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CHAPTER 1

Introduction

1. Aims and scope of flow control

A general optimal control problem may be subdivided into the following interrelated parts [91]:

(1) Problem statement
Definition of the goal, cost function or performance index
(2) State estimation problem
Knowledge of the current state of the system
(3) Modelling and system identification
Knowledge of how the environment effects the past, present and future of the system
(4) Optimization
Determination of the best control policy based on parts 1., 2. and 3.
Of course, for control problems in fluid flow this frame has a mathematical and an engineering com-
ponent. From the engineering point of view it often is desirable to minimize drag, increase mixing,
reduce turbulent kinetic energy and so forth in a channel, say. Engineers measure these quantities us-
ing micro-electronical devices (MEMS), heated wires or particle image velocimetry (PIV), and they
impose control actions by blowing and suction, movement or heating of walls, application of vol-
ume forces by electric fields or variations of the shape, just to mention a few of various possibilities.
Moreover, the fluid is characterized as incompressible or non-Newtonian and its behaviour is periodic
with respect to time or on (portions of) the boundary, just to count for a small number of possible
constellations.

In order to apply mathematical approaches to the control of fluid flow these terminologies have
to be translated into mathematical language. The first question to pose is how to model fluid flow
mathematically. For this purpose first of all the region of fluid flow has to be specified and to be
made accessible to a mathematical description. This is, from the theoretical point of view, easy.
Modelling fluid flow clearly depends on the physical properties of the fluid. Most commonly, the fluid
is assumed to be incompressible, so that its state can approximately be described by the (instationary)
Navier-Stokes equations. Once such a model is available, physical terms like drag and turbulent
kinetic energy may be expressed in terms of the model variables and thus can be customized for
mathematical performance indexes. The same holds true for control actions. Finally, blowing and
suction or movement of walls may be regarded as boundary conditions for the flow variables, external
forces applied in the domain of flow as inhomogeneities.

5



6 1. INTRODUCTION

The choice of the control policy depends on the control target and the environment. If the system
to be controlled is shielded against external influences, it can be desirable to provide a time dependent
control function that, for example steers the system from a given state to a desired one. This would
correspond to an optimal (open-loop) control problem (find the best time dependent control function
for the specified environment). A more general form of control activity is (optimal) closed-loop or
feedback control (find the best feedback control law). It allows for feeding back into the system con-
trol information obtained by currently available state information or estimation. This is a much more
general concept than optimal control and, at least optimal feedback, also much more complicated to
determine.

In the first part this work is concerned with optimal distributed control of the full Navier-Stokes
System and with instantaneous control in its second part, which is a suboptimal variant of feedback
control.

The distributed control problem considered in the first part of this work is of the form

min J(y,u)
S.t.
) %+(y-V)y—uAy—|—szBu in Q7
—divy =0 in Q7
y(t,") =0 on (007,
y(0,-) = yo in €,
where Q@ C R? denotes a bounded domain and Q7 := (0,7) x . Since for appropriate controls

Bu there is a one-to-one correspondence between state and controls there are in principal two pos-
sibilities to tackle this control problem: As unconstrained minimization problem for the functional
J (u) = J(y(u),u), or as constraint optimization problem, treating the Navier-Stokes equations as
explicit constraints. Up to now in most approaches the first possibility has been utilized, see for ex-
ample [1, 33, 39]. In this work the focus is on the second approach. In Chapter 3 and Chapter 4
the results obtained in [53] for the optimization problem (1) are extended to a more general analytic
frame and the discussion of further second order algorithms is supplemented. In Chapter 3 the con-
cise analytical frame for the constraint minimization approach to (1) is developed. The decoupling
of state and control in the problem formulation among other things allows an elegant derivation of
first and second order derivatives of the functional .J. The main results of Chapter 3 are contained
in Theorem 1.1 (Existence of solutions), Proposition 2.2 (properties of the linearized Navier-Stokes
equations and their adjoint) and Theorem 3.1 (Existence of Lagrange multipliers). In Section 4 sec-
ond order analysis for the functional J and the Lagrangian [. associated to the above optimization
problem is provided. These results are utilized in Chapter 4 to prove local convergence of Newton’s
method (Theorem 1.1) and of the BEFGS method (Theorem 2.1) applied to the unconstraint minimiza-
tion problem for J, as well as for the prove of local convergence of the basic SQP method (Theorem
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3.1) and its Schur-complement variant (Theorem 4.1), the reduced SQP method (Theorem 5.1) and
the reduced SQP-BFGS method (Theorems 6.1, 6.2), when applied to numerically solve the con-
straint minimization problem. The numerical results for Newton’s method applied to the control of
the driven cavity flow are presented in Section 7. Moreover, in the same section a numerical com-
parison between Newton’s method and gradient-type algorithms with step size control is provided. It
shows that despite its complex inexact implementation Newton’s method needs much less cpu-time
in this numerical example. However, for more complex flows like unsteady flow around a circular
cylinder the numerical solution of the optimal control problem utilizing Newton’s method needs an
initialization step to provide a suitable initial guess [2]. This is clearly due to the local nature of
Newton’s method and suggests the use of hybrid first-order second-order methods or the development
of globalization strategies for second order methods for optimal control of the instationary Navier-
Stokes equations.

For many applications computing optimal controls is very time consuming and often far from
being achievable with currently available computing facilities. This in particular holds true for the
control of realistic three dimensional flows in medium to large sized control horizons and also remains
valid for two-dimensional instationary flows such as those around a cylinder or over a backward
facing step, say or the selective cooling of steel. In order to circumvent the mentioned bottleneck
suboptimal control concepts have been developed. Their aim consists in providing good controls with
reasonable effort. For the mentioned applications suboptimal control concepts prove very powerful
[14, 18, 49, 62, 106].

The suboptimal control method discussed in the second part of this work is called instantaneous
control. It is a simplification of model predictive control [31], which often is also referred to as reced-
ing horizon control [64, 92, 99]. Receding horizon control can best be explained at hand of a chess
analogy: One computes the optimal next n moves, say with respect to the current situation in the
game. Then one applies the first of these moves to continue the game and repeats the procedure. In-
stantaneous control in this context would compare to a variant of rapid chess: apply an approximation
of the first move forn = 1.

For the control problem (1) the instantaneous control strategy works as follows. The Navier-
Stokes equations are discretized with respect to time. Then, at every time instance a stationary control
problem with a instantaneous version of the functional .J is approximately solved by applying exactly
one gradient step to its solution.

In Chapter 5 the instantaneous control strategy is developed at hand of the linear-quadratic regu-
lator problem for finite dimensional plants of the form

2 g+ Ay =b(y) +u, y(0) = yo,
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see also [46]. It turns out that instantaneous control can be interpreted as discrete-in-time control
approach to (2), which in turn may be regarded as the stable discretization of a continuous control
law v = Ky for the plant (2) (Theorem 4.1). In Section 5 conditional stability of the discrete and
the continuous control laws is proved in Theorems 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6. In Chapter 6 the
results obtained in [54] for the instantaneous control strategy applied to tracking-type control of the
instationary Burgers equation are extended to the control of the instationary Navier-Stokes equations.
In the solenoidal setting the controlled Navier-Stokes system, similar to the finite dimensional case,
then is of the form

3 g+ Ay =by)+ K(y), y(0)=yo,

with a nonlinear control operator K (y). Existence of a unique solution to (3) is proved in Theorem 2.1.
Moreover, in Theorems 3.1 and 3.2 exponential decay of the state to the desired state in terms of the
parameters defining K is proved. The corresponding results for the related discrete-in-time control
law are given in Theorems 4.1, 4.2 and Theorem 4.3. In Section 5 these results are numerically
validated. In Chapter 7 instantaneous control is investigated from a more practical point of view.
For the backward facing step flow serving as model problem the method is utilized to construct a
boundary observation based closed-loop feedback boundary control mechanism in order to reduce
the re-attachment length of the flow (Algorithms 3.2 and 4.1). In Section 5 the performance of the
controller is numerically illustrated. Further details concerning this example can be found in [19].

Chapter 2 presents the notations and preliminary results. Theorem 2.1 and Proposition 2.1 are
of particular importance for the analysis presented in Chapters 3 and 4. They contain the a-priori
estimates for the Navier-Stokes equations and for the linearized Navier-Stokes equations and their
adjoints. A proof of the latter is given in Appendix 2. In Appendix 1 the formal derivation of the
optimality system for a general optimization problem for the instationary Navier-Stokes equations is
provided.

2. A brief review in active flow control

In active flow control optimal and suboptimal control approaches are utilized to compute controls.
The following subsections contain a selection of references to the literature for both control branches.

2.1. Optimal control. In [1] Abergel and Temam apply optimal control theory to some fluid
mechanics problems and derive optimality conditions for various cost functionals. As solution proce-
dure they propose gradient-type methods. A similar approach is taken by Glowinski in [33]. Optimal
control strategies with focus on turbulent flows are discussed by Bewley, Choi, Temam and Moin
in [13], compare also [14, 105]. In [16, 17] Chang and Collis combine large eddy simulation and
flow control and obtain numerical results similar to that presented in [14], but at significantly lower
numerical costs. Together with Ziane, Bewley and Temam extended the optimal control concept for
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the Navier-Stokes equations to robust control in [15]. Gunzburger and Manservisi investigate opti-
mization problems for the instationary Navier-Stokes equations with distributed controls in [39, 37],
and for boundary controls in [40]. See also [56] and the PhD [87] of the latter author. The long-time
behaviour for distributed optimal control of the Navier-Stokes equations is investigated by Hou and
Yan in [59]. They compare the optimal trajectory to that produced by a simple distributed closed-loop
control law, for whose decay can be estimated. In [12] Berggren presents a fully discrete boundary
control problem for the instationary Navier-Stokes equations and utilizes a limited memory BFGS
approach for its numerical solution. Justen investigates control problems for the thermally coupled
Navier-Stokes equations in [67], and Clerc, Le Tallec, Mallet, Ravachol and Stoufflet optimal con-
trol of the parabolized Navier-Stokes system in [21]. Joslin, Gunzburger, Nicolaides, Erlebacher and
Hussaini in [66] present an optimal boundary control strategy for boundary layers which is based on
tracking a prescribed normal stress distribution along an observation boundary. Protas and Styczek
derive a boundary control problem with state observation on the boundary for the wake flow around
a circular cylinder in [94]. Kunisch and the author applied a gradient algorithm to compute boundary
controls for a backward facing step flow in [S0] and compared the result to that obtained by the instan-
taneous control strategy. In [52] the same authors discuss Newton’s method and present a convergence
proof for the distributed optimal control problem. A general analytic frame for the distributed control
problem treating the Navier-Stokes equations as explicit constraints is given by Kunisch and the au-
thor in [S3]. The same source also contains convergence proofs for various optimization algorithms
applied to the solution of the optimal control problem.

For a more analytical approach to control problems for the instationary Navier-Stokes equations
see for example the work [30] by Fursikov, Gunzburger & Hou, and that by Fursikov [29], Coron [23]
and Farbre [27] concentrating on controllability questions, as well as the references cited therein.

Investigations concerning optimal control of the stationary Navier-Stokes equations are presented
by Ghattas and Bark in [32], where they apply Newton and quasi-Newton SQP techniques to the
solution of optimal control problems for the stationary Navier-Stokes equations in two and three
dimensions and compare their results to them obtained by the classical gradient method. Further
investigations on control problems for the stationary Navier-Stokes equations are provided by Desai
and Ito in [25], by Gunzburger, Hou and Svobodny in [36, 57], by Mdlek and Roubicek in [86],
by Loncarcic for the Stokes equations in [83] and by Heinkenschloss in [43]. In [74] Kunisch and
Marduel numerically investigate the optimal control problem with thermal controls for non-isothermal
viscoelastic fluids in a suddenly expanding channel. An excellent overview on diverse aspects of
optimal control for fluids is given by Gunzburger in [35], and also by Sritharan in [101].

2.2. Suboptimal control. In the recent past two suboptimal approaches to the control of fluids
have been proposed, namely receding horizon control and control by system reduction. The idea of
receding horizon control techniques is to replace the open-loop optimal control problem on the full
time horizon by a sequence of optimal control problems on short control horizons that move forward
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in time. Control by system reduction keeps the control horizon fix and replaces the full Navier-Stokes
system by a suitable low order model, for which the optimal control problem then is solved exactly.
The resulting reduced optimal control is used as control function for the full system.

2.2.1. Receding horizon control, instantaneous control and other feedback control concepts. The
concept of instantaneous control has been introduced as a suboptimal control procedure for the insta-
tionary Burgers equation by Choi, Temam, Moin and Kim in [20]. From then onwards this control
concept has been utilized in a great number of numerical approaches to the control of fluid flow. In
[18] Choi successfully applies instantaneous control to unsteady flows around a circular cylinder. The
same author together with Min presents boundary control concepts which only utilize state informa-
tion on the cylinder surface for the same flow configuration in [88]. In [81] Choi together with Kim
and Lee applies instantaneous control to drag reduction for channel flows, and in [19] together with
Kunisch and the author to reduce the re-attachment length of a laminar backward facing step flow.
Moreover, in the same work the interpretation of the method as closed-loop control approach utiliz-
ing boundary measurements only is given. Related work of Kunisch and the author can be found in
[51], and in [47] Kauffmann and the author apply instantaneous control to the unsteady flow around
a circular cylinder. In [14] Bewley, Moin and Temam use receding horizon control to re-laminarize a
turbulent channel flow, and Chang and Collis in [17] use large eddy simulation combined with reced-
ing horizon control to reproduce the numerical results obtained by Bewley et al, but at significantly
lower numerical costs. Kunisch and Marduel apply instantaneous control with thermal controls to
transient non-isothermal viscoelastic fluids in [75].

There are only a few analytical results available for receding horizon type control techniques ap-
plied to control fluid flow. In [S8] Hou and Yan prove stability for the (1,1)-receding horizon approach
with distributed controls for a tracking-type problem. Here, (1,1) means that the length of the con-
trol horizon coincides with the step size of time integration. For the instantaneous control technique
with distributed controls similar results are proved by Volkwein and the author for the instationary
Burgers equation in [54]. The results presented there are extended to the instationary Navier-Stokes
equations in Chapter 6 of this work. An interesting observation is made by Heinkenschloss in [41]
where he shows that the first step of the Gaul3-Seidel method applied to the numerical solution of
quadratic optimization problems for discretized parabolic equations is equivalent to the application of
instantaneous control to the parabolic equation, compare also [42].

