance. It offers the clear advantage of providing faster emergency help 
if needed. Hence, it has the potential to reduce the time between SCA and early 
defibrillation, which is essential for increasing patients’ survival rates, outcomes, 
and quality of life (Zègre-Hemsey et  al. 2018). A well-planned network of drone 
base stations in a given geographical region can guarantee minimal response times 
(referred to as travel times in this paper) to SCA patients. Particularly, in large geo-
graphical areas for which a single-drone application would not generate beneficial 
outcome for the patients, an optimally allocated network of defibrillator drones is 
required. However, the battery capacity, which limits the range of the drones, must 
be considered. Motivated by exploring the potentials of drone technology to speed 
up life-saving support, this paper considers drones as a means to deliver AEDs in 
Alpine terrain and presents an integer linear program for the optimal allocation of 
drone base stations to minimize the travel time of defibrillator drones for providing 
life-saving support in the minutes after SCA.

The paper is organized as follows. First, we review related papers that pre-
sent models for the optimal allocation of drones for the delivery of AEDs to SCA 
patients. Next, we give a problem description and introduce notations along with 
our model assumptions. Then, we present our optimization model and illustrate its 
use in an example of application. A discussion on the limitations of the study and an 
outlook to future research conclude the paper.

2  Related work

The presented research is built upon existing works on location allocation prob-
lems in humanitarian logistics, which have been extensively researched over the 
past years. A broad range of different problems, including the optimal allocation 
of fire stations, EMS services, or medical centers were solved using heuristic and 
exact algorithms. These models follow the overall objectives to minimize the total 
distance between the demand points and candidate facility locations, to maximize 
the total number of demand points covered within the distance limitations, or to 
minimize the worst system performance (Boonmee et al. 2017). With regard to the 

http://www.alecmomont.com/projects/dronesforgood/
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optimal allocation of base stations of aerial vehicles (e.g., helicopters and drones), 
models have been proposed by Talmar (2002), Røislien et  al. (2017) and Schuur-
man et al. (2009). Talmar (2002) focuses on optimizing the location of three rescue 
helicopters in South Tyrol to be able to respond to the increasing number of ski-
ing, hiking and climbing accidents in the region. The objectives of the developed 
model are to minimize the maximum or worst response time to speed up emergency 
operations. Another model for improved helicopter response times is presented by 
Schuurman et al. (2009). The authors propose a location optimization model to iden-
tify where the expansion of helicopter EMS covers the greatest population in British 
Columbia among those people that were under-supplied during that time period. In 
Røislien et al. (2017) a model to estimate optimal locations for air ambulance ser-
vice in Norway is proposed. The developed maximum coverage location problem 
(MCLP) model maximizes the population covered within a specific service distance 
(or time) by optimally allocating a pre-defined number of facilities. Optimal alloca-
tion of base stations that operate drones and trucks is proposed by Chowdhury et al. 
(2017). The proposed model determines the optimal distribution location for drones 
and trucks to deliver emergency items to a set of demand locations within a disaster 
affected area. Therefore, the model minimizes the total location-routing cost to serve 
the whole region by drones and trucks.

Models that are more relevant to our study and exclusively focus on the optimi-
zation of the spatial location of defibrillator drones are presented in Pulver et  al. 
(2016), Boutilier et  al. (2017) and Pulver and Wei (2018). Boutilier et  al. (2017) 
developed an integer optimization model to determine the number of drone base sta-
tions for reducing the historical median fire, paramedic, and police response times by 
1, 2, and 3 min. Aside from identifying the optimal location of drone bases stations, 
the authors also seek to determine the optimal number of drones for each station. 
Historical data including more than 53,000 SCA events that occurred between 2006 
and 2014 in the eight regions of Toronto Regional RescuNET were used to test the 
developed optimization model. All fire, paramedic, and police stations of the region 
were chosen as candidate locations for defibrillator drones. The results indicate that 
optimized drone networks can considerably reduce response times to provide early 
defibrillation. In Pulver et al. (2016) a network of defibrillator drones designed to 
minimize the response time to SCA in Salt Lake County is presented. The objective 
is to have a drone at the scene within 1 min for at least 90% of SCA incidents while 
also minimizing implementation costs. The developed MCLP model determines the 
optimal configuration of the drone network by maximizing the total demand suitably 
covered. The results indicate that current EMS is only capable of reaching the scene 
within 1 min in 4.3% of all SCA incidents whereas including drones in the response 
system leads to 80.1% of demand being reached within 1 min. Further, installing 
additional launch sites would lead to 90.3% covered demand within 1 min. Pulver 
and Wei (2018) is based on the model proposed in Pulver et al. (2016) and presents 
an extended model considering backup service provision, continuously distributed 
demand, and empirical medical data instead of estimated incidence rates. Based on 
these extensions, the authors propose a new spatial optimization model, namely the 
backup coverage location problem with complementary coverage. The model objec-
tive is to maximize the total amount of primary and backup coverage for demand, 
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i.e., SCA events. The model is applied in the same setting as in Pulver et al. (2016) 
and generates more accurate results by mitigating representation errors in locating a 
network of defibrillator drones.

To the best of our knowledge, no other work could be identified that addresses 
the optimal allocation of base stations for defibrillator drones in equal measure as 
presented in this paper. Our study is unique in the sense that aforementioned papers 
treat defibrillator drone allocation in a purely urban environment, while we intro-
duce this concept to mountainous regions for the first time. This setting is different 
compared to already discussed ones due to infrastructural and geographical barriers 
that need to be considered in the determination of the optimal allocation of drone 
base stations. In terms of base station selection, our work differs to others in the 
sense that we cannot use EMS stations as candidate locations due to their low avail-
ability in mountainous regions. Instead, we integrate Alpine shelters and fire res-
cue stations as potential drone base stations. Alpine shelters are directly available 
within Alpine infrastructure and the only permanently installed housing structure 
in such rural areas. Voluntary fire rescue stations are generally much more avail-
able in Alpine infrastructure than EMS stations, as they are also maintained in really 
remote areas. If an SCA patient is located close to a village, a defibrillator drone 
departs from a close-by fire rescue station instead of an Alpine shelter hut. Travel 
times from a high-altitude base station would be extremely long, resulting from the 
differences in altitudes. Compared to other models, we primarily ignore backup sup-
ply and argue that two SCAs in a rural area at the same time are rather unlikely 
to occur. However, as this case cannot be completely excluded, we also extend our 
model such that backup supply can be considered. Finally, we compare our approach 
against the conventional air ambulance system in an example of application. Other 
papers follow a comparison with ground-based EMS that would not fit the context 
of this paper.

