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Optimal and adaptive control of chaotic convection—Theory
and experiments

Po Ki Yuen and Haim H. Baua)

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,
Pennsylvania 19104-6315

~Received 29 July 1997; accepted 26 February 1999!

In theory and experiments, optimal and adaptive control strategies are employed to suppress chaotic

convection in a thermal convection loop. The thermal convection loop is a relatively simple

experimental paradigm that exhibits complex dynamic behavior and provides a convenient platform

for evaluating and comparing various control strategies. The objective of this study is to evaluate the

feasibility of employing optimal control and nonlinear estimator to alter naturally occurring flow

patterns and to compare the performance of the optimal controller with that of other controllers such

as neural network controllers. It is demonstrated that when the system’s model is not known,

experimental data alone can be utilized for the construction of a proportional controller. © 1999

American Institute of Physics. @S1070-6631~99!02806-8#

I. INTRODUCTION

In many industrial processes and in propulsion, it is of-

ten desirable to maintain flow conditions other than the natu-

rally occurring ones. In recent years, a few researchers have

demonstrated that active, feedback-type control strategies

can be used to modify the characteristics of fluid flow and

make the fluid behave in a desired way. A review of the

literature pertaining to the control of shear flows is given in

Gad-el-Hak.1 By using various control strategies, Choi, Moin

and Kim2 and Moin and Bewley3 have demonstrated numeri-

cally that the characteristics of turbulent channel flow can be

modified so as to reduce drag. Jacobson and Reynolds4 used

linear and neural network control to generate vortex pairs to

counteract the effect of intentionally induced vorticities in

water tunnel experiments. In theoretical calculations, Hu and

Bau5 used a linear feedback controller and distributed sen-

sors and actuators to significantly delay the linear loss of

stability of planar Poiseuille flows. Through the use of vari-

ous linear and nonlinear control strategies, Singer, Wang and

Bau,6 Singer and Bau,7 Wang, Singer and Bau8 and Yuen

and Bau9,10 demonstrated in both experiments and theory

that the nature of the flow in a toroidal thermal convection

loop heated from below and cooled from above can be sig-

nificantly modified and that chaos can be tamed. Subse-

quently, Tang and Bau11–16 and Howle17 showed in theory

and experiment that with the aid of a controller, the transition

from no-motion to steady convection in Lapwood and

Rayleigh–Bénard cells can be significantly postponed. More

recently, Bau18 and Or et al.19 demonstrated that the onset of

convection in Marangoni–Bénard convection can also be de-

layed.

In the last few decades, modern control system theory

has been gaining importance in various branches of science

and engineering. Briefly, one constructs a controller so as to

minimize some performance index or an objective function

such as the time-integral of the deviation of the system’s

state from a desired state. For examples of applications of

optimal control in fluid mechanics see Bewley, Moin and

Temam.20 The objective of this paper is to examine the ap-

plicability of modern control theory to the control of thermal

convection and to compare the performance of controllers

constructed using this theory with other controllers that were

investigated by us in the past.

Because fluid flow problems are nonlinear and possess

many degrees of freedom, the problem of controlling flow

patterns is far from trivial. We chose to focus our investiga-

tion on the thermal convection loop since it provides us with

a relatively simple experimental paradigm that exhibits com-

plex dynamic behavior and that provides us with a conve-

nient platform for evaluating various control strategies.

II. THEORETICAL STUDY

In this section, we set forth a simple mathematical model

for the flow in the loop, summarize briefly the solutions of

the governing equations for the uncontrolled system, modify

these equations to include a controller and analyze the con-

trolled system.

A. The mathematical model

Consider a thermal convection loop constructed from a

pipe bent into a torus and standing in the vertical plane as

depicted in Fig. 1. The diameter of the pipe is d; and the

diameter of the torus is D. u is the angular location of a point

on the torus. The wall temperature of the pipe, Tw(u ,t),

which may vary both with the angular location u and time t,

is symmetric with respect to the torus’ axis that is parallel to

the gravity vector. Variations in the wall temperature may

cause a spatial temperature distribution inside the fluid which

under appropriate conditions may induce fluid motion in the

loop.

a!Corresponding author. Telephone: ~215! 898 8363; fax: ~215! 573 6334;

electronic mail: bau@seas.upenn.edu
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We analyze the motion in the loop within the framework

of Boussinesq’s approximation, using a one-dimensional

model consisting of mass, momentum and energy

balances:8,21

u5u~ t !, ~1!

u̇5

1

p
Ra P R T cos~u !du2Pu , ~2!

and

Ṫ52u
]T

]u
1B

]2T

]u2 1@Tw~u ,t !2T# . ~3!

The fluid is assumed to be incompressible and Newton-

ian. In the above, all quantities are nondimensional; Ra

5gbDTt2/(DP) is the loop’s Rayleigh number; b is the

thermal expansion coefficient; g is the gravitational accelera-

tion; and DT is the averaged wall temperature difference

between the loop’s bottom and top. The time scale is t
5r0CPd/(4h), where r0 is the fluid’s average density, CP

is the thermal capacity, and h ~which we assume to be con-

stant! is the heat transfer coefficient between the fluid and the

pipe’s wall. P532nt/d2
58 Pr/Nu is the loop’s Prandtl

number, where n is the kinematic viscosity. Pr5n/a and

Nu5hd/k are the conventional Prandtl and Nusselt num-

bers, respectively. a and k are, respectively, the fluid’s ther-

mal diffusivity and conductivity; and B5(d/D)2/Nu is the

Biot number. The length scale is the torus’ radius, D/2. The

various approximations leading to Eqs. ~1!–~3!, were de-

tailed in Wang, Singer and Bau.8

The flow dynamics in the uncontrolled loop have been

investigated by, among others, Gorman et al.,22–24 Hart,25,26

Yorke, Yorke and Mallet-Paret27 and Ehrhard and Müller.28

By expanding the fluid and wall temperatures into Fourier

series, substituting the series into Eqs. ~1!–~3! and requiring

the equations to be satisfied in the sense of weighted residu-

als, one obtains an infinite set of ordinary differential equa-

tions. Three of the equations decouple from the rest of the set

~with exact closure! and can be solved independently of the

other equations without the need of truncation,8,29

ẋ15P~x22x1!, ~4!

ẋ252x1x32x2 ~5!

and

ẋ35x1x22x31Ra W1 . ~6!

Roughly speaking, x1(t) represents the cross-sectional aver-

aged speed. The variables x2(t) and x3(t) are, respectively,

proportional to the fluid’s temperature differences between

positions 3 and 9 o’clock and positions 12 and 6 o’clock

around the loop. These are the variables we measured in our

experiments. In our theoretical work, we use P54 since this

value approximates the loop’s Prandtl number in our experi-

mental apparatus. In the absence of control, W1521 and

Eqs. ~4!–~6! are the celebrated Lorenz equations.30

Equations ~4!–~6! with W1521 have been investigated

exhaustively in the literature ~i.e., Robbins,31 Sparrow32 and

Bau and Wang33!. Here, we summarize very briefly some

details relevant to our present study. The equations ~4!–~6!
with W1521 possess a number of equilibrium states, such

as the following.