A different feedback approach is presented by Ito and Kang in [60], where they describe an
approach to obtain suboptimal solutions to the optimal feedback control problem for systems gov-
erned by the Burgers and the Navier-Stokes equations. Heuristic feedback control approaches to the
instationary Navier-Stokes equations with distributed controls are investigated by Gunzburger and
Manservisi in [38], and by Hou and Yan in [59]. Joshi, Speyer and Kim present a feedback control
approach to stabilize disturbances in a plane Poiseuille flow in [65]. In a series of papers [71, 72, 73]
Koumoutsakos develops a closed-loop boundary control mechanism for fluid flows which utilizes
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pressure information on the boundary only and applies it to control the vortex dipole. In [80] Lee,
Kim, Babcock and Goodmann apply neural networks to turbulence control for drag reduction.

2.2.2. System reduction and control. In the system reduction approach to the control of the in-
stationary Navier-Stokes equations a Galerkin approximation for the spatial approximation of the full
Navier-Stokes equations is used that utilizes global basis functions that contain characteristics of the
expected controlled flow and represent the dynamics of the flow. This is in contrast to finite element
based Galerkin schemes where the basis elements are not related to the physical properties of the
system that they approximate. Consequently one expects that only a few basis elements will provide
a reasonably good description of the controlled flow. The result is a low order model for the Navier-
Stokes equations which then is used as subsidiary condition in the optimization process. The control
computed for the reduced system is used as suboptimal control for the full equations.

Various reduced system approaches differ in the choice of the basis functions. In the following
the approach is sketched for the control problem (1) utilizing basis functions obtained by the snap-
shot variant of proper orthogonal decomposition (POD) introduced by Sirovich in [100]. To begin

with denote by y', ..., y" an ensemble of snapshots of the flow corresponding to the time instances
ty,...,t, and make for the flow the Ansatz
) y=y+) o
=1

with modes ®; and the mean g that are obtained as follows:

(1) Compute mean j = 1 Zn: y'

(2) Build correlation matr{?K = ki, kij= [ (v —9) (v —y)dx

(3) Compute eigenvalues Aq, ..., A, and eiggnvectors vl .., v of K

@) Set b, := 3 vify = 1)

(5) NormalizeJ;I)i = ||§Z|I
The functions ®;,: = 1,...,n constructed in this way are called modes. They are mutually orthonor-

mal and optimal in terms of their ability to represent the flow kinetic energy [100], i.e. they are optimal
with respect to the L? scalar product in the sense that no other basis of D :=span{y; —4,...,y, — 4y}
can contain more energy in fewer elements, compare [4, 77]. The modes are used as test functions
in the Galerkin formulation of the Navier-Stokes system. Note, that as linear combinations of the
snapshots the modes are divergence free. In order to obtain a low-dimensional basis for the Galerkin
Ansatz modes corresponding to small eigenvalues are neglected. To make this idea more precise let
DM .= span{®;,..., 0y} (1 < M < N :=dimD) and define the relative information content of
this basis by
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If a basis is required that contains k% of the total information contained in the space D, say the
dimension M of the subspace D™ is determined by
M = argmin{I(M); (M) > i} .
100
The reduced dynamical system is obtained by plugging in (4) into the Navier-Stokes System and using
a subspace DM containing sufficient information as test space. This results in

(yt, (I)J) + I/(Vy,VCDj) + ((yV)y, (I)J) = (Bu, (I)J) (_] = 1, ey M)
which may be rewritten as
d—l—Aoz:n(oz)—l—ﬁ—l—r, oz(O) = ag.

Here the initial values y, are approximated by y + ny: (Yo — y, @1)®y. The matrix A is the POD
stiffness matrix and the inhomogeneity r results from the contribution of the mean y to the Ansatz in
(4). The M-vector 3 results from the contribution of the controls, which are also sought in the space
DM j.e. for them the Ansatz

M
(5) U= Z B ®;

is made. The reduced optimization problem corresponding to (1) is obtained by plugging in (4) and
(5) into the cost functional and utilizing the reduced dynamical system as subsidiary condition in the
optimization process. Altogether one obtains

min.J(y,u) = J(a, f)
(ROM) { s.t.
a4+ Aa=n(a)+p+r, «a(0)=a,
M
and every optimal control u* = > 37 ®, of the reduced optimization problem is considered as subop-

=1
timal control for problem (1). Of course, this approach can be extended to obtain suboptimal boundary

controls.

There are a few contributions to the control of the instationary Navier-Stokes equations using
system reduction. In [102] Tang, Graham and Peraire apply the snapshot variant of POD to the
control of the unsteady wake flow around a cylinder. In their approach control is introduced into
the system via cylinder rotation. Arian, Fahl and Sachs present a sequential POD boundary control
approach for fluid flows which successively improves the low order model and apply it to the control
of driven cavity flows. Their approach takes up an idea presented by Afanasiev and the author in
[2] for adaptive distributed control of a wake flow using proper orthogonal decomposition. In [98]
Ravindran uses the snapshot POD approach for boundary control of the backward-facing step flow.

System reduction and control utilizing the reduced basis method is introduced by Ito and Ravin-
dran in [63, 62] where it is applied to the control of the flow over the backward facing step gouverned
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by stationary Navier-Stokes equations. In [98] Ravindran extends the method to boundary control of
the instationary Navier-Stokes equations and compares his numerical results for the backward-facing
step flow to that obtained by the snapshot variant of the method. In [49] Kunisch and the author also
present numerical experiments for boundary control of the backward facing step flow utilizing the
reduced basis approach.

Further applications of system reduction and control are given by Atwell and King in [4, 5], by
the author and Kauffmann in [47, 48], by Kunisch and Volkwein in [77, 78], by Prudhomme and Le
Letty in [95], by Ly and Tran in [84, 85], and by Volkwein in [107].






CHAPTER 2

Notation and preliminary results

1. Quasi-Stokes problems

In this work the following results concerning Stokes- and quasi-Stokes problems are frequently
used. Parts of the exposition follow the book of Constantin/Foias [22].

Let 2 C R?be a bounded domain with Q) € C? with outward unit normal 5 (some of the results
presented below would only require J locally Lipschitz). Let H™(Q)* (0 < m < o) fork € N
denote the Sobolev space of measurable square integrable vector functions with values in R*, whose
derivatives up to order rn are measurable and square integrable, equipped with the norm | - | gmqyx.
The closure of C§°(Q)* in H™(Q)* is denoted by H{* (), the dual of the latter space is denoted by
H=™(Q)*. Denote by A the (2 x 2) matrix operator containing the Laplacian in its diagonal, and
zeros, else. Let f € H~'(2)?. In primitive variables (y, p) the quasi-Stokes equations are given by

y—vAy +Vp=f inQ
(6) —divy =0 in{}
y=0 ondQ,

with v = 1/Re denoting the viscosity parameter. In order to pose (6) in a proper functional analytic
setting introduce the solenoidal spaces

H={veCr()?: dive=0} "2@? and V = {v € CF(Q)?: dive =0} 72,

where the superscripts denote closures in the respective norms. The space / endowed with the usual
L*(2)?-inner product (-, -) is a Hilbert space, and with the scalar product

(u,v)y = /Vqud:c
Q

V' also becomes a Hilbert space. Then, V «—< H — V* dense.

DEFINITION 1.1. The vector function y is called a weak solution of the quasi-Stokes equations
(6) if

d
o {yEV an

(y,v) + v(y,v)v = f(v) forallv e V.

15
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REMARK 1.1. If y is a weak solution then there exists a function p € L?(§) such that the couple
(y, p) solves (6) in the variational sense and for every variational solution (y, p) € Hg(9)? x L*(2) to
(6) the function y is a weak solution, i.e. satisfies (7) [22, Propositon 2.1],[103, Ch. I, Theorem 2.1].

THEOREM 1.1. For every f € V™ there exists a unique weak solution y to the quasi-Stokes
equations.

Proof. Follows immediately from the Lax-Milgram theorem. O
From [103, Ch. I, Proposition 2.3] one has the following regularity results for solutions to (6).

THEOREM 1.2. Let m > —1, Q) be of class C"(r =max(m + 2,2)) and f € H™(2)?. Then there
exists a unique solution (y, p) € H™**(Q)* NV x H™(Q) N L*(2)/R to (6). Moreover,

Yyl Frm+2@y2 + plame@r < C | flam@):2.

DEFINITION 1.2. Let P : L?(©2)* — H denote the Leray projector [22, Remark 1.10]. Then, the
Stokes operator S is given by

(8) S:DS)YC H— H, S:=-PA, DS)=HQ)>’NV.
The Stokes operator has the following properties.

THEOREM 1.3. The operator S is selfadjoint and its inverse, S~!, is a compact operator on H.
There holds
|’U|H2(Q)2 S C |SU|L2(Q)2 for all v € D(S)

Proof. [22, Theorem 4.3, 4.4, Proposition 4.7]. O
Utilizing the Stokes operator the quasi-Stokes equations may be formulated as

y+vSy = f.

Although this formulation and, more general the usage of the Stokes operator only makes sense for
right-hand-sides f € L*(©2)* and functions y € D(S) it is for notational reasons also utilized in
situations which do not match these requirements. However, it will follow from the specific context
in which sense the equation has to be understood.

2. Instationary Navier-Stokes equations in 2d

The Navier-Stokes equations in primitive variables (y, p) are given by

yi+ (yV)y —vAy+Vp=f inQ7
—divy=0 inQ7

y=0 on(0Q)T
y(0) =yo inf.

©)
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Here, v denotes the constant kinematic viscosity coefficient and the superscript 7' denotes the time-
space cylinder of the domain built over the interval (0, 7"). For example Q7 = (0, T') x Q. The vector
function yy denotes an initial value. Define for 1 < p, ¢ < oo
Wr={vel’(V):v, € L'(V")} and 7 := L*(V) x H,
WP endowed with the norm
lolwy = o]y + [vel Loy,
H>'(Q) :={v e LX(V N H*(Q)*);0, € L*(H)}
equipped with the norm
vlir2a(0) = [V]72vamz@)) T 106120,
and set
W = Wj.
Furthermore, let
()=, '>L2(V*),L2(V)-
Here, V* denotes the dual space of V and L?(V') is an abbreviation for L?(0,7; V), and similarly
LY(V*) = L%(0,T;V*). Recall that up to a set of measure zero in (0, 7') elements v € W7 (¢ > 1)
can be identified with elements in C'([0, T]; V*), and even in C([0, T]; H) for ¢ > 2), compare [24,
p.521], elements w € H*'(Q) can be identified with elements in C'([0,7]; V) and the embedding
WP — LP(H) (1 < p,q < oo) is compact [90, Aubin-Lions, Theorem 1.4], i.e.

(10) Wy = C([0, T V") (1 <¢<2), W= C(0,T:G)(¢=2), H*(Q) = C([0,T];V)
and WP —— LP(H) (1 < p,q < o0).
The variational formulation of (9) in the solenoidal setting is given by:
For given yo € H find y € W with y(0) = yo in H and
(an (e, v) + {(y - Vg, 0) + v(Vy, Vo) = (f,v) Vv € LA(V).
For (11) one has
THEOREM 2.1. Let f € L*(V*),yo € H. Then (11) admits a unique variational solution y € W

and satisfies the a-priori estimates

Lyl + Wlzery < C {Iflr2vsy + lwolu }

i yel 2y < C {|f|L2(V*) + 72y + [vol + |”o|fq},

ii. lylw < C {1Fliave) + 1 Eagrey + looler + ool .
If yo € V and f € L*(H) the function w is an element of /**((Q)) and satisfies

. [ylreoy + [Ylrzgre@ey < Clyolas [flrzwve) {112 + lyolv }

Vo yelizny < Cllyolm, [flr2ve) {|f|L2(H) + [golv + |f|%2(H) + |y0|§_/},i.e.
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vio lylaiigy < Clyolas | luevny) {1 e + lyolv + 1 1oy + 3015 -

Proof. Can be found in [22, 103]. O
Now define for y € W the bounded linear operator A(y) € L(W, Z*) by

Aly)o=(ve+ (v-V)y + (y - V)v — vAv, v(0)).

Then
(12) A(y)v = (g,v0) in 7% <~ {

where the latter system is understood in the variational sense. There holds

PROPOSITION 2.1. Lety € W, vy € H and g € L?(V*). Then (12) admits a unique variational
solution v € W. For every f € W* the adjoint equation

Aly)'w = f inW~

admits a unique Variational solution w = (w1 w’) e Z.If f e LYV*)NW* (1 < g < o), then for

every 0 < ¢ <min{q — the function w' is an element of W2

1+ and the variational solution of

(13) { —w, + (Vy)w' = (y- Vw!' —vAw' = f

w'(T) =0,
and it satisfies w'(0) = w". The functions v and w' satisfy the a-priori estimates

i |vlpeomy + [vlr2ery < Cllyley) {|9|L2(V*) + |U0|H}a

ii. |Ut|L2(V*) < C(|y|L2 |y|L°° H) {|g|L2(V*) + |U0|H}’

iii. Jw'l2y < Cllyleew) |U|L<>o H)) | flwe.

iv. |w,|pievyy < C(T v, T Nylz2oys Wlzee@ny) {1 lwe + | flriee s | forall
(0 <e <min{g—1,1}).

If in additiony € L>(V) and f € L*(V*), then w' € W and
V. |w1|L2(V) + |“)7}|L2(V*) S C(|y|Lco(v)) |f|L2(V*)7

Fory € WNL®(V)NL*(H*(Q)?),vo € V and g, f € L*(H) the unique solutions v of (12) and w"
of (13) are elements of H*'(()) and satisfy the a-priori estimates

vi. [v|g2ag) < Cllyluewys Wlemz@y) {19le2m) + lvolv }

and
vii. [w'|g21q) < Clylnewys [ylee @z )2)) 1 f o2 @

Proof. Is given in Appendix 2. O



3. NAVIER-STOKES NUMERICS 19
3. Navier-Stokes numerics

The numerical treatment of the Navier-Stokes equations is illustrated by means of the system

vt + (yV)y — RLeAy +Vp=/f inQT
—divy=0 inQF

(14) y=1yg ON Fg
vOyy —pn=0 onl}

As generalization of (9) here the boundary of the spatial domain is decomposed into a Dirichlet part
I'; and a Neumann part I',, with 9Q = T'; U I'y, ['y N 'y = ), where on the latter natural boundary
conditions are prescribed, compare [44]. The use of these boundary conditions is motivated by the
backward facing step numerics presented in Section 5, compare [6, 7, 19, 33].

