
Optimal and General Out-of-Order
Sliding-Window Aggregation

Kanat Tangwongsan
Mahidol University International College

kanat.tan@mahidol.edu

Martin Hirzel
IBM Research

hirzel@us.ibm.com

Scott Schneider
IBM Research

scott.a.s@us.ibm.com

ABSTRACT

Sliding-window aggregation derives a user-defined summary of

the most-recent portion of a data stream. For in-order streams,

each window change can be handled in O(1) time even when the

aggregation operator is not invertible. But streaming data often arrive

inherently out-of-order, e.g., due to clock drifts and communication

delays. For such streams, prior work resorted to latency-prone

buffering or spent O(log n) time for every window change, where

n is the instantaneous window size. This paper presents FiBA, a

novel real-time sliding window aggregation algorithm that optimally

handles streams of varying degrees of out-of-orderness. FiBA is as

general as the state-of-the-art and supports variable-sized windows.

An insert or evict takes amortized O(log d) time, where d is the

distance of the change to the window’s boundary. This means O(1)

time for in-order arrivals and nearly O(1) time for slightly out-of-

order arrivals, tending to O(log n) time for the most severely out-

of-order arrivals. We also prove a matching lower bound, showing

optimality. At its heart, the algorithm combines and extends finger

searching, lazy rebalancing, and position-aware partial aggregates.

Further, FiBA can answer range queries that aggregate subwindows

for window sharing. Finally, our experiments show that FiBA

performs well in practice and conforms to the theoretical findings,

with significantly higher throughput than O(log n) algorithms.

PVLDB Reference Format:

Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. Optimal and
General Out-of-Order Sliding-Window Aggregation. PVLDB, 12(10): 1167–
1180, 2019.
DOI: https://doi.org/10.14778/3339490.3339499

1. INTRODUCTION
Sliding-window aggregation is indispensable in streaming appli-

cations that involve continuously summarizing part of a data stream.

With stream processing now in widespread production in various

domains, sliding-window aggregation frameworks are expected to

deliver high throughput and low latency while allowing for simple

expression of a wide variety of aggregation operations.

Aggregation frameworks, when feasible, apply aggregation opera-

tions incrementally—that is, by keeping running partial aggregates

and modifying them in response to values arriving or leaving the

window. To aid simple expression of aggregation operations, past

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 10
ISSN 21508097.
DOI: https://doi.org/10.14778/3339490.3339499

Table 1: Aggregation operators.

Invertible Associative Commutative

Sum-like: sum, count, mean,
geomean, stddev, ...

X X X

Collect-like: collect list, con-
cat strings, ith-youngest, ...

X X ×

Max-like: max, min, argMax,
maxCount, M4 [24], ...

× X ?

Mergeable sketch [4]: Bloom,
CountMin, HyperLogLog,
algebraic classifiers [22], ...

× X X

work [12, 15, 33] proposes casting them as binary operators. Their

algebraic properties (see Table 1) dictate how efficiently they can

be incrementalized. While an invertible and commutative binary

operator (one with an explicit “subtract” operation, e.g., sum) is the

simplest to efficiently handle, associative binary operators encom-

pass a wider class of operations (e.g., min/max, min-/maxCount,

M4 [24], Bloom filters [11], mergeable summaries [4], algebraic clas-

sifiers [22], Apache Flink’s interface for AggregateFunction [14])

and strike the best balance between expressiveness and efficiency.

For strictly in-order streams, performance differences between these

two classes are minor. The fastest algorithms for associative op-

erators take only O(1) time per window change, without requiring

invertibility, commutativity, or other properties [29, 32].

In reality, however, out-of-order streams are the norm [5], with

support provided on many stream processing platforms (e.g., [6,

7, 14, 37]). At the level of aggregation operators, solutions to

out-of-order arrivals fall into two broad categories: (i) Solutions

that buffer data items long enough to reorder them for use with an

in-order aggregation operator. This approach is simple but prone

to high latency, making it intolerable for applications that require

real-time or fine-grained queries, e.g., when seeking millisecond

responsiveness to avert risks. (ii) Solutions that eagerly incorporate

data items into the aggregation data structure as soon as they arrive.

As such, the aggregation is always updated and ready for queries, but

this requires out-of-order handling in the aggregation framework. Its

main advantage is more controlled latency. The best known solution

uses an augmented balanced tree (e.g., the red-black tree), costing

O(log n) time per insert or evict, where n is the window size.

Still, out-of-order streams come in many flavors: Clock skew

and network delays cause random, but mostly small, delays [31].

Batching causes frequent short spikes of moderate delays [16].

Failure followed by subsequent recovery can cause rare bursts of

large delays [25]. In all these scenarios, the O(log n)-time bound

stands in stark contrast with O(1) for the in-order setting. In practice,

this gap is found to translate to several-fold differences in latency

and throughput. This work sets out to bridge this difference.

1167

In another line of work, because many early streaming systems use

sliding-window algorithms that are too slow for large window sizes n,

they encourage users to specify coarse-grained windows, thereby

reducing the effective n [15, 26, 27, 34]. This puts the burden on

the programmers to trade off accuracy against time. While there are

scenarios where coarse-grained windows suffice, only fine-grained

windows can capture detailed behavior of a stream. Furthermore,

fixing a coarse granularity up-front precludes finer granularities in

ad-hoc queries. This work aims to reduce the technology limitations

that motivate such manual trade-off, so users can pick the window

granularity more on the basis of application requirements. That said,

when desired, our solution can also use coarse-grained windows.

This paper introduces the finger B-tree aggregator (FiBA), a

novel algorithm that optimally aggregates sliding windows on out-

of-order streams and in-order streams alike. Each insert or evict

takes amortized O(log d) time, where the out-of-order distance d

is the distance from the inserted or evicted value to the closer end

of the window (see Theorem 5 for a more formal statement). This

means O(1) for in-order streams, nearly O(1) for slightly out-of-order

streams, and never more than O(log n) for even severely out-of-order

streams. FiBA requires O(n) space and takes O(1) time for a whole-

window query. It is as general as the prior state-of-the-art, supporting

variable-sized windows and querying of any subwindow while only

requiring associativity from the operator. To our knowledge, no

existing out-of-order algorithms can achieve both this time bound

and this level of generality.

In broad strokes, the heart of our algorithm is a specially-designed

B-tree with the following technical features:

⊲ Lean finger-searching. By maintaining minimal fingers (pointers)

to the start and end of the tree, FiBA can locate any value to insert

or evict in O(log d) worst-case time.

⊲ Constant-time rebalancing. By carefully selecting and adapting

a specific variant of B-trees, the tree can store values in both

internal and leaf nodes (fully utilizing the space), and can be

rebalanced in O(1) amortized time via a somewhat lazy strategy.

Note that the more standard B-tree variants with, for example,

MAX_ARITY= 2·MIN_ARITY-1 and eager rebalancing, while opti-

mized for top-down operations, do not have the same guarantees.

⊲ Position-aware partial aggregates. By devising position-aware

partial aggregates and a corresponding algorithm, FiBA keeps

the cost of aggregate repairs at most that of search and rebalance.

Furthermore, FiBA is optimal and supports window sharing. We

prove that FiBA has the best asymptotic running time possible,

showing that for insert and evict with out-of-order distance up

to d, in the worst case, an operation must cost at least amortized

Ω(log d). We also show how FiBA can support window sharing

with query time logarithmic in the subwindow size and the distance

from the largest window’s boundaries. Here, the space required is

O(nmax), where nmax is the size of the largest window.

Our experiments confirm the theoretical findings and show that

FiBA performs well in practice. This paper reports results with both

synthetic and real data, with implementations in both C++ and Java,

and with comparisons against Flink [14], RA [33], TwoStacks and

DABA [32], and (new) Scotty [34]. For large windows over slightly

out-of-order streams, FiBA yields up to 4.9× higher throughput

than existing algorithms. For strictly in-order streams (i.e., FIFO),

FiBA demonstrates constant-time performance and, depending on

the implementation language/platform, can be slower or faster than

specialized solutions for in-order streams.

Overall, FiBA makes out-of-order sliding-window aggregation

less resource-hungry and more responsive, enabling it to be used in

situations where it was previously deemed too expensive.

2. OOO SWAG AND LOWER BOUND
Consider a data stream where each value carries a logical time in

the form of a timestamp. Throughout, denote a timestamped value

as
[
t
v

]
or t:v in inline rendering. For example,

[2.3
5

]
or 2.3:5 is

the value 5 at logical time 2.3. The examples in this paper use real

numbers for timestamps, but our algorithms do not depend on any

of their properties besides total ordering, so, e.g., they work just as

well with date/time representations.

It may seem intuitive to assume that values in such a stream arrive

in nondecreasing order of time (in order). However, due to clock drift

and disparate latency in computation and communication, among

other factors, values in a stream often arrive in a different order than

their timestamps. Such a stream is said to have out-of-order (OoO)

arrivals—there exists a later-arriving value that has an earlier logical

time than a previously-arrived value.