3  Optimization approach

We now introduce the integer linear program (ILP) that we use to model and analyze 
the allocation of drones to base stations.

Due to the characteristics of mountainous regions, the travel times of aerial vehi-
cles, especially drones, can differ significantly even for sites that are close in terms 
of latitude and longitude. Peaks and cliffs form time-consuming obstacles that the 
drones must overcome. Hence, the coverage of a considered region is modeled 
by sampling a large number of patients and calculating the point-wise distances 
between all patients’ sites and all possible drone base stations. The considered prob-
lem is a paradigm for the well-known simple plant location problem (SPLP) that is 
also referred to as uncapacitated facility location problem (UFLP) (Klose and Drexl 
2005; Laporte et al. 2015). Considering the analysis presented in this work, solving 
an ILP (introduced in Sect. 3.2) is the method of choice for the occurring problem 
size. For even larger problem instances, we refer to heuristic approaches from the 
literature (Barahona and Chudak 2005; Goldengorin et al. 2003; Jörnsten and Klose 
2016; Letchford and Miller 2014; Yigit et al. 2006).
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3.1  Model parameters and assumptions

Basic parameters. Formally, the problem is defined through the following 
parameters:

• A set of m candidate locations (base stations) B ∶= {b1,… , b
m
} . The coordi-

nates of a candidate location b ∈ B are given by (xb, yb, zb) correspond to lati-
tude, longitude, and altitude.

• A set of q patient’s sites P ∶= {p1,… , p
q
} . The coordinates of a patient p ∈ P 

are (x
p
, y

p
, z

p
).

• A travel time function t ∶ B × P ↦ ℝ
+.

• A homogeneous fleet of s drones that must be assigned to the base stations B . 
Clearly, s ≤ m.

• A maximal travel time t
max

 that cannot be exceeded.

In Table 1 we summarize the used notation.

Model assumptions. In order to allow mathematical modeling of the problem, 
the following assumptions are made:

• No more than one SCA happens at any one time in the same region; therefore, no 
backup is needed.

• Weather and wind conditions are good enough for the selected drone models 
to operate. The average wind speed in the Alps is around 9.5 m/s (http://ispac 
evm11 .resea rchst udio.at/index _v.html). Both drone models considered in the 
subsequent study can operate under these wind conditions (Table  3). In fact, 
drones (and also helicopters) are not always suitable to transport AEDs as wind 
speeds up to 34.2 m/s are possible under stormy conditions. Therefore, alterna-
tive transport solutions must be considered (e.g., AEDs are part of mountain res-
cue service equipment).

• All patients p ∈ P are localized on an official hiking trail. We assume this 
because hiking trails are the major routes that are followed by hikers; thus, the 
likelihood of having SCA patients in such areas is greater compared to remote 
areas far away from the official hiking trail network. In comparison, more than 
80% of all fall-related accidents happen on marked trails (Faulhaber et al. 2017).

Table 1  List of input parameters 
and constants

Definition Description

B B ∶= {b1,… , b
m
} Candidate locations

P P ∶= {p1,… , p
q
} Patients’ sites

t t ∶ B × P ↦ ℝ
+ Travel time function

s Number of available drones

t
max

Maximal allowed travel time

http://ispacevm11.researchstudio.at/index_v.html
http://ispacevm11.researchstudio.at/index_v.html
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• The maximal reach (battery capacity) of the considered drone is larger than the 
maximal distance that it can travel within the maximal travel time t

max
.

We would like to highlight the fact that these assumptions are empirically based. 
This supports the primary objective of the study to show that such a defibrillator 
drone system is applicable in mountainous regions utilizing rare infrastructure.

Travel time function. We calculate the travel time between a base station b ∈ B 
and a patient p ∈ P using the following model. Therefore, we consider the largest 
obstacle in the direct line connecting b and p, denoted by o(b,  p) having coordi-
nates (x

o
, y

o
, z

o
) . Further, we assume that the drone has a defined vertical ascend-

ing speed v+
vert

 , a vertical descending speed v−
vert

 , and a horizontal travel speed v
hor

 . 
Moreover, the drone needs a constant start-up time c

start
 , which defines the time span 

from receiving the alarm until take-off. The model assumes that the drone first rises 
vertically to the altitude of the largest obstacle z

o
 along its path (plus 5 m safety dis-

tance). Then it travels horizontally following the direct line between the base station 
and the patient’s site, which is described by the Euclidean distance between (xb, yb) 
and (x

p
, y

p
) (Hong et al. 2018; Ehrgott 2002; Pulver et al. 2016). Finally, the drone 

descends vertically to the patient’s site. Hence, the travel time from b to p is given 
by:

where zmax ∶= max{zb, zo + 5 m, zp} . In Fig. 2 we illustrate the model. Clearly, for 
practical application a more sophisticated way to determine the flight route could 
result in shorter travel times.

3.2  Mathematical model

Using the notation and assumptions from the previous subsection, we now formu-
late the ILP. The sets of indices [u], u ∈ ℕ contain the elements {1,… , u} . First, we 

t(b, p) ∶= cstart + (zmax − zb) ⋅ v+
vert

+

√

(xb − xp)
2 + (yb − yp)

2
⋅ vhor + (zmax − zp) ⋅ v−

vert
,

Patient

( , , )

( 0 , 0 , 0)

Highest obstacle

( , , )

Base station

5m safety distance

UAV

(Drone)

Fig. 2  Illustration of the applied distance measure
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introduce the assignment variables xij ∈ {0, 1}, i ∈ [m], j ∈ [q], with the following 
interpretation:

Moreover, we introduce variables yi ∈ {0, 1}, i ∈ [m], such that

Consequently, we propose the following model: 

The objective function (1a) allows to choose between two objectives by setting 
� to 1 or 0. Either the model minimizes the number of used drones or the average 
travel time. Inequalities (1b) ensure that each patient is assigned to at least one base 
station. Inequalities (1c) ensure that patients are only assigned to base stations that 
have a drone located there. Inequalities (1d) enforce that the defined time limit to 
reach a patient is not exceeded, while Inequalities (1e) guarantee that the available 
number of drones is not exceeded. Clearly, to ensure that the model has a feasible 
solution, each patient must be reachable from at least one base station in t

max
 or less 

time, i.e.,

must hold.

xij =

{

1, if patient pj is assigned to base station bi,

0, otherwise.

yi =

{

1, if a drone is located at base station bi,

0, otherwise.

