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ABSTRACT

In this paper, the new hybrid particle swarm opti-
mization (hybrid-PSO) based on particle swarm op-
timization (PSO), evolutionary programming (EP),
and tabu search (TS) is developed. Hybrid-PSO
is proposed to determine the optimal allocation of
multi-type flexible AC transmission system (FACTS)
controllers for simultaneously maximizing the power
transfer capability of power transactions between gen-
erators and loads in power systems without violating
system constraints. The particular optimal alloca-
tion includes optimal types, locations, and parame-
ter settings. Four types of FACTS controllers con-
sist of thyristor-controlled series capacitor (TCSC),
thyristor-controlled phase shifter (TCPS), static var
compensator (SVC), and unified power flow controller
(UPFC). Power transfer capability determinations
are calculated based on optimal power flow (OPF)
technique. Test results on IEEE RTS 24-bus system,
IEEE 30-bus system and, IEEE 118-bus system in-
dicate that optimally placed OPF with FACTS con-
trollers by the hybrid-PSO could enhance the higher
power transfer capability more than those from EP
and conventional PSO.

Keywords: FACTS Controller, Particle Swarm Op-
timization, Tabu Search, Evolutionary Programming
, Optimal Power Flow, Hybrid Method

1. INTRODUCTION

According to demands for electrical power energy
which have increased every year, the installation of
new electrical power plants or transmission networks
can reach these requirements. However, it may take
several years from the initial planning and design-
ing throughout construction. Moreover, the pollu-
tion control, high cost of installations and opera-
tions, and the land acquisitions may be the disad-
vantages of these utilities. Therefore, to meet those
increasing electricity consumption and demand, im-
proving of existing electricity power generation sys-
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tem is much reasonably appropriated and can be ap-
plicable for many parts of the world. The alternative
and advantage solutions to respond these increasing
demands are to improve the efficiency of power trans-
fer capability in the power system using Flexible AC
Transmission System (FACTS) [1]. The advantages
of FACTS include less cost of installations and oper-
ations, operating with none pollution, and providing
flexible control of the existing transmission system
[2].

FACTS controllers are power electronics based sys-
tem and other static equipment that have the capa-
bility of controlling various electrical parameters in
transmission networks [3]. These parameters can be
adjusted to provide adaptability conditions of trans-
mission network [4, 5]. There are many types of
FACTS controllers such as thyristor-controlled se-
ries capacitor (TCSC), static var compensator (SVC),
thyristor-controlled phase shifter (TCPS), and uni-
fied power flow controller (UPFC) [6]. These FACTS
controllers have been proved to be used for enhanc-
ing system controllability resulted in total transfer ca-
pability (TTC) enhancement and minimizing power
losses in transmission networks [7, 8].

Total transfer capability (TTC) is defined as an
amount of electric power that can be transferred over
the interconnected transmission network in a reliable
manner while meeting all of a set of defined pre- and
post-contingency system conditions [9].

The maximum performance of using FACTS con-
trollers to increase TTC and to minimize system
losses should be obtained by choosing suitable types,
locations, and parameter settings [10, 11]. The mod-
ern heuristics optimization techniques such as evo-
lutionary programming (EP) [12], tabu search (TS)
[13], genetic algorithm (GA) [14], and particle swarm
optimization (PSO) [15] are successfully implemented
to solve complex problems efficiently and effectively
[16]. In [17], EP is used to determine the optimal
allocation of four types of FACTS controllers. Test
results indicated that optimally placed OPF with
FACTS controllers by EP can enhance the TTC more
than OPF without FACTS controllers. In [18], TS
is used to tested and examined with different objec-
tives and different classes of generator cost functions
to demonstrate its effectiveness and robustness. The
results using the TS approach are compared with evo-
lutionary programming and non-linear programming
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techniques. It is clear that the TS approach outper-
forms the classical and evolutionary algorithms. In
[19], both GA and PSO are used to optimize the pa-
rameters of TCSC. However, there are more advan-
tageous performances of the PSO than those of GA.
PSO seems to arrive at its final parameter values in
fewer generations than GA. PSO gives a better bal-
anced mechanism and better adaptation to the global
and local exploration abilities [20]. Furthermore, it
can be applied to solve various optimization prob-
lems in electrical power system such as power system
stability enhancement and capacitor placement prob-
lems [21-25].