3.1. Time discretization. Let n € N. For At := T'/n > 0 the time grid on [0, 7] is defined by
to:=0,¢;:=1At (i = 1,...,n). As time discretization schemes the semi-implicit Euler scheme and
the fractional step #-scheme [96] as operator splitting [33] are used. In the semi-implicit Euler-scheme
the nonlinearity is discretized explicitly, so that the resulting scheme for 3 > 0 is given by

y“it—yf — vAyIt L Vit = fI — (yVy) inQ

—divy/t' =0 in O

as) i :
) =Yy only
vo it — pitin =0 onl,,

with y° = y(0). At every time instance a quasi-Stokes problem has to be solved. As is well known
Euler-schemes are strongly A-stable and are easy to implement. On the other hand these schemes are
only first-order accurate and quite dissipative.

Let 0 € (0, % The fractional step #-scheme as an operator splitting for the Navier-Stokes equa-
tions (14) proceeds as follows: For j > 0 and y° = y(0) find y/*?, y/+'= i+ pi+f and p/*' such
that
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W;"A-t@ﬂ —avAyitt L Vpitt = [t
+AvAY — (y'Vy’) inQ

(16) —divy/t? = 0 in Q
yr =y on Ty
avOyy'* — p iy = —Brdyy’ onT,,

ylt1=0_pyit0

_ 61/ij+1—0 — fj+1—6 + onij"'a

(1—20)At
(17) —(y IVl - VPt in )
yit1=0 = y§+1—9 onl'y
ﬂyanyj-l'l_e = pj+0'r] — cw@nyj"'e on Fna
Yl oyt avAyitt +V J+1 J+1 + BrA J+1-6
GAT Yy p Y
—(y/ IV in Q)
(18) —divy/t = 0 in Q)
yj-l-l — y{]j-l_l only
avd,yitt — pitly = —Bud,yiti=t onl,.

The factors « and 3 have to satisfy @ + # = 1 and @ > 1/2 in order to obtain numerical damping.
Stability investigations for this scheme can found in [28, 70, 89]. Numerical experiments show that
this splitting scheme is second order accurate [8] and nearly non-dissipative. In numerical practice
frequently the choices § = 1 —1/v/2, a = (1 —20)/(1 — ) and 3 = 0(1 — 6) are used.

The steps (16)-(18) decouple the treatment of the solenoidal condition and the nonlinearity. In
(16) and (18) linear quasi-Stokes problems have to be solved and the nonlinearity is treated explicitly.
In (17) a Burgers like system of equations has to be solved, where the divergence free condition is
dropped and the pressure gradient is taken from the previous quasi-Stokes computation.

3.2. Spatial discretization. For the spatial discretization the Taylor-Hood finite element with
piecewise linear pressure and piecewise quadratic velocity approximations is used, see [55] which
guarantees a stable discretization for the quasi-Stokes problems (15), (16) and (18).

The discretized quasi-Stokes problems resulting from the spatial discretization of (15), (16) and
(18) are solved numerically by a preconditioned conjugate gradient method applied to the Schur-
complement [7, 33]. To be more precise denote by V), and P, the discrete velocity and pressure space,
respectively, where /i denotes the grid-size of the triangulation. Then, the discrete versions of (15),
(16) and (18) are of the form
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Find y;, € V},, p» € P, such that

f yrnvn + YVyrVo, — diveppy de = f rpvpde forall vy, € Vj
(19) ¢ : ¢
— [ divyngrdz =0 forall ¢, € P,,.

Q
For example in (15) one has ¥ = Atv and p;, stands for the approximation of A¢p. The right-hand-
side rj, contains the discretized velocity from the previous time step and the discretized nonlinearity.
The action of the Schur-complement operator Ay, : P, — P, corresponding to (19) is defined by

(20) Apgn = —divy (Tdy, — AL Vi,

where for given g, € P one has w;, = (Idy, — PyAh)_l Vg iff

/ wpvp + YVw, Vo, de = / divo,q, do — / gropn dl'y, for all v, € Vj,.
Q Q In
An appropriate preconditioner S, : P, — P for the Schur-complement operator (20) is given by
Sp = ((=An) ™ +71d), ie.
Shan = bg, + Vqn;
with w;, = ¢,, the solution of

/ Vw, Vo, de = / gnvp dz for all v, € V)7,
Q Q

see [33], where also more details can be found. Here, V" denotes the dual’ of the space V}, i.e. the

finite element space containing Ansatz functions with zero boundary conditions on I',, and natural

boundary conditions on I';.

The numerical solution of the nonlinear Burgers equation (17) is performed with a preconditioned
GMRES-algorithm with restart. For that purpose the nonlinearity in every application of the GM-
RES algorithm is freezed. The result of the iteration is used to update the nonlinearity and GMRES
is restarted. This procedure is repeated until convergence is obtained. As preconditioner diagonal
scaling is used [7].

The same discretization techniques with obvious modifications are used to solve numerically ad-
joint equations, which in general are (variants of) linearizations of the Navier-Stokes equations.






CHAPTER 3

Optimal control of the instationary Navier-Stokes equations

In the following sections the analytical framework for optimal distributed control of the instation-
ary Navier-Stokes equations in two spatial dimensions is developed. The problem is formulated as
constrained optimization problem with the Navier-Stokes equations serving as subsidiary conditions.
This is different to the approaches presented for example in [1, 39] where the one-one correspondence
between state and control is utilized to formulate an unconstrained optimization problem. Section 1
contains the problem formulation, the definitions of appropriate function spaces and introduces the
operators for the subsidiary conditions. In Section 2 the first and second derivatives of the cost func-
tional and the subsidiary conditions are derived and investigated with respect to their differentiability
properties. In Section 3 the first order optimality system is investigated and existence and unique-
ness of Lagrange multipliers is proved. Finally, in Section 4 some results related to the second-order
analysis of the optimal control problem are proved.

1. The optimal control problem

The subject of the investigations in the present chapter is given by the distributed control problem

min J(y,u)over (y,u) € W x U
S.t.
(21) (P) g—gf(y-V)y—yAy—i—Vp: Bu ?n Q;’
—divy =0 in Q'
y(t,) =0 on (9Q)7,
y(0,-) = yo in Q.

Here U denotes the Hilbert space of controls,
X =W xUand z :=(y,u) for (y,u) € W x U.
Introducing the nonlinear mapping e : X — 7*,
e(z) = (e'(x), () = (5 + (y - V)y = vAy = Bu,y(0) — yo)
problem (P) equivalently can be rewritten as

22) min J(z)overz € X
subject to e(x) =0 in Z*.

23
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Comparing (21) to (22) it is worth noting that the conservation of mass, as well as the boundary
condition are realized in the choice of space W while the dynamics are described by the condition
e(z) =0.

The control space U is identified with its dual U*,

B e L(U, LQ(V*))
denotes the control extension operator and yo € H an initial value. The cost functional
J: X =R, J(z)=Ji(y)+ J2(u).

is assumed to be of separable type, bounded from below, weakly lower semi-continuous, twice Fréchet
differentiable with locally Lipschitzean second derivative, and radially unbounded in u, i.e.

J(z) = oo (July — o0), foreveryy € W.
Due to Theorem 2.1 with respect to existence problem (22) is equivalent to
(23) min j(u) = J(y(u),u) subjectto u € U,
where y(u) € W satisfies e(y(u),u) = 0.
THEOREM 1.1. Problem (22) admits a solution z* = (y(u*),u*) € X.

Proof. Since .J is bounded from below there exists a minimizing sequence {(yy, un)} = {y(un), un}
in X. Due to the radial unboundedness property of .J in u the sequence {u,} is bounded in U/. Since
B € L(U, L*(V*)) Theorem 2.1 iii. implies that the sequence {(y,, u,)} is bounded in W x U and
hence there exists a subsequence with a weak limit z* € X. Weak lower semi-continuity of z — .J(x)
implies that

J(z*) =inf{J(2z): 2 € W x U, e(z) =0},

and it remains to show that y* = y(u*). Since by (10) (after changing to another subsequence) {y,, }
converges strongly to y* in L?( H) this can be achieved by passing to the limit in (11) with y replaced
by y(u,) and f replaced by Bu.,, see [1]. O
For more regular initial values and controls one can obtain more.

COROLLARY 1.1. Let yo € V and B € L(U, L*(H)). Then Problem (22) admits a solution
z* = (y(u*),u*) € H*(Q) x U.

Proof. Now {y,} converges to y* weakly in H*'(Q), and thus (after changing to another subse-
quence), even strongly in Z?(V') [103, Ch. II,Theorem 2.1]. The sequence { Bu,,} converges weakly
to Bu* in L?(H). The claim now follows with Theorem 2.1, vi. as in the proof of the previous
theorem. O
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EXAMPLE 1.1. The assumptions above are satisfied for cost functionals including tracking type
functionals

1 «
@4 R@) =5 [ly=ePdedi+ T [1o(T) = 2(T)Pde+ 5 ol
QT Q

and functionals involving the vorticity of the fluid

1
(25) Fue) =5 [ Vo xutt )P dode+ 5 Juf,
QT

where o,y > 0 and z € W are given. Of course, these functionals are even infinitely often differen-
tiable on X.

2. Derivatives

In this section differentiability properties of the constraint e are proved. Furthermore, representa-
tions for the first and second derivatives of ./ appropriate for the treatment of (23) by the Newton and
quasi—Newton method are derived.

PROPOSITION 2.1. The operator ¢ = (e',e*): X — Z* is twice continuously differentiable with
Lipschitz continuous second derivative. The action of the first two derivatives of ¢! are given by

<eglc(.7:)(w,s), ®) = (wy, &) + ((w - V)y,¢) +((y - VIw, ) + v(Vw, V)2 (12) — (Bs, ¢),

where z = (y,u) € X, (w,s) € X and ¢ € L*(V), and

(26) (e ()(w,5)(v,7), 0) = (e}, (z)(w,v),$) =
{

where (v,7) € X.

Proof. Since €? is linear it is sufficient to restrict the attention to e'. Letb: V x V x V — R be
defined by

blu,v,9) = ((u-V)v,d)vs v,

and recall that, due to (129)

(27) 1b(u, v, d)|* < 2Julw |uly |v|a |v|v 67,
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for all (u,v,¢) € V x V x V. To argue local Lipschitz continuity of ¢, let z,2 € X and ¢ € L*(V).
One finds

(€(x) — €(5),8) = ((y — ). &) + (v — §) - V)i1 &)
(V)Y — ), 8) + (Vg — §), V) + (Bi — u), 6)
sv*/ ly— 3% — G121+ ) el

+ Clz — Z|x [9]12(v)

Here and below the constant €' is independent of z, & and ¢. Due to the continuous embedding of W
into L*°(H) one has

() = €ME), 6) < C | |e = Ex |8l + ly — 7112y (15112 oy + 9112 )
+L|y—m3%m3”+wW%wwﬁy

Using Holder’s inequality this further implies the estimate
<4m—e<w@<6ﬂu—ﬂx+w—yw2<w& s+ 112 )
(0 o= ittty + o) ] 6l

and consequently,

(e'(z) = €'(2),0) < C'lz = Z[x(lylw + |9lw)|Slr2(v)
This estimate establishes the local Lipschitz continuity of e. To verify that the formula for e, given
above represents the Fréchet - derivative of ¢ one estimates

le' (&) — €' (z) — el(@)(& — )| vy = y sup [ |bly — G,y — 5, 8)| di
r2v)=1

T ~ ~
< sup  f, ly—glaly — glv |olvdt
|¢|1‘2(V):1

~ T N )
<Cly—=glw sup o ly—=glviélvdl

Alr2(v)=1
< Cly —liy
and Fréchet - differentiability of e follows. To show Lipschitz continuity of the first derivative let =, &
and (v, r) be in X and estimate
- T N .
Ké@%—%@»@ﬂﬂmww=MfM) Jo 16(y = 5,v,6) + b(v,y = 5, ¢)| di
L2(V) =1

T ~ ~ ’
< 2\/5 sup fo ly — glu ly — glv [v|m |v|v |@lvdt
|¢|L2(V):1

< Cly = glw [olw.
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Clearly, since the nonlinearity of the Navier-Stokes equations is quadratic the second derivative is
given by the expression (26). As the second derivative is independent of the point at which it is taken
and it is necessarily Lipschitz continuous. O

PROPOSITION 2.2. Let € X. Then ¢,(z): W — Z* is a homeomorphism. Moreover, if the
inverse of its adjoint ¢;*(z): W* — Z is applied to an element f € W*N L*(V*), o € [1,4/3] then,
setting (w, wy) := Py_*(T)f € Z one has w; € L*(V*), w(0) = wy and w is the variational solution
to (13).

Proof. Since e, (z) coincides with A(y) defined in (12) the claim follows as in the proof of Proposition
2.1. O

Next the derivatives of the functional .J defined in (23) are computed. As a consequence of
Propositions 2.1 and 2.2 and the implicit function theorem (see [111]) the mapping « — y(u) is twice
Fréchet differentiable in a neighbourhood of « with Lipschitz continuous second derivatives and its
first derivative at v in direction du is given by

(28) y'(u)du = —e; ' (x)eu(7)du,
where z = (y(u), u). By the chain rule one obtains

(), 8uh = (Lu(w) - €iw)e;™(2) (@), Suo.
Introducing the variable

(29) A=) = —e % ()], (z) € Z

Y
one obtains utilizing Proposition 2.1, iii. with f = —.J, () € W* the Riesz representation for the first
derivative of u — J(u):
j'(u) = Ju(z) + €A

If in addition J, () € L?(V*) N W* the same proposition gives A’ = X' (0) and A' € W, (0 < e <
min{q — 1, 1}). Moreover, ' can be characterized as the variational solution to

A+ (Vy)' A = (y- V)X —vAN = — ] (2)
(30) 1

A(T)=0.

REMARK 2.1. As an immediate consequence of v. and vii. in Proposition 2.1 one obtains A\' € W
ify € L*(V)and J,(z) € L*(V*),and \' € H>'(Q) ify € L>(V) N L*(H*(Q)*) and J,(z) €
L*(H).