(1a)
min � ⋅

∑

i∈[m]

yi + (1 − �) ⋅
∑

i ∈ [m],

j ∈ [q]

xij ⋅ t(bi, pj)

(1b)s.t.
∑

i∈[m]

xij ≥ 1, j ∈ [q],

(1c)

∑

j∈[q]

xij ≤ yi ⋅ q, i ∈ [m],

(1d)xij ⋅ t(bi, pj) ≤ t
max

, i ∈ [m], j ∈ [q],

(1e)

∑

i∈[m]

yi ≤ s,

(1f)xij ∈ {0, 1}, i ∈ [m], j ∈ [q],

(1g)yi ∈ {0, 1}, i ∈ [q].

(2)tmax ≥ t ∶= max
p∈P

min
b∈B

t(b, p)
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4  Example of application and results

In this section, we examine the applicability of a network of base stations equipped 
with defibrillator drones in mountainous regions. First, we focus on Val Venosta, 
which is the most western region of South Tyrol, Italy, covering an area of 
1442  km2 . The region is crossed by many valleys and dominated by high moun-
tains, including the Ortler, with its 3.905 m making it the highest mountain in South 
Tyrol. Obviously, this region represents the distinctive characteristics of mountain-
ous areas, which are the major subjects of interest in this study. Furthermore, the 
region of South Tyrol is served by three ambulance helicopters with base stations in 
Bozen, Brixen, and Gröden that are geographically decoupled from the focus region 
Val Venosta (highlighted in Fig. 3). This results in relatively long flight times for all 
three helicopters responding to patients located in Val Venosta. Installing a fleet of 
optimally located defibrillator drones in this region could therefore reduce the time 
between early defibrillation and helicopter arrival. We address this by analyzing the 
following two scenarios where in (1) we follow the objective to determine the opti-
mal allocation of defibrillator drones in order to minimize the average travel times 
and in (2) we compare the travel times of defibrillator drones against conventional 
air ambulance in Val Venosta based on historical medical incidents in the region.

4.1  Data preparation

Regarding the required data, we use local hiking trail network geographic informa-
tion system (GIS) data provided by the state administration of South Tyrol (http://
geoka talog .buerg ernet z.bz.it/geoka talog /#!). For identifying available shelter huts in 
the region, we accessed three official databases from the tourism office of South 

Fig. 3  Illustration of the seven districts of South Tyrol including the three helicopter base stations

http://geokatalog.buergernetz.bz.it/geokatalog/#!
http://geokatalog.buergernetz.bz.it/geokatalog/#!


795

1 3

Optimal allocation of defibrillator drones in mountainous…

Tyrol and extracted the locations of available shelter huts (https ://www.vinsc hgau.
net/de/aktiv urlau b/wande rn-bergt ouren /almen -schut zhuet ten.htm, https ://www.
suedt irol.info/de/erleb en/essen -trink en/huett en-almen /, http://www.schna lstal .com/
de/glets cher/huett en.html). In order to guarantee the validity of the locations of the 
identified shelter huts, we cross-checked them in Google Maps and OpenStreet-
Map and were able to locate additional shelter huts that were not included in the 
official databases. We derive data on fire rescue stations from the South Tyrolian 
association of voluntary fire brigades (https ://www.lfvbz .it/bezir ke/unter vinsc hgau.
html). Finally, the corresponding latitudes and longitudes (World Geodetic System 
84 - WGS 84) of all locations were gathered. Elevations for both types of locations 
as well as the elevation of the tallest obstacle in-between them were taken from the 
Google Maps Elevation API. Everything was implemented in Java, and the ILPs 
were solved using Gurobi 8.1.0 For illustration purposes, the GIS software QGis 
was used. For data analysis, we used R.

4.2  Considered drone model

We operate the LifeDrone AED system as described in Claesson et al. (2017), having 
parameters v+

vert
= 2.5 m/s, v−

vert
= 2.5 m/s, and v

hor
= 17.9 m/s and c

start
= 30 s. The 

drone’s own weight is 5.7 kg, and it is capable of carrying an AED with a weight of 
763 g. The drone is equipped with GPS and autopiloted; hence, it flies completely 
autonomously from the base station to the patient’s location. It is notable that in the 
region of South Tyrol a smart phone app is already available that allows to transmit 
the GPS data to the emergency coordination center (https ://www.leits telle .tirol /leist 
ungen /zusat zleis tunge n/). The drone is not equipped with parachute or rope systems 
to supply the AED; thus, landing at the patient’s site is mandatory.

4.3  Analysis

We consider a test instance that consists of 104 base stations and 1500 patients’ sites 
that have been randomly sampled from points on the hiking trail network. The label 
O

t
 denotes instances for which inequality (2) does not hold, i.e., no feasible solution 

can be found. When we choose to minimize the number of drones, i.e., the travel 
time is not part of the objective function, we calculate the travel time solely based on 
the selected base stations. Hence, we ignore the assignment variables xij and choose 
the assignment of patients to base stations B∗

⊆ B having a drone assigned to based 
on the travel time, i.e., for each patient p ∈ P the corresponding base station is 
determined as arg min b∈B

∗ t(b, p).

4.3.1  Optimal allocation of de�brillator drones: minimizing average travel 

times and number of drones

Setup. In this first scenario, we choose the minimal average travel time as objective 
function, i.e., � = 0 . We vary the maximal number of drones in steps of 1 and report 
the results in Table 2. From interval 40 to 100, we abstract the results in steps of 10 
as no remarkable changes in values can be observed within this range.

https://www.vinschgau.net/de/aktivurlaub/wandern-bergtouren/almen-schutzhuetten.htm
https://www.vinschgau.net/de/aktivurlaub/wandern-bergtouren/almen-schutzhuetten.htm
https://www.suedtirol.info/de/erleben/essen-trinken/huetten-almen/
https://www.suedtirol.info/de/erleben/essen-trinken/huetten-almen/
http://www.schnalstal.com/de/gletscher/huetten.html
http://www.schnalstal.com/de/gletscher/huetten.html
https://www.lfvbz.it/bezirke/untervinschgau.html
https://www.lfvbz.it/bezirke/untervinschgau.html
https://www.leitstelle.tirol/leistungen/zusatzleistungen/
https://www.leitstelle.tirol/leistungen/zusatzleistungen/
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Table 2  The generated results 
when minimizing the average 
travel time using the LifeDrone 

AED system (mm:ss)