On the other hand, these modern heuristic meth-
ods have their limitations. Most of used control vari-
ables may define to the local values which give the
almost local answer values. Therefore, in this paper,
the new hybrid-PSO is developed. The aims of merg-
ing PSO, EP, and TS are to solve those limitations
and merge their advantages. The proposed hybrid-
PSO is used to determine locations, and parameter
settings of four types of FACTS controller (TCSC,
TCPS, SVC, and UPFC) to conduct TTC enhance-
ment. The IEEE RTS 24-bus system, IEEE 30-bus
system, and IEEE 118-bus system are used as the test
systems. Test results are compared with those from
EP and conventional PSO.

2. PROBLEM FORMULATION

To determine the optimal number and allocation of
FACTS controllers for TTC enhancement and power
losses reduction, the objective function is formulated
as maximization of TTC by (1). Power transfer capa-
bility is defined as TTC value : the sum of real power
loads in the load buses at the maximum power trans-
fer. TTC value can be transferred from generators
in source buses to load buses in power systems sub-
jected to real and reactive power generations limits,
voltage limits, line flow limits, and FACTS controllers
operating limits.

Four types of FACTS controllers include: thyristor-
controlled series capacitor (TCSC), thyristor-controlled
phase shifter (TCPS), unified power flow controller
(UPFC), and static var compensator (SVC). TCSC
is modeled by the adjustable series reactance. TCPS
and UPFC are modeled using the injected power
model [26]. SVC is modeled as shunt-connected static
var generator or absorber.

Maximize

F =
ND SNK∑

i=1

PDi+
ND SNK∑

i=1

PLOSSi−
NG∑
i=1

PGi (1)

Subject to

PGi−PDi+

m(i)∑
k=1

PPi(αPk)+

m(i)∑
k=1

PUi(VUk, αUk)

−
N∑
j=1

ViVjYij(XSi) cos(θij(XSi)−δi+δj) = 0

(2)

QGi−QDi+

m(i)∑
k=1

QPi(αPk)+

n(i)∑
k=1

QUi(VUk, αUk)+QV i

+
N∑
j=1

ViVjYij(XSi) sin(θij(XSi)−δi+δj) = 0

(3)

Pmin
Gi ≤ PGi ≤ Pmax

Gi ∀i ∈ NG (4)

Qmin
Gi ≤ QGi ≤ Qmax

Gi ∀i ∈ NG (5)

V min
i ≤ Vi ≤ V max

i ∀i ∈ N (6)

|SLi| ≤ Smax
Li ∀i ∈ NL (7)

V CPIi ≤ 1 ∀i ∈ N (8)

|δij | ≤ δcritij ∀i ∈ N (9)

Xmin
Si ≤ XSi ≤ Xmax

Si (10)

αmin
Pi ≤ αPi ≤ αmax

Pi (11)

V min
Ui ≤ VUi ≤ V max

Ui (12)

αmin
Ui ≤ αUi ≤ αmax

Ui (13)

Qmin
V i ≤ QV i ≤ Qmax

V i (14)

0 < locationk ≤ NorNL (15)



Optimal allocation of multi-type FACTS Controllers by using hybrid PSO for Total Transfer Capability Enhancement 57