The computation of the second derivative of ./ (u) € L(U) of J is more involved. Let (§u,dv) €
U x U and note that the second derivative of u — y(u) from U to W can be expressed as

y"(u)(du, dv) = —ey_] (2)eyy (2)(y'(u)du, y'(u)dv).
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By the chain rule one has
(J"(w)du, 60}y = (Jyy (2)y'(u)du, y'(u)do)wew
+{(Jy(2), y"(w)(6u, 6v))wew + (Juu(z)du, dv)
= (Jyy (2)y'(w)du, y'(W)dv)wew + (Jy(2), € gy () (Y (u)u, y'(u)60)we w
(S ()0, dv)y
= (Jyy(@)y'(w)bu, y'(w)doywew + (A e (2)(y'(u)du, y'(u)dv)
(S (w)du, 0.

In order to obtain a more compact representation for J" (u) now introduce the Lagrangian L: X xZ —

R

(31) Lz, ) = J(z) 4 (e(z),A\)ze 2z

and the matrix operator

(32) T(x) = ( ¢ (@)eu(@) ) € L(U,X).
Idy

The second derivative of I, with respect to x can be expressed as

Lo, ) = ( e éeiy(l')("')’ ) .Juuom ) € L(X, X).

The above computations for J" (u) together with (28) imply that
(33) J"(u) = T*(2) Lyp (2, N T(2),
where = = (y(u), u).
EXAMPLE 2.1. For the cost functional ./ = F} in (24) one obtains
J'(u) = au — BAN eU

and

(Jy(z), w)ywrw = / (y — z,w)dt + y(y(T) — 2(T),w(T)),

(Jyy(x)w, >W*7W:/(T),U)) dt +v(o(T),w(T)), Juu(z)=aldy,
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so that for r, s € U with w = —(iy_l(.’L‘)B'I' and v = —e

(J"(w)r, s)o = (Jyy (2)w, v)we w + (e, (2) (v, 0), A (2)) + @ (r, s)o,

with e, () defined by (12) and the action of e, (z) defined in (26) of Proposition 2.1. Note that for
this cost functional the initial condition for A" in (30) becomes A'(7") = —y(y(T') — 2(T)).
Similarly for the cost functional ./ = F3, defined in (25). There holds

'(2)Bs

T
(Jy(z), w)w*w = / (Vi Xy, V, xw)dt,
0

T
(Jyy(@)w, v)w=w = /(V£ X v, Ve xw)dt, Ju(r)=aldy,
0

and thus, as above
(j"(u)r, $)u = (Jyy(z)w, v)pw + <e;y(m)(v, w), X' (2)) + a (r, s)u.
3. First order necessary optimality condition

A sufficient condition for the existence of Lagrange multipliers associated to solutions z* =
(y*, u*) of the constraint minimization problem (P) in (21) is given by the surjectivity of the operator

em(;v*).
THEOREM 3.1. Let € X. Then the operator e,.(z) : X — Z* is surjective.

Proof. Let (f,vy) € Z* and @ € U arbitrary, but fixed. Due to Proposition 2.1 the equation
ex(z)(v,u) = (fyv) inZ" < e (z)v = (f+ Ba,v) inZ~

admits a unique solution v € W with v(0) = vy. Since @ was chosen arbitrary this proves the claim.
O

THEOREM 3.2. (Existence and uniqueness of Lagrange multipliers)
Let 2* = (y*,u*) € X be a solution of the optimization problem (21). Then there exists a unique
Lagrange multiplier \* € 7 which together with the optimal solution z* satisfies the optimality

system
L%, X) = By(a*) + (eya?) (s Xz =0 in W
(34) Ly(z*, %) = Ju(z*) + (ew(z*) (), A )zv 2 =0 inU
e(z*) =0 in Z*.

Furthermore, if J,(«*) € L*(V*) N W* (1 < ¢ < o) then there holds \* = (A, X*°) € W2 x H
forall (0 < e <min(g—1,1)) with \** = X*'(0) and \*' satisfies the a-priori estimates

L1 X ey < CUy ey v lnsm) [y (%) we,
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1—¢ 1—3¢ .
L2 |/\\j;1 |L1+€(V*) S C(T2(1+€) ,T4(1+€) , |y*|L2(V)7 |y*|Loo(H)) |Jy($*)|L1+€(V*) (0 S € S mm(q—
Moreover, \*' is the variational solution of (30).

Proof. Since e,(2*) = A(y*), J,(¢*) € W= and y* € W the first part of the claim follows from
Proposition 2.1 with w replaced by A* and f replaced by —.J,(z*). The second part follows from the
same proposition, iii., since now .J,(z*) € L(V*) N W™ O
For more regular states, controls and cost functionals one obtains more regular Lagrange multipliers.

THEOREM 3.3. (Regularity for Lagrange multipliers)

Let z* = (y*,u*) € X be a solution of the optimization problem (21) such that y* € L>(V).
Furthermore, let .J,(z*) € L*(V*). Then the unique Lagrange multiplier A* from Theorem 3.2 is an
element of X = W x H and satisfies the a-priori estimates

L3 M2y < Clly lmew) [y () 2 (ve),

L4 [\ frevny < Cly ) (@) iz qvn)-
Ifyo € V, B € L(U,L*(H)) and J,(2*) € L*(H) the variable \*' is an element of //?>'(Q) and
satisfies the a-priori estimate

L5 (M m2iiq) < Clly oo, |97 |2 r@yn) [y (27) 2y -

Proof. The first part follows from Proposition 2.1, v.. The second part from the same proposition,
vii., since the assumptions on the data by Corollary 1.1 imply y* € H*'(Q). O

EXAMPLE 3.1. For the cost functional /| from (27) the optimality system (34) in primitive vari-
ables (y, p) reads

yr + (y*V)y* — vAy* + Vp* = Bu in Q7
—divy* =0 in QT
y =0 on (90)T
y*(0) = g in 0
N = VAN — (V)N 4 (V)N 4 VE = —(y" — 2) in Q7
—divA*' =0 in Q7
=0 on (0Q)T

MUT) = =2y (T) = 2(T)) inQ

au— B\ =0 in U.
For the derivation of the terminal condition for A*' see Appendix 1 or follow the lines of the proof
of Proposition 2.1 with f replaced by — F (z). Since Fy (z) = fi + fo € L*(H) + C(H)* with f,
vanishing on {v € W, v(T') = 0} all conclusions of this proof remain valid and the terminal condition
follows by integration by parts with respect to time in (133).
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The optimality system for [, given by (25) differs in the right-hand side of the adjoint equations,
where the term —(y* — z) has to be replaced by —V x V x y* and \* (T') = 0.

4. Second order conditions

In order to provide convergence analysis for second order methods it will be essential to derive condi-
tions that ensure positive definiteness of J” (u*) and a sufficient second order optimality condition for
the Lagrangian L(z, A). The key to these conditions are the a-priori estimates of Proposition 2.1. One
shall also prove that the difference .J”(u*) — .J,.,(z*) is compact. This property is required for the rate
of convergence analysis of quasi-Newton methods. In the first result we assert positive definiteness of
the Hessian provided that .J, () is sufficiently small, a condition which is applicable to tracking-type
problems.

LEMMA 4.1. (Positive definiteness of Hessian)
Let v € U and assume that J,,(z) € L(W,W*) be positive semi-definite and .J,.,(z) € L(U) be
positive definite, where # = (y(u),v). Finally, let B € £(U, L*(V*)). Then, the Hessian .J" (u) is
positive definite provided that |.J,(z)|w~ is sufficiently small.

Proof: Recall that by (33)

J"(u) = T*(2) Low(2, N T (),
where A = A(z) is defined in (29). For s € U let w := —e;'(z)e,(x)s. Then w € W by Proposition
2.1. Since

(35) J"(u) = ey@)ey (@) Ty (2)e; (x)eu(x) - +

one has
(.j"(u)s, S)U = <']yy($)w’ UJ>W*,W + <<e1yy($)w’ ')’ A ($)>’ w>W*,W + (']““(x)s’ S)U'

The third addend in this equation is bounded from below by a constant times |u|f; and, since J, (z)
is positive semi-definite the first addend is non-negativ. In order to tackle the second addend define

(36) R = ey (w)e; () {ey, () (e) (v)eu(z), ), M (2)) € L(U)

and recall that for g, h € W

Eulaa DN @) = [ [ g TN+ (- V)g dadr

Using (27), the continuity of the embedding W — L*( H) and Proposition 2.1 one estimates

ey, () (w,w), N (@) < C lwliy [N 2y < C sl [y(2) lw

vy
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with a constant independent of w. Therefore,
(Rs,s)uy = =C |s[g |1y (x) lw.

Now let & > 0 such that (J,,(z)s,s)u > 6 |s|f;. Then by the definition of w and the above estimate
for R

(J"(w)s,s)u = (8 — ClT,(x)lw+) |sl?,

which gives the claim. O

LEMMA 4.2. Let 2 € X and denote by A = A(z) € Z the solution of (29) associated to z.
Let J,,(z) € L(W,W™*) be positive semi-definite, let .J,,(z) € L(U) be positive definite and let
|.Jy(z)|w~ be sufficiently small. Then, L,.(z, ) is positive definite on the kernel of ¢,.(z), i.e.

(37) (Lpw(, N7, 3)x:x > cl|z|k% forall @ € M(ey(z))
with a positive constant ¢ independent of .

Proof. Let (v, @) € N(e,(x)). Then v solves (12) with vy = 0 and g = Bu. Due to Proposition 2.1,
v € W and satisfies

(38) lwlw < Cllylewys [yloe @y, || Blle@.r2vey) [ulu
Let § > 0 be chosen such that .J,,,,(z)(w, @) > &|u|f. One finds
(Loz(z, A)(0,0), (v, @) x0 x = Jyy(2)(0,0) + ey, (2) (v, 0), AY) + Jyu(2) (@, @)

T
> §fafs =22 [ olulolvIAtly di > §Jafy — Claff M 2.
0

Here and below C' denotes a generic constant independent of (v, @). As in the proof of Lemma 4.1
(Luo(2 N (0, 0), (0,0)) x5 > (5= CLI,(2)lw) [0l
so that the claim follows. O

REMARK 4.1. It follows from Example 2.1 that the assumptions of Lemma 4.1 and Lemma 4.2
are satisfied for both, the functional F} defined in (24) and the functional £, in (25).

In order to prove super-linear convergence for quasi-Newton methods in infinite dimensions a
compactness property for the difference between the initial approximation of the Hessian and the
Hessian at the local solution is needed [34, 79]. To ensure this property for the optimization problem
under consideration the differentiability properties of the functional .J and the regularity properties
for the controls have to be enhanced.
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LEMMA 4.3. Letu € U, letyy € H and assume B € L(U, L*(H)). Furthermore, let .J;: W U
L?(V) — R be twice continuously Fréchet differentiable for some 1 < p < oo Then, the difference
J"(u) = Ju()

is compact, where + = (y(u), u) and y(u) denotes the uniquely defined state corresponding to the
control u.

Proof. By Theorem 2.1 yo € H implies y(u) € W. Utilizing (36) one may rewrite
J"(u) = Juu(2) = €(@)e)" (@) Jyy(2)e) (2)eu(a) - +R.

It will be shown that both addenda in this equation define compact operators on /. To begin with
let ¢/ be a bounded subset of UU. Since B € L(U, L*(H)) the set {Bdu : du € U} is bounded in
L*(H) C L*(V*), and from Proposition 2.1, i. and ii. it follows that

S ={e; (x)eu(w)du: du € U}
is bounded in . By the differentiability assumption on .J at « the second derivative .J,,(z) can be
identified with an element of L(W U LF(V), W™ N L*(V*)) (¢ = ;L5 forp > 1, ¢ = oo forp = 1).
As a consequence, J,,(2)(.5) is a bounded subset of W* N L?(V*). Since y € W Proposition 2.1

shows that
1

(39) S = {e;*(2)Jyy(x)(2) : 2 € S} C W, x H for (0 < e < min{g— 1, g})
Since W2,, << L*(H) and ¢%(z)z = —B*z! for z = (z',2?) € Z the set ¢X(x)S is pre-compact
inU.

To cope with the second addend let z € 5. Since A' € L*(V) (evenin W7, (11
estimation yields that the element (e} (z)(z,-),\") = H(A'")z of W* is in fact in W* N LY/3(V').
A further application of Proposition 2.1 gives {e;*H(A\')z;2 € S} bounded in W x H. Since

W3 —— L*(H) it follows as above that the set

{el()ey ™ (@){ey (2)(2,-),A); 2 € S}

is pre-compact in U. 0

), straightforward






CHAPTER 4

Convergence for second order methods

Up to now in most approaches to optimal control problems involving the instationary Navier-
Stokes equations gradient-type methods have been proposed as numerical solution algorithms [1, 14,
20, 39, 50]. Clearly, the drawback of gradient-type algorithms is their slow, in general linear, con-
vergence which is accompanied by a huge number of function and gradient evaluations. Numerically
evaluating cost functions and computing gradient information necessitates the numerical solution of
the Navier-Stokes equations and of a backward-in-time linear system of convection-diffusion equa-
tions with the computed Navier-Stokes solution as coefficient function. Therefore, slow convergence
of the iterative solver corresponds to a large number of system solutions and thus, to very high com-
putational costs, even in two-dimensional problems [50, 87]. In any case these facts justify the inves-
tigation of solution approaches with better convergence properties, compare [43].

Ghattas and Bark [32] applied Newton and quasi-Newton SQP techniques to the solution of sta-
tionary optimal control problems in two and three dimensions and compared them to the classical
gradient method. Their investigations insinuate the potential of second order methods in the field of
flow control. For a numerical application of a quasi-Newton method to the control of Navier-Stokes
equations see [12].

This chapter contains a description and a comparison of second order methods to solve to opti-
mization problem (22) and (23). In this context there has to be distinguished between methods in-
corporating the Navier-Stokes equations as explicit constraints and methods utilizing the one-to-one
correspondence state-control which is a consequence of Theorem 2.1.

The first six Sections in this chapter contain a discussion with respect to complexity and local
convergence properties of the following algorithms.

i.) Newton method in the control space (Section 1)
ii.) BFGS-method (Section 2)
iii.) Classical SQP method (Section 3)
iv.) Schur-complement SQP method (Section 4)
v.) Reduced SQP method (Section 5)
vi.) Reduced SQP-BFGS method (Section 6)

In Section 7 numerical results for Newton’s method applied to a tracking-type control problem are
presented. Among other things the presentation contains a numerical comparison of the method to
the gradient and conjugate gradient methods with step-size control.

35
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Unless otherwise specified throughout this chapter «* denotes a solution to (23), =* a solution to
(22) and X\* the corresponding Lagrange multiplier (which exists and is unique due to Theorem 3.1).
N (u*) is the neighborhood of «* determined by the use of the implicit function theorem as in Section
2.