Our goal in this paper is to maintain the aggregate value of a

time-ordered sliding window in the face of out-of-order arrivals. To

motivate our formulation below, consider the following example,

which maintains the max and the maxcount, i.e., the number of times

the max occurs in a 5-second sliding window.
[2.0

4

]
,
[3.0

3

]
,
[4.0

0

]
,
[6.0

4

]
max 4,maxcount 2

Initially, the values 4, 3, 0, 4 arrive in the same order as their

associated timestamps 2.0, 3.0, 4.0, 6.0. The maximum value is 4,

and maxcount is 2 because 4 occurs twice. When stream values

arrive in order, they are simply appended. For instance, when
[6.5

4

]

arrives, it is inserted at the end:
[2.0

4

]
,
[3.0

3

]
,
[4.0

0

]
,
[6.0

4

]
,
[6.5

4

]

max 4,maxcount 3

But when values arrive out-of-order, they must be inserted into

the appropriate spots to keep the window time-ordered. For instance,

when
[2.3

5

]
arrives, it is inserted between timestamps 2.0 and 3.0:

[2.0
4

]
,
[2.3

5

]

,
[3.0

3

]
,
[4.0

0

]
,
[6.0

4

]
,
[6.5

4

]
max 5,maxcount 1

As for eviction, stream values are usually removed from a window

in order. For instance, if the watermark progresses to 7.2, that causes[2.0
4

]
to be evicted from the front of the 5-second window:

✟
✟✟❍
❍❍

[2.0
4

]

,
[2.3

5

]
,
[3.0

3

]
,
[4.0

0

]
,
[6.0

4

]
,
[6.5

4

]
max 5,maxcount 1

Notice that, in general, eviction cannot always be accomplished

by simply inverting the aggregation value. For instance, when the

watermark reaches 7.7, evicting
[2.3

5

]
cannot be done by “subtracting

off” the value 5 from the current aggregation value. The algorithm

needs to efficiently discover the new max 4 and maxcount 2:

✟
✟✟❍
❍❍

[2.3
5

]

,
[3.0

3

]
,
[4.0

0

]
,
[6.0

4

]
,
[6.5

4

]
max 4,maxcount 2

Monoids. Monoids capture a large class of commonly used ag-

gregations [12, 33]. A monoid is a triple M = (S, ⊗, 1), where

⊗ : S × S → S is a binary associative operator on S, with 1 being

its identity element. Notice that ⊗ only needs to be associative;

while it is sometimes also commutative or invertible, neither of those

additional properties is required. For example, to express max and

maxcount as a monoid, if m and c are the max and maxcount, then

〈m1, c1〉 ⊗max,maxcount 〈m2, c2〉 =

〈m1, c1〉 if m1 > m2

〈m2, c2〉 if m1 < m2

〈m1, c1 + c2〉 if m1 = m2

Since ⊗ is associative, no parentheses are needed for repeated

application. When the context is clear, we omit ⊗, e.g., writing qstu

for q ⊗ s ⊗ t ⊗ u.

OoO SWAG. This paper is concerned with maintaining an aggre-

gation on a time-ordered sliding window where the aggregation

1168

operator can be expressed as a monoid. This can be formulated as

an abstract data type (ADT) as follows:

Definition 1. Let (⊗, 1) be a binary operator from a monoid and its

identity. The out-of-order sliding-window aggregation (OoO SWAG)

ADT is to maintain a time-ordered sliding window
[
t1
v1

]
, . . . ,

[
tn
vn

]
,

ti < ti+1, supporting the following operations:

— insert(t: Time, v: Agg) checks whether t is already in the

window, i.e., whether there is an i such that t = ti . If so, it

replaces
[
ti
vi

]
by

[
ti

vi ⊗v

]
. Otherwise, it inserts

[
t
v

]
into the

window at the appropriate location.

— evict(t: Time) checks whether t is in the window, i.e., whether

there is an i such that t = ti . If so, it removes
[
ti
vi

]
from the

window. Otherwise, it does nothing.

— query(): Agg combines the values in time order using the ⊗

operator. In other words, it returns v1 ⊗ . . . ⊗ vn if the window

is non-empty, or 1 if empty.

Lower Bound. For in-order streams, the SWAG operations take

O(1) time per operation [32]. The problem becomes more difficult

when the stream has out-of-order arrivals. This paper shows that to

handle out-of-order distance up to d, the amortized cost of a OoO

SWAG operation in the worst case must be at least Ω(log d).

Theorem 1. Let m, d ∈ Z be given such that m ≥ 1 and 0 ≤

d ≤ m. For any OoO SWAG algorithm, there exists a sequence of

3m operations, each with out-of-order distance at most d, for which

the algorithm requires a total of at least Ω(m log(1 + d)) time.

Our proof (in the appendix) shows this in two steps: (i) it establishes

a sorting lower bound for permutations on m elements with out-of-

order distance at most d; and (ii) it gives a reduction proving that

maintaining OoO SWAG is no easier than sorting such permutations.

Orthogonal Techniques. OoO SWAG operations are designed

to work well with other stream aggregation techniques. The

insert(t, v) operation supports the case where t is already in the

window, so it works with pre-aggregation schemes such as window

panes [27], paired windows [26], Cutty [15], or Scotty [34]. For

instance, for a 5-hour sliding window that advances in 1-minute

increments, the logical times can be rounded to minutes, leading

to more cases where t is already in the window. The evict(t)

operation accommodates the case where t is not the oldest time in

the window, so it works with streaming systems that use retractions

[2, 5, 6, 9, 13, 17, 28, 37]. Neither insert(t, v) nor evict(t) is

limited to values of t that are near either end of the window, so they

work in the general case, not just in cases where the out-of-order

distance is bounded by buffer sizes or low watermarks.

Query Sharing. Definition 1 does not support query sharing. But

query sharing can be accommodated by adding a range query:

— query(tfrom: Time, tto: Time): Agg aggregates exactly the

values in the window whose times fall between tfrom and tto.

That is, it returns vifrom ⊗ . . . ⊗ vito , where ifrom is the largest

i such that tfrom ≤ tifrom and ito is the smallest i such that

tito ≤ tto. If the subrange contains no values, it returns 1.

In these terms, this paper aims to construct efficient OoO SWAG

for arbitrary monoids.

3. FINGER BTREE AGGREGATOR (FIBA)
This section introduces our algorithm gradually, giving intuition

along the way. It begins by describing a basic algorithm (Section 3.1)

that utilizes a B-tree augmented with aggregates. This takes O(log n)

time for each insert or evict. Reducing the time complexity below

log n requires further observations. This is explored intuitively in

Section 3.2 with details fleshed out in Section 3.3.

Figure 1: Classic B-tree augmented with aggregates (top cell of each node).
The notation for stored aggregates omits ⊗, e.g., qstu is shorthand for the
value of q ⊗ s ⊗ t ⊗ u.

3.1 Basic Algorithm: Augmented BTree
One way to implement OoO SWAG is to start with a classic B-tree

with timestamps as keys and augment that tree with aggregates.

This is a baseline implementation, which will be built upon. Even

though at this stage, any balanced trees can be used, we chose the

B-tree because it is well-studied and its customizable fan-out degree

enables trading intra-node costs against inter-node costs.

There are many B-tree variations. The range of permissible

arity, or fan-out degree of a node, is controlled by two parameters

MIN_ARITY and MAX_ARITY. While MIN_ARITY can be any integer

greater than 1, most B-tree variations require that MAX_ARITY be at

least 2 · MIN_ARITY − 1. Let a(y) denote the arity of node y, and just

a in clear context. Then a B-tree obeys the following size invariants:

• For a non-root node y, MIN_ARITY ≤ a(y); for the root, 2 ≤ a.

• For all nodes, a ≤ MAX_ARITY.

• All nodes have a − 1 timestamps and values
[
t0
v0

]
, . . . ,

[
ta−2
va−2

]
.

• All non-leaf nodes have a child pointers z0, . . . , za−1.

Figure 1 illustrates a B-tree augmented with aggregates. In

this example, MIN_ARITY is 2 and MAX_ARITY is 2 · MIN_ARITY = 4.

Consequently, all nodes have 1–3 timestamps and values, and non-

leaf nodes have 2–4 children. Each node in the tree contains an

aggregate, an array of timestamps and values, and optional pointers

to the children. For instance, the root node contains the aggregate

ab..u which is shorthand for a ⊗ b ⊗ .. ⊗ u, two timestamps and

values
[

7
g

]
,
[

15
o

]
, and pointers to three children. Because we use

timestamps as keys, the entries are time-ordered, both within a node

and across nodes. We store timestamps in a parent node separating

and limiting the time in the subtrees it points to. The tree is always

height-balanced and all leaves are at the same depth.

What aggregate to keep in a node? For each node y, the aggregate

Π↑(y) stored at that node obeys the up-aggregation invariant:

Π↑(y) = Π↑(z0) ⊗ v0 ⊗ Π↑(z1) ⊗ . . . ⊗ va−2 ⊗ Π↑(za−1)

By a standard inductive argument,Π↑(y) is the aggregation of the val-

ues inside the subtree rooted at y. This means the query() operation

can simply return the aggregation value at the root (root.agg).

The operations insert(t, v) or evict(t) first search for the node

where t belongs. Second, they locally insert or evict at that node,

updating the aggregate stored at that node. Then, they rebalance the

tree, walking from that node towards the root as necessary to fix

any size invariant violations, while also repairing aggregate values

along the way. Finally, they repair any remaining aggregate values

not repaired during rebalancing, starting above the node where

rebalancing topped out and visiting all ancestors up to the root.

Theorem 2. In a classic B-tree augmented with aggregates, if it

stores
[
t1
v1

]
, . . . ,

[
tn
vn

]
, the operation query() returns v1 ⊗ . . . ⊗ vn.

Theorem 3. In a classic B-tree augmented with aggregates,

the operation query() costs at most O(1) time and operations

insert(t, v) or evict(t) take at most O(log n) time.

1169

The theorems follow directly from the up-aggregation invariant

and the fact that the tree height is O(log n) [10, 18, 21].