~i! A no motion state ~B0 :x15x250, x352Ra! which

is both globally and linearly stable for Ra,1 and nonstable

for Ra.1.

~ii! Time-independent motion either in the clockwise

(B2) or counterclockwise (B1) direction ~B6 :x15x2

56 x̄2 , x3521!, where x̄25ARa21. When P54, B6 are

linearly stable for 1,Ra,RaH516.

~iii! Chaotic motion (BC) for Ra.RaH with occasional

windows of periodic behavior. In the chaotic regime, the

motion in the loop consists of irregular oscillations with re-

versals in the direction of the flow. For example, for Ra

;3 RaH(Q;3QC), Fig. 2 depicts the experimentally ob-

served temperature difference, x2;DT3 – 9 , between posi-

tions 3 and 9 o’clock as a function of time. The positive and

negative values of DT3 – 9 correspond to flow in the counter-

clockwise and clockwise directions, respectively. Qualita-

tively similar behavior was obtained in numerical simula-

tions.

FIG. 1. A schematic description of the thermal convection loop.
FIG. 2. The experimentally observed temperature difference between posi-

tions 3 and 9 o’clock is depicted as a function of time. Ra;3 RaH(Q

;3QC).
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B. The control problem

In this study, we assume that B1 is the state one wishes

to stabilize. In other words, we wish to suppress the chaotic

behavior and maintain laminar flow under the same operat-

ing conditions when the flow, if left to its own devices,

would be chaotic. We rewrite the equations ~4!–~6! in a local

form, x5 x̄1x8, where x̄ represents the state variables that

correspond to the B1 state. The bold x represents the vector,

xT
5$x1 ,x2 ,x3%. In addition, we add to the equation a sto-

chastic noise term to represent various influences that were

not included in the mathematical model @Eqs. ~4!–~6!#. x8

satisfies the equation:

ẋ85 f ~x8,u !5Ax81Bu1NL~x8!1Gz , ~7!

with the initial condition x8(t0)5x08 . x08 is a stochastic state

vector with a mean x̄08 . In the above,

A5S 24 4 0

2 x̄3 21 2 x̄1

x̄2 x̄1 21
D

is the plant matrix, BT
5$0,0,21% is the control input vector,

and GT
5$0,1,0% is the plant noise input vector. In the math-

ematical model, the control, u(t), is effectuated by modify-

ing the wall temperature. NLT
5$0,2x18x38 ,x18x28% consists of

the nonlinear terms. z(t) is a stochastic, Gaussian, white

noise, with a zero mean,

E$z~ t !%50, ~8!

E$z~ t !zT~t !%5Qzd~ t2t !, ~9!

and

E$x8~ t0!zT~ t !%50, ~10!

where E is the expectation operator, d is the Dirac function

and Qz5sz
2. Here, we chose the variance of the plant’s

disturbance sz
2
51.

In practice, not all the state variables were accessible for

measurement. For example, in our experiment, we measured

the temperature difference between positions 3 and 9 o’clock

(x2) and/or the temperature difference between 6 and 12

o’clock (2x3). The state variable, x1 , representing the fluid

speed, was not measured.

We denote the measured variables by the vector yi ,

where we consider three possible cases: ~1! y1
T
5$y2%, in

which only one state variable, x2 , is measured; ~2! y2
T

5$y2 ,y3%, in which two state variables, x2 and x3 , are mea-

sured; and ~3! y3
T
5$y1 ,y2 ,y3%, in which all state variables

are measured. The observed variables, y, relate to the state

variables through the equation,

yi5Cix81ni , ~11!

where C15$0,1,0%, C25(0 0 1
0 1 0), C35I, and I is the identity

matrix. ni(t) represents the possible observation noise that is

assumed to be stochastic, Gaussian, and white, with a zero

mean:

E$n~ t !%5E$z~ t !nT~t !%5E$x8~ t0!nT~ t !%50 ~12!

and

E$n~ t !nT~t !%5Nid~ t2t !, ~13!

where n15$n2(t)%, n2
T
5$n2(t),n3(t)%, and n3

T

5$n1(t),n2(t),n3(t)%. We assume that the stochastic pro-

cesses z(t), n(t) and x08(t) are independent. In the above, Ni

is an i3i symmetric, positive definite matrix and we chose

Ni5sn
2I and sn

2
51. Our objective is to devise a controller,

u, in such a way that the plant will be driven towards the

state x850.

C. The optimal control problem

We seek an input u such that the time integral,

Jx5

1

2~ t12t0!
E

t0

t1

~x8
TQx81uTRu !dt ,  ~14!

of the weighted sum of the deviation of the actual state from

the desired state and the deviation of the control input from

the desired ~nominal! input, is minimized. In the above, Q

and R are positive definite weight matrices whose relative

magnitudes reflect the ‘‘cost of the control.’’ For example,

when the control is cheap and one does not care about fre-

quent and large oscillations in the control signal, one can

select a relatively small value for iRi and the effect of the

second term in Jx will be downplayed. Since the various

components of x8 and u are of the same order of magnitude,

we chose Q5I and R51. The components of the state vector

are not independent, and they are constrained by the plant

equation ~7!. The task is to minimize ~14! subject to the

nonlinear equation ~7!. In Sec. II D, we consider the fully

nonlinear system and construct a nonlinear optimal control-

ler. In Sec. II E, we simplify matters by considering the lin-

earized version of Eq. ~7!. In other words, we drop the non-

linear term, NL(x8), from Eq. ~7! and we let t1→` . We

then compare the performance of the linear controller with

that of the nonlinear one.

D. Nonlinear, optimal control

In this section we solve the nonlinear problem ~7! to

construct an optimal controller. To this end, we define the

Hamiltonian,34

J5lT„Ax81Bu1NL~x8!…2
1

2
~x8

TQx81uTRu !, ~15!

where the Lagrange multipliers, l(t), satisfy the equation

l̇52S A1

]NL~x8!

]x8
D T

l1Qx8, ~16!

with the boundary condition l(t1)50. The optimal control

that minimizes the Hamiltonian ~15! is given by

u5R21BTl . ~17!

To compute the optimal control, one needs to solve si-

multaneously the coupled equations ~7!, ~16! and ~17!. This

is a two point boundary value problem. The initial conditions

for x8 are given at t5t0 and the terminal conditions for l are

given at t5t1 . We solved these equations numerically with

the aid of the software package AUTO.35
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Assuming that all the state variables are known exactly,

we computed the optimal controller when Ra53, RaH548,

t050, t1520 and x0
T
5$0.1, 0.1, 20.1%. Figure 3 depicts in

solid lines u as a function of x1 , x2 and x3 . The magnitude

of the objective function ~14! was Jx51.21. Clearly, the op-

timal controller stabilizes the otherwise nonstable fixed

point, xT
5$A47,A47,21%.