Minimizing average travel time:       tmax = 20:00

s min(t) max(t) mean(t) median(t) 95% 99%

≤ 9 O
t

O
t

O
t

O
t

O
t

O
t

10 00:42 19:44 09:25 09:35 15:52 18:14

11 00:42 19:44 08:58 09:08 15:27 17:47

12 00:42 18:58 08:36 08:38 15:01 17:07

13 00:31 18:58 08:15 08:09 14:57 16:37

14 00:31 18:58 07:57 07:51 14:20 16:22

15 00:31 18:58 07:42 07:30 14:09 16:22

16 00:31 18:58 07:28 07:21 13:22 15:29

17 00:31 18:58 07:17 07:12 13:22 15:50

18 00:31 18:02 07:07 06:42 13:25 15:18

19 00:31 17:23 06:57 06:34 13:22 14:57

20 00:31 17:23 06:47 06:20 12:58 14:57

21 00:31 17:23 06:38 06:10 12:48 14:49

22 00:31 17:23 06:30 06:05 12:23 14:49

23 00:31 15:58 06:23 06:01 12:06 14:46

24 00:31 15:58 06:17 05:56 12:02 14:48

25 00:31 15:56 06:11 05:53 11:37 14:15

26 00:31 15:56 06:07 05:48 11:34 14:15

27 00:31 15:56 06:02 05:42 11:31 14:15

28 00:31 15:56 05:57 05:35 11:31 14:15

29 00:33 15:45 05:52 05:26 11:23 14:31

30 00:33 15:45 05:48 05:22 11:23 14:31

31 00:33 15:45 05:44 05:17 11:23 14:31

32 00:33 15:45 05:40 05:14 11:22 14:31

33 00:33 15:19 05:37 05:11 11:19 14:15

34 00:33 15:19 05:34 05:07 11:19 14:15

35 00:33 15:19 05:30 05:02 11:14 14:15

36 00:33 14:58 05:27 05:00 10:55 14:02

37 00:33 14:58 05:24 04:57 10:55 14:02

38 00:33 14:58 05:21 04:52 10:52 14:02

39 00:33 14:58 05:18 04:50 10:52 14:02

40 00:33 14:58 05:15 04:47 10:47 13:35

50 00:31 14:48 04:55 04:27 10:10 13:06

60 00:31 14:48 04:41 04:07 09:50 13:06

70 00:31 14:48 04:34 03:58 09:49 13:06

80 00:31 14:48 04:29 03:54 09:49 13:01

90 00:31 14:48 04:27 03:52 09:43 13:01

100 00:31 14:48 04:27 03:52 09:43 13:01

104 00:31 14:48 04:27 03:52 09:43 13:01
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Results. We plot the results from Table 2 in Fig. 4. Hence, we choose s = 36 as 
the preferable network configuration of drone base stations, as the mean travel time 
of drones (05:27) is well below the 6-min threshold in which early defibrillation 
should be provided (Nichol et al. 1999). Further, there are no remarkable changes of 
the 95% quantile values for s > 36 . We refer to this configuration as ATTs36 (aver-
age travel time with s = 36 ) and plot the corresponding data in Fig. 5. This alloca-
tion of drone base stations in the region allows travel times of drones to the patient’s 
sites in an average time of 05:27. Moreover, 50% of all patients can be supplied with 
an AED within 05:00, which translates to a rate of survival between 50 and 70% if 
CPR is immediately provided. Further, 95% of the patients can be reached by an 
AED drone within 10:55. However, such long travel times are no more beneficial 
to the patients, keeping in mind the decrease of survival rate of 8–16% per minute 
without CPR and AED. The 99% quantile of 14:02 further underlines the insuffi-
cient performance of the subsequent drone type in ATTs36 and puts into question 
the benefit of this response system to the patient’s survival. We illustrate the con-
figuration in Fig. 6 (included in Appendix). Patients that can be reached in 06:00 or 
less are indicated in blue, patients that can be reached between 06:00 and 11:00 are 
indicated in green, and patients that can not be reached in less than 11:00 are indi-
cated in red. Potential base stations are represented by using brown circles and red 
cross symbols denote selected base stations according to the optimal solution of the 
ILP. We also illustrate the hiking trails in the region by brown lines. Analyzing the 
configuration in Fig. 6 reveals an accumulation of patients with travel times higher 
than 11:00 (colored in red) located in the most eastern part of Val Venosta. The rea-
son for this is the low availability of potential base stations (i.e., shelter huts) in this 
region. Hence, it becomes obvious that travel times of drones in the analyzed setting 
can only be accelerated by using faster drones due to the unavailability of additional 
base stations in the region.

Setup - faster drone. As the considered drone model LifeDrone AED has rather 
low vertical and horizontal speed, which is a major drawback when large obsta-
cles like mountains must be overcome, we compare it against a faster drone model. 
Therefore, we consider the Wingcopter 178 drone, which is commercially availa-
ble and capable of carrying an AED of type Philips Heartstart. This drone model 
has parameters of v+

vert
= 6 m/s, v−

vert
= 6 m/s, and v

hor
= 36.1 m/s and c

start
= 20  s 

(Wingcopter - Measure the future 2018). In Table 3 we summarize the parameters of 
both drone models considered in this work.

Results - faster drone. We compare the results of the slower drone against the 
faster drone in ATTs36. Using the faster drone in this setting shows remark-
able improvements in terms of travel times. Firstly, t reduces to 06:41. Moreover, 
the average travel time with the faster drone type amounts to 02:36, which is an 
improvement of 02:51 compared to the slower one. Moreover, 50% of all patients 
(i.e., median value) can be reached within 02:24, which is a reduction in time of 
02:36. Hence, the faster drone reaches 95% of the patients within 05:00 (compared 
to 10:55 using the slower drone). Improvements can also be observed with the 99% 
quantile that amounts to 06:23 , which indicates a time reduction of 07:39 compared 
to the slower drone. In Fig. 7 we again illustrate the selected base stations. When 
comparing Figs. 6 and 7, i.e., demand covered by LifeDrone AED and Wingcopter 



798 C. Wankmüller et al.

1 3

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

6
 M

in
u
te

s

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0

9
6
0

1
0
2
0

1
0
8
0

1
1
4
0

1
2
0
0

1
0

1
5

2
0

2
5

3
0

3
6

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
0
4

N
u

m
b

e
r 

o
f 

D
ro

n
e

s

Travel Time (Seconds)

● ● ● ● ● ●

M
in

im
u
m

M
a
x
im

u
m

M
e
a
n

M
e
d
ia

n

9
5
%

 Q
u
a
n
ti
le

9
9
%

 Q
u
a
n
ti
le

Fi
g

. 4
 

 P
lo

t 
of

 T
ab

le
  

2.
 T

he
 x

-a
xi

s 
in

di
ca

te
s 

th
e 

nu
m

be
r 

of
 a

va
il

ab
le

 d
ro

ne
s 

s.
 F

or
 e

ac
h 

va
lu

e 
th

e 
m

in
im

al
 a

nd
 m

ax
im

al
 t

ra
ve

l 
ti

m
e 

be
tw

ee
n 

a 
se

le
ct

ed
 b

as
e 

st
at

io
n 

an
d 

an
 

as
si

gn
ed

 p
at

ie
nt

 is
 r

ep
or

te
d.