3.2 Breaking the O(log n) Barrier
The basic algorithm just described requires O(log n) time per

update. To improve upon the time complexity, we now discuss the

bottlenecks in the basic algorithm and outline a plan to resolve them.

In the basic algorithm, the insert(t, v) and evict(t) operations

involve four steps: (1) search for the node where t belongs; (2) locally

insert or evict; (3) rebalance to repair size invariants; and (4) repair

remaining aggregation invariants. The local insertion or eviction

takes constant time, as does the query(). But each of the steps for

search, rebalance, and repair takes up to O(log n) time. Hence, these

are the bottleneck steps and will be improved upon as follows:

(i) Maintaining “fingers” to the leftmost and rightmost leaves re-

duces the search complexity to O(log d), where d is the distance

to the closer end of the sliding-window boundary. For the

in-order or nearly in-order case, this means constant-time search.

(ii) By choosing an appropriate MAX_ARITY and a somewhat lazy

strategy for rebalancing, we can prove that rebalance takes no

more than constant time in the amortized sense. This means that

for any operation, the cost to restore the proper tree structure

amounts to constant, regardless of out-of-order distance.

(iii) By introducing position-dependent aggregates, we will ensure

that repairs to the aggregate values are made only to nodes along

the search path or involved in restructuring. This means that the

repairs cost no more than the cost of search and rebalance.

Our novel FiBA algorithm combines these ideas to implement OoO

SWAG in O(log d) time, d ≤ n. Below, we describe how they will

be implemented intuitively, leaving details to Section 3.3.

Search. In classic B-trees, a search starts at the root and ends at the

node being searched for, henceforth called y. Often, y is a leaf, so

the search visits O(log n) nodes. However, instead of starting at the

root, one can start at the left-most or right-most leaf in the tree. This

requires pointers to the corresponding leaf, henceforth called the left

and right fingers [19]. In addition, we keep a parent pointer at each

node. Hence, the search can start at the nearest finger, walk up to the

nearest common ancestor of the finger and y, and walk down from

there to y. The resulting algorithm runs in O(log d), where d is the

distance from the nearest end of the window—or more precisely, d is

the number of timed values from y to the nearest end of the window.

Rebalance. Insertions and evictions can cause nodes to overflow

or underflow, violating the size invariants. There are two popular

correction strategies: either before or after the fact. The before-the-

fact strategy ensures that ancestors of the affected node are not at risk

of overflowing or underflowing by preventive rebalancing (e.g., [18]).

The after-the-fact strategy first performs the local insert or evict,

then repairs any resulting overflow or underflow to ensure the size

invariants hold again by the end of the entire insert or evict operation.

We adopt the after-the-fact strategy, as it is amortized constant as long

as MAX_ARITY ≥ 2 · MIN_ARITY (see Lemma 9, adapted from [21]).

For simplicity, we use MAX_ARITY = 2 · MIN_ARITY. The amortized

cost is O(1) as rebalancing rarely goes all the way up the tree. The

worst-case cost is O(log n), bounded by the tree height.

Repair. The basic algorithm stores at each node y the up-aggregate

Π↑(y), i.e., the partial aggregate of the subtree under y. This is

problematic, because it means that an insertion or eviction at a node z,

usually a leaf, affects the partial aggregates stored in all ancestors

of z—which is the entire path up to the root. To circumvent this

issue, we need an arrangement of aggregates that can be repaired by

traversing to a finger, without always traversing to the root. For this,

each node stores a kind of partial aggregate suitable for its position

z1 za2

î(y)
t0
v0

…
…

ta2
va2

z0 za1

agg
times
values

…

Up agg

z1 za2

(y)
t0
v0

…
…

ta2
va2

z0 za1

x

agg
times
values

…

Inner agg

z1 za2

 (y)
t0
v0

…
…

ta2
va2

z0 za1

agg
times
values

…

Left agg

z1 za2

 (y)
t0
v0

…
…

ta2
va2

z0 za1

x

agg
times
values

…

Right aggx

î(y) = v0(z1)...(za2)va2

yy

y y

(y) = (z0)v0...va2(za1)

 (y) = î(y)(za1)()if x = root then 1
else (x) (y) = ()(z0)î(y)

if x = root then 1
else (x)

Figure 2: Partial aggregates definitions.

in the tree. A further consequence is the root no longer contains the

aggregate of the whole tree, and we need to ensure that query() can

be answered by combining partial aggregates at the left finger, the

root, and the right finger. To meet these requirements, we define four

kinds of partial aggregates in Figure 2. They are used in a B-tree

according to the following aggregation invariants:

⊲Non-spine nodes store the up-aggregate Π↑. Such a node is

neither a finger nor an ancestor of a finger. This aggregate must be

repaired whenever the subtree below it changes. Figure 3(A) shows

nodes with up-aggregates in white, light blue, or light green. For

example, the center child of the root contains the aggregate hijklmn,

comprising its entire subtree.

⊲The root stores the inner aggregate Π |̂ . This aggregate is only

affected by changes to the inner part of the tree, and not by changes

below the left-most or right-most child of the root. Figure 3(A)

shows the inner parts of the tree in white and the root in gray.

⊲Non-root nodes on the left spine store the left aggregate Πւ.

For a given node y, the left aggregate encompasses all nodes under

the left-most child of the root except for y’s left-most child z0. When

a change occurs below the left-most child of the root, the only

aggregates that need to be repaired are those on a traversal up to the

left spine and then down to the left finger. Figure 3(A) shows the left

spine in dark blue and nodes affecting it in light blue. For example,

the node in the middle of the left spine contains the aggregate cdef,

comprising the left subtree of the root except for the left finger.

⊲Non-root nodes on the right spine store the right aggregateΠց.

This is symmetric to the left aggregate Πւ. When a change occurs

below the right-most child of the root, only aggregates on a traversal

to the right finger are repaired. Figure 3(A) shows the right spine in

dark green and nodes affecting it in light green.

3.3 Maintaining Finger BTree OoO SWAG
We will now flesh out FiBA with a focus on how insert and

evict update the tree to maintain the size invariants from Section 3.1

and the aggregation invariants from Section 3.2.

Throughout, our running time discussion will be based on coin

counting. This aligns with our formal amortized analysis (Lemma 9)

using the accounting method [18], which can be thought of as

keeping coins at tree nodes. A coin is spent to cover the cost of

one internal O(1)-time local-modification operation (split, merge,

or move). The algorithm (conceptually) bills each insert(t, v) and

evict(t) to make up the difference. Excess coins are refunded to

maintain the appropriate balance. As the analysis will show, each

1170

Step A→B, in-order insert 22:v. Spent 0, refunded 1.

Step B→C, out-of-order insert 18:r. Spent 0, billed 2.

Step C→D, evict 1:a. Spent 0, billed 1.

Step D→E, out-of-order insert 16:p, split. Spent 1, refunded 1.

Step E→F, evict 2:b, merge. Spent 1, billed 0.

Figure 3: Finger B-tree with aggregates: example.

=⇒

Step G→H, insert 3:c, split, height increase and split.

Spent 2, billed 0.

Figure 4: Finger B-tree height increase and split.

Step I→J, evict 4:d, merge, move. Spent 2, billed 1.

Figure 5: Finger B-tree move.

=⇒

Step K→L, evict 15:o, merge, merge and height decrease.

Spent 2, refunded 2.

Figure 6: Finger B-tree merge and height decrease.

insert(t, v) or evict(t) is never billed more than 2 coins, hence

rebalancing is amortized O(1) time. To visualize this accounting,

coins are rendered as little golden circles next to tree nodes.

All interesting cases of tree maintenance are illustrated in Figures 3–

6. Each state, for instance (A), shows a tree with aggregates and coins.

Each step, for instance A→B, shows an insert or evict, illustrating

how it affects the tree, partial aggregates, and coins.

• In Figure 3, Step A→B is an in-order insert without rebalance,

which only affects the aggregate at a single node, the right finger.

• Step B→C is an out-of-order insert without rebalance, affecting

aggregates on a walk to the right finger.

• Step C→D is an in-order evict without rebalance, affecting the

aggregate at a single node, the left finger.

• Step D→E is an out-of-order insert to a node with arity a =

2 · MIN_ARITY, causing an overflow; rebalancing splits it.

• Step E→F is an evict from a node with a = MIN_ARITY, causing

the node to underflow; rebalancing merges it with its neighbor.