In general, the optimal controller, u, is a function of both

initial conditions and the terminal time, i.e., u5u(x08 ,t1).

For sufficiently large terminal times, t1 , one may expect u to

be independent of t1 . In this case, one can construct a feed-

back controller u5u(x8) such that the control depends only

on the plant’s state. Since an analytic solution for ~u! is un-

likely, one would need to carry out numerous computations

to construct a look-up table that would provide one with ~u!
as a function of x8. Such a program, which we do not carry

out here, can be efficiently carried out using dynamic pro-

gramming.

When x8 is small and t12t0 large, one can use the lin-

earized version of the state equation to construct a controller

with a state-independent gain. Such a controller is much

easier to construct and use than the nonlinear one. In the next

section, we construct a linear controller and compare its per-

formance with that of the nonlinear one.

E. Optimal control of the linearized system

In this section, we consider the linearized version

of Eq. ~7!, i.e., we drop NL(x8) from Eq. ~7!. Since

rank@BuABuA2B#53, the linear plant is controllable.36,37

In other words, by a proper choice of the input u, one can

transfer the plant from a state x8(t0) at time t5t0 to an-

other state, x18(t), in a finite time, (t2t0). Since

rank@Ci
TuATCi

Tu(AT)Ci
T#53 for i51, 2 and 3 ~identity ob-

server!, our problem is observable. In other words, given

output y and the input u in the time interval t0,t,t1 , one

can deduct the initial state x8(t0).

We use results of classical optimal control theory to con-

struct a linear regulator,

u5Kcx8, ~18!

that minimizes the objective ~14!, where Kc is a 133 gain

matrix. When the time horizon is infinite, t1→` , the optimal

gain is36–38

Kc52R21BTS,  ~19!

where the symmetric, positive definite matrix S is a solution

of the time-independent, matrix Riccati equation:

05SA1ATS2SBR21BTS1Q. ~20!

For example, when Ra53 RaH548, the optimal gain is

Kc5$0.47, 20.54, 2.07%. We integrated the nonlinear equa-

tions with the linear controller, Kc , and with the initial con-

ditions x0
T
5$0.1, 0.1, 20.1%. The simulation was carried out

for 20 time units. A dashed line in Fig. 3 depicts u @Eq. ~18!#
as a function of x1 , x2 and x3 . Despite the fact that the plant

experienced large deviations from the fixed point that we

wish to stabilize, the linear controller succeeds in performing

the control task, and it does so quite well. It is interesting to

compare the performance of the linear controller with that of

the nonlinear one ~the solid line in Fig. 3!. The magnitude of

the objective function ~14! was Jx51.28 for the optimal lin-

ear controller. This is about 6% larger than the Jx associated

with the nonlinear controller.

Figure 3 suggests that the linear controller has a fairly

sizable basin of attraction. In the next section, we will esti-

mate the size of this basin of attraction.

F. The basin of attraction of the linearly controlled
state

Linear theory guarantees that the controller will succeed

in suppressing small deviations from the controlled state. To

estimate the size of the basin of attraction of the controlled

system, we construct a Lyapunov function or ‘‘energy,’’

H(x8), such that H(0)50 and H(x8).0 for all x8Þ0,

where x850 is the fixed point of the controlled system ~the

state at which we would like to maintain the system!. H

satisfies a scalar equation of the form

Ḣ5

dH

dt
5F~x8!.  ~21!

H5Constant are spherical surfaces in phase space. One

can identify two spheres, H5H1 , and H5H2.H1 . As time

goes by, the H values ~‘‘energy’’! of all trajectories starting

within H1 decay monotonically, and x8→0. Trajectories

starting within the sphere H2 eventually, but not necessarily

monotonically, converge to x850.

FIG. 3. The behavior of the nonlinear system subject to optimal control in

the absence of stochastic noise. Ra53 RaH548. The control signal, u, is

depicted as a function of x. The solid and dashed lines represent, respec-

tively, a nonlinear optimal controller and a linear, Kc5$0.47,

20.54, 2.07%, optimal controller.
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We first determine H1 . The surface~s! F(x8)50 @Eq.

~21!# divide the phase space into subspace ~I! in which Ḣ

,0 and which contains the origin x850, and subspace ~II! in

which Ḣ.0. H(x8)5H1 is the largest ‘‘sphere’’ centered at

the origin that is fully contained in region I. As t→` , all

trajectories starting inside H1 , i.e., x8(0)5x08 and H(x08)

,H1 , will go through states of decreasing H values. In other

words, H→0 monotonically and x8(t)→0. The ‘‘sphere,’’

H1 , provides a lower bound ~a conservative estimate! of the

subspace of monotonically decaying disturbances. The size

of the ‘‘sphere,’’ H1 , depends sensitively on the choice of

the Lyapunov function. Unfortunately, we are not aware of a

systematic way to identify the ‘‘optimal’’ Lyapunov function

for nonlinear systems. For example, the intuitively obvious

choice, H(x8)5(1/2)„(1/P)x18
2
1x28

2
1x38

2…, is a poor one as

it results in H150.

Trajectories starting in subspace H(x08).H1 do not nec-

essarily diverge. Trajectories starting in subspace II, where

Ḣ.0, may eventually cross to subspace I, where Ḣ,0 and

then proceed towards the origin. Likewise, trajectories start-

ing in subspace I with H(x08).H1 are not guaranteed to end

up at the origin. Such trajectories may cross over to subspace

II, and eventually end up on a different attractor. We defined

a second ‘‘sphere:’’ H2>H1 such that for all x08 when

H(x08),H2 and t→` , H→0 and x8(t)→0, albeit not nec-

essarily monotonically. We estimated H2 numerically. To

this end, we constructed spherical surfaces of various sizes,

all centered at the origin. We covered these spheres with a

fine mesh and used each of the grid points on the sphere’s

surface as a starting point for the integration of the con-

trolled, nonlinear equations. H2 corresponds to the largest

sphere such that all trajectories starting on its surface end up

at x850 and some, but not all, of the trajectories starting at

H21e , where e is small, do not end up at x850. The

Lyapunov function associated with trajectories starting in H2

may approach zero in a nonmonotonic fashion. H2 provides

a conservative estimate ~lower bound! of the basin of attrac-

tion of the controlled state.

To obtain H, H1 and H2 , consider the controlled system,

ẋ85Acx81NL~x8!, ~22!

where the linear operator,

Ac5S 24 4 0

2 x̄3 21 2 x̄1

x̄22k1 x̄12k2 212k3

D ,

and k i are the linear optimal controller’s gains ~Sec. II E!.
We denote, respectively, the eigenvalues and eigenvectors of

Ac as $h1 ,h26ih3% and $v1 ,v26iv3%, where h i and vi are

real. Next, we introduce the vector z5V21x8, where V

5$v1 ,v2 ,v3%. Upon substituting z in Eq. ~22!, one obtains a

set of equations for z:

ż5V21AcVz1V21NL~Vz!. ~23!