1. Newton’s algorithm

Newton’s algorithm applied to the solution of the optimization problem (23) is given by

ALGORITHM 1.1. (Newton Algorithm).

(1) Choose u° € N(u*), set k = 0.
(2) Do until convergence
i) solve j”(uk)(Suk = —j'(uk),
ii) update v**t! = u* + §u”,
i) setk =k + 1.

The dimension of the linear system in 2.1) is that of the control space /. From the characterization
(35) of the Hessian J” (u*) one concludes that its evaluation requires as many solutions of the lin-
earized Navier—Stokes equations (28) and the adjoint equations (29) with appropriate right hand sides
as the dimension of UU. If U is infinite dimensional an appropriate discretization must be carried out.
Now assume that the dimension of I/ is large so that direct evaluation of ./ (u*) is not feasible. In this
case 2.1) must be solved iteratively, e. g. by a conjugate gradient technique. Then 2. 1) is refered to as
the ”inner ” loop as opposed to the do—loop in 2. which is the “outer” loop of the Newton algorithm.
The inner loop at iteration level & of the outer loop requires to

(i) evaluate J'(u¥), 1. e. given u* compute y(u*) from (11) and A" from (29) with = = (y(u*), u¥),

(ii) iteratively evaluate the action of J" (u*) on 5;“, the j—th iterate of the inner loop on the k—th

level of the outer loop.

More detailed, the iterate g = .J” (u® )5;“ is obtained by successively applying the steps
a) solve in L*(V*) forv € W

o+ (v-Vy+ (y-V)o—vAv = B(Sf
v(0) =0,

where y = y(u*),
b) evaluate .J,, (z)v + <e;y(.7:)(v, ), A,
¢) solve in W* forw € L*(V)

ey()w = Jyy(2)v + ey, (2)(v,), A1)

d) and finally set g := J,,,0u + B*w.
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Recall that fors € W
T
(eyy(2)(v, ), A1) =/ /((U'V)Sx\l—I—(S-V)v)\l)dxdt,
0 Q

so that the second addend on the right-hand side of c) is even an element of Z*/*(V*) N W*. If now
Jyy(x)v € L1(V*) N W* Proposition 2.1 implies w € W7, for 0 < ¢ < min{q — 1, 3 }. Moreover, w
is the variational solution of

—w;y + (Vy)tw — (y . V)w —vAw = Jyy(m)v + <e;y (m)(v, -), )\1>
w(T) =0.

Summarizing, for the outer iteration of the Newton method one Navier—Stokes solve for y(u*) and
one linearized Navier-Stokes solve for A(u*) are required. For the inner loop one forward (—in time)
as well as one backwards linearized Navier—Stokes solve per iteration are necessary.

REMARK 1.1. Concerning initialization note that if initial guesses (yo, ug) € W x U are available
(with yo not necessarily y(ug)) then alternatively to the initialization in Algorithm 1.1 this information
can be used advantageously to compute the adjoint variable A! required for the initial guess for the
right hand side of the linear system as well as to carry out steps a) - ¢) for the evaluation of the
Hessian. There is no necessity to recompute y(ug) from wug.

For Algorithm 1.1 one has the following local convergence result for its application to problem
(23).

THEOREM 1.1. (Local convergence of Newton’s method)
Let v* denote a solution to problem (23). Assume that the corresponding state y* = y(u*) has its
initial condition y in H. Furthermore, let J,(z*) € W* be sufficiently small, J,, (z*) € L(W, W*)
be positive semi-definite, .J,,(z*) € L(U) be positive definite, where z* = (y(u*),u*), and let
B € L(U,L*(V*)). Then there exist a neighbourhood ¢ (u*) such that u* is the only solution to
problem (23) in U(u*) and for every starting value u® € U(u*) the iterates {u"},en of Newton’s
Algorithm 1.1 converge quadratically to u*.

Proof. Since yo € H and B € L(U, L*(V*)), Theorem 2.1 implies y* € W. This in turn together
with Lemma 4.1 yields positive definiteness of the Hessian ./” (u*). Therefore, u* is a local solution
on [. Moreover, by a continuity argument, there exists a neighbourhood ¢/(u*) C U such that J” (u)
is Lipschitz continuous for all elements u € ¢/ (u*). Therefore, the suppositions of both, the Newton-
Mysovskii and the Newton-Kantorovitch Theorems [26, Theorem 1.1,Theorem 1.2] can be satisfied,
so that the claim follows. O

REMARK 1.2. Newton’s method is locally second order convergent for the minimization problem
(23) with both, J defined through F from (24) and F; from (25).
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2. The BFGS method

To avoid the difficulties of evaluating the action of the exact Hessian in Algorithm 1.1 one can resort
to quasi—Newton algorithms. Here, one of the most prominent candidates, the BFGS—method is
considered. In order to formulate the algorithm define for w and z in U the rank—one operator w® z €
L(U), whose action is given by

(w®2)(v) = (z,v)pw.

In the BFGS—method the Hessian .J” at u* is approximated by a sequence of operators H*.

ALGORITHM 2.1. (BFGS-Algorithm)
(1) Choose u’ € N(u*), H° € L(U) symmetric, set k = 0.
(2) Do until convergence
i) solve H*6u* = —J'(u*),
ii) update v ! = u* + Su*,
iii) compute J’(uf*1),
iv) set s* = vt — ok dF = j'(uk"'l) — j’(uk),
v) update H**! = [T 4 (40 — Mgl
vi) set k = k + 1.

Note that the BFGS—algorithm requires no more system solves than the gradient algorithm applied to
(22), which is one forward solution of the nonlinear equation to obtain y(u*) and one backward solve
of the linearized equation (30) obtain the adjoint variable A(u*). For the BFGS algorithm applied to
the solution of problem (23) the following convergence result holds true.

THEOREM 2.1. (Local convergence of the BFGS method)
Let v* denote a solution to problem (23). Assume that the corresponding state y* = y(u*) has its
initial condition y in H. Furthermore, let J,(z*) € W* be sufficiently small, .J,, (z*) € L(W,W*)
be positive semi-definite and .J,.,(2*) € L(U) be positive definite, where z* = (y(u*),u*). Then
there exist a § > 0 and an ¢ > 0 such that for all »° and all symmetric and positive definite operators
H° € L(U) with

|H — J"(u*) ey < 6 and  [u’ — |y < e

the BFGS method in Algorithm 2.1 converges linearly to »* and «* is a local solution.
If in addition J; : WU LP(V') — R is twice continuously Fréchet differentiable for some 1 < p < oo,
B e L(U,L*(H)) and H° := J,,(z*), the convergence is super-linear.

Proof: By Lemma 4.1 the Hessian J “(u*) is self-adjoint and positive definite. This proves the first
part of the theorem, i.e. local uniqueness of u* and linear convergence of the iterates {u" } e to u* in
a neighbourhood of u*, see [34, Theorem 5.1]. With the additional assumptions made for the second
part the claim follows from Lemma 4.3 since for the choice H° := .J,,, (x*) the difference H°—J" (u*)
is compact, so that the compactness assumption in [34] is satisfied, see also [69, Theorem 2.3]. [



3. BASIC SQP-METHOD 39

REMARK 2.1. The differentiability and compactness assumptions for super-linear convergence of
the iterates in the BFGS method are satisfied for the cost functionals /7 in (24) and F3 in (25). In both
cases .J,, () = a Idy, which is positive definite, .J,, (=) is positive semi-definite, F} is infinitely often
differentiable on W and its first derivative can be decomposed as F'y, = f1 + f, € L*(H) + C(H)*,
where f, vanishes on the set {v € W;v(T) = 0}, see the end of Section 3. This gives the desired
regularity properties of the solution w' to (13) with right hand side f = f,, see the proof of Lemma
4.3 and of Proposition 2.1. The required differentiability properties are satisfied for F; if p = 2 since
F,, € L*(V*).

3. Basic SQP-method

Instead of the reduced minimization problem (23) now consider (22) as a minimization problem
for the functional ./ over the space X with the explicit constraint ¢(z) = 0.

The basic SQP-algorithm consists in applying Newton’s method to the first order optimality sys-
tem (34), which for briefety is rewritten as

Lo(x,))=0 in X"

40
40 Ly(z,\) =0 inZ%,

where the Lagrangian L is defined in (31). In algorithmical form the method can be formulated as
follows.

ALGORITHM 3.1. (SQP-algorithm)
(1) Choose (2%, A%) € B((z*, \*)), set k = 0.
(2) Do until convergence
i) solve

Lm(;vk’,)\k) e;(;ck) Sk _ Jr(xk) -I-e_’;(:ck))\k
SRl | O B Rt

ii) update (z**1, \e+1) = (2% XF) + (02F, 50F),
i) set k = k + 1.

Since e, (z*) is surjective by Theorem 3.1, due to Theorem 3.2 there exists a unique Lagrange mul-
tiplier \* € Z such that (40) holds with (z,A) = (2*,A*). The SQP-method will be well defined
and locally second order convergent, if in addition to the surjectivity of e,(z*) a second order opti-
mality condition (37) holds for x = z*. Moreover, due to the regularity properties of e there exists a
neighborhood S((z*, A*)) such that L,.(z, \) is uniformly positive definite on ker(e,(z)) for every
(z,X) € S((z*,X%)).

THEOREM 3.1. (Local convergence of the SQP method)
Let z* = (y*,u*) denote a solution to problem (22). Assume that the corresponding state y* has its
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initial condition y, in H. Furthermore, let J,(z*) € W* be sufficiently small, .J,,(+*) € L(W,W*)
be positive semi-definite and .J,,,(2*) € L(U) be positive definite, where z* = (y*, v*). Finally, let
A* denote the Lagrange-multiplier associated to z*. Then there exist a neighbourhood S(z*, \*) C
X x 7 such that for all (z°, X°) € S(z*, \*) the SQP-algorithm 3.1 is well defined and its iterates
{(z™, A") }nen converge quadratically to (z*, \*) in W x U x L*(V) x H.

Proof: Since .J and e are twice Fréchet differentiable, e,(z*) is surjective by Proposition 2.2 and
condition (37) is satisfied due to Lemma 4.2 the claim follows for instance from the convergence
results obtained in [61] for the Augmented Lagrangian-SQP method, which includes the basic SQP-
method as special case. O

REMARK 3.1. With the assumptions of Theorem 3.1 the convergence of the Augmented Lagrangian-
SQP Algorithms 1 and 2 in [61] for the control problem (22) can easily be established.

Just as for Newton’s method step 2. i.) is the difficult one. While in contrast to Newton’s method
neither the Navier—Stokes equation nor its linearization need to be solved, the dimension of the system
matrix which is twice the dimension of the state plus the dimension of the control space is formidable
for applications in fluid mechanics. In addition from experience with Algorithm 3.1 for other optimal
control problems, see [68, 108] for example, it is well known that preconditioning techniques must be
applied to solve (41) efficiently. As a preconditioner one might consider the (action of the) operator
P: X*x 7" — X x 7 given by

0 0 R
P=1| 0 JuE"™" 0],
R 0 0

where R: Z* — W is the inverse to the (discretized) instationary Stokes operator or the (discretized)
linearization of the Navier-Stokes equation at the state y*, either one with homogenous boundary
conditions.

One iteration of the preconditioned version of Algorithm 3.1 therefore requires two linear para-
bolic solves, one forward and one backwards in time. As a consequence, even with the application
of preconditioning techniques, the numerical expense counted in number of parabolic system solves
is less for the SQP-method than for Newton’s method. However, the number of iterations of iterative
methods applied to solve the system equations in Algorithms 1.1 and 3.1 strongly depends on the
system dimension, which is much larger for Algorithm 3.1 than for Algorithm 1.1.

3.1. SQP compared to Newton. Newton’s method applied to the reduced problem 23 can be
characterized as a version of the SQP-algorithm which conserves feasibility of its iterates with respect
to the subsidiary condition ¢(z) = 0. Infact, one can rewrite the update step 2.1) in Algorithm 1.1
and bring it into the form of the SQP-step (41). To begin with observe that the right hand side in the
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update step in Newton’s algorithm can be written with the help of the adjoint variable A from (29) and
the operator 7'(x) defined in (32) as

—Ju(u) = = Ju(x) = €(x)A = =T(x) [ J.(x) +0 € (@) ] ’

where the iteration indices are dropped. As a consequence, with 0y = y'(u)du from (28) the update
can be written as

T*(@)Los (2, A) [ gZ] =-T"(z) Ju(x)fe;(;c)x ] ’

so that

dy 0 «
o) [ su ] f [ 1) + () ] S

holds. Since e,(z) € L(X,7Z*) and N (e,(z)) = R(T) C X it follows that R(T) is closed and one
has the sequence of identities

N(T*(2)) = R(T(x))" = Neala)) " = R(3(x).

Thus, there exists 6\ € Z such that

—e*(2)8X = Luw(z, \) [ gy
U

Lot
L)+ o |

Using this equation together with the definition of dy, Newton’s update may be rewritten as

T k € X 5:’/ 0
(42) [ Le((:C; ) 0< ) ] Su | =— | Ju(x) + ex()A
i X 0

To further compare the structure of the Newton and the SQP-methods assume for an instance that =
is feasible for the primal equation, i.e. ¢(x) = 0 and (z, A) is feasible for the adjoint equation (29),
ie. ¢f(z)A = —Jy(z). Then the right hand side of (41) has the form

0
— | Ju(z)+eiA
0

and comparing to (42) one observes that the linear systems describing the Newton and the SQP-
methods coincide. In general the nonlinear primal and the linearized adjoint equation will not be
satisfied by the iterates of the SQP—method. Therefore, one may refer to the SQP—method as an outer
or unfeasible method, while the Newton method is a feasible one.
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4. Schur-complement SQP-method

This and the following sections are devoted to a discussion of the basic SQP—method with the goal
of reducing the size of the system matrix in 2. i.) of Algorithm 3.1. In [68] it is proposed to use the
Schur complement in step 2. i) of Algorithm 3.1. To formulate the Schur—complement SQP-method
one shall require that

(H3) L7 (z,A) € L(X*, X)) forall (z,)) € S((z*,\*)).

Here, S((z*, A*)) denotes a neighborhood of (z*, A*). For (z, A) € S((x*, \*)) define

O, N): = ep(@) Lop(z, \) Ll ().

Then, the operator O(z, A) is an element of £(7, Z*) for all (z, ) € S(z*, \¥)).
The Schur—complement algorithm results from Algorithm 3.1 by first eliminating d= in favour of
the variable d A and then solving for dz.