• In Figure 4, Step G→H is an insert that causes nodes to overflow

1171

1 fun query(): Agg

2 if root.isLeaf()

3 return root.agg

4 return leftFinger.agg ⊗ root.agg ⊗ rightFinger.agg
5

6 fun insert(t: Time, v: Agg)
7 node ← searchNode(t)
8 node.localInsertTimeAndValue(t, v)
9 top, hitleft, hitright ← rebalanceForInsert(node)

10 repairAggs(top, hitleft, hitright)

11

12 fun evict(t: Time)
13 node ← searchNode(t)
14 found, idx ← node.localSearch(t)
15 if found

16 if node.isLeaf()

17 node.localEvictTimeAndValue(t)
18 top, hitleft, hitright ← rebalanceForEvict(node, null)

19 else

20 top, hitleft, hitright ← evictInner(node, idx)

21 repairAggs(top, hitleft, hitright)

22

23 fun repairAggs(top: Node, hitleft: Bool, hitright: Bool)

24 if top.hasAggUp()

25 while top.hasAggUp()

26 top ← top.parent

27 top.localRepairAgg()

28 else

29 top.localRepairAgg()

30 if top.leftSpine or top.isRoot() and hitleft
31 left ← top

32 while not left.isLeaf()

33 left ← left.getChild(0)

34 left.localRepairAgg()

35 if top.rightSpine or top.isRoot() and hitright
36 right ← top

37 while not right.isLeaf()

38 right ← right.getChild(right.arity - 1)

39 right.localRepairAgg()

40 fun rebalanceForInsert(node: Node): Node×Bool×Bool
41 hitleft, hitright ← node.leftSpine, node.rightSpine

42 while node.arity > MAX_ARITY

43 if node.isRoot()

44 heightIncrease()

45 hitleft, hitright ← true, true

46 split(node)

47 node ← node.parent

48 hitleft ← hitleft or node.leftSpine

49 hitright ← hitright or node.rightSpine

50 return node, hitleft, hitright
51

52 fun rebalanceForEvict(node: Node, toRepair: Node)

53 : Node×Bool×Bool
54 hitleft, hitright ← node.leftSpine, node.rightSpine

55 if node = toRepair

56 node.localRepairAggIfUp()

57 while not node.isRoot() and node.arity < MIN_ARITY

58 parent ← node.parent

59 nodeIdx, siblingIdx ← pickEvictionSibling(node)

60 sibling ← parent.getChild(siblingIdx)

61 hitright ← hitright or sibling.rightSpine

62 if sibling.arity ≤ MIN_ARITY
63 node ← merge(parent, nodeIdx, siblingIdx)

64 if parent.isRoot() and parent.arity = 1

65 heightDecrease()

66 else

67 node ← parent

68 else

69 move(parent, nodeIdx, siblingIdx)

70 node ← parent

71 if node = toRepair

72 node.localRepairAggIfUp()

73 hitleft ← hitleft or node.leftSpine

74 hitright ← hitright or node.rightSpine

75 return node, hitleft, hitright

Figure 7: Finger B-Tree with aggregates: algorithm.

76 fun evictInner(node: Node, idx: Int): Node×Bool×Bool
77 left, right ← node.getChild(idx), node.getChild(idx+1)

78 if right.arity > MIN_ARITY

79 leaf, tleaf, vleaf ← oldest(right)

80 else

81 leaf, tleaf, vleaf ← youngest(left)

82 leaf.localEvictTimeAndValue(tleaf)
83 node.setTimeAndValue(idx, tleaf, vleaf)
84 top, hitleft, hitright ← rebalanceForEvict(leaf, node)

85 if top.isDescendent(node)

86 while top , node

87 top ← top.parent

88 hitleft ← hitleft or top.leftSpine

89 hitright ← hitright or top.rightSpine

90 top.localRepairAggIfUp()

91 return top, hitleft, hitright

Figure 8: Finger B-Tree evict inner: algorithm.

all the way up to the root, causing a height increase followed by

splitting the old root. This affects aggregates on all split nodes

and on both spines.

• In Figure 5, Step I→J is an evict that causes first an underflow

that is fixed by a merge, and then an underflow at the next level

where the neighbor node is too big to merge. The algorithm

repairs the size invariant with a move of a child and a timed value

from the neighbor, touching aggregates on all nodes affected by

rebalancing plus a walk to the left finger.

• In Figure 6, Step K→L is an evict that causes nodes to underflow

all the way up to the root, causing a height decrease. This affects

aggregates on all merged nodes and on both spines.

Figure 7 shows most of the algorithm, excluding only evictInner,

which will be presented later. While rebalancing always works

Step M→N, out-of-order evict 9:i. Spent 0, billed 1.

Figure 9: Finger B-tree evict inner: example.

bottom-up, aggregate repair works in the direction of the partial

aggregates: either up for up-agg or inner-agg, or down for left-agg

or right-agg. Our algorithm piggybacks the repair of up-aggs onto

the local insert or evict and onto rebalancing, and then repairs the

remaining aggregates separately. To facilitate the handover from

the piggybacked phase to the dedicated phase of aggregate repair,

the rebalancing routines return a triple 〈top, hitleft, hitright〉, for

instance, in Line 9. Node top is where rebalancing topped out, and

if it has an up-agg, it is the last node whose aggregate has already

1172

been repaired. Booleans hitleft and hitright indicate whether

rebalancing affected the left or right spine, determining whether

aggregates on the respective spine have to be repaired.

Figure 8 shows function evictInner. To evict something from an

inner node, Line 82 evicts a substitute from a leaf instead, and Line 83

writes that substitute over the evicted slot. Function evictInner

creates an obligation to repair an extra node during rebalancing,

handled by parameter toRepair on Line 52 in the same figure.

Theorem 4. In a finger B-tree with aggregates that contains[
t1
v1

]
, . . . ,

[
tn
vn

]
, operation query() returns v1 ⊗ . . . ⊗ vn.

Proof. If the root is a leaf, the root stores an inner aggregate,

representing all the values. Otherwise, correctness follows directly

from the aggregation invariants.

Theorem 5. In a finger B-tree with aggregates, query() costs

O(1) time, and insert(t, v) and evict(t) take time Tsearch +

Trebalance + Trepair, where

• Tsearch is O(log d), with d being the distance to the start or

end of the window, whichever is closer;

• Trebalance is amortized O(1) and worst-case O(log n); and

• Trepair is O(Tsearch + Trebalance).

Proof. The query() operation performs at most two ⊗ operations,

hence running in O(1) time. The search cost Tsearch is bounded as

follows: Let y0 be the node at the finger where search begins and

define yi+1 as the parent of yi . This forms a sequence of spinal

nodes on which searching takes place. Remember µ = MIN_ARITY is

constant. Because the subtree at yi has Ω(µi) keys and the search

key is at distance d, the key must belong in the subtree rooted at

some yi∗ , where i∗ = O(log d). Thus, it takes i∗ steps to walk up

the spine and at most another i∗ to locate the spot in the subtree

as all leaves are at the same depth, bounding Tsearch by O(logµ d).

Lemma 9 in the appendix gives the rebalance cost Trebalance. Finally,

by the aggregation invariants, a partial aggregation is affected only

if it is along the search path or involved in rebalancing. Therefore,

the number of affected nodes that requires repairs is bounded by

Θ(Tsearch + Trebalance). Treating µ as bounded by a constant, Trepair

is O(Tsearch + Trebalance), concluding the proof.

4. WINDOW SHARING
This section explains how to use a single finger B-tree to efficiently

answer queries on subwindows of different sizes on the fly. Appli-

cations are numerous. One common example is simple anomaly

detection that compares two related aggregates: one on a large

window representing normal stable behavior and the other on a small

window representing recent behavior. An alert is triggered when the

aggregates differ substantially. Whereas in this example, the sizes of

the windows are known ahead of time, in other applications—e.g.,

interactive data exploration—queries can be ad hoc.

We implement window sharing via range queries, as defined at

the end of Section 2. This has many benefits. The window contents

need to be saved only once regardless of how many subwindows

are involved. Thus, each insert or evict needs to be performed

only once on the largest window. This approach can accommodate

an arbitrary number of shared window sizes. For instance, many

users can register queries over different window sizes. Importantly,

queries can be ad hoc and interactive, which would otherwise not

be possible to support using multiple fixed instances. Furthermore,

the range-query formulation also accommodates the case where the

window boundary is not the current time (tto , tnow). For instance,

it can report results with some time lag dictated by punctuation or

low watermarks.

1 fun query(tfrom: Time, tto: Time): Agg
2 nodefrom, nodeto ← searchNode(tfrom), searchNode(tto)
3 nodetop ← leastCommonAncestor(nodefrom, nodeto)

4 return queryRec(nodetop, tfrom, tto)
5

6 fun queryRec(node: Node, tfrom: Time, tto: Time): Agg
7 if tfrom = −∞ and tto = +∞ and node.hasAggUp()
8 return node.agg

9 res ← 1
10 if not node.isLeaf()

11 tnext ← node.getTime(0)

12 if tfrom < tnext
13 res = res ⊗ queryRec(node.getChild(0),
14 tfrom,
15 tnext ≤ tto ? +∞ : tto)
16 for i ∈ [0, ..., node.arity - 2]
17 ti ← node.getTime(i)
18 if tfrom ≤ ti and ti ≤ tto
19 res ← res ⊗ node.getValue(i)
20 if not node.isLeaf() and i + 1 < node.arity− 2
21 ti+1 ← node.getTime(i + 1)
22 if ti < tto and tfrom < ti+1

23 res ← res ⊗ queryRec(node.getChild(i + 1),
24 tfrom ≤ ti ? −∞ : tfrom,
25 ti+1 ≤ tto ? +∞ : tto)
26 if not node.isLeaf()

27 tcurr ← node.getTime(node.arity - 2)

28 if tcurr < tto
29 res = res ⊗ queryRec(node.getChild(node.arity - 1),
30 tfrom ≤ tcurr ? −∞ : tfrom,
31 tto)
32 return res

Figure 10: Range query algorithm.

To answer the range query query(tfrom, tto), the algorithm, shown

in Figure 10, uses recursion starting from the least-common ancestor

node whose subtree encompasses the queried range. The main

technical challenge is to avoid making spurious recursive calls.

Because the nodes already store partial aggregates, the algorithm

should only recurse into a node’s children if the partial aggregates

cannot be used directly. Specifically, we aim for the algorithm to

invoke at most two chains of recursive calls, one visiting ancestors

of nodefrom and the other visiting ancestors of nodeto. The insight

for preventing spurious recursive calls is that one needs information

about neighboring timestamps in a node’s parent to determine

whether the node itself is subsumed by the range. This is passed

down the recursive call: whether the neighboring timestamp in the

parent is included in the range on the left or right is indicated by

tfrom = −∞ or tto = +∞, respectively.