Finally, we define the Lyapunov function,

H5zTCz, ~24!

where

C5S 2

1

2h1

0 0

0 2

1

2h2

0

0 0 2

1

2h2

D .

H satisfies the equation

Ḣ5F~z!52zTz12zTCV21NL~Vz!. ~25!

Since the expressions involved are quite lengthy, we will

restrict further discussion to the special case of Ra53 RaH

548. The surface F(z)50 is depicted in Fig. 4. A two-

dimensional cross-section (z350) of the phase space ~Fig.

4! is depicted in Fig. 5. The blank and shaded regions in Fig.

FIG. 4. The surfaces Ḣ50 are depicted as functions of the coordinates z1 ,

z2 and z3 in a three-dimensional phase space. The desired, set state is at the

origin. Trajectory A starting in subspace II (Ḣ.0) at z5zA , where H1

,H(zA),H2 , is in the domain of attraction of z50. Trajectory B starting

in subspace II at z5zB , where H(zB).H2 , is attracted to another fixed

point, z5zFÞ0, of the controlled system. The insert depicts trajectory B

from a different point of view. Ra53 RaH548 and Kc5$0.47,

20.54, 2.07%.
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5 correspond, respectively, to subspaces I and II. The projec-

tions of the spheres H1 and H2 on the plane z350 are de-

picted as circles.

Additionally, Fig. 4 depicts two trajectories: trajectory A

starting in subspace II (Ḣ.0) and at z5zA , where H1

,H(zA),H2 , and trajectory B starting in subspace II at z

5zB , where H(zB).H2 . The sequence of intersection

points of these two trajectories with the plane z350 are

shown, respectively, with x’s and o’s in Fig. 5. The numbers

next to the x’s and o’s denote the order of penetrations. Wit-

ness that as time increases, the trajectory ~A! that started at

z5zA crosses from subspace II into subspace I, loops around

z50 a number of times, and eventually ends up at the de-

sired controlled state. This trajectory is strongly attracted to

the plane z150. The trajectory ~B! that started at z5zB is

attracted to another fixed point, z5zFÞ0, of the controlled

system. In order to provide a better view of the trajectory

starting at z5zB , we depicted in the insert ~Fig. 4! a portion

of the phase space viewed at a different angle than the main

feature.

The magnitudes of the Lyapunov functions associated

with the trajectories A and B are depicted as functions of

time in Fig. 6. The Lyapunov function ~H! of A initially

increases in magnitude, attains a maximum, and then decays

to zero. The Lyapunov function ~H! of B increases in an

oscillatory fashion and approaches asymptotically H(zF).

Figures 4–6 illustrate that the linearly controlled state has a

fairly sizable domain of attraction.

G. The estimator

When attempting to realize the controller ~18! in prac-

tice, one encounters the difficulty that, when i,3 and/or in

the presence of measurement noise, the actual state of the

system, x8, is not known. To effectuate the control, it is

necessary to estimate the state x8 from the observed data, y.

We denote the estimated state by x̂ and replace Eq. ~18! with

u5Kcx̂. ~26!

Next, we derive an equation to estimate x̂. The deviation

between the estimate and the actual state is denoted as the

error,

e~ t !5x8~ t !2 x̂~ t !. ~27!

One would like to make this error as small as possible. We

require that the state estimator satisfy the nonlinear plant

equation ~7!. Since the matrix A is not stable, in the presence

of uncertainties in initial conditions and plant noise, the error

will diverge in time. To avoid such a divergence, one con-

structs an augmented plant equation for the estimator,

d x̂

dt
5Ax̂1Bu1Kf~yi2Cix̂!1NL~ x̂!. ~28!

The corresponding equation for the error, e, is

de

dt
5A*e2NL~e!1~Gz2Kfni!, ~29!

where A*5„A1]NL(x8)/]x82KfCi…. Since the state vari-

able x8 appears in the linear operator, A*, the computation

of an optimal filter that minimizes the expectation,

E(*
t0

t1eTe dt), requires knowledge of the state, x8. This state

is, however, not known. If it were known, there would be no

need for a state estimator. Instead of constructing an optimal

filter, we adopt here the more modest objective of determin-

ing a filter, Kf , such as to render the state e50 locally

attractive.

Local attraction is guaranteed when the logarithmic

norm,

m`~A*!5max
i

S A i ,i
* 1 (

j , jÞi
uA i , j

* u D , ~30!

is negative definite.39 In the above, A i , j
* is the i,j-th term of

the matrix A*. This matrix depends on the system’s state.

FIG. 5. The phase space of Fig. 4 is projected on the plane z350. The

spheres H1 and H2 are, respectively, conservative estimates of the domains

of monotonic decay and the basin of attraction of the controlled state, z

50. The x’s and o’s represent, respectively, the penetration points of tra-

jectory A starting at z5zA and trajectory B starting at z5zB . The numbers

next to x’s and o’s denote the order of penetrations. The blank and shaded

regions correspond, respectively, to subspaces I (Ḣ,0) and II (Ḣ.0).

FIG. 6. The magnitudes of the Lyapunov functions, H(t), associated with

the trajectories A and B shown in Figs. 4 and 5 are depicted as functions of

time.
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When all the state variables are available for ~noisy! mea-

surement, it is possible to choose appropriate controller gains

so as to render the logarithmic norm negative. A filter con-

structed this way may not be an optimal one since it may

amplify both system and measurement noise.

The requirement that the logarithmic norm be negative is

very conservative. It is a sufficient, but not necessary condi-

tion to assure that e50 is attractive. The state e50 may still

be attractive, even when the logarithmic norm is not nega-

tive. To estimate appropriate filter gains, we use a quasi-

steady approximation and denote the state-dependent eigen-

values of the matrix A* as g i(x8,Kf), where i51, 2, 3 and

Real(g1).Real(g2).Real(g3). When Kf
T
5$0.36, 1.75,

20.35% and Ra53 RaH548, Fig. 7 depicts Real(g1) as a

function of x8. Clearly, the magnitude of Real(g1) varies as

the state of the system changes. We denote the maximum

value of the real part of g1 as

gmax5max

x8,i

~Real„g i~x8,Kf !…!, ~31!

where the maximization is carried out over all admissible

states. In order to ascertain that the state e50 is attractive,

we selected Kf in such a way as to render gmax,0. Since

generally the resulting matrix, A*, is not normal, e50 is

asymptotically, but not necessarily, monotonically

attracting.40 It is possible that under certain circumstances

e(t) will amplify before decaying. Thus, in the presence of

persisting disturbances, the estimator may fail. This was not

the case, however, in our numerical experiments.

Below, we first describe the performance of the estima-

tor in the absence of a controller. The nonlinear plant ~7! and

the estimator ~28! are subjected to Gaussian, zero mean noise

with a variance sn
2
51. The plant performance is obtained by

integrating Eqs. ~7! and ~28!. The filter gain Kf was selected

in such a way as to assure gmax,0. No attempt was made to

optimize the filter.