ALGORITHM 4.1. (Schur—complement SQP—algorithm).
This is Algorithm 3.1 with 2. i.) replaced by

i) Solve
) O(;ck )\k)5)\k = e( k) — ex(:z:k) v ;c )\k {J ))\k}
B) Lyw(z k /\k dxk = {] /\’”} 5/\’”

The right-hand sides in o) and 3) are elements of Z* and X*, respectively. When solving for the
increments in ) and ) the operator ! has to be applied repeatedly. To consider it more closely
recall that .J is of separable type, i.e. J(y, u) = Ji(y) + Jo(u). Then

Loo(z,\) [ % ] =" | inx
du Ty
results in
Juu(2)0u =1y in U
and
(43) Ty (2)8y 4+ (Voy)'A' — (6yV) - A' = ry in W™,

For the later equation in a neighborhood of (2*, \*) one can prove

LEMMA 4.1. Let z* denote a solution to (22) and let A* be the corresponding Lagrange multiplier.
Assume that .J,,(z*) admits a bounded inverse and that .J,,(z*) is positive definite. Assume further
that .J,(z*) € W™ is sufficiently small. Then, there exists a neighborhood S(z*, A*) C X x Z such
that for all (z,X) € S(z*, \*) equation (43) admits a unique solution oy € W for every r, € W* .
Moreover, the operator O(z, A) admits a bounded inverse in S(z*, \*).
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Proof. It can be shown with the techniques applied in the proof of Lemma 4.2 that
a:WxW =R, a(u,v) = (u, Jy(x)0)wws + (u, HA ) 0w

with H(A') defined in (26) due to the positive definiteness of .J,,(z*) defines a continuous coercive
form on W x W for all (x, \) in a sufficiently small neighborhood S(z*, A*) of (z*, A*). The first
claim now follows from the Lax-Milgram lemma [3, Satz 4.7]. The second claim follows with the
assumptions on .J,,,(z*) and .J,,, (z*), the properties of the subsidiary condition e(z*) and its lineariza-
tion, and a continuity argument. O

LEMMA 4.2. Let z € X and A(z) be given by (29). If J,,(z) € L(W,W*) and J,.,(z) € L(U)
are invertible, then (H3) holds with (z*, \*) replaced by (z, A) provided |J,(z)|w~ is sufficiently
small.

Proof. Since (2, A) — L.(z,X) from W x L*(V) to £L(X*, X) is continuous it suffices to argue that
L,.(x, ) is continuously invertible. Due to the invertibility assumptions on ./, (z) and .J,.,(z), and
the structure of 7., (x, A) it suffices to assert that (e, (x)(-,-), A') is sufficiently small in L(W, W*).
This can be achieved by making |.J,(z)|w~ small. O

Theorem 3.1 together with Lemma 4.1 (or together with Lemma 4.2) gives local convergence of
the Schur-complement SQP-algorithm 4.1.

THEOREM 4.1. (Local convergence of the Schur-complement SQP-method)
With the notations and suppositions of Theorem 3.1, let the assumptions of Lemma 4.1 (Lemma
4.2) be satisfied. Then there exist a neighbourhood S(z*, \*) C X x Z such that for all (z°, \°) €
S(z*,A*) the Schur-complement SQP-algorithm 4.1 is well defined and its iterates {(z™, A")}hen
converge quadratically to (z*, \*).

Note that (43) is a transport equation if ./; is of tracking type as is the case for F; defined in (24).
Transport problems of this kind are investigated in [10]. Comparing the number of necessary equa-
tion solves for the inner loop of Algorithm 4.1 to those of Algorithm 1.1 and keeping in mind that
the number of necessary iterations is determined by the dimension of the linear system the Schur—
complement SQP-method does not appear to be an efficient competitor to Newton’s method even if
the dimension of (the discretization of) {/ happens to be large. The difference in favour of Newton’s
methods is further enforced by the experience that the Schur—complement SQP—method requires pre-
conditioning to be efficient. This experience has admittedly be made for a different class of optimal
control problems [68] (where the nonlinearity is of exponential type and ..., can easily be inverted)
but one expects that preconditioning would also be required for optimal control for the Navier—Stokes
equation. Preconditioners, however, typically require further linear system solves.
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5. Reduced SQP-method

The idea of the reduced SQP—-method is to replace (41) (for = z*) with an equation in ker ex (),
so that the reduced system is of smaller dimension than the original one. The following development
of the reduced system follows the lines of [76]. To begin with recall the definition of 7'(z): U — X
and define A(z): Z* — X by

(44) A(z) = [ « (@) ] .

Then, A is a right—inverse to e, (). In fact, one has

i) kerey(z) = R(T(z)) = { [ 6 (@)eulw)y ] ‘v € U},

v
ii) e;(z)T(z) =0in Z*,
iil) e,(z)A(z) = Iz~
By Proposition 2.2 and B € L(U, L*(V*)) the operator T'(x) is an isomorphism from U to ker e,(x)
and hence the second equality in (41) given by

ex(z)dr = —e(x)
can be expressed as
(45) dx =T (z)ou— A(z)e(x).
Using this in the first equality of (41) one finds
Low(z, )T (2)0u — Lyp(x, M) A(z)e(z) + ep(2)0X = —(Ja(2) + e5(x)N).

Application of 7*(z) to this last equation and ii) from above imply that if du is a solution coordinate
of (41) then it also satisfies

(46) T*(2)Lyw(x, \)T(2)0u = T*(2) Lyz(z, ) A(2)e(z) — T™(2) Jo(2).

Once du is computed from (46) then dy and d A can be obtained from (45) (which requires one forward
linear parabolic solve) and the first equation in (41) (another backwards linear parabolic solve).

Note that if = is feasible then the first term on the right hand side of (46) is zero and (46) is
identical to step 2.1) in Newton’s Algorithm 1.1.

This again reflects the fact that Newton’s method can be viewed as an SQP-method that obeys
the feasibility constraint e(z) = 0. It also points at the fact that the amount of work (measured in
equation solves) for the inner loop coincides for both the Newton and the reduced SQP-methods. The
significant difference between the two methods lies in the outer iteration. To make this evident next
the reduced SQP-algorithm is specified.

ALGORITHM 5.1. (Reduced SQP-algorithm with exact second order information).
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(1) Choose 2 € B(z*), set k = 0.
(2) Do until convergence
i) Lagrange multiplier update: solve

() = — (")

ii) Solve

@)

T*(2%) Lyw (2%, X9)T (2%)6uF = T*(2%) Lo (25, AN¥) A(2%)e(2F)
—T*(2%)J(z*)

&)

iii) update
o =2t o+ (6", 0ut),
iv) setk =k + 1.

Note that in the algorithm specified the update of the Lagrange variable is different to that derived in
the procedure outlined above. In fact for reduced SQP—methods there is no ”optimal” update strategy
for A\. The two choices described above are natural and frequently used [76, 79]. To implement
Algorithm 5.1 two linear parabolic systems have to be solved in steps 2.1) and 2. ii) (3) and, in addition
two linear parabolic system solves are necessary to evaluate the term involving the operator A on the
right hand side of 2.1i) «). In applications this term is often neglected since it vanishes at z*.

The differences between the reduced SQP-method and Newton’s method are stated next.

(1) Most significantly the velocity field is updated by means of the nonlinear equation in New-
ton’s method and via the linearized equation in the reduced SQP—method.

(2) The right hand sides of the linear systems differ due to the appearance of the term involving
the operator A. As mentioned above this term is frequently not implemented.

(3) Formally there is a difference in the initialization procedure in that y° is chosen indepen-
dently from u" in the reduced SQP-method and y° = y(u") in Newton’s method. However,
if a good initial guess y" independent from y(u") is available, it can be utilized in Newton’s
method as well.

Thus, the methods turn out to be very similar. The preliminaries for the proof local convergence for
the reduced SQP algorithm are given in the following two lemmas.

LEMMA 5.1. Let z € X. Then, the right-inverse A(x) defined in (44) is an element of £(Z*, X),
the operator 7'(x) € L£(U, X) and the mappings = — R(z) from X into £(Z*, X) and z — T'(x)
from X into £(U, X) are Fréchet differentiable with Lipschitz continuous derivatives.
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Proof. An immediate consequence of i., ii. in Proposition 2.1 and the identities ii) and iii) above
together with the differentiability properties of the mapping = — e,(x). O

LEMMA 5.2. The mapping = — A(z) from X — Z defined by (29) is locally Lipschitz continu-
ous.

Proof. Let & € X and let/(Z) C X be a (bounded) neighbourhood of . For z, & € U(Z) set
A= \z) = —e " (2)Jy(2), A= Ax)=—e"(x)]y(2).
Then

XX = = [ @)~ Ty(2)] + [67(7) — e (2)] Iy (2),
so that straightforward estimation, utilizing .J,,, = 0, gives

1
A=Az < e (@)l cwe2) / Sy (y + 5(¥ —y), @)|| cowwey ds [ — ylw +
0

| [e;7(2) — &5 (2)] Jy(2)]2
With o := —e7*(z).J,(x) the last addend can be rewritten as
[ [e;7(2) = e (2)] Jy(2)|z = N = ' [raqwy + 1A = [
Furthermore, w := A — u! solves
—w; — vAw — (yV)w + (Vy)'w = ((y — )V = (V(y—y)'A' = F inW*, w(T)=0.

With the techniques of the proof of Lemma 4.2 and Proposition 2.1, iii.and iv. one gets [’ € W* N
L*(V*) for 1 < a <4/3, so that w(T') is well defined and

|Flwe + |Flrawsy < Cly —glw [N 12y
with a positive constant C' depending on |y|72(vy and |y|p~ ). This together with a further inspection
of the proof of the Proposition 2.1 also gives
N =l + 1A = ey + [N = pileegesy < Cly = Glw (M 2.
Finally, by Proposition 2.1, iii. there holds
M2y < CUTlneemys [9lr2(vy) [y (@) .
Altogether
A=Az < CCsup {lylmgm, lylzon ) (sup ey (@)lleowe,zy sup [Ty (@)l cowme
TEU(F) TEU(E) TEU(E)

+ sup |Jy(«))lw+) |7 — z|x,
TEU(E)

which is the claim. 0J
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The convergence result for Algorithm 5.1 is stated in

THEOREM 5.1. Let A\* denote the Lagrange multiplier associated to z*. Assume that .J,,(z) €
L(W,W*) is positive semi-definite, let .J,,(z) € L(U) be positive definite and let |.J,(z)|w~ be
sufficiently small. Then there exist a neighbourhood ¢/ (z*) C X such that for all 2° € U(x*) the
reduced SQP-algorithm 5.1 is well defined and its iterates {z" },cy converge two-step quadratically
to z*, i.e.

|$k+1 . -I'*|X S C|.I‘k_1 . :C*B(

for some positive constant (' and all £ € N.

Proof: First note that the conclusions of Lemma 4.1 remain valid for the reduced Hessian
47) Hp(z*,X") = T(x") Low(a™, X)) T (") € L(U).

Furthermore, a continuity argument implies positive definiteness of Hg(z,\) in a neighbourhood
U(z*) of z*. By Lemma 5.1 the mappings = ~ T(z) and z — A(z) are Fréchet differentiable
with Lipschitz continuous derivatives. Furthermore, by Lemma 5.2 the mapping = — A(z) is locally
Lipschitz continuous. This in particular implies for the Lagrange multiplier updates A\* the estimate

N =)z < ClaF — 2|k, mkEZ:l(m*),

with a positive constant (. Altogether, the assumptions for Corollary 3.6 in [79] are met and there
exists a neighbourhood Z/(z*) such that for all z° € U(z*) := U(z*) N U(x*) the claim follows. [

6. Reduced SQP-BFGS method

Except for the BFGS method, common to all methods presented up to now is the presence of an
inner iteration. Even if the dimension of the discretized reduced Hessian (47) is small (as it may
the case in boundary control problems) its structure makes its numerical computation infeasible. A
good compromise between feasible quasi-Newton methods and unfeasible SQP methods might be the
reduced SQP-BFGS method. This method utilizes a positive definite approximation of the reduced
Hessian in step 2.ii.)a.) of Algorithm 5.1 on the expense of two more linear parabolic systems solves.
The following algorithm is taken from [76, Algorithm A1].

ALGORITHM 6.1. (Basic reduced SQP-BFGS algorithm)
Let x* be a solution of problem (22).
(1) Choose z° € B(x*), H° € L(U) positive definite, set &k = 0
(2) Do until convergence
i.) Lagrange multiplier update, compute
s )N = —J, (")
ii.) Solve
o) HF6u* = —T*(J;k) {Jr(;ck) — Lm(:ﬂk, )\k)A(xk)x(:L'k)}
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B ey(l‘k)(Syk = —(i(l‘k) - eu(:ck)&uk
iii.) Update
SyF
Su” ]
iv.) Update H*

v = T(.Ik + T(xkéuk))*Jx(.rk + T(xkcsuk)) — T(tk)*,]x(tk)

$k+1 — :Uk +

k+1 _ 1k VR _ (Hk5uk)®Hk5uk)
H ="+ (vouFygxy  ((HESuF),SuF)yxu
v)k=k+1
enddo

(3) stop

The additional amount of numerical work in comparison to the reduced SQP method is given by
the rank-2 update in step 2.iv.). Nevertheless, in the case of small system dimension of the discretized
control space an inner iteration procedure can be neglected. Recall again, that every step the inner
iteration amounts to the solution of two linear parabolic problems. As a conclusion the reduced SQP-
BFGS method is the most promising competitor of Newton’s Algorithm 1.1. There holds

THEOREM 6.1. (Local linear convergence of the reduced SQP-method)
Let z* = (y*,u*) denote a solution to problem (22). Assume that the corresponding state y* has its
initial condition y, in H. Furthermore, let J,(z*) € W* be sufficiently small, .J,,(z*) € L(W, W*)
be positive semi-definite and J,,(z*) € L£(U) be positive definite. Finally, let \* denote the unique
Lagrange-multiplier associated to z* and let B € L(U, L*(V*)). Then there exist a § > 0 and an
¢ > 0 such that for all z° and all positive definite 7° € L(U) with

||H0_H(X*7)‘*)||L(U,U*) S 5 and ||$0—$*||X S €
the iterates {z" } ,en of the reduced SQP-BFGS-algorithm 6.1 converge linearly to x*.