This strategy alone would have been similar to range query in

an interval tree [18], albeit without explicitly storing the ranges.

However, our partial aggregate scheme adds another difficulty: not

all nodes store agg-up values Π↑(y). Fortunately, any nodes that lack

Π↑(y)must be on one of the two recursion chains, because if a query

involves spines of the entire window, then those spines coincide with

edges of the intersection between the window and the range.

Theorem 6. In a finger B-tree with aggregates that contains[t1
v1

]
, . . . ,

[tn
vn

]
, the operation query(tfrom, tto) returns the ag-

gregate vifrom ⊗ . . . ⊗ vito , where ifrom is the largest i such that

tfrom ≤ tifrom and ito is the smallest i such that tito ≤ tto.

Proof. By induction, each recursive call returns the aggregate of

the intersection between its subtree and the queried range.

Theorem 7. In a finger B-tree with aggregates that contains[
t1
v1

]
, . . . ,

[
tn
vn

]
, the operation query(tfrom, tto) takes time

O(log dfrom + log dto + log nsub), where

• ifrom is the largest index i such that tfrom ≤ tifrom
• ito is the smallest index i such that tito ≤ tto

1173

• dfrom = min(ifrom, n − ifrom) and dto = min(ito, n − ito) are

the distances to the window boundary

• nsub = ito − ifrom is the size of subwindow being queried.

Proof. Using finger searches, Line 2 takes O(log dfrom+log dto).

Now the distance from either nodefrom or nodeto to the least-common

ancestor (LCA) is at most O(log nsub). Therefore, locating the LCA

takes at most O(log nsub), and so do subsequent recursive calls in

queryRec that traverse the same paths.

In particular, when a query ends at the current time (i.e., when

tto = tnow), the theorem says that the query takes O(log nsub) time,

where nsub is the size of the subwindow being queried.

5. RESULTS
This section describes experimental analysis with both synthetic

and real data, with implementations in both C++ and Java, and with

comparisons against current state-of-the-art techniques.

5.1 Synthetic data in C++
We implemented both OoO SWAG variants in C++: the baseline

classic B-tree augmented with aggregates and the finger B-tree

aggregator (FiBA). We present experiments with competitive min-

arity values: 2, 4 and 8. Higher values for min-arity were never

competitive in our experiments. Our experiments run outside of any

particular streaming framework so we can focus on the aggregation

algorithms themselves. Our load generator produces synthetic data

items with random integers. The experiments perform rounds of

evict, insert, and query to maintain a sliding window that accepts

a new data item, evicts an old one, and produces a result each round.

We present results with three aggregation operators, each repre-

senting a category of computational cost. The operator sum performs

an integer sum over the window, and its computational cost is less

than that of tree traversals and manipulations. The operator geomean

performs a geometric mean over the window. For numerical stability,

this requires a floating-point log on insertion and floating-point

additions during data structure operations. It represents a middle

ground in computational cost. The most expensive operator, bloom,

is a Bloom filter [11] where the partial aggregations maintain a bitset

of size 214. It represents aggregation operators whose computational

cost dominates the cost of maintaining the SWAG data structure.

We ran all experiments on a machine with an Intel Xeon E5-2697

at 2.7 GHz running Red Hat Enterprise Linux Server 7.5 with a

3.10.0 kernel. We compiled all experiments with g++ 4.8.5 with

optimization level -O3.

5.1.1 Varying Distance. We begin by investigating how insert’s

out-of-order distance affects throughput. The distance varying

experiments, Figure 11, maintain a constant-sized window of n =

222
= 4, 194, 304 data items. The x-axis is the out-of-order distance

d between the newest timestamp already in the window and the time-

stamp created by our load generator. Our adversarial load generator

pre-populates the window with high timestamps and then spends the

measured portion of the experiment producing low timestamps. This

regime ensures that after the pre-population with high timestamps,

the out-of-order distance of each subsequent insertion is precisely d.

This experiment confirms the prediction of the theory. The classic

B-tree’s throughput is mostly unaffected by the change in distance,

but the finger B-tree’s throughput starts out significantly higher.

At the smallest values of d, the best finger B-tree outperforms the

corresponding classic B-tree by a factor of 3.4× for sum, 2.5× for

geomean, and 4.9× for bloom. For larger values of d, the finger

B-tree throughput follows a log d trend. All variants enjoy an uptick

in performance when d = n, that is, when the distance is the size n

of the window. This is a degenerate special case. When n = d, the

lowest timestamp to evict is always in the left-most node in the tree,

so the tree behaves like a last-in first-out (LIFO) stack, and inserting

and evicting requires no tree restructuring—O(1) time overall.

The min-arity that yields the best-performing B-tree varies with

the aggregation operator. For expensive operators, such as bloom,

smaller min-arity trees perform better because they perform fewer

partial aggregations inside of a node. Conversely, for cheap operators,

such as sum, higher min-arity trees that require fewer rebalance and

repair operations perform better. The step-like throughput curves for

the finger B-trees is a function of their min-arity: larger min-arity

means longer sections where the increased out-of-order distance still

affects only a subtree with the same height. When the throughput

suddenly drops, the increase in d meant an increase in the height of

the affected subtree, causing more rebalances and updates.

5.1.2 Latency. The worst-case latency for both classic and finger

B-trees is O(log n), but we expect finger variants to reduce average

latency. The experiments in Figure 12 confirm this expectation. All

latency experiments use a window size of n = 222. The top set of

experiments uses an out-of-order distance of d = 0 and the bottom

set uses an out-of-order distance of d = 220
= 1, 048, 576. (We

chose the latter distance because it is among the worst-performing

in the throughput experiments.) The experimental setup is the same

as for the throughput experiments, and the latency is for an entire

round of evict, insert, and query. The y-axis is the number of

processor cycles for a round, in log scale. Since we used a 2.7 GHz

machine, 103 cycles take 370 nanoseconds and 106 cycles take 370

microseconds. The brown bars show the median latency, the shaded

regions show the distribution of latencies, and the black bars are the

99.9th percentile. The range is the minimum and maximum latency.

When the out-of-order distance is 0 and the aggregation operator

is cheap or only moderately expensive, the worst-case latency in

practice for the classic and finger B-trees is similar. This is expected,

as the time is dominated by tree operations, and they are worst-

case O(log n). However, the minimum and median latencies are

orders of magnitude better for the finger B-trees. This is also

expected, since for d = 0, the fingers enable amortized O(1) updates.

When the aggregation operator is expensive, the finger B-trees have

significantly lower latency as they repair fewer partial aggregates.

With an out-of-order distance of d = 220 and cheap or moderately

expensive operators, the classic and finger B-trees have similar

latency. This is expected: as d approaches n, the worst-case latency

for finger B-trees approaches O(log n). Again, with expensive

operators, the minimum, median, and 99.9th percentile of the finger

B-tree with min-arity 2 is orders of magnitude lower than that of

classic B-trees. There is, however, a curious effect clearly present

in the bloom experiments with finger B-trees, but still observable

in the others: min-arity 2 has the lowest latency; it gets worse with

min-arity 4, then improves with min-arity 8. Recall that the root may

be slimmer than the min-arity. With d = 220, depending on the arity

of the root, some aggregation repairs walk almost to the root and

then back down a spine while others walk to the root and no further.

The former case, which walks twice the height, is more expensive

than the latter, which walks just the whole height. The frequency of

the expensive case is a function of the window size, tree arity, and

out-of-order distance, and these factors do not interact linearly.

5.1.3 FIFO: In-order Data. A special case for FiBA is when

d = 0; with in-order data, the theoretical results show that FiBA

enjoys amortized constant time performance. Figure 13 compares the

B-tree-based SWAGs against the state-of-the-art SWAGs optimized

for first-in, first-out, completely in-order data. TwoStacks only works

on in-order data and is amortized O(1) with worst-case O(n) [3].

DABA also only works on in-order data and is worst-case O(1) [32].

1174

21 23 25 27 29 211 213 215 217 219 221

out-of-order distance
0

5

10

15

20

25

th
ro

ug
hp

ut
 [m

illi
on

 it
em

s/
s] OoO sum, window 222

21 23 25 27 29 211 213 215 217 219 221

out-of-order distance
0

2

4

6

8

10
OoO geomean, window 222

21 23 25 27 29 211 213 215 217 219 221

out-of-order distance
0.0

0.1

0.2

0.3
OoO bloom, window 222

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8

Figure 11: Out-of-order distance experiments.

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8

102

103

104

pr
oc

es
so
r c

yc
le
s

99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

sum, window 222, distance 0

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8

103

104

pr
oc

es
so
r c

yc
le
s

99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

geomean, window 222, distance 0

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8
104

105

106

pr
oc

es
so
r c

yc
le
s

99.9% 99.9%
99.9%

99.9% 99.9%
99.9%

bloom, window 222, distance 0

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8

103

104

105

106

pr
oc

es
so
r c

yc
le
s

99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

sum, window 222, distance 220

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8

103

104

pr
oc

es
so
r c

yc
le
s

99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

geomean, window 222, distance 220

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8

105

106

pr
oc

es
so
r c

yc
le
s

99.9%
99.9%

99.9%

99.9%

99.9% 99.9%

bloom, window 222, distance 220

Figure 12: Latency experiments.