Figure 8~a! depicts, respectively, x1 ~solid line! of the

uncontrolled, nonlinear system and the estimate x̂1 ~dashed

line! when only one variable (x2) is observed and Ra

53 RaH548. The frequency of the noise is 1 per time unit

and the filter, Kf
T
5$4, 1.75, 20.35%. The plant’s and estima-

tor’s initial conditions are, respectively, x0
T
5(x081 x̄)T

5$0.1, 0.1, 20.1% and ( x̂01 x̄)T
5$1,1,21%. In spite of the

chaotic behavior, the estimator performs surprisingly well.

As a function of time, Fig. 8~b! depicts the error, eTe/xTx.

H. The controller and estimator

Next, we analyze the combined performance of the con-

troller and estimator. To this end, we use the linear controller

~26! and the estimator ~28!.
When Ra53 RaH548, the optimal controller gain is

Kc5$0.47, 20.54, 2.07%. The eigenvalues of the linear op-

erator of the controlled system, (A1BKc), are $26.67,

20.7067.50i%. Figure 9 depicts in a solid line the behavior

of the controlled, nonlinear system when only one variable

(x2) is observed and when Kf
T
5$4, 1.75, 20.35%. The be-

havior of the uncontrolled, nonlinear system is depicted in a

gray line. The plant’s and estimator’s initial conditions are,

respectively, x0
T
5(x081 x̄)T

5$0.1, 0.1, 20.1% and ( x̂01 x̄)T

5$1,1,21%. As a function of time, Fig. 9~a! depicts the state

variable x2 ~solid line! and the estimate x̂2 ~dashed line! in

the presence of the controller. As a function of time, Figs.

9~b!, 9~c!, and 9~d! depict, respectively, the control signal, u,

the error, eTe/xTx and Real(g1).

The estimator successfully estimates the plant’s state

@Fig. 9~a!# and the controller suppresses the chaotic behavior.

FIG. 7. The largest real part of the state-dependent eigenvalues, Real(g1), is

depicted as a function of x8. Ra53 RaH548 and Kf
T
5$0.36, 1.75,

20.35%.

FIG. 8. ~a! The estimated ~dashed line! and actual state variables ~solid

line!, x1 , are depicted as functions of time. The filter gain, Kf
T
5$4, 1.75,

20.35%. Ra53 RaH548. One state variable is observed (x2). ~b! The error,

eTe/xTx, is depicted as a function of time.
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Once initial transients die out, relatively small modulations

of the actuator are needed to effectuate the control @Fig.

9~b!#. Due to the presence of noise, the estimator’s error does

not decay to zero @Fig. 9~c!#. Figure 9~d! illustrates that all

the quasisteady eigenvalues of the operator A* have a nega-

tive real part. When two variables ~x2 and x3! are observed

and when

Kf5S 4 0.38

0.91 20.09

20.09 1.24
D

~not shown here!, the combined performance of the control-

ler and estimator is slightly improved.

We have also experimented with a linear estimator. To

this end, we dropped the nonlinear term in Eq. ~28!. This

linearization caused only a modest deterioration in the con-

trolled system’s performance. The advantage of the linear

estimator over the nonlinear one is that it has a global basin

of attraction.

Finally, we tested how well a linear optimal controller

and estimator would perform. To this end, we dropped the

nonlinear term in Eq. ~7!, and we constructed an estimator

for the resulting linear system. Witness that the correspond-

ing equation for the error, e, is different from the linearized

version of ~29!, i.e., the operator (A-KfCi) replaces the op-

erator A*. The optimal ~Kalman! filter gain that minimizes

the error expectation, Kf , is36

Kf5PCi
TNi

21, ~32!

where the symmetric, positive definite matrix P is a solution

of the time-independent, matrix Riccati equation:

05AP1PAT
2PCi

TNi
21CiP1GQjGT. ~33!

Once Kf has been determined, the linearized version of Eq.

~28! is solved to obtain the state estimate, x̂. Note that this

‘‘optimal’’ filter does not guarantee that all the quasisteady

eigenvalues of A* have a negative real part.

Figure 10 depicts the performance of the uncontrolled

~gray line! and controlled, nonlinear system when two state

variables are available for measurement, Ra53 RaH548,

and the ‘‘optimal’’ Kalman filter gain matrix is

Kf5S 0.21 0.38

0.91 20.09

20.09 1.24
D .

Although the optimal controller operating in conjunction

with the linear ‘‘optimal’’ estimator has successfully sup-

pressed the chaotic motion even when the system exhibited

large amplitude oscillations and when nonlinear effects were

of considerable magnitude, the performance of the linear es-

timator is inferior to that depicted in Fig. 9 and the controller

took longer to stabilize the system.

FIG. 9. The behavior of the optimally controlled nonlinear system with a

nonlinear estimator. Kc5$0.47, 20.54, 2.07% and estimator Kf
T
5$4, 1.75,

20.35%. Ra53 RaH548. One state variable is observed (x2). As a function

of time, the figure depicts ~a! the temperature difference between positions 3

and 9 o’clock (x2) ~solid line!, the estimate for x2 ~dashed line! and the

behavior of the uncontrolled system ~gray line!; ~b! the control signal, Ra

1u; ~c! the error, eTe/xTx; and ~d! the largest real part of the state-

dependent eigenvalues, Real(g1).

FIG. 10. The behavior of the nonlinear system subject to optimal control

Kc5$0.47, 20.54, 2.07% and a linear ‘‘optimal’’ Kalman filter

Kf5S 0.21 0.38

0.91 0.09

20.09 1.24
D

in the presence of random noise. Ra53 RaH548. Two state variables are

observed ~x2 and x3!. ~a! The temperature difference between positions 3

and 9 o’clock (x2) ~solid line!, the estimate for x2 ~dashed line! and the

behavior of the uncontrolled system ~gray line! are depicted as functions of

time. ~b! The control signal, Ra1u , is depicted as a function of time.
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I. The control problem—A direct approach „adaptive
controller…

Since in many applications the state variables are not

known, we define a new objective function based on the

observed ~measured! quantities:

Jy5

1

2~ t12t0!
E

t0

t1

~yi
TQyi1uTRu !dt ,  ~34!

where we replaced x8 @Eq. ~14!# with y. The control rule is

u5Kn ,i
I yi , ~35!

where Kn ,1
I

5$k2%, Kn ,2
I

5$k2 ,k3% and Kn ,3
I

5$k1 ,k2 ,k3%. The

task is to determine the controller gain that minimizes ~34!.
To this end, we use the gradient descent technique. We start

by guessing an initial value for Kn
I . Let Kn

Ij

denote the value

of Kn
I at iteration j. We correct the components of Kn

I ac-

cording to

k i
j11

5k i
j
2h j

]Jy

]k i

, ~36!

where h.0 is a relaxation parameter. The derivative in ~36!
was evaluated using the finite difference:

]Jy

]k i

5

Jy~k i
j!2Jy~k i

j21!

k i
j
2k i

j21 . ~37!