Where

F objective function,
Pmin
Gi ,Pmax

Gi lower and upper limits of real
power generation at bus i,

Qmin
Gi ,Qmax

Gi lower and upper limits of reac-
tive power generation at bus i,

V min
i ,V max

i lower and upper limits of vol-
tage magnitude at bus i,

Smax
Li ith line or transformer loading

limit,
δcritij critical angle difference between

bus i and j,
Xmin

Si , Xmax
Si lower and upper limits of TCSC

at line i,
αmin
Pi , αmax

Pi lower and upper limits of TCPS
at line i,

V min
Ui , V max

Ui lower and upper voltage limits
of UPFC at line i

αmin
Ui , αmax

Ui lower and upper angle limits of
UPFC at line i,

Qmin
V i , Qmax

V i lower and upper limits of SVC
at bus i,

N,NL number of buses and branches,
NG number of generator buses,
ND SNK number of load buses in a sink

area,
nmax
CFK maximum allowable component

of FACTS type k,
Vi, Vj voltage magnitudes at bus i

and j,
δi, δj voltage angles of bus i and j,
PG1, QG1 real and reactive power genera-

tions at slack bus,
PGi, QGi real and reactive power genera-

tions at bus i,
PDi, QDi real and reactive loads at

bus i,
PLossi power loss at bus i,
PPi(αPk) injected real power of TCPS

at bus i,
QPi(αPk) injected reactive power of

TCPS at bus i,
PUi(V Uk,αUk) injected real power of UPFC

at bus i,
QUi(V Uk,αUk) injected reactive power of

UPFC at bus i,
Yij(XS), θij(XS) magnitude and angle of the

ijth
element in bus admittance
matrix with TCSC included,

m(i) number of injected power from
TCPS at bus i,

n(i) number of injected power from
UPFC at bus i,

|SLi| ith line or transformer loading,
V CPIi voltage collapse proximity indi-

cator at bus i,

|δij | angle difference between bus i
and j,

XSi reactance of TCSC at line i,
αPi phase shift angle of TCPS at line i,
VUi, αUi voltage magnitude and angle of

UPFC at line i,
QV i injected reactive power of SVC

at bus i, and
locationk integer value of line or bus location

of FACTS type k.

In this paper considers voltage collapse proximity
indicator (VCPI), thermal line flow limit, and static
angle stability constraint. The limits are treated as
OPF constraints in (6), (7), and (8), respectively.
During the optimization, inequality constraints are
enforced using a penalty function in (16) and (17).

PF = kph(PG1) + kq

NG∑
i=1

h(QGi)

+kv

N∑
i=1

h(Vi) + k

NL∑
i=1

h(|SLi|)

+kd

NL∑
p=1

h(|δij , p|) + kvi

N∑
i=1

h(V CPIi)

(16)

h(x) =

 (x− xmax)2 if x > xmax

(x− xmin)2 if x > xmin

0 if xmin ≤ x ≤ xmax
(17)

Where

PF penalty function,
xmin, xmax lower and upper limits of variable

x,
kp, kq, kv penalty coefficients for real power

generation at slack bus, reactive
power generation of all PV buses
and slack bus, and bus voltage
magnitude, respectively, and

ks, kd, kvi penalty coefficients for line loading,
angle difference, and voltage stabi-
lity index, respectively.

3. PROPOSED ALGORITHM

3.1 Overview of Evolutionary Programming

Evolutionary Programming (EP), a stochastic op-
timization strategy, originally conceived by Lawrence
J. Fogel in 1962. It is a mutation-based evolution-
ary algorithm applied to discrete search spaces [27].
The EP algorithm starts with random generation of
initial individuals in a population and then mutation
[28]. The processes after mutation are competition
and selection to create new offspring from parent.
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3.2 Overview of Tabu Search

The basic concept of tabu search as described
by Glover in 1986 is “a meta-heuristic superimpose-
don another heuristic”. The overall approach is to
avoid entrainment in cycles by forbidding orpenaliz-
ing moves which take the solution, in the next itera-
tion, to points in the solution space previously visited
[29-30].

3.3 Overview of Particle Swarm Optimization

Particle Swarm Optimization (PSO) is developed
by J. Kenedy and R. Eberhart in 1995 [31]. It is a
form of swarm intelligence simulated from the behav-
ior of a biological social system such as a flock of birds
or a school of fish. The PSO provides a population-
based search procedure when individuals (called par-
ticles) change their position. The position of each
particle is represented in X-Y plane with its position.
Each particle physically moves to the new position
using velocity according to its own experience, called
Pbest, and according to the experience of a neigh-
boring particle, called Gbest, which made use of the
best position encountered by itself and its neighbor
[32-33].