21 23 25 27 29 211 213 215 217 219 221

window size in data items
0

10

20

30

40

th
ro

ug
hp

ut
 [m

il.
 it

em
s/

s] FIFO sum

21 23 25 27 29 211 213 215 217 219 221

window size in data items
0.0

2.5

5.0

7.5

10.0

12.5 FIFO geomean

21 23 25 27 29 211 213 215 217 219 221

window size in data items
0.0

0.5

1.0

1.5

FIFO bloom
two_stacks daba reactive bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8

Figure 13: FIFO experiments.

The Reactive Aggregator supports out-of-order evict but requires

in-order insert, and is amortized O(log n) with worst-case O(n) [33].

The x-axis represents the window size n.

TwoStacks and DABA perform as seen in prior work: for most

window sizes, TwoStacks with amortized O(1) time has the best

throughput. DABA is generally the second best, as it does a little more

work on each operation to maintain worst-case constant performance.

The finger B-tree variants demonstrate constant performance as

the window size increases. The best finger B-tree variants stay within

30% of DABA for sum and geomean, but are about 60% off of

DABA with a more expensive operator like bloom. In general, finger

B-trees are able to maintain constant performance with completely

in-order data, but the extra work of maintaining a tree means that

SWAGs specialized for in-order data consistently outperform them.

The classic B-trees clearly demonstrate O(log n) behavior as the

window size increases. Reactive does demonstrate O(log n) behavior,

but it is only obvious with bloom. For sum and geomean, the fixed

costs dominate. Reactive was designed to avoid using pointer-based

data structures under the premise that the extra memory accesses

would harm performance. To our surprise, this is not true: on our

hardware, the extra computation required to avoid pointers ends

up costing more. For bloom, Reactive outperforms B-tree based

SWAGs because it is essentially a min-arity 1, max-arity 2 tree, thus

requiring fewer aggregation operations per node.

5.1.4 Window Sharing. One of the benefits of FiBA is that it

supports range queries while maintaining logarithmic performance

for queries over that range. Range queries enable window sharing: a

single window can support multiple queries over different ranges.

An obvious benefit from window sharing is reduced space usage, but

we also wanted to investigate its time usage. Figure 14 shows that

window sharing did not consistently improve runtime performance.

The experiments maintain two queries: a big window fixed to

size 222, and a small window whose size nsmall varies from 1 to

222, shown on the x-axis. The workload consists of out-of-order

data items where the out-of-order distance d is half of the small

window size, i.e., d = nsmall/2. The _twin experiments maintain two

separate trees, one for each window size. The _range experiments

maintain a single tree, using a standard query for the big window

and a range query for the small window.

1175

21 24 27 210 213 216 219 222

small window size in data items
0

2

4

6

8

th
ro

ug
hp

ut
 [m

il.
 it

em
s/

s] Shared sum, big window 222

21 24 27 210 213 216 219 222

small window size in data items
0

1

2

3

4

5
Shared geomean, big window 222

21 24 27 210 213 216 219 222

small window size in data items
0.00

0.02

0.04

0.06

0.08

0.10
Shared bloom, big window 222

bfinger2_twin bfinger2_range bfinger4_twin bfinger4_range bfinger8_twin bfinger8_range

Figure 14: Window sharing experiments. Out-of-order distance also varies as n/2 where n = nsmall is the small window size.

2 2 2 1 20 21 22 23 24 25

window duration in days
0

2

4

6

8

10

th
ro

ug
hp

ut
 [m

illi
on

 it
em

s/
s] Bike sum

2 2 2 1 20 21 22 23 24 25

window duration in days
0

2

4

6
Bike geomean

2 2 2 1 20 21 22 23 24 25

window duration in days
0.00

0.05

0.10

0.15
Bike bloom

bclassic2 bclassic4 bclassic8 bfinger2 bfinger4 bfinger8

Figure 15: NYC Citi Bike data for August, 2018 through December, 2018.

Our experiment performs out-of-order insert and in-order evict,

so insert costs O(log d) and evict costs O(1). Hence, on average,

each round of the _range experiment costs O(log d) for insert, O(1)

for evict, and O(1) +O(log nsmall) for query on the big window and

the small window. On average, each round of the _twin experiment

costs 2 ·O(log d) for insert, 2 ·O(1) for evict, and 2 ·O(1) for query

on the big and small window. Since we chose d = nsmall/2, this

works out to a total of O(log d) per round in both the _range and the

_twin experiments. There is no fundamental reason why window

sharing is slightly more expensive in practice. A more optimized

code path might make range queries slightly less expensive, but we

would still expect them to remain in the same ballpark.

By picking d = nsmall/2, our experiments demonstrate the case

where window sharing is the most likely to outperform the twin

experiment. We could have increased the number of shared win-

dows to the point where maintaining multiple non-shared windows

performed worse because of the memory hierarchy, but that is the

same benefit as reduced space usage. We conclude that the primary

benefits of window sharing in this context are reduced space usage

and the ability to query against arbitrarily-sized windows on the fly.

5.2 Real data in C++
Our real data experiments, Figure 15, use the NYC Citi Bike

data [1] for two purposes: to show that our techniques work well

with real out-of-order data and to showcase time-based windows.

We use data from August 2018 to December 2018, for a total of

about 8 million events. Each event includes trip duration, start and

stop time, and start and stop location. We use start time as the event

timestamp and consider events with earlier start time than any prior

event to be out-of-order. The experimental environment is the same

as in Section 5.1 except that it uses time-based windows. We vary

the window size from 1/4 of a day to 32 days. We calculate the sum

and geomean over trip duration and bloom over start location.

The real data experiments mirror the trends with synthetic data:

the finger B-trees consistently outperform their classic counterparts

and lower arity trees perform better with more expensive operators.

The characteristics of the real data experiments are subranges within

the spectrum explored with synthetic data: the actual size of the

window ranges from about 11, 000 elements for a time window of

1/4 of a day up to about 991, 000 elements for 32 days.

In this mostly in-order dataset, out-of-order arrivals are generally

mild and sporadic, but there are bursts of severely out-of-order

items, concentrated in about two weeks in November. The mean

out-of-order distance is d = 56.47 (≈ 85.9 seconds). However,

up to 99% of events have d ≤ 9 (≈ 149 seconds). The severely

out-of-order bursts show up in the last 0.01%, with d ≥ 150, 000.

The most severe has d ≈ 1 million (17.7 days late).

5.3 Synthetic data in Apache Flink (Java)
How does FiBA perform relative to the state-of-the-art open-

source counterparts? To answer this question as well as to understand

FiBA’s performance characteristics in a different environment, we

reimplemented both the classic augmented B-tree and FiBA variants

in Java inside Apache Flink [14]. Apache Flink was chosen because

at the time of writing, it is one of the most popular open-source

streaming platforms and has been the testing ground for many

research projects. Our Java implementation observes idiomatic

Java patterns but is otherwise the same as the C++ version. All

Flink-based experiments were run on a 2-core virtual machine with

Intel Xeon Platinum 8168 CPU at 2.70GHz, running Ubuntu 18.04.2

LTS with a 4.15 kernel. We compiled and ran all experiments with

64-bit OpenJDK 1.8.0_191, using Apache Flink version 1.7.1.

5.3.1 Distance-varying and FIFO. We repeated the distance-

varying and FIFO experiments using as baseline Flink’s built-in

sliding-window aggregation (.aggregate(<AggregateFunction>)).

The distance-varying experiment, Figure 16, uses window size

213
= 8, 192 items. Though smaller than before, it is enough to study

the behavior of all the algorithms without choking the baseline. FiBA

and the classic augmented B-tree perform as seen previously. The

throughput of Flink’s built-in algorithm remains constant indepen-

dent of the out-of-order distance; however, it is orders of magnitude

slower than the other algorithms due to asymptotical differences.

The FIFO experiment in Figure 17 exhibits the same general

trends as before, except that in this environment, the FiBA algorithms

(bfinger4 and bfinger8, both O(1) time for FIFO input) outperform

TwoStacks (a specialized O(1)-time algorithm for FIFO), reversing

1176

21 23 25 27 29 211 213

out-of-order distance

0

1

2

3

th
ro

u
g
h
p
u
t

[m
il
.

it
e
m

s
/s

]
Flink: OoO geomean, window 8192

bfinger4

bfinger8

bclassic4

bclassic8

Flink

Figure 16: Out-of-order experiments on Flink

21 23 25 27 29 211 213 215 217 219

window size in data items

0

2

4

6

th
ro

u
g
h
p
u
t

[m
il
.
it

e
m

s
/s

]

Flink: FIFO geomean

bfinger4

bfinger8

two_stacks

bclassic4

bclassic8

Flink

Figure 17: FIFO experiments on Flink

21 23 25 27 29 211

Slide granularity in data items

0

2

4

6

8

10

th
ro

u
g
h
p
u
t

[m
il
.

it
e
m

s
/s

]

Flink: Coarse-grained geomean, window 8192

cg_bfinger4

cg_bfinger8

bfinger4

bfinger8

Flink

(New) Scotty

Figure 18: Coarse-grained sliding experiments

the ranking in the C++ experiments. The throughput of Flink’s

built-in algorithm decreases linearly with the window size and is

never competitive. We stopped the Flink experiment at window size

n = 213
= 8, 192, after which point each run became too expensive.

5.3.2 Coarse-grained Window. Coarse-grained windows intelli-

gently combine items together to reduce the effective window size.