We were able to accelerate the convergence rate somewhat

by modifying the relaxation parameter according to

h j
5h j21

Jy~k i
j21!

Jy~k i
j!

. ~38!

More specifically, we integrated the mathematical model ~7!
with the control rule ~35! for a predetermined amount of

time, t0,t,t1 . Typically, a time epoch of t12t0515 time

units was used. At the end of the simulation, we computed

the objective ~34! using a trapezoidal integration rule. Then,

we modified the components of Kn
I according to ~36! and

repeated the process until no significant further reduction in

Jy could be obtained.

In general, Kn
I is a function of initial conditions. More-

over, in the presence of noise, Jy is a stochastic variable, and

one should consider the expectation E(Jy) rather than Jy

itself. Since such an approach requires a great amount of

computations, we restrict ourselves to single observations. In

each computation, the plant was subjected to a similar noise

history.

In an attempt to accelerate the rate of convergence of the

gradient descent technique, we devised an alternative proce-

dure, the modified gradient descent, to estimate the gradient

of Jy . To this end, we treated the controlled system as an

open loop system, i.e., the controller input was considered to

be independent of the plant’s output. Taking Q5I, R51,

and using all the observed variables as the controller’s input,

we obtained41

]Jy

]k i

;E
t0

t1

y iS (
j51

N

y jS 1

k j

1k j D D dt ,  ~39!

where y and Kn have the same dimension, N<3. Although

we do not have a rigorous justification for using ~39! as an

estimate for the gradient, this technique worked exception-

ally well in our experiments. In contrast, numerical simula-

tions indicated that the modified gradient descent technique

~39! was sensitive to initial conditions and occasionally

failed to converge. When the modified gradient descent tech-

nique converged, however, it did so faster than the simple

gradient descent technique. We denote the controller gains

obtained using the modified gradient descent technique by

Kn
II .

We computed the controller gains using both the simple

and modified gradient descent techniques. When we em-

ployed the linear mathematical model as the plant, both gra-

dient descent techniques yielded controller gains that were

nearly identical ~within accepted numerical imprecision! to

the gains obtained using the theory of Sec. II E. However, the

modified gradient descent technique ~39! converged faster

than the simple gradient descent technique ~37!. This sug-

gests that t12t0;15 is sufficiently large to obtain a reason-

able agreement with the infinite horizon problem.

Subsequently, we used the gradient descent techniques

to compute the controller gains using the nonlinear model.

When the nonlinear model is used, the existence of a single

minimum is not guaranteed, and one stands the risk that the

gradient descent techniques may converge to a local mini-

mum rather than the global one. The results of the minimi-

zation also depended on the magnitude of the ‘‘relaxation’’

parameter, h, in Eq. ~36!, the initial guesses used in the mini-

mization process, and the initial conditions that were used in

the simulation. In both the optimization process and the ac-

tual control, we used a control rule that utilized only the

observed variables and an objective function based on the

deviation of the observed variables from their desired values.

For example, when only two state variables were available

for measurement, the control rule was u5k2(x22 x̄2)

1k3(x32 x̄3), and we computed the values of k2 and k3 in

the presence of stochastic plant noise with a uniform prob-

ability distribution function and uzu,1.

For example, when Ra53 RaH548 and in the presence

of stochastic noise, the simple gradient descent technique

and the nonlinear model yielded Kn ,3
I

5$0.34, 20.65, 2.00%
and Jy51.78. Here, all three state variables were available

for observation. With initial values, Kn ,3
I 0

5$0.5, 20.5, 0.5%
and h51024, the simple gradient descent technique required

132 iterations to converge. Once the gains were computed,

the controlled model was simulated and the objective func-

tion was calculated. The objective function obtained with

Kn ,3
I , Jy51.78, was about 1% smaller than the one obtained

with the optimal controller, Kc (Jy51.81), under otherwise

similar conditions. When a fixed value of h51023 was used,

the simple gradient descent technique required 278 iterations

to converge and the corresponding controller gain was Kn ,3
I

5$0.65, 20.79, 1.83% and Jy51.78.

When the modified gradient descent technique was used,

the number of iterations needed to achieve convergence was

reduced. This is perhaps due to the fact that all the controller

gains were modified at the same time. With initial values,

Kn ,3
II 0

5$0.7, 20.7, 3% and h53.331025, the modified gra-
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dient descent technique with the nonlinear model yielded

Kn ,3
II

5$0.29, 20.93, 2.17% and Jy51.78 within 46 iterations.

When h51.731024, 10 iterations were needed to obtain

Kn ,3
II

5$0.26, 20.94, 2.11% and Jy51.77.

We also calculated the controller gains assuming that

only two state variables, x2 and x3 , were available for ob-

servation. In this case with the simple gradient descent tech-

nique, we obtained Kn ,2
I

5$20.54, 2.09% and Jy51.78. With

initial values, Kn ,2
I 0

5$20.5, 0.5% and h51024, the simple

gradient descent technique took 165 iterations to converge.

The objective function of the controlled system utilizing the

Kn ,2
I controller was nearly of the same value as the one ob-

tained with Kn ,3
I Figures 11~a! and 11~b! depict, respectively,

x2 and u as functions of time in the presence of the Kn ,2
I

controller ~dotted line!, linear optimal controller, Kc ~solid

line!, and nonlinear optimal controller ~dashed line! for the

same initial conditions that were used in Fig. 3. The magni-

tude of the objective function associated with the Kn ,2
I con-

troller, 1.26, is smaller than that of the linear optimal con-

troller ~Sec. II E!, 1.28, but bigger than that of the nonlinear

optimal controller ~Sec. II D!, 1.21.

In order to verify that the search routine indeed con-

verged to a minimum value of Jy , we conducted numerous

numerical experiments in which we used the same initial

conditions and similar noise but different values of the con-

troller gains. When k150, we integrated the controlled equa-

tions for a predetermined length of time and computed the

objective, Jy . The constant Jy contours are depicted in Fig.

12. The x denotes the initial conditions at the beginning of

the minimization process. The dashed lines indicate the mini-

mization path. The heavy bullet, indicating the convergence

point of the gradient descent technique, is located close, if

not at, Jy’s minimum.

The techniques described in this subsection to determine

the controller gains are considerably more time-consuming

and tedious than the method described in Sec. II E. They

have, however, the advantage that they can be used when the

plant model is not known and the data are provided by an

experiment. Moreover, these techniques can handle nonlin-

ear plants.

III. EXPERIMENTS

In this section, we first describe the experimental appa-

ratus. Then, we show that it is possible to apply the gradient

descent techniques directly to the plant and construct a con-

troller. We also compare the performance of this controller

with that of other controllers that we investigated in previous

studies.