3.4 Hybrid-Particle Swarm Optimization

Hybrid-Particle Swarm Optimization (hybrid-
PSO) is an integrated approach between PSO, EP,
and TS by using PSO as a main algorithm. The gen-
eral flowchart of hybrid-PSO is shown in Fig. 1.

The main components of the algorithm are briefly
explained as follows:

Step 1: Generation of initial condition of each
particle. Initial searching points and velocities of
each particle are usually random within the allow-
able range. The current searching point is set to for
each particle. The best evaluated value of is set to ,
and the best value is stored.

Step 2: Evaluation of searching point of each par-
ticle. The objective function value is calculated for
each particle. If the value is better than the current
Pbest of the particle, the Pbest value is replaced by
the current value. If the best value of is better than
the current Gbest,Gbest is replaced by the best value
and the best value is stored.

Step 3: Modification of each search point. The cur-
rent searching point of each particle is changed using
conventional velocity equation of PSO in (18).

vk+1
i = w × vki + c1 × rand1 × (Pbesti − ski )

+c2 × rand2 × (gbest − ski )
(18)

Fig.1: A general flowchart of hybrid-PSO.

Where
vki velocity of particle ith at

iterations,
w weight function,
c1 and c2 weighting coefficients both

equal to 2,
rand1 and rand2 random number between 0

and 1,
ski current positions of particle

ith at iteration k,
Pbesti best position of particle

ith up to the current
iteration, and

gbest best overall position found
by the particles up to the
current iteration.

Weight function is given by (19):

w = wmax − wmax − wmin

itermax
× iter (19)

Where
wmax initial weight equal to 0.9,
wmin final weight equal to 0.4,
itermax maximum iteration number,

and
iter current iteration number.
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Step 4: Tabu list. This may be viewed as a “meta-
heuristic” superimposed on another heuristic method.
It is designed to jump local optimal and prevent the
cycling movement. It stores movement of solution
and forbids backtracking to previous movement [27,
28].

Step 5: Competition and selection. This utiliza-
tion technique is a tournament scheme, which can be
computed by using general competition and selection
method of EP [29].

Step 6: Checking the exit condition. The current
iteration number reaches the pre-determined maxi-
mum iteration number, then exits. Otherwise the
process proceeds to step 2.

3.5 Optimal Power Flow with FACTS con-
trollers by Hybrid Particle Swarm Opti-
mization

Hybrid-PSO is used to determine the optimal al-
location of multi-type FACTS controllers to maxi-
mize the objective function. The proposed method
is shown in Fig. 2, which can be described as follows:

Step 1: Solving base case power flow. This step
solves base case power flow between selection source
and sink areas. A full ac Newton-Raphson (NR)
power flow analysis is used.

Step 2: Initialize particles contain all variables.
The ith particle in a population is represented by a
trial solution vector as (20) and (21).

V T
p = [PGp, VGp, PDq, Lock] (20)

Lock = [nCFK , locationk, parameterk] (21)

Where
V T
p trial solution vector of the pth

particle,
VGi voltage magnitude of generator at

bus i including slack bus,
Lock allocation vector of FACTS

controller type k,
nCFk number of FACTS components,
nCFk equal 1,
locationk line or bus location of FACTS

type k, and
parameterk parameter settings of FACTS type

k

Step 3: Solving power flow. This step solves power
flow between selection source and sink areas. A full ac
Newton-Raphson (NR) power flow analysis is used by
including FACTS controllers static model and com-
pute the objective function. Then keep V T

i of the
best objective value as Pbest and Gbest. The objec-

Fig.2: A general flowchart of Proposed Algorithm.

tive function in (1) is taken as the fitness function of
the hybrid-PSO approach.

Step 4: Performing hybrid-PSO algorithm for new
searching point. All variables in (20) and (21) are
modified to new searching point using the hybrid-
PSO algorithm.