The coarse-grained window experiment, Figure 18, studies how

throughput (y-axis) changes with slide granularity (x-axis: how

often queries are requested). The window size is 213
= 8, 192, and

the workload is FIFO. We present two variations on FiBA: vanilla

bfinger is the standard FiBA algorithm except that queries are only

made at the specified granularity, whereas cg_bfinger (coarse-grained

bfinger) uses FiBA together with slicing, so items that will be evicted

together are combined into one. This helps reduce the effective

window size. We also include (New) Scotty, a recent work by Traub

et al. [35], which improved upon Scotty [34]. The numbers reported

are from their flink-connector v.0.3 code on GitHub. Flink’s built-in

aggregation, though never competitive, is included for reference and

shows throughput improving linearly with the slide granularity.

As expected, vanilla FiBA algorithms see practically no improve-

ment as the slide granularity increases: although queries are less

frequent, the dominant cost stems from insert/evict operations, which

remain the same. But Scotty’s throughput improves as the window

becomes coarser, ultimately outperforming vanilla FiBA (bfinger4,

bfinger8) for coarse windows. However, FiBA with coarse-grained

sliding (cg_bfinger) not only has the best throughput for the whole

range of granularities but also exhibits performance improvement

with coarser sliding granularity. This may seem counterintuitive as

FiBA is already an O(1)-time algorithm; however, because coarse-

grained sliding combines items, insert creates a new entry less often

and evict occurs less frequently—hence, less total work overall.

6. RELATED WORK

Out-of-Order Stream Processing. Processing out-of-order (OoO)

streams is a popular research topic with a variety of approaches. But

there are surprisingly few incremental algorithms for OoO stream

processing. Truviso [25] handles stream data sources that are out-of-

order with respect to each other but where input values are in-order

with respect to the stream they arrive on. The algorithm runs separate

stream queries on each source followed by consolidation. In contrast,

FiBA allows each individual stream input value to have its own

independent OoO behavior. Chandramouli et al. [17] describe how

to perform pattern matching on out-of-order streams but do not tackle

sliding window aggregation. Finally, the Reactive Aggregator [33]

performs incremental sliding-window aggregation and can handle

OoO evict in O(log n) time. In contrast, FiBA can handle both OoO

insert and OoO evict, and takes sub-O(log n) time.

One approach to OoO streaming is buffering: hold input stream

values in a buffer until it is safe to release them to the rest of the

pipeline [31]. Buffering has the advantage of not requiring out-

of-order handling in the query since the query only sees in-order

data. Unfortunately, buffering increases latency (since values endure

non-zero delay) and reduces quality (since bounded buffer sizes

lead to outputs computed on incomplete data). One can reduce the

delay by optimistically performing computation over transactional

memory [13] and performing commits in-order. Finally, one can tune

the trade-off between quality and latency by adaptively adjusting

buffer sizes [23]—with further optimization possible, e.g., via

incremental reordering [16]. In contrast, FiBA can handle arbitrary

lateness without sacrificing quality nor significant latency.

Another approach to OoO streaming is retraction: report outputs

quickly but revise them if they are affected by late-arriving inputs.

At any point, results are accurate with respect to stream input values

that have arrived so far. An early streaming system that embraced

this approach was Borealis [2]. Spark Streaming externalizes state

from operators and handles stragglers like failures, invalidating parts

of the query [37]. Pure retraction requires OoO algorithms such as

OoO sliding window aggregation, but the retraction literature does

not show how to do that efficiently. Our paper is complementary,

describing an efficient OoO sliding window aggregation algorithm

that could be used with systems like Borealis or Spark Streaming.

Using a low watermark (lwm) is an approach to OoO streaming

that combines buffering with retraction. The lwm approach allows

OoO values to flow through the query but limits state requirements at

individual operators by limiting the OoO distance. CEDR proposed

8 timestamp-like fields to support a spectrum of blocking, buffering,

and retraction [9]. Li et al. [28] formalized the notion of a lwm based

on the related notion of punctuation [36]. StreamInsight, which was

inspired by CEDR, offered a state-management interface to operator

developers that could be used for sliding-window aggregation. Sub-

sequently, MillWheel [5], Flink [14], and Beam [6] also adopted the

lwm concept. The lwm leaves it to the operator developer to handle

OoO values. Our FiBA algorithm is an OoO aggregation operator

that could be used with systems like the ones listed above.

Sliding Window Aggregation with Sharing. All of the following

papers focus on sharing over streams with the same aggregation

operator, e.g., monoid (S, ⊗, 1). The Scotty algorithm supports

sliding-window aggregation over out-of-order streams while sharing

windows with both different sizes and slice granularities [34, 35].

For instance, Scotty might share a window of size 60 minutes and

granularity 3 minutes with a session window whose gap timeout

is set to 5 minutes. When a tuple arrives out-of-order, older slices

may need to be updated, fused, or created. Scotty relies upon an

aggregate store (e.g., based on a balanced tree) to maintain slice

aggregates. FiBA could serve as a more efficient aggregate store for

Scotty, thus combining the benefits of Scotty’s stream slicing with

asymptotically faster final aggregation.

Other prior work on window sharing requires in-order streams.

The B-Int algorithm uses base intervals to share windows with differ-

ent sizes [8]. Krishnamurthi et al. show how to share windows that

1177

differ not just in size but also in granularity [26]. Cutty windows [15]

extend the Reactive Aggregator [33] to share windows with different

sizes and granularities. The FlatFIT algorithm performs sliding win-

dow aggregation in amortized constant time and supports window

sharing [29]. Finally, SlickDeque focuses on the scenario where

x ⊗ y always returns strictly either x or y, and offers window sharing

for that scenario with a time complexity of O(1) in the best case and

O(n) in the worst case [30]. In contrast to the above work, FiBA

combines window sharing with out-of-order processing.

Finger Trees. Our FiBA algorithm uses techniques from the liter-

ature on finger trees, combining and extending them to work with

sliding window aggregation. Guibas et al. [19] introduced finger

trees in 1977. A finger can be viewed as a pointer to some position in

a tree that makes tree operations (usually search, insert, or evict) near

that position less expensive. Guibas et al. used fingers on B-trees,

but without aggregation. Huddleston and Mehlhorn [21] offer a

proof that the amortized cost of insertion or deletion at distance d

from a finger is O(log d). Our analysis of tree maintenance cost is

inspired by Huddleston and Mehlhorn, but simplified and addressing

a different data organization: we support storing values in internal

nodes, whereas Huddleston and Mehlhorn’s trees store values only

in leaves. Finally, Hinze and Paterson [20] present purely functional

finger trees with amortized time complexity O(1) at distance 1 from a

finger. They describe caching a monoid-based measure at tree nodes,

but this cannot be directly used for sliding-window aggregation

(SWAG). Our paper is the first to use finger trees for OoO SWAG.

7. CONCLUSION
FiBA, presented in this paper, is a novel algorithm for sliding-

window aggregation over out-of-order streams. Built on specially-

designed finger B-trees augmented with position-aware aggregates,

it works with any associative aggregation operator, does not restrict

the kinds of out-of-order behavior, and supports window sharing.

FiBA outperforms the prior state-of-the-art and has optimal time

complexity, matching the lower bound derived in this paper.

8. APPENDIX

Time Lower Bound. For a permutation π on a set X , denote by

πi , i = 1, . . . , |X |, the i-th element of the permutation. Let δi(π)

be the number of elements among π1, π2, . . . , πi−1 that are greater

than πi—i.e., δi(π) = |{ j < i | πj > πi}|. This coincides with our

out-of-order distance: if elements with timestamps π1, π2, . . . are

inserted into OoO SWAG in that order, πi has out-of-order distance

δi(π). For an ordered set X and d ≥ 0, let Gd(X) denote the set of

permutations π on X such that maxi δi(π) ≤ d—i.e., every element

is out of order by at most d.We begin by bounding the size of such a

permutation set.

Lemma 8. For an ordered set X and d ≤ |X |,

|Gd(X)| = d!(d + 1) |X |−d .

Proof. The base case is |G0(∅)| = 1—the empty permutation.

For non-empty X , let x0 = min X be the smallest element in X .

Then, every π ∈ Gd(X) can be obtained by inserting x0 into one of

the first min(|X |, d + 1) indices of a suitable π′ ∈ Gd(X \ {x0}). In

particular, each π′ ∈ Gd(X\{x0}) gives rise to exactly min(|X |, d+1)

unique permutations in Gd(X). Hence, |Gd(X)| = |Gd(X \ {x0})| ·

min(|X |, d + 1). Expanding this gives

|Gd(X)| =

|X |∏

k=1

min(k, d + 1) =

(d∏

k=1

k

) (|X |∏

k=d+1

d + 1

)
,

which is d!(d + 1) |X |−d , completing the proof.

Proof of Theorem 1. Fix X = {1, 2, . . . ,m}. Let A be an OoO

SWAG instantiated with the operator x ⊗ y = x—i.e., it computes

the first element of the window. Now let π ∈ Gd(X) be given. We

will sort π using A. First, insert m elements
[
π1
π1

]
,
[
π2
π2

]
, . . . ,

[
πm
πm

]

into A. By construction, each insertion has out-of-order distance at

most d. Then, query and evict m times, reminiscent of heap sort.

At this point, π has been sorted using 3m OoO SWAG operations

in total. By a standard information-theoretic argument (see, e.g.,

[18]), sorting a permutation in Gd(X) requires, in the worst case,

Ω(log |Gd(X)|) time. There are two cases to consider: If d ≤ m
2

,

we have |Gd(X)| ≥ (1 + d)m−d ≥ (1 + d)m−m/2 = (1 + d)m/2, so

log |Gd(X)| ≥ Ω(m log(1 + d)). Otherwise, we have m ≥ d > m
2

and |Gd(X)| ≥ d! ≥ (m/2)!. Using Stirling’s approximation, we

know log |Gd(X)| = Ω(m log m), which is Ω(m log(1 + d)) since

2m ≥ 1 + d. In either case, log |Gd(X)| ≥ Ω(m log(1 + d)).