Proof: With the same argumentation as in the proof of Lemma 4.1 it can be shown that the reduced
Hessian Hpr(z*, A*) defined in (47) is positive definite. It follows from Lemma 5.1 and the identities

ex(z)T(z) = 0in Z* and e (z)A(z) = I, z€X

that the mappings x — T'(z) from X into £(U, X') and z — A(z) from X into £(Z*, X) are Fréchet
differentiable with Lipschitz continuous derivatives. In particular, this implies positive definiteness
of Hg(z,)) in a neighbourhood S(z*) of z*, where ) is associated to  via i). in Algorithm 6.1.
Moreover, by Theorem 3.1 ¢, (z*) is surjective and from Lemma 4.2 one deduces the validity of the
second order sufficiency condition (37). Altogether, we meet the assumptions 2.1 to 2.4 and the
suppositions of Theorem 2.3 for Algorithm A1l in [76] (see also [79, (Al),...,(A3) and Algorithm
2.1]), i.e. there exist positive constants d,  such that if

|$0—I*|W S 6 and ||HR<£U0,)\O> — HR(I*,)\*>||L(U) S 7,
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the sequence {z"},¢n converges linearly to z*. By a continuity argument one may choose a neigh-
bourhood S(z*) C X such that both of these requirements are satisfied for starting values z° €
S(2*) N S(x*), which is the desired result. O

THEOREM 6.2. (Local super-linear convergence of the reduced SQP-method)
Let all assumptions of the previous theorem be satisfied. In addition assume that J: WU L?(V) — R
is twice continuously Fréchet differentiable for some 1 < p < oo, B € L(U, L*(H)) and
H := J,(z%).

Then, the convergence of the iterates {z"}, ¢y is super-linear.

Proof: Due to [76, Theorem 2.5] it is sufficient to show that the difference
H® — Hp(x*,\*)

is compact. Since for the reduced Hessian Hg(z, A) the decomposition (35) into a compact part plus
Juu () remains valid, the claim follows with Lemma 4.3. O

7. Newton’s method for driven-cavity control

The numerical examples in this section should first of all demonstrate the feasibility of utilizing
Newton’s method for optimal control of the two-dimensional instationary Navier-Stokes equations in
a workstation environment despite the formidable size of the optimization problem. The total number
of unknowns (primal-, adjoint-, and control variables) in Example 7.1 below, for instance, is of order
2.2%106. The control problem is given by (21) with cost function .J defined by

1
(48) J(y,u) = 5/ ly — 2|* dedt + %/ |u|? dadt,
QO QC

where (). := Q. x (0,7) and Q, := Q, x (0,T), with . and ©, subsets of 2 = (0, 1) denoting the
control and observation volumes, respectively. The flow is driven by stationary tangential blowing at
the upper part of the spatial domain, i.e. the homogeneous boundary conditions in (21) are replaced
by y1(¢,-) = 1 on (99)T. In the following examples 7" = 1, U := L?(Q.), v = 1/400 and B is the
indicator function of ().. The results for Newton’s method will be compared to those of the gradient
algorithm, which for the sake of convenience is formulated next.

ALGORITHM 7.1. Gradient Algorithm

(1) Set & = 0 and choose ",
(2) Set d := —.J'(u*) and compute

p" = argmin, ,I(p) := j(ul‘“ + pd)
(3) Set
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(4) Set k =k + 1 and goto 2.

Given a control u the evaluation of the gradient of ./ at a point © amounts to solving the state
equations in (21) for y and (30) for the adjoint variable A. Implementing a step size rule to determine
an approximation of p* is numerically expensive as every evaluation of the functional J at a control
u requires solving the instationary Navier-Stokes equations with right hand side Bu.

In order to provide approximations to the optimal step size p* consider for v € U and search
direction d € U the solutions v € W and w € L*(V') of the systems

(49) vy — vAv + (y . V)'U + ('U . V)y = Bd
v(0) =0
and
—w; — vAw — (y - Vw + (Vy)'w = J,(z)v— (v- V)A + (Vo)X
w(T) =0,

where y = y(u) and A € Z defined through (29) is the associated adjoint variable.

(50)

(1) For a given search direction d € U interpolate the function /(p) by a quadratic polynomial
using the values 7(0), I'(0) and 1"(0), i.e.

1(p) = 1(0) + I(0)p + LI (0)7

and use the unique zero
B A T
PV = g + (Brw, dyo
of the equation /’(p) = 0 as approximation of p*, with w given by (50).

(2) Use the linearization of the mapping p — y(u + pd) at p = 0,
y(u+pd) = y(u) + py'(u)d,
in the cost functional .J. This results in the quadratic approximation
Ia(p) i= J(y(u) + py/(w)d,u + pd)
of the functional /(p). Now use the unique root

—(J"(u), d)y

(G py =
P aldlf + vl

of the equation 7(p) = 0 as approximation of p*, with v given in (49).

The denominator of p} equals I”(0) = (.J"(u)d, d)y;. Utilizing (35) it can be concluded as in the
proof of Lemma 4.1 that the denominator is positive, provided that the state y(u) is sufficiently close
to z in L*(H).

Note that the computation of p] requires the solution of linearized Navier-Stokes equations for-
ward and backward in time, whereas that of p} only requires one solve of the linearized Navier-Stokes
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equations. In addition, a numerical comparison shows that the step-size guess p; performs better than
P73, both with respect to the number of iterations in the gradient method and with respect to compu-
tational time. Therefore, for the numerical results presented below the step size proposal p3 is used.
Thus, every iteration of the gradient algorithm amounts to solving the nonlinear Navier-Stokes equa-
tions forward in time and the associated adjoint equations backward in time for the computation of the
gradient, and to solving linearized Navier-Stokes equations forward in time for the step size proposal.

The inner iteration of Newton’s method is performed by the conjugate gradient method, the choice
of which is justified in a neighbourhood of a local solution «* of the optimal control problem by the
positive definiteness of J "(u*), provided the desired state z is sufficiently close to the optimal state
y(u*).

For the numerical tests the target flow z is given by the Stokes flow with boundary condition
z1 = 1 in tangential direction, see Fig. 1. The termination criterion for the j-th iterate 5u§ in the
conjugate gradient method is chosen as

L | (|i'<u’“>|)5 L2 0

5 < ; ———— » orj > 50.

|/ (u0)] | /()]

Since the system equation 2.i) in Algorithm 1.1 is only solved approximately at best the super-linear
convergence rate of the in-exact Newton method can be expected for the numerical results to be
presented. The initialization for Newton’s method is u? := 0.

R @O |
IR = e
: %x \\ ‘ // %’

S

FIGURE 1. Control target, Stokes flow in the cavity
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The discretization of the Navier-Stokes equations, its linearization and adjoint is carried out by
using parts of the code developed by Binsch in [6], which is based on Taylor-Hood finite elements
for spatial discretization. As time step size ¢ = .00625 is taken, which results in 160 grid points for
the time grid. The grid for the spatial discretization contains 545 pressure and 2113 velocity nodes.
All computations are performed on a DEC-ALPHA T station 500.

Iteration | CG-steps ||}],/((;?)|| % J(u*)

1 - 1.e0 - 1.196202e-2
2 13 3.358825e-1 | 1. 3.226486¢-3
3 11 5.058497e-2 1 0.492 | 1.617913e-3
4 18 8.249029e-3 | 0.422 | 1.482032¢-3
5 17 1.409278e-4 | 0.079 | 1.480533e-3
6 19 4.686819¢e-6 | 0.032 | 1.480534e-3

TABLE 1. Performance of Newton’s method for Example 7.1

EXAMPLE 7.1. Here the results for . = Q, = (0,1)* and o = 107% are presented. Table 1
confirms super-linear convergence of the in-exact Newton method. To achieve the the same accuracy
as Newton’s method the gradient algorithm requires 96 iterations. The computing time with New-
ton’s method is approximately 45 minutes whereas the gradient method requires 110 minutes. This
demonstrates the superiority of Newton’s method over the gradient algorithm for this example. For
larger values of « and coarser time and space grids the difference in computing time is less drastic.
In fact this difference increases with decreasing @ and increasing mesh refinement. As expected a
significant amount of computing time is spent for read-write actions of the variables to the hard-disc
in the sub-problems, especially when there is no local hard-disc available.

In Figures 2, 3, 4 the evolution of the cost functional, the difference to the Stokes flow and the
control as a function of time are documented. It can be observed that Newton’s method tends to
over-estimate the control in the first iteration step, whereas the gradient algorithm approximates the
optimal control from below, see Figure 4. Graphically there is no significant change after the second
iteration for Newton’s method. These comments hold for quite a wide range of values for o.

In Fig. 5 the uncontrolled flow together with the controlled flow and the control action at the end
of the time interval are presented.

In the previous example the observation volume 2, and the control volume (2. each cover the
whole spatial domain. From the practical point of view this is not feasible. However, from the
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2.8e-02

0.0e+00

2.8e-02

0.0e+00

FIGURE 2. Newton’s method (6 Iterations) (top) versus Gradient algorithm (96 Itera-
tions), Re=400, o = 10~%: Evolution of cost functional for relative accuracy = 1.d-5

numerical standpoint this is a complicated situation, since the inhomogeneities in the primal and
adjoint equations are large.

The next two numerical examples presented deal with different observation and control volumes.
This results in smaller control and observation volumes than in Example 7.1, and thus the primal and
adjoint equations are numerically simpler to solve.
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1.4e-02

0.0e+00

1.4e-02

0.0e+00

FIGURE 3. Newton’s method (6 Iterations) (top) versus Gradient algorithm (96 Itera-

tions), Re=400, a = 10~?: Evolution of difference to Stokes flow for relative accuracy
=1.d-5

EXAMPLE 7.2. Here , = (0.,1.) x (0.85,0.95) and Q. = (0.,1.) x (0.9,1.). The spatial
and temporal discretizations as well as the parameter « are the same as in Example 7.1. Newton’s
method takes 15 minutes cpu-time and its convergence statistics are presented in Tab. 2. The gradient

algorithm needs 25 iterations and 26 minutes cpu to reduce the value of the cost functional from
J(u®) =1.25 x 107 to J(u*) = 6.3 x 107*,
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1.8e+00

0.0e+00

1.8e+00

0.0e+00 —
o
t
FIGURE 4. Newton’s method (6 Iterations) (top) versus Gradient algorithm (96 Itera-
tions), Re=400, o = 10~%: Evolution of control for relative accuracy = 1.d-5

EXAMPLE 7.3. Here , = (0.,1.) x (0.2,0.5) and Q. = (0.,1.) x (0.4,0.7). Again, the dis-
cretization of the spatial and the time domain as well as the parameter « are the same as in Exam-
ple 7.2. The gradient algorithm needs 38 iterations to reduce the value of the cost functional from
J(u®) = 3.25 x 107 to J(u*) = 8.11 x 10~*. It takes about 80 minutes cpu-time. The Polak-Ribiére
variant of the conjugate gradient algorithm converges after 37 iterations and yields a slightly better re-
duction of the residual. The amount of of cpu-time needed is nearly equal to that taken by the gradient
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FIGURE 5. Results for o = 1072, from top to bottom: uncontrolled flow, controlled
flow at £ = 1, and control force at ¢t = 0.75
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Iteration | CG-steps |!}7,/((7:f)))|| % J(uF)

1 - 1.e0 - 1.254304e-3
2 7 9.266545¢-3 | 1. 6.438873e-4
3 8 9.958369¢-4 | 0.16 6.270625e-4
4 8 5.919598e-5 | 0.054 | 6.269869¢e-4
5 5 2.027455e-5 | 0.015 | 6.269868e-4

TABLE 2. Performance of Newton’s method for Example 7.2

57

algorithm. Newton’s method is faster. It converges within 7 iterations to the approximate solution and

needs 65 minutes cpu-time. The average cpu-time for the inner iteration loop is 7.5 minutes. As in the

previous examples the average cost of a conjugate gradient iteration in the inner loop decreases with

decreasing residual of the outer-iteration loop. The results are depicted in Tab. 3. Again super-linear

convergence of the method is confirmed.

Iteration | CG-steps ||‘}7,/((;”3)|| % J(uF)

1 - 1.e0 - 3.253402e-3
2 5 3.824511e-1 | 1. 1.198001e-3
3 8 2.270326e-1 | 0.600 | 9.829474e-4
4 8 5.762604e-2 | 0.619 | 8.333535¢e-4
5 12 9.527054e-3 | 0.404 | 8.108330e-4
6 11 1.920783e-4 | 0.083 | 8.105986¢e-4
7 18 9.283444e-6 | 0.029 | 8.106008e-4

TABLE 3. Performance of Newton’s method for Example 7.3






CHAPTER 5

Instantaneous control for finite dimensional systems

This chapter presents the development of the instantaneous control method with distributed con-
trols for linear and non-linear dynamical systems. In Section 1 a brief discussion of the scope of
the method is given. Section 2 contains a brief discussion of the linear quadratic regulator problem,
which is chosen as model problem for the investigations. In Section 3 the application of the instan-
taneous control approach to the model problem is described. Section 4 deals with the interpretation
of the instantaneous method as closed-loop control law. Stability properties and convergence of the
corresponding discrete and the continuous controller for tracking-type problems are proven in Section
5. Finally, a comparison between the controller obtained by the instantaneous control method and the
optimal closed-loop Riccati controller for a two-dimensional example is presented in Section 6.

1. Scope of the method

Various restrictions apply to the optimal control approach for the instationary Navier-Stokes equa-
tions. They are caused by limits in available computing power and storage facilities as well as by the
limited applicability of the resulting open-loop control policies in practical applications.

Instantaneous control provides a powerful tool for coping with the mentioned bottlenecks while
providing reasonable controls [50, 81, 88]. Furthermore, instantaneous control can be interpreted as
closed-loop feedback control approach which, applied to the Navier-Stokes equations in a natural way
leads to practically implementable feedback strategies for fluid flows [18, 19, 20, 62, 102]. The nature
of the approach is completely different from that of the Hamilton-Jacobi-Bellman method since it does
not rely on the dynamical programming principle of Bellman [11]. Rather, it successively determines
approximations of the objective while marching forward in time. The method is closely related to the
model predictive control approach [31], which often is also refered to as receding horizon control, see
[92, 99, 91]. It has been shown in several numerical studies that the instantaneous control approach is
implementable in workstation environments and is very effective in reducing costs [50, 54]. Moreover,
certain variants of the instantaneous method lead to practically relevant controllers for fluid flows,
since they can be implemented as to determine boundary controls based on boundary information
only [19, 81, 88].