 M
or

eo
ve

r,
 th

e 
m

ea
n 

an
d 

m
ed

ia
n 

su
ch

 a
s 

th
e 

95
%

 a
nd

 th
e 

99
%

 q
ua

nt
il

es
 a

re
 r

ep
or

te
d



799

1 3

Optimal allocation of defibrillator drones in mountainous…

0

2
5

5
0

7
5

1
0
0

1
2
5

0
6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0

T
ra

v
e

l 
T

im
e

 (
S

e
c
o

n
d

s
)

Frequency

● ●●●● ●● ●● ● ● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●●●●● ● ●●

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0

Travel Time (Seconds)

Fi
g

. 5
 

 H
is

to
gr

am
 a

nd
 b

ox
pl

ot
 o

f 
th

e 
tr

av
el

 ti
m

es
 in

 th
e 

so
lu

ti
on

 o
f 

co
nfi

gu
ra

ti
on

 A
T
T
s
3
6

 



800 C. Wankmüller et al.

1 3

178, a drastic reduction of patients with travel times higher than 11:00 (patients 
colored in red in Fig. 6 turned blue in Fig. 7) can be observed. In conclusion, using 
the same number of drones but considering a faster drone type can be beneficial for 
patients even in remotely located areas where no potential base station is available 
(Table 4).

Alternatively, we considered to minimize the number of used drones while t
max

 
is fixed, i.e., � = 1 . Considering the LifeDrone AED and Wingcopter 178, we vary 
the maximal allowed time t

max
 in steps of 15 seconds, starting at t = 14 ∶ 48 and 

t = 06 ∶ 41 , respectively. The large value of t implies a rather large t
max

 . Together 
with the fact that the travel time is not part of the objective, this scenario yields 
unacceptable results. However, the authors decided not to consider objective func-
tions where the number of drones is weighted against the travel times due to ethical 
reasons. The results are reported in Tables 7 and 8, respectively, which can be found 
in Appendix of the paper.

Summary of the process (Pseudocode). We summarize the process (for the LifeD-

rone AED) of generating our results as follows: 

1. Collect and prepare the data as described in Sect. 4.1.
2. Repeatedly solve the problem instance with changing parameters.
  - For t

max
= 20 ∶ 00 � = 0 , solve the instance for s = 1,… , 104.

3. Analyze the resulting drone travel times.

4.3.2  Optimal allocation of de�brillator drones with backup

Setup - faster drone with backup. In this subsection, we discuss the unlikely event of 
having two SCA patients located close to each other. In this case, both SCA patients 
would be served from the same base station, which is clearly not possible, as the 
responding drone cannot visit both patients’ sites. Consequently, a defibrillator 
drone from another base station must be sent to one of the patients’ sites. The use 
of a backup drone is a reasonable choice to overcome this kind of situation. Hence, 
for each patient there are two drones assigned. By default, the closest drone, denoted 
as drone 1, responds to the patient. In case that drone 1 is not available, the second 
closest drone, denoted as drone 2, is sent to the patient’s site. In this work, we con-
sider the following two approaches of assigning drone 2 to the patients:

Table 3  Summary of the parameters of the considered drone models

Parameter Description LifeDrone AED Wingcopter 178

v
+

vert
Vertical ascending speed 2.5 m/s 6 m/s

v
−

vert
Vertical descending speed 2.5 m/s 6 m/s

v
hor

Horizontal travel speed 17.9 m/s 36.1 m/s

c
start

Start-up time 30 s 20 s

Maximal wind speed to operate 12 m/s 15 m/s
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Table 4  The generated results 
when minimizing the average 
travel time using the Wingcopter 

178 system (mm:ss)

Minimizing average travel time:       tmax = 20:00

s min(t) max(t) mean(t) median(t) 95% 99%

01 00:46 19:48 11:32 12:04 17:37 19:12

02 00:56 17:00 08:40 08:21 14:24 15:30

03 00:24 16:00 07:22 07:27 12:07 13:53

04 00:29 13:14 06:28 06:23 10:30 12:00

05 00:26 12:07 05:44 05:40 09:28 10:31

06 00:24 12:12 05:19 05:15 09:15 10:42

07 00:24 12:12 04:60 04:56 08:46 10:11

08 00:24 10:38 04:43 04:39 08:22 09:52

09 00:20 10:36 04:29 04:23 07:57 09:52

10 00:20 10:36 04:17 04:20 07:16 08:35

11 00:20 10:36 04:17 04:20 07:16 08:35

12 00:20 10:36 03:56 03:52 07:00 07:48

13 00:20 10:36 03:48 03:36 06:54 07:45

14 00:20 10:36 03:40 03:29 06:34 07:36

15 00:20 10:36 03:34 03:29 06:15 07:36

16 00:20 10:36 03:29 03:24 06:09 07:36

17 00:20 10:36 03:24 03:12 06:15 07:34

18 00:20 10:36 03:24 03:12 06:15 07:34

19 00:20 10:36 03:15 03:02 06:07 07:14

20 00:20 10:36 03:11 02:60 05:59 07:04

21 00:20 10:36 03:07 02:56 05:51 07:04

22 00:20 10:36 03:04 02:54 05:40 07:00

23 00:20 10:36 03:01 02:52 05:39 06:57

24 00:20 10:36 02:59 02:48 05:34 06:54

25 00:20 10:36 02:56 02:47 05:23 06:41

26 00:20 10:36 02:54 02:45 05:23 06:41

27 00:20 10:36 02:52 02:43 05:24 06:42

28 00:20 07:14 02:50 02:43 05:18 06:23

29 00:22 06:56 02:48 02:39 05:13 06:34

30 00:22 06:56 02:46 02:35 05:12 06:34

31 00:22 06:56 02:44 02:32 05:12 06:34

32 00:22 06:56 02:42 02:31 05:12 06:34

33 00:22 06:56 02:41 02:28 05:12 06:34

34 00:22 06:56 02:39 02:26 05:12 06:34

35 00:22 06:56 02:37 02:25 05:07 06:34

36 00:22 06:56 02:36 02:24 05:00 06:23

37 00:21 06:56 02:34 02:22 05:00 06:23

38 00:21 06:51 02:33 02:20 04:58 06:17

39 00:21 06:51 02:32 02:20 04:58 06:17

40 00:21 06:51 02:30 02:19 04:54 06:17

50 00:20 06:41 02:21 02:08 04:42 06:07

60 00:20 06:41 02:15 01:59 04:33 06:07
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• B1: In this case, we stick to the original assumption that at most one drone can 
be assigned to each base station. Hence, drone 2 is located at a different base 
station than drone 1. Consequently, drone 2 is sent from the second nearest base 
station, i.e., we change Constraints (1b) to 

• B2: Here, we consider the case that a base station can be equipped with up to two 
drones. Now, for a given patient, there are two options. Either drone 2 is located 
at the same base station as drone 1, or drone 2 is located at a different base sta-
tion. In order compute this scenario using Model (1), we extend the problem 
instance such that each potential base station is duplicated.