A. The experimental apparatus

The apparatus ~Fig. 1! consisted of a Pyrex pipe of di-

ameter d(50.030 m) bent into a torus of diameter D

(50.760 m). The apparatus stood in the vertical plane. The

lower half of the apparatus was heated with a uniform heat

flux resistance heater while the upper half was submerged in

a jacket containing a flowing coolant. The flow dynamics

depended sensitively on the coolant’s temperature. Hence,

the coolant was supplied by a constant temperature bath

~Neslab RTE-110! at a temperature of 2561 °C, and it was

circulated at a sufficiently high flow rate to approximate a

uniform wall temperature. The heater consisted of a metallic

layer ~instatherm! coated directly on the glass tube. This ar-

rangement assured low thermal resistance between the glass

tube and the heater. The heater was well insulated to mini-

mize heat losses to the ambient. The power supply to the

heater was computer-controlled. During the experiments, the

ambient temperature was 2462 °C.

In our experiments, we measured the total heat input to

the heater ~Q!, the coolant’s temperature and the fluid ~water!
temperature differences between positions 3 and 9 o’clock

and between positions 6 and 12 o’clock around the loop

which we denoted as DT3 – 9 and DT6 – 12 , respectively.

FIG. 11. The state variable x2 ~a! and the control signal, Ra1u ~b!, are

depicted as functions of time. The dotted, solid and dashed lines represent,

respectively, a system controlled with a suboptimal controller Kn ,2
l

5$20.54, 2.09%, a linear optimal controller Kc5$0.47, 20.54, 2.07% and a

nonlinear optimal controller in the absence of random noise. Ra53 RaH

548.

FIG. 12. Constant Jy contours are depicted as functions of the controller

gains k2 and k3 . The symbol ~3!, dashed lines and heavy bullet denote,

respectively, the initial conditions at the beginning of the minimization pro-

cess, the minimization path and the ‘‘optimal’’ value obtained using the

gradient descent technique in the presence of random noise. Ra53 RaH

548. k150.

1444 Phys. Fluids, Vol. 11, No. 6, June 1999 P. K. Yuen and H. H. Bau

Copyright ©2001. All Rights Reserved.



Roughly speaking, DT3 – 9 and DT6 – 12 correspond, respec-

tively, to x2 and 2x3 in the mathematical model. All quan-

tities were monitored as functions of time at the rate of 0.2

Hz with the aid of a computer-controlled data acquisition

system ~HP 3421!.

B. The uncontrolled flow in the loop

Below, we briefly describe the various flow regimes ob-

served in the loop as a function of the input heating rate in

the absence of a controller. When heating and cooling were

applied to the isothermal loop, depending on ~stochastic! ini-

tial conditions and the loop’s imperfections, the fluid motion

occurred either in the counterclockwise or clockwise direc-

tion. For relatively low heating rates, Q,QC;10065 W,

the flow inside the loop experienced low amplitude oscilla-

tions and it was unidirectional. We quantified the magnitude

of the temperature oscillations by computing the signal’s

rms, rms5A(1/N)( t51
N @DT3 – 9(t)2DT3 – 9#2, where DT3 – 9

5(1/N)( t51
N uDT3 – 9(t)u and N51,000. When Q;0.9QC ,

the rms of the oscillations were about 17% of the mean value

of DT3 – 9 . We speculate that the low amplitude oscillations

were caused by noise in the system, by the local instabilities

induced, for example, when the hot fluid exited from the

heated ~cooled! section into the cooled ~heated! one, and by

the presence of the nonstable periodic orbit generated at the

subcritical bifurcation at Q5QC . Although this periodic or-

bit is nonattracting, it can still influence the transient behav-

ior of the system.

When the heating rate exceeded the critical value, QC ,

the flow became chaotic with occasional reversals in direc-

tion. Figure 2 depicts DT3 – 9 as a function of time in the

chaotic regime. Q5300 W;3QC . Witness the irregular os-

cillations and the occasional changes in the sign of DT3 – 9 .

These changes in sign correspond to changes in the direction

of the flow. By extrapolating the time-averaged DT3 – 9 and

DT6 – 12 data for Q,QC , we estimated that as Q→QC ,

DT̄3 – 9→;3 °C and DT̄6 – 12→;1 °C.

C. The controlled system

The theoretical investigation presented in Sec. II sug-

gests that the characteristics of the motion can be modified

considerably with the use of an optimal controller. Unfortu-

nately, the mathematical model is not sufficiently accurate to

model the experiment quantitatively and the optimal control-

ler gains we calculated in Sec. II do not provide the desired

behavior in the experiment. More specifically, in the math-

ematical model, the controller dictates the wall temperature

while in the experiment, the controller dictates the heat input.

Therefore, we examined the feasibility of obtaining the con-

troller gains directly from experimental measurements.

In the experiment, the monitored temperature differences

DT3 – 9 and DT6 – 12 served to construct the observable vector

~y!. The control signal was transmitted to a computer-

controlled power supply ~HP 6032A! which, in turn, sup-

plied power Q to the heater, where

Q~ t !5Q01k2„DT3 – 9~ t1td!2DT̄3 – 9…

1k3„DT6 – 12~ t1td!2DT̄6 – 12….  ~40!

Due to the thermal inertia of the heating section, we

experienced a time-delay between the application of the con-

trol signal and the actual effect on the system. In order to

overcome the adverse effect of this time-delay, we extrapo-

lated the measured data to predict the signal ~y! ahead of

time. This was done by storing in memory DT3 – 9 and

DT6 – 12 values at times t, t2Dt , t22 Dt , t23 Dt and t

24 Dt , and using least-squares regression to fit the data with

a curve of the form a01a1t1a2t2. This quadratic expres-

sion was used to predict y at time t1td . Typically, time-

advance td515 s was used. When suppressing chaos with a

linear proportional controller, we experimented with various

values of td and td515 s led to minimal oscillations in the

power input Q.41 The magnitudes of DT̄3 – 9 and DT̄6 – 12 were

estimated by continuously time-averaging uDT3 – 9u and

DT6 – 12 , both in the presence and the absence of the control-

ler.

We wish to select the controller’s gains k2 and k3 in

such a way that the objective

Je5

1

2N (
t5Dt

N

„~DT3 – 9~ t !2DT̄3 – 9!2
1~DT6 – 12~ t !

2DT̄6 – 12!
2
1Ã~Q~ t !2Q0!2…  ~41!

is minimized. In most of our experiments, we set Ã
51(K2/W2). The summation was typically carried out over

an epoch of 250 data points collected for an interval of 1,250

s at a sampling rate of 5 s. At the end of each epoch, either

the simple or the modified gradient descent technique was

used to compute a correction for the controller’s gains ac-

cording to the algorithm described in Sec. II I.