Step 5: Solving power flow. This step solves power
flow between selection source and sink areas. A full ac
Newton-Raphson (NR) power flow analysis is used by
including FACTS controllers static model and com-
pute the objective function. Then keep the V T

i of
best objective value as Pbest. If new objective value
is better than the previous value then V T

i is stored as
Gbest. The fitness values are evaluated, too.

Step 6: The best particle is stored by decision of
the best objective function.

Step 7: Stopping criteria. Repeat step 4-6 until
there is no improvement of the best fitness within 20
iterations or the maximum number of iterations is
reached.
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4. CASE STUDY AND EXPERIMENTAL
RESULT

The IEEE RTS 24-bus system, IEEE30-bus sys-
tem, and IEEE-118 bus system were used as test sys-
tems. In the simulations, the reactance limit of TCSC
in p.u. was 0 ≤ Xsi ≤ 60% of line reactance, phase
shifting angle limit of TCPS was −π

4 ≤ Xsi ≤ π
4 ra-

dian, angle limit of UPFC was −π ≤ αUi ≤ π radian,
voltage limit of UPFC was 0 ≤ VUi ≤ 0.1 p.u., and re-
active power injection limit of SVC was 0 ≤ QV i ≤ 10
MVAR. Loads were modeled as constant power factor
loads. The particle group sizes of conventional PSO
and hybrid-PSO were set to 30. The population size
of EP was set to 30. The maximum iteration num-
bers of EP, conventional PSO, and hybrid-PSO were
set to 400.

4.1 The IEEE RTS 24-bus system

The IEEE RTS 24-bus system consisted of 10 gen-
erating plants, 24 load buses, and 37 lines shown in
Fig. 3 was used as the first test system. Bus 13 was
set as swing bus. Base case TTC of IEEE RTS 24-bus
system equaled 1131.00 MW.

Fig.3: Diagram of IEEE RTS 24-bus system.

From Table 1, hybrid-PSO gave higher TTC than
EP and conventional PSO. The best, the average
and the worst TTC obtained from hybrid-PSO are
2317.98 MW, 2232.91 MW, and 2016.31 MW, respec-
tively. All of the best, the average, and the worst
TTC from hybrid-PSO were also better than EP and
conventional PSO. In addition, results from this test
system hybrid-PSO used less CPU time than conven-
tional PSO. The best optimal allocation of multi-type
FACTS controllers from hybrid-PSO was represented
in Table 2.

Table 1: TTC Results and CPU Time from EP,
conventional PSO, and hybrid-PSO on IEEE RTS 24-
bus system.
PPPPPPPPP
TTC
(MW)

Method EP conventional hybrid-
PSD PSO

Best 2164.71 2255.89 2317.98
Average 2051.30 2080.31 2232.91
Worst 1994.52 1932.37 2016.31

Standard 58.72 83.48 79.70
deviation

Average CPU 1.67 2.71 2.56
time (min)

Table 2: The optimal allocation of multi-type
FACTS controllers from hybrid-PSO of IEEE RTS
24-bus system.

Type of TCSC TCPS UPFC SVC
FACTS

Controller

Parameter Xs αp αu Vu Qv
of FACTS

(p.u) (rad) (rad) (p.u.) (MVAR)
Controller

0.0231 0.0012 -0.0011 0.0056 5.663

Location Line 25 Line 24 Line 10 Bus 24

4.2 The IEEE 30-bus system

The IEEE 30-bus system consisted of 6 generating
plants, 30 load buses, and 41 linesshown in Fig. 4
was used as the second test system. Bus 1 was set
as swing bus. Base case TTC of IEEE 30-bus system
equaled 164.30 MW.

Fig.4: Diagram of IEEE 30-bus system.

From Table 3, TTC results from hybrid-PSO were
higher than TTC from EP and conventional PSO.
The best, the average and the worst TTC obtained
from hybrid-PSO were 361.52 MW, 284.01 MW, and
263.87 MW, respectively. In this test system, hybrid-
PSO used the highest CPU time. It could be indi-
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cated that hybrid-PSO can step over the local optimal
and use more iterations and CPU times for conver-
gence to global optimal. The allocation of multi-type
FACTS controllers from hybrid- PSO was represented
in Table 4.