Results - faster drone with backup. Again, we consider the Wingcopter 178 using 
s = 36 drones and set t

max
= 20 ∶ 00 . We compare the results against the setup 

without backup (B0) and summarize the results in Table 5. In doing so, we report 
the values for drone 1 and drone 2. For B1 and B2, we calculated the differences 
between the response times of drone 1 and drone 2 for each patient and we report 
the statistics in the table.

Analyzing the results shows that there is virtually no increase in the response time 
for drone 1 in B1 (except for outliers). However, drone 2 arrives notably later, but 

∑

i∈[m]

xij ≥ 2, j ∈ [q].

Table 4  (continued) Minimizing average travel time:       tmax = 20:00

s min(t) max(t) mean(t) median(t) 95% 99%

70 00:20 06:41 02:11 01:56 04:29 06:07

80 00:20 06:41 02:09 01:54 04:28 06:07

90 00:20 06:41 02:08 01:52 04:28 06:07

100 00:20 06:41 02:08 01:52 04:28 06:07

104 00:20 06:41 02:08 01:52 04:28 06:07

Table 5  Comparison of the 
Wingcopter 178 system

min(t) max(t) mean(t) median(t) 95% 99%

B0 0:22 6:56 2:36 2:24 5:00 6:23

B1

   Drone 1 0:20 10:36 2:43 2:27 5:33 6:53

   Drone 2 1:18 10:53 4:02 3:53 6:23 7:32

   Difference 0:01 5:37 1:19 1:04 3:17 3:56

B2

   Drone 1 0:20 10:36 3:13 3:01 6:07 7:14

   Drone 2 0:20 10:36 3:26 3:15 6:15 7:34

   Difference 0:00 5:52 0:12 0:00 1:56 3:53

16 base stations have two drones allocated
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for 95% of the patients the use of drone 2 is still beneficial. Moreover, we notice that 
the response times of drone 1 in B2 are longer than for drone 1 in B1. In B1 drone 2 
arrives on average 01:19 later at the same patient’s site than drone 1. In B2 this differ-
ence amounts to only 00:12. Also the 95% quantile in B2 indicates that the patients 
still benefit from the AED delivery. Note that in B2 we use 16 base stations equipped 
with 2 drones and 4 base stations equipped with 1 drone. Further, the slight decrease 
in the minimal response time of drone 1 in B1 and B2 (compared to B0) can be 
explained by the model choosing different assignments of drones to base stations. This 
is a valid behavior as the objective function is to minimize the average travel time.

To sum up, this analysis shows that considering backups in the assignment of 
drones to potential base stations enables a timely AED delivery even in the unlikely 
situation of simultaneously having two SCA patients closely located to each other.

4.3.3  Travel time comparison of de�brillator drones and air ambulance

Setup. In order to compare the performance of the defibrillator drone system to the 
conventional air ambulance, we first give a short overview of the air ambulance sys-
tem in South Tyrol. In the region there are three ambulance helicopters available that 
are located in Bozen, Brixen and Gröden (highlighted in Fig. 3). The latter is only 
available in the summer season, while the others offer all-season response (https ://
www.heli.bz.it/de/). As previously stated, the base stations of the helicopters are 
geographically decoupled from Val Venosta leading to relatively long flight times 
to locations in this region. Interviews with experts from the mountain rescue service 
of South Tyrol underline this by pointing to flight times varying between 14:00 and 
25:00 to locations in the most western parts of Val Venosta. Consequently, we argue 
that an optimally allocated fleet of drones could assist in reducing the time span 
between early defibrillation and helicopter arrival in case of SCA in the region. In 
order to learn more about helicopter flight times and to validate the expert state-
ments, we set up a meeting with representatives of the local air ambulance provider 
in January 2019. The mountain rescuers’ statements were confirmed, and further 
insights into air ambulance service in South Tyrol were gathered. In addition, a 
data set including 100 flight times of the three ambulance helicopters to histori-
cal emergencies (and corresponding latitude and longitude data of the emergency 
locations) in Val Venosta in 2018 was provided. The data set comprises information 
on the responding helicopter, its departure time and arrival time on the scene. It is 
to be noted that the data set does not include patient related information, i.e., it is 
not reported what kind of medical emergency occurred. The data set validated the 
assumption of having most patients located on official hiking trails. Therefore, the 
data can be used to compare the travel times of the helicopters against the drone 
network. Descriptive analysis of the data set reveals flight times with a minimum 
of 17:00, maximum of 48:00, and mean of 26:35, which further supports the expert 
statements. For comparison we use the given defibrillator drone network from 
ATTs36 using Wingcopter 178 without backup supply. Consequently, we determine 
the shortest travel time for each patient based on the selected base stations and com-
pare the generated results with the historical flight times of the data set.

https://www.heli.bz.it/de/
https://www.heli.bz.it/de/
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Results. We report on the results of travel times of defibrillator drones against 
helicopters responding to historical incidents from the data set discussed before. 
Analyzing the generated travel times of defibrillator drones shows that flight times 
to all emergency locations are well below 6 min except for one patient. The heli-
copter cannot undercut this threshold in any case. The minimal travel time for defi-
brillator drones amounts to 00:22 and for the helicopter it is 17:00. The extremely 
short flight time for the defibrillator drone with only 00:22 is achieved by a drone 
departing from a fire rescue base station located really close to a patient’s location. 
The maximum travel time for the drone system amounts to 06:09, while it is 48:00 
with the helicopter. The average flight time of defibrillator drones to patients’ sites 
is 02:05 and 26:35 for helicopters. The defibrillator drones reach 95% of the patients 
within 03:39 (compared to 36:56 with the helicopters). The 99% quantile for the 
defibrillator drones amounts to 05:01 and 47:00 for the helicopters. Interesting to 
observe is that in the worst case, the defibrillator drone requires 15.56% of the flight 
time of the helicopter (Table 6). We consider patients’ locations in Table 6, where 
the flight time of the drone is greater than 10% of the corresponding helicopter flight 
time. Additionally, we plot these locations in Fig. 8 (included in Appendix). All in 
all, we can observe remarkable reductions of the response times using the defibrilla-
tor drones compared against the existing helicopter fleet in the region.