The discrete version of the modified gradient descent

technique which accounts for the time-advance assumes the

form

k i
j11

5k i
j
2

h j

N (
t5Dt

N

@e f~ t !„DT i~ t1td!2DT̄ i…# , ~42!

where

e f~ t !5Q~ t !2Q0

1

( i52
3 „~DT i~ t !2DT̄ i!„DT i~ t !2DT i~ t2Dt !…)

( i52
3 k i

j„DT i~ t1td!2DT i~ t1td2Dt !…
,

~43!

and Dt is the time interval between successive measure-

ments.

Figure 13 depicts the behavior of the controlled system.

In Fig. 13, Q05300 W;3QC , k2527.5 W/K and k3

528.8 W/K. The controller gains were computed with the

aid of the modified gradient descent technique. A similar

performance, albeit with different controller gains, was ob-

tained when the simple gradient descent technique was used.

The appropriate controller gains are listed in Table I. Figures

13~a!, 13~b!, and 13~c! depict, respectively, DT3–9 , and
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DT6–12 and Q as functions of time. The dashed lines in the

figures depict the desired values that we wish to maintain.

The rms of oscillations in DT3 – 9 , DT6 – 12 and Q are, respec-

tively, 10%, 14% and 7% of the nominal, desired values.

Figure 13 should be contrasted with Fig. 2. Witness that the

controller has successfully suppressed the chaotic behavior

and maintains unidirectional flow in the loop.

Figure 14 depicts the objective function as a function of

the epoch during the computation of the controller gains.

When Q05300 W;3QC , the flow exhibits chaotic behavior

in the absence of a controller. A controller with initial values

of k25230 W/K and k35220 W/K was applied to the loop

at t50. Figure 14 depicts the objective, Je , as a function of

the epoch when the simple ~1! and modified ~o! gradient

descent techniques were used. In both cases, as the optimi-

zation proceeded, the magnitude of the objective function

decreased until it reached an asymptotic value. Because of

the naturally occurring noise in the system, it was not pos-

sible to reduce the magnitude of the objective function any

further. The figure suggests that the modified gradient de-

scent technique converges significantly faster than the simple

gradient descent technique. The simple and modified gradi-

ent descent techniques did not yield exactly the same values

for the controller gains and there is no guarantee that either

of them converged to the global minimum of the objective.

Some of our experimental data is summarized in Table I.

For various nominal heating rates, the table documents the

initial and controller gains when the simple and modified

gradient descent techniques were used and the controlled

system’s performance. The system’s performance is charac-

terized by the relative rms of the oscillations of the measured

temperature differences and the power and the magnitude of

the objective function of the controlled system ~once the con-

troller was implemented!. We did not carry out an extensive

statistical analysis. Table I illustrates, however, that the rela-

tive magnitude of the temperature differences and power os-

cillations did not increase significantly when the power was

increased. The rate of convergence of the simple gradient

descent technique appears to decrease as the power was in-

creased. The rate of convergence of the modified gradient

descent technique was less sensitive to the power level.

These observations are not conclusive and the results re-

ported in Table I may have been affected by factors such as

initial conditions and environmental noise, both of which

varied from one experiment to another. The two gradient

descent techniques led to different controller gains with simi-

lar performance characteristics. The ‘‘optimal’’ controller

gains were not unique and they depended also on the initial

conditions. The modified gradient descent technique ap-

peared to converge faster than the simple gradient descent.

This is perhaps due to the fact that the modified method

updates all the controller gains at once while the straightfor-

ward method modifies one controller gain at a time.

IV. DISCUSSION AND CONCLUSIONS

In the theoretical investigation, we used optimal control

theory and a nonlinear estimator to construct a controller. An

optimal controller that was constructed utilizing linear theory

proved to be effective even when nonlinear effects were im-

portant, and it had a sizable basin of attraction. Since in

many fluid mechanical applications the system model may

not be available or it may be too complicated to analyze, we

have also investigated theoretically a procedure for con-

structing an adaptive controller by directly minimizing an

objective function. This approach can be used in conjunction

FIG. 13. The controlled, experimentally measured temperature difference

between positions 3 and 9 o’clock ~a!, the temperature difference between

positions 6 and 12 o’clock ~b! and the power fluctuations ~c! are depicted as

functions of time. Q05300 W;3QC , k2527.5 W/K, k3528.8 W/K, and

td515 s.

FIG. 14. The objective ~41! is depicted as a function of the epoch when the

simple ~1! and modified ~s! gradient descent techniques are used. Q0

5300 W;3QC .
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with the nonlinear model and when knowledge of the sys-

tem’s model is not available. The direct minimization proce-

dure was verified by testing it on the linear model and dem-

onstrating that the predicted controller gains were similar to

the ones obtained using the Riccati equation method. The

procedure was then tested theoretically by applying it to the

nonlinear plant. Finally, we verified that the gradient descent

technique can be used to compute controller gains directly

from experimental data.

In previous work, both in experiment and theory, Yuen41

and Yuen and Bau10 used neural networks to suppress cha-

otic convection in the same thermal convection loop studied

in this paper. The neural network controller was connected in

series with the plant and it utilized the backpropagation al-

gorithm to compute the weights and biases of the neurons.

The neurons had a sigmoidal transfer function. We experi-

mented with various neural network architectures ranging

from one to two hidden layers and from one to ten neurons in

each hidden layer. In most of the experiments, we used feed-

forward networks; but, in some experiments, we also used

recurrent networks. The adaptive controller provided better

performance than the one obtained with neural network con-

trollers. For example, when Q/QC53, our ‘‘best’’ neural

network controller yielded @rms(DT3 – 9)/DT̄3 – 9#(61%)

;13%, @rms(DT6 – 12)/DT̄6 – 12#(61%);20%, and

@rms(Q)/Q̄#(61%);17%.41 These values should be com-

pared with the values given in Table I. The relatively poor

performance of the neural network controller is somewhat

surprising since one can view the adaptive controller as a

special case of a ‘‘linear’’ neural network. We speculate that

this poor performance was caused by the backpropagation

procedure which we used to compute the neural network’s

weights and biases converging to a local minimum rather

than a global one. Less surprisingly, the adaptive controller

required much smaller power oscillations than the neural net-

work controller. This is because the power oscillations were

not included as a part of the neural network controller’s ob-

jective function. The neural network controller also required

a significantly longer amount of time to train than the adap-

tive controller.

The neural network controller had, however, a few ad-

vantages over the adaptive controller. The neural network

controller did not require the specification of the nominal

power input, Q0 . In other words, to effectuate the neural

network controller, no knowledge was needed of the rela-

tionship between the nominal power and the desired state

variables. In contrast, the implementation of the adaptive

controller required knowledge of the relationship between

Q0 and the state variables. Such knowledge may not always

be available. Moreover, at moderate power levels, the neural

network controller was capable of compensating for the

time-delays in the system. In contrast, in order to effectuate

the adaptive control, it was necessary to predict the observed

signal ahead of time.

We emphasize that the conclusions drawn here are based

solely on our limited experience with neural networks. A

great deal still remains to be learned about neural networks.

It is very likely that their performance can be improved

much beyond what we have been able to accomplish thus far.
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