Tree Rebalancing Cost. We analyze the restructuring cost:

Lemma 9. Let µ ≥ 2. The amortized cost due to tree rebal-

ancing in a B-tree with nodes of arity between MIN_ARITY= µ and

MAX_ARITY= 2µ (inclusive), starting with an empty tree initially, is

O(1) per OoO SWAG operation.

Proof. This proof is a specialization of the rebalancing cost

lemma in [21]. We prove this lemma by showing that if each

insert and evict is billed two coins, the following invariant can

be maintained for every B-tree node. Let w be a node with arity a.

In a tree with minimum arity µ and maximum arity 2µ, during the

intermediate steps, the arity of a node always has arity between µ− 1

and 2µ + 1 (inclusive). We maintain a coin reserve of

coins(w) =

4 if a = 2µ + 1
2 if a = 2µ or (a = µ − 1 and w is not the root)
1 if a = µ and w is not the root
0 if a < 2µ and (a > µ or w is the root)

To insert or evict, the data structure locates a node where an entry

is either added or removed. Either way, coins(·) of this node never

changes by more than 2, so 2 coins can cover the difference. But

this may trigger a chain of splits or merges. Below, we argue that

the coin reserve on each node can pay for such splits and merges.

When split is called on a node w, then w has arity 2µ + 1, so w

has a reserve of 4 coins. When w is split, it is split into two nodes

ℓ and r, with one entry promoted to w.parent, the parent of w.

Node ℓ will have arity µ + 1 and node r will have arity µ. Because

µ < µ + 1 < 2µ, we have coins(ℓ) = 0 and node ℓ needs no coin.

But node r has coins(r) = 1, so it needs 2 coins. Moreover, now that

the arity of w.parent is incremented, node w.parent may need up

to 2 additional coins. Out of 4 coins w has, use 1 to pay for the split,

give 1 to r , and give up to 2 to w.parent, refunding any excess.

When merge is called on a node w, it has arity µ − 1 and the

sibling to merge with has arity µ. Between these two nodes, we

have 2 + 1 = 3 coins in reserve. Once merged, the node has arity

µ + µ − 1 = 2µ − 1, so it needs 0 coins. As a result of merging, the

parent of w loses one child, so it may potentially need 1 coin. Out of

3 coins in reserve, use 1 for the merge and give up to 1 to w.parent.

Finally, note that each of heightIncrease, heightDecrease, and

move can happen at most once for each OoO SWAG update. The

internal operations heightIncrease and heightDecrease are easy

to account for. For move, when called on a node w, it must be that

w has arity µ − 1, and the sibling it is interacting with has arity a′,

where µ ≤ a′ ≤ 2µ. So, w has 2 coins. Once moved, w has arity µ,

so it needs only 1 coin, leaving 1 coin for the sibling. The sibling of

w will loose one arity, so it needs at most 1 more coin (either going

from arity µ + 1 to µ, or µ to µ − 1). This concludes the proof.

1178

9. REFERENCES
[1] Citi Bike System Data.

https://www.citibikenyc.com/system-data, 2019. Retrieved

April, 2019.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,

A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The

design of the Borealis stream processing engine. In

Conference on Innovative Data Systems Research (CIDR),

pages 277–289, 2005.

[3] adamax. Re: Implement a queue in which push_rear(),

pop_front() and get_min() are all constant time operations.

http://stackoverflow.com/questions/4802038/, 2011. Retrieved

Oct., 2018.

[4] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and

K. Yi. Mergeable summaries. In Symposium on Principles of

Database Systems (PODS), pages 23–34, 2012.

[5] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,

J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and

S. Whittle. MillWheel: Fault-tolerant stream processing at

internet scale. PVLDB, 6(11):1033–1044, 2013.

[6] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.

Fernandez-Moctezuma, R. Lax, S. McVeety, D. Mills,

F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A

practical approach to balancing correctness, latency, and cost

in massive-scale, unbounded, out-of-order data processing.

PVLDB, 8(12):1792–1803, 2015.

[7] M. H. Ali, C. Gerea, B. Raman, B. Sezgin, T. Tarnavski,

T. Verona, P. Wang, P. Zabback, A. Kirilov,

A. Ananthanarayan, M. Lu, A. Raizman, R. Krishnan,

R. Schindlauer, T. Grabs, S. Bjeletich, B. Chandramouli,

J. Goldstein, S. Bhat, Y. Li, V. Di Nicola, X. Wang, D. Maier,

I. Santos, O. Nano, and S. Grell. Microsoft CEP server and

online behavioral targeting. PVLDB, 2(2):1558–1561, 2009.

[8] A. Arasu and J. Widom. Resource sharing in continuous

sliding window aggregates. In Conference on Very Large Data

Bases (VLDB), pages 336–347, 2004.

[9] R. S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent

streaming through time: A vision for event stream processing.

In Conference on Innovative Data Systems Research (CIDR),

pages 363–373, 2007.

[10] R. Bayer and E. M. McCreight. Organization and maintenance

of large ordered indices. Acta Informatica, 1:173–189, 1972.

[11] B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM (CACM),

13(7):422–426, 1970.

[12] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird:

A framework for integrating batch and online MapReduce

computations. PVLDB, 7(13):1441–1451, 2014.

[13] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber. Speculative

out-of-order event processing with software transaction

memory. In Conference on Distributed Event-Based Systems

(DEBS), pages 265–275, 2008.

[14] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,

and K. Tzoumas. Apache Flink: Stream and batch processing

in a single engine. IEEE Data Engineering Bulletin,

38(4):28–38, 2015.

[15] P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl.

Cutty: Aggregate sharing for user-defined windows. In

Conference on Information and Knowledge Management

(CIKM), pages 1201–1210, 2016.

[16] B. Chandramouli, J. Goldstein, and Y. Li. Impatience is a

virtue: Revisiting disorder in high-performance log analytics.

In International Conference on Data Engineering (ICDE),

pages 677–688, 2018.

[17] B. Chandramouli, J. Goldstein, and D. Maier.

High-performance dynamic pattern matching over disordered

streams. PVLDB, 3(1):220–231, 2010.

[18] T. Cormen, C. Leiserson, and R. Rivest. Introduction to

Algorithms. MIT Press, 1990.

[19] L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts.

A new representation for linear lists. In Symposium on the

Theory of Computing (STOC), pages 49–60, 1977.

[20] R. Hinze and R. Paterson. Finger trees: A simple

general-purpose data structure. Journal of Functional

Programming (JFP), 16(2):197–217, 2006.

[21] S. Huddleston and K. Mehlhorn. A new data structure for

representing sorted lists. Acta Informatica, 17(2):157–184,

1982.

[22] M. Izbicki. Algebraic classifiers: A generic approach to fast

cross-validation, online training, and parallel training. In

International Conference on Machine Learning (ICML), pages

648–656, 2013.

[23] Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich, and

C. Fetzer. Quality-driven processing of sliding window

aggregates over out-of-order data streams. In Conference on

Distributed Event-Based Systems (DEBS), pages 68–79, 2015.

[24] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A

visualization-oriented time series data aggregation. PVLDB,

7(10):797–808, 2014.

[25] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina,

P. Golovko, A. Li, and N. Thombre. Continuous analytics over

discontinuous streams. In International Conference on

Management of Data (SIGMOD), pages 1081–1092, 2010.

[26] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing

for streamed aggregation. In International Conference on

Management of Data (SIGMOD), pages 623–634, 2006.

[27] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No

pane, no gain: Efficient evaluation of sliding-window

aggregates over data streams. ACM SIGMOD Record,

34(1):39–44, 2005.

[28] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and

D. Maier. Out-of-order processing: A new architecture for

high-performance stream systems. PVLDB, 1(1):274–288,

2008.

[29] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. FlatFIT:

Accelerated incremental sliding-window aggregation for

real-time analytics. In Conference on Scientific and Statistical

Database Management (SSDBM), pages 5.1–5.12, 2017.

[30] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. SlickDeque:

High throughput and low latency incremental sliding-window

aggregation. In Conference on Extending Database

Technology (EDBT), pages 397–408, 2018.

[31] U. Srivastava and J. Widom. Flexible time management in

data stream systems. In Symposium on Principles of Database

Systems (PODS), pages 263–274, 2004.

[32] K. Tangwongsan, M. Hirzel, and S. Schneider. Low-latency

sliding-window aggregation in worst-case constant time. In

Conference on Distributed Event-Based Systems (DEBS),

pages 66–77, 2017.

[33] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu.

General incremental sliding-window aggregation. PVLDB,

8(7):702–713, 2015.

1179

[34] J. Traub, P. Grulich, A. R. Cuellar, S. Bres̈, A. Katsifodimos,

T. Rabl, and V. Markl. Scotty: Efficient window aggregation

for out-of-order stream processing. In Poster at the

International Conference on Data Engineering (ICDE-Poster),

2018.

[35] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß,

A. Katsifodimos, T. Rabl, and V. Markl. Efficient window

aggregation with general stream slicing. In Conference on

Extending Database Technology (EDBT), 2019.

[36] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting

punctuation semantics in continuous data streams. Transations

on Knowledge and Data Engineering (TKDE), 15(3):555–568,

2003.

[37] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.

Discretized streams: Fault-tolerant streaming computation at

scale. In Symposium on Operating Systems Principles (SOSP),

pages 423–438, 2013.

1180