5  Discussion and conclusion

Using our optimization model, we showed that (1) a dense network of drones allo-
cated in a remote region like the Alps in South Tyrol could deliver AEDs to emer-
gency patients on hiking paths, (2) the median travel time interval of the drones is 
02:24 (using the Wingcopter 178), (3) that an optimally allocated network of defi-
brillator drones could reduce the time span between AED provision and helicopter 
arrival, and (4) this substantially reduced time interval may be associated with a ben-
eficial outcome of SCA, namely a vastly improved chance of survival. Besides, the 
results show that considering backups in the assignment of defibrillator drones to 
potential base stations enables a timely AED delivery even in the unlikely situation of 
simultaneously having two SCA patients closely located to each other. Practitioners 
can benefit from this study in two respects. Firstly, we present mountain rescue ser-
vices a novel approach for extending their traditional response system by an innova-
tive means of transport. The technological features of the defibrillator drone itself can 
definitely increase the flexibility of response teams, thus reducing the time to provide 
critical support in the minutes after SCA. The developed model can provide a tool for 
decision makers in the field to optimally distribute defibrillator drones within local 
infrastructure under consideration of a given set of potential base stations. Notably, 
the proposed drone system should not replace air ambulance service, as the provision 
of intensive care medical treatment by helicopter crews is essential for the survival of 
the patient. From a scientific point of view, this paper is valuable in the sense that it 
is the first that studies the optimal allocation of defibrillator drones in mountainous 
regions. With this we enrich academic literature on the potential benefits, e.g., faster 
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provision of emergency care to SCA patients, that arise from combining a transform-
ative innovation and mathematical optimization.

Table 6  Comparison of the 
Wingcopter 178 system in the 
ATTs36 configuration against 
conventional helicopter rescue. 
We report the travel time 
(mm:ss) of the defibrillator 
drone network t

D
 , the travel 

time of the helicopter t
H

 , and 
the relative travel time of the 
defibrillator drones t

D
∕t

H
 

compared to the helicopter 
rescue

t
D

t
H

t
D
∕t

H
(%)

01:54 19:00 10.00

02:12 22:00 10.00

02:25 24:00 10.07

02:19 23:00 10.07

01:56 19:00 10.18

02:52 28:00 10.24

02:22 23:00 10.29

02:55 28:00 10.42

02:37 25:00 10.47

02:22 22:00 10.76

02:56 27:00 10.86

02:30 23:00 10.87

02:30 23:00 10.87

02:57 27:00 10.93

02:34 23:00 11.16

03:02 27:00 11.23

02:16 20:00 11.33

02:47 24:00 11.60

03:39 31:00 11.77

02:50 24:00 11.81

02:22 20:00 11.83

03:22 28:00 12.02

03:12 25:00 12.80

04:14 33:00 12.83

03:14 25:00 12.93

02:22 18:00 13.15

02:30 19:00 13.16

02:25 18:00 13.43

02:36 19:00 13.68

03:27 25:00 13.80

02:25 17:00 14.22

05:00 35:00 14.29

02:44 19:00 14.39

03:55 27:00 14.51

03:39 25:00 14.60

06:09 42:00 14.64

03:34 24:00 14.86

03:34 23:00 15.51

02:49 18:00 15.65
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There are several issues that limit this research and that are worth further considera-
tion. First of all, environmental factors that are characteristic for Alpine regions have 
great influence on the drones’ performance. Huge differences in temperature and stormy 
conditions may have an impact on the operability of drones, e.g., less power supply by 
the battery if the air temperature is under −10

◦ . In order to generate realistic data on the 
behavior of the considered drone model under such conditions, field experiments have to 
be conducted. Moreover, our study assumes that drones always fly in a straight line from 
the base station to the patient’s site. From the analysis it became clear that high moun-
tains account for long vertical take-off and landing times, which have a negative impact 
on the overall response times. A potential solution to this problem is to let the drone cir-
cle around high mountains instead of passing over them, which could result in reduced 
flight times of the drones. However, this may be subject to further research.

This study solely focuses on minimizing the response time to deliver an AED to 
the patient’s location by using a drone. Other times and factors that might contribute 
to a higher survival rate of the patient are disregarded in this setting. For instance, 
the time of the bystander’s CPR initialization, the ability of the bystander to place 
the defibrillator paddles on the patient’s chest, the quality of CPR or the connectivity 
of the bystander’s mobile device to place an emergency call influence the survival 
rate. Other delays in time caused by the bystander’s potential mental overload or 
panic could eventually have negative impacts on the patient’s survival. It is to be 
noted this whole methodology only works if a bystander is on the scene.

In our model, we assume that the flight corridor of the region is adapted to the par-
allel use of drones and ambulance helicopters. In practice, there is the need to equip 
drones and helicopters with automated collision warning systems to avoid aerial 
conflicts that might lead to the crash of both systems. GPS guidance of the drone, as 
assumed in our study, is also a limiting factor due to a lack of permission to fly beyond 
operator line of sight in almost all countries. Further political and legal discussions 
related to the automated use of drones for emergency purposes have to be stimulated. In 
this context, the Commission of the European Union has published a new regulation to 
harmonize remotely controlled UAV use in the entire European Union. This regulation 
was released in June 2019 and will become valid from July 2020 for all member states 
(https ://eur-lex.europ a.eu/eli/reg_impl/2019/947/oj, https ://eur-lex.europ a.eu/eli/reg_
del/2019/945/oj). Besides, in the current model it is obligatory for drones to land at the 
patient’s site due to safety reasons to avoid harming the bystander or patient by moving 
rotor blades. In case the emergency location is covered by snow or trees or is situated in 
a canyon, a safe landing of the drone cannot be guaranteed. Here, parachute or drop free 
systems, i.e., using a winch to let an AED down on a rope, could help to supply AEDs 
in almost every situation. This model extension will also be considered in future work.