Table 3: TTC Results and CPU Time from EP,
conventional PSO, and hybrid-PSO on IEEE 30-bus
system.
PPPPPPPPP
TTC
(MW)

Method EP conventional hybrid-
PSD PSO

Best 224.61 228.65 361.52
Average 221.62 211.13 284.01
Worst 203.79 202.49 263.87

Standard 10.73 7.80 21.52
deviation

Average CPU 6.47 2.17 8.86
time (min)

Table 4: The optimal allocation of multi-type
FACTS controllers from hybrid-PSO of IEEE 30-bus
system.

Type of TCSC TCPS UPFC SVC
FACTS

Controller

Parameter Xs αp αu Vu Qv
of FACTS

(p.u) (rad) (rad) (p.u.) (MVAR)
Controller

0.0231 0.0012 -0.0011 0.0056 5.663

Location Line 29 Line 25 Line 27 Bus 24

4.3 The IEEE 118-bus system

The IEEE 18-bus system consisted of 54 generating
plants, 64 load buses, and 186 lines shown in Fig. 5
was used as the third test system. Bus 1 was set as
swing bus. Base case TTC of IEEE 118-bus system
equaled 1433.00 MW.

Fig.5: Diagram of IEEE 118-bus system.

From Table 5, TTC results from hybrid-PSO
showed higher TTC than those from EP and conven-
tional PSO. The best, the average and the worst TTC
obtained from hybrid-PSO are 3410.78 MW, 3174.95
MW, and 2906.22 MW, respectively. It could be in-
dicated that hybrid-PSO can step over from local op-

Table 5: TTC Results and CPU Time from EP,
conventional PSO, and hybrid-PSO on IEEE 118-bus
system.
PPPPPPPPP
TTC
(MW)

Method EP conventional hybrid-
PSD PSO

Best 2767.60 2979.08 3410.78
Average 2529.94 2832.75 3174.95
Worst 2373.30 2656.07 2906.22

Standard 126.86 94.34 132.65
deviation

Average CPU 40.29 16.25 16.72
time (min)

Table 6: The optimal allocation of multi-type
FACTS controllers from hybrid-PSO of IEEE 118-bus
system.

Type of TCSC TCPS UPFC SVC
FACTS

Controller

Parameter Xs αp αu Vu Qv
of FACTS

(p.u) (rad) (rad) (p.u.) (MVAR)
Controller

0.0553 0.0430 0.0581 0.0693 0.0193

Location Line 71 Line 144 Line 11 Bus 18

timal by TS and uses less CPU times than EP by
conventional PSO mechanism. In additional, compe-
tition and selection strategy gave the strong parents
to create new offspring particles for convergence to
global optimal. The allocation of multi-type FACTS
controllers from hybrid-PSO was represented in Table
6.

5. CONCLUSIONS AND FUTURE WORK

In this paper, hybrid-PSO was used to determine
the optimal allocations of multi-type FACTS con-
trollers. The hybrid-PSO used the selection mech-
anism of EP and updating strategy based on TS to
step over from the local solutions. These advantages
of hybrid-PSO can be used to calculate TTC, es-
pecially in large and complicate test system. The
hybrid-PSO resulted in the effectiveness to improve
the searching for optimal location and the operat-
ing points of multi-type FACTS controllers. The
overall results from the test systems indicated that
the hybrid-PSO can effectively and successfully en-
hance the higher TTC more than those from EP and
conventional PSO. In addition, the hybrid PSO can
create no different convergence in IEEE 24-bus and
IEEE 30-bus test system. Faster and better conver-
gence can also be created by the hybrid PSO, com-
pared to EP and conventional PSO in IEEE 118-
bus test system. These can specify that the hybrid
PSO use less sufficiency CPU time than EP and con-
ventional PSO. Therefore, the installation of FACTS
controllers with optimal allocation using hybrid-PSO
are worthwhile and beneficial for the decision making
and further expansion plans.
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