In order to locate the drones at the defined base stations (i.e., shelter huts and fire 
rescue stations), infrastructural modifications must be implemented. Drones need 
electric power to operate. Consequently, shelter huts need to be equipped with power 
sources such as solar panels and accumulators that guarantee constant power supply 
to the drone. Autonomous take-off and landing systems also need to be installed in 
order to let the drone operate completely autonomously. Fire rescue stations need to 
be equipped with these systems too. Although we incorporate shelter huts and fire res-
cue stations to determine the optimal allocation of base stations, there may be other 

https://eur-lex.europa.eu/eli/reg_impl/2019/947/oj
https://eur-lex.europa.eu/eli/reg_del/2019/945/oj
https://eur-lex.europa.eu/eli/reg_del/2019/945/oj
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candidate locations that can be integrated in the model. Erecting new base stations at 
suitable locations could further reduce travel times to SCA patients. Prior to that, it has 
to be ensured that geographical conditions and legal regulations facilitate this. Experts 
(e.g., geologists, legal experts) have to be consulted, who decide which locations fulfill 
the desired requirements. Additionally, the installation of base stations in private homes 
and public institutions such as schools or post offices may be another option. Here, the 
number and type of base stations is mainly driven by financial considerations.

Furthermore, we run each scenario with a homogeneous fleet of drones. Future 
research could address the combination of different drone types in order to better 
react to different requirements of the response situation, i.e., using cheaper and slower 
drones for patients that are located close to base stations and fast and expensive ones 
for far away patients. Other extensions could comprise more sophisticated flight routes 
that could potentially result in shorter flight times. However, this would require a 
full 3D model of the considered region, which is not available to us. Moreover, this 
approach would require identifying the shortest path through the 3D environment that 
is also safe in terms of external parameters (e.g., thermal up and down winds, wind 
in general, other obstacles such as ropeways). Another model extension could com-
prise a general budget constraint accounting for drone hosting costs (price of electric-
ity, space, etc.) to be included in the model. To properly estimate the costs, it needs 
further discussions with specialists in charge of maintaining the infrastructure on site 
and relevant technicians that have comprehensive knowledge on drone technology. 
Future work should also include a feasibility study. Bridging the gap between theory 
and practice by qualitative research is needed. This serves for identifying barriers and 
accelerators to turn the proposed concept of this study into practice. Hence, discus-
sions with experts including mountain rescue services, EMS, and governmental stake-
holders are necessary. Moreover, drone providers should also be consulted regarding 
the evaluation of the technological transferability of this approach. In conclusion, our 
model shows that drones might serve as a valuable compliment to already existing 
helicopter-based EMS due to theoretically achieved much faster response times.

Acknowledgements Open access funding provided by University of Klagenfurt. This work was sup-
ported by the European Union Fund for regional development and Interreg V-A Italy Austria 2014-2020 
and was carried out, while the first author was employed within the Interreg project START (Smart test of 
Alpine rescue technology).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Appendix

Tables 7, 8 and Figs. 6, 7, 8.

http://creativecommons.org/licenses/by/4.0/


808 C. Wankmüller et al.

1 3

Table 7  The generated results 
when minimizing the number 
of defibrillator drones using 
LifeDrone AED system (mm:ss)

Minimizing number of drones:

t
max

s min(t) max(t) mean(t) median(t) 95% 99%

14:48 18 00:31 14:48 08:11 08:28 12:59 14:13

15:00 17 00:47 14:59 08:01 08:13 13:13 14:43

15:15 16 00:38 15:12 08:18 08:25 13:41 14:44

15:30 15 00:31 15:19 08:39 08:55 13:57 14:53

15:45 15 00:43 15:37 08:41 08:54 13:59 14:53

16:00 14 00:49 15:49 09:04 09:21 14:15 15:19

16:15 14 00:31 16:11 09:15 09:06 14:42 15:43

16:30 12 00:33 16:30 09:29 09:41 14:34 15:43

16:45 12 00:31 16:39 09:21 09:24 14:49 15:56

17:00 11 00:31 16:53 09:51 10:00 14:54 16:06

17:15 11 00:42 17:04 09:46 09:58 14:53 16:06

17:30 11 00:33 17:27 09:38 09:45 15:12 16:20

17:45 11 00:33 17:27 09:59 10:19 15:17 16:24

18:00 11 00:33 17:42 09:56 10:01 15:37 16:52

18:15 11 00:31 18:02 09:42 09:53 15:18 16:54

18:30 10 00:59 18:17 10:04 10:16 15:38 17:18

18:45 11 00:59 18:25 09:28 09:24 15:21 17:33

19:00 10 00:51 18:58 10:11 10:24 15:58 17:57

19:15 10 00:56 19:15 10:29 10:44 15:53 17:23

19:30 10 00:33 19:26 10:18 10:19 15:58 17:44

19:45 10 00:31 19:37 10:24 10:21 16:24 17:58

20:00 10 00:31 19:50 10:33 10:34 16:30 17:55

Table 8  The generated results 
when minimizing the number 
of defibrillator drones using the 
Wingcopter 178 system (mm:ss)

Minimizing number of drones:

t
max

s min(t) max(t) mean(t) median(t) 95% 99%

06:41 19 00:20 06:41 03:47 03:52 05:58 06:34

06:45 18 00:20 06:45 03:48 03:51 06:07 06:36

07:00 16 00:20 06:56 03:56 03:56 06:26 06:49

07:15 14 00:20 07:15 04:10 04:19 06:28 06:52

07:30 14 00:22 07:23 04:08 04:11 06:33 07:05

07:45 12 00:20 07:44 04:26 04:28 06:48 07:23

08:00 11 00:20 07:46 04:32 04:34 06:55 07:25

08:15 11 00:26 08:14 04:35 04:39 07:06 07:44

08:30 10 00:22 08:29 04:48 04:52 07:23 07:59

08:45 11 00:26 08:36 04:38 04:42 07:12 07:51

09:00 10 00:22 08:49 04:47 04:44 07:25 08:16

09:15 8 00:32 09:15 05:23 05:31 08:10 08:53

09:30 8 00:24 09:28 05:13 05:16 08:27 09:03

09:45 7 00:26 09:45 05:36 05:46 08:42 09:21

10:00 7 00:26 09:43 05:28 05:34 08:40 09:22

14:48 3 00:32 13:52 08:14 08:22 12:00 13:20

15:00 3 00:32 14:57 08:24 08:49 12:30 13:46
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Fig. 6  Illustration of the solution of configuration ATTs36 using the LifeDrone AED 
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Fig. 7  Illustration of the solution of configuration ATTs36 using the Wingcopter 178 system
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Fig. 8  Selected patients’ locations from the helicopter data set. Additionally, we report the flight times 
( mm ∶ ss ) of the defibrillator drones and the historical helicopter flight times (in brackets)
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