The method works as follows. The dynamical system is discretized in time. Then, at every
time instance a stationary control problem with an instantaneous version of the feedback gain as cost
function is solved approximately by applying one step of the gradient method. The control is used to

59



60 5. FINITE-DIMENSIONAL INSTANTANEOUS CONTROL

steer the system to the next time slice. As is shown this discrete approach allows for the interpretation
as a semi-discretization of a closed-loop control law. Provided the parameters involved in the method,
such as step size in time integration and the descent parameter in the gradient algorithm are adjusted
in a proper way the discrete control algorithms and the related continuous closed-loop control laws
are proved to be stable.

2. The model problem

In this section the derivation of control laws ultilizing the linear-quadratic regulator problem (LQR
problem) in its simplest form is outlined. To make the ideas of the approach as transparent as possible
questions of controllability and observability are not investigated. These topics in connection with the
approach presented here are discussed in [110]. The model problem can be formulated as follows:
Given a desired state vector z € R” and an initial state o € R”, find a control vector u(¢) € R™ such
that the objective function

T

A 1
(52) Jo,u) = J(w) = / y

0

u(t)]* + |z(t) — 2| dt

is minimal compared to the value of .J at all input vectors v(¢) € R” satisfying

#(1) + Ax(1) = (1) + (1),

53
(53) z(0) = .

Here, v > 0 weighs the costs for the control input, the matrix A € R™*" is assumed to be regular
and the inhomogeneity is denoted by b. It is well known that this problem admits a unique solution

(54) ut = l,u,
v
where the adjoint state ¢ € R”™ is connected to the state = by the linear forward-backward in time
Hamilton equations
T+ Ar=b+ %,u,
—fi+ A= —(z - z),

z(0) = zo,

p(T) =0.
A short computation shows that the control «* in (54) for z independent of time may be computed
with the help of the solution of the two-point boundary value problem

jl—(A*—A);l—(AA*wL%[)u:b—Az

A*pu(0) = f1(0) = = — g
u(T) =0.
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Choosing for the control the Ansatz
1
(55) u@)z;{—P@X$—2)+p@ﬂ

leads to the time-variant feedback matrix P and a time-dependent vector field p satisfying the Riccati
matrix differential equations

P—AP—PA4+1-1P*=0
p— %Pp — A*p= P(b— Az)

P(T)=0

p(T)=0.

(56)

In practical applications the use of an numerical approximation of the optimal control law (55)
amounts to the storage of an » X n-matrix and an n-vector at every time instance. Especially for
large time intervals 7' >> 0 or/and large system dimension the application of this law is not work-
able, not to mention the enormous amount of computational work necessary to provide the numerical
solution of (56).

For infinite time horizon T = oc the optimal control law is also given by (55), where now the
feedback matrix P and the vector p are the suitable time-invariant stationary solutions of (56), i.e. P
is positive definite and the couple and ( P, p) satisfies the quadratic system

~A"P — PA+T-1P? =0

(57) x
—}—YPp — A*p= P(b— Az).

Investigations on algorithms for the numerical solution of this problem are discussed, for example, by
Rauter and Sachs in [97]. However, for large system dimensions as they arise from the discretization
of parabolic equations, say the effort to solve Eqs. 57 numerically is enormous. It is one goal of this
work to present an approach which provides numerically computable control laws even for systems
of very large dimension.

3. The instantaneous control strategy

The approach taken is based on a time discretization of equation (53). For this purpose let 0 =
to <ty < -+ <1, = T denote an equidistant grid on the time interval [0, 7] with step size h = L. At
each discrete time level ¢; a stationary control problem is solved for an approximate optimal control «}
and this control is used to steer the system from ¢; to ¢, 1, where a new approximate optimal control is
determined. Unless otherwise specified from now onwards z denotes a sufficiently smooth bounded
time dependent function.
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As time discretization method the implicit Euler method is chosen, and as cost function an instan-
taneous version of (52) is taken. The optimization problem in every time step then has the form
min J (2 uitt) = J(uith) = Luitt 2 4 Ljgitt — i)
(Pz> S.t.
(I + hA)2I Tt = 2 + b + uw/t!,
which, due to the quadratic character of the cost function, admits a unique solution (z?*', u/*'). This

tuple together with the uniquely determined Lagrange multiplier z/*' solves the corresponding first
order optimality conditions given by

(I + hA);cj‘H = 2/ 4+ hb + it
(7 -I-'hA*),u]:"'] = —(xj"'] — Zj>
7u1+1 _ IuJ+1 = 0.

This system has the solution
et = (I + hA)™ (,w‘ +hb + 1S (h(Az) — b) — (27 — Zj)))
ptt = —S(x7 — 27) — hS(b — AzY),
where )
L \-
S = (([ + hA)(I + hA™) + —[) .
v
The gradient of the functional J at u in direction v is given by

Vj(u)(v) = (yu — p,v),

where (-, -) denotes the usual inner product in R".

In order to obtain a stable control law for the dynamical system (53), at every time level ¢; exactly
one step of the gradient algorithm with a suitable step size p > 0 is applied to solve (F;). This
approach from now on will be referred to as instantaneous control. It may be interpreted as an
in-exact variant of finite-horizon model predictive control [31, 92, 93, 99] and may be written in
algorithmical form as follows.

ALGORITHM 3.1. (Instantaneous control)
(1) Given initial values z°, set j = 0, 1, = 0
(2) Given ué, solve
(T+hA)az = 24+ hb 4 u)
(I +hA )y = —(z-— zj)
(3) Set Vj(u{)) = fyug —
(4) Given p, set w/T! = ul — pV.J(ul)
(5) Solve
(f + hA)mj'H =2/ + Al + it
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(7) If t; < T goto 2.

Note, that the optimal step size p = p* in step 4. of Algorithm 3.1 can be computed exactly and is
given by

V.J(u)d

58 AP A C) L
%) g vd* — p(d)d

where for given direction d, u(d) is the adjoint state computed from

{ (IT+hA)z = z,+hb+d
(I+hrA ) = —(z—2z).

A

Here, z, denotes the state at the previous time slice. The denominator in (58) is equal to D*.J(u)(d, d)
and therefore, due to the quadratic nature of the optimization problem (P;) is always positive. It is
worth noting that even for the nonlinear problems investigated later the step size guess (58) performs
very reliably.

In the next section Algorithm 3.1 is interpreted as semi-implicit discretization scheme of a dy-
namical system related to the one given in Eq. (53).

4. Discrete and continuous output control laws

The instantaneous control approach presented in Algorithm 3.1 allows for an interpretation as
semi-implicit time integration scheme of a dynamical system. In order to derive the corresponding
differential equation abbreviate

(59) B:=(I+hA)"', B*:=(I+hA")"",

set f := Az and require

(60) hmax {[[A]l, | A7} =: AM < 1,

so that the matrices B, and thus B*, are well defined. With these preparations one can prove

THEOREM 4.1. Let ué := 0 in Algorithm 3.1. Then Algorithm 3.1 is equivalent to the semi-
implicit time discretization

(61) (I +hA)2’* =27 + b — pB*B(2? — 27) — hpB*B(V — f7), 2°:= o,
of the dynamical system

(62) :[c—l—A:c:b—%B*B(z—z)—pB*B(b—f), 2(0) = o,
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Proof. For a proof it remains to show that for v/*! in step 4. of Algorithm 3.1
wt = —pB*B(;vj — zj) — hpB*B(bj — f])

holds true. For this purpose note, that f/ = Az’ implies B*z/ = B*Bz’ +hB*Bf’. Using this in
steps 2.-5. of Algorithm 3.1 yields the desired result. O

REMARK 4.1. Note, that in (62) h and p may now be regarded as parameters, although they stem
from the time step size in the discretization process and the step size in the gradient step, respectively.

Now let for a moment b depend nonlinearly on the state. In order to track the desired state z with
the control law (62) z by necessity has to satisfy the homogeneous equation

g: =2+ Az —b(2) + pB*B(b(z) — Az) =0, z(0) = z.

This restriction for the desired state z can be avoided by replacing (61) by the modified discrete
control law

63) (I+ hA):z:j"'l — 2l + hb(:rj) + gz — pB*B(:tj — zj) — hpB*B(b(xj) — Azj), z° := z,
where

gz = T g L p AR hb(zj) + hpB*B(b(zj) — Azj),
and (62) accordingly by

(64) i+ Az =b(z) + g, — %B*B(m —2) = pB*B(b(z) — f), x(0) = o,

REMARK 4.2. With ué defined to be the solution of
_ 1 .
<Id - r B*B) ul = g
I —p I —p
in Algorithm 3.1 the control laws (63) and (64) can be derived from Algorithm 3.1 in the same way
as the laws (61) and (62) in the proof of Theorem 4.1.

In the next section the stability properties of the differential equation (64) and of its discretization
(63) are characterized in terms of the parameters involved in their formulation.

5. Convergence of the control laws

This section shows that provided the system parameters p and % are chosen suitably instantaneous
control steers the system towards the desired state z.

To begin with first note, that in the linear case b(z) = b(z) = b holds, so that the difference
scheme (63) can equivalently be rewritten as

(I +hA)®* =&/ — pB*BP,
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which in turn is semi-implicit time discretization of the the differential equation
b+ AD = —i—B*BCD
where ® := = — z and h serves as discretization parameter.

5.1. Stability of the discrete schemes. To derive stability conditions for the scheme (63) it is
sufficient to ensure that the matrix

(65) Cr:=(I+hA)™"(I — pB*B)
has spectral radius lower than or equal to 1. With M defined in (60) a sufficient condition for this to
hold is given in

THEOREM 5.1. Let the parameters 2 > 0 and 0 < p < 2 satisfy the relation

1 _ (M4p+2)M
g L
©0 AR [y

Then the discretization (63) of (64) is stable.

Proof. The matrix C'; may be written as

Cr=1—-pB*B—hA+phAB*B + ( E ) I —pB*B).
N
=:hO 4 k=2

For the matrix hC 4 write

hCya=  —pB*B—hA=

I+ Z —h)* AR 4 Z )F A
+ <§:(—h)kA’“) <§: (—h)* A*""’)] — hA.

Using this representation and the fact that £ satisfies the estimate 2h M < 1 straight forward estimation
gives

|7+ hCa| < [1—p|+hM{6p+1}.

The estimate

1
- <4
(1 —hM)

together with the above decomposition of the matrix C'; yields the desired condition. O

IB*B|| <
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5.2. Stability of the continuous systems. As an immediate consequence of the proof of the
previous theorem one obtains a condition for exponential stability of the differential equations (62)
and (64).

THEOREM 5.2. Let the assumptions of Theorem 5.1 be satisfied. Furthermore, let condition (66)
hold with strict inequality sign. Then, the differential equation (62) (and thus (64)) is exponentially
stable.

Proof. The matrix (/4 is the system matrix of the differential equation (62). Following the lines of
the proof of the previous theorem one concludes that the spectral radius r, of the matrix I + h('4
satisfies

ro (I +hCys) < |[I+hC4|| < 1 (forall h satisfying (66)).
This implies Re(A(C'4)) < 0 for all eigenvalues A(C'4) of C'4. O

5.3. Convergence on the infinite time horizon. To prove convergence of the iterates of the
discrete controller (63) and of the state of the continuously controlled system (64) to the desired state
z for large times is now a minor step.

THEOREM 5.3. Let the assumptions of Theorems 5.1 and 5.2 be satisfied. Then, for every ¢ > 0
there exists jo(h, p, 2°) such that

sup [ad — 21| < e sup Jul] < e
JEN,7 >0 JEN, 7> 70
holds. For the continuous controllers, similarly, for every ¢ > 0 there exists a time ¢, such that

(67) sup |z(t) — 2(t)| <e

>t

holds true.

Proof. Since @ : © — z solves the stable differential equation

b= —(A+ %B*B) o,
T
which admits the unique solution
d(t) = eoAt(I)(O),
(67) follows from exponential stability of the system (64).
In order to prove the first claim for the discrete controller (63) recall that

(I +hA)®+ = & — pB*BY
holds for the iterates of (63). Since strict inequality in condition (66) implies ||C|| < 1 one concludes

(@7 < |Gl [2° = 2°).
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This is the desired result for the iterates 7. For the controls «/ the result immediately follows from
the representation
Wt = —pB*B(a’ — 2¥)

and the estimate for the iterates z”. O

5.4. The nonlinear case. Denote the by C/*([0,c0),R"™) the set of rn-times continuously dif-
ferentiable functions with bounded derivatives up to order m on the infinite time interval [0, co) and
values in R".

The results of Theorem 5.3 are now extended to nonlinear dynamical systems. For this purpose
it is sufficient to suitably modify the requirements for stability in Theorem 5.1 for right-hand sides b
which now depend nonlinear on the state z. In order to investigate Algorithm 3.1 with ué given as in
Remark 4.2 for the nonlinear case it is sufficient to consider the differential equation

(68) ®(1)+ Ad(1) = —%B*B@(t) —(pB*B = I)(b(t,z(t)) — b(t, 2(1))), ®(0) = ¢ — 2(0),
together with its semi-implicit discretization
(69) (I+hA)®'T = & — pB*BY — h(pB*B — I)(b(t;,27) — b(t;,27)), ®° = &(0),
where &' := b(t;, z7). On the nonlinearity b the assumption

ASSUMPTION 5.1. b =b(t,q) € C}([0,00) x R",R")

is imposed. In particular, this assumption implies the Lipschitz-continuity of the nonlinearity b with
Lipschitz constant L, = || Db|| .
To derive sufficient conditions for the stability of the discrete scheme (69) note that by the mean

value theorem
1

b(t,z) —b(t,z) = / by(t,z + s(x — z))ds ®.

0

::bQ(t7£)
Using this identity, the discrete scheme (69) may be written as

Ot = O (14 hby(t,€)) 7, ®° = d(0),

=:Cr

where (7 denotes the matrix given in (65). As an immediate consequence of this identity one obtains
with M defined in (60)

THEOREM 5.4. Let the parameters 2 > 0 and 0 < p < 2 satisfy the relation
1 (4p+2) (M +1Ly) + |1 —p|Ly

h — 1—|1—p '

Then the discretization (69) of (68) is stable.

(70)
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Proof. Similar to that of Theorem 5.1. O

As a corollary one also obtains the stability of the continuous system. The proof of the following
theorem is the same as that of Theorem 5.2.

THEOREM 5.5. Let the assumptions of Theorem 5.4 be satisfied. Furthermore, let condition (70)
hold with strict inequality sign. Then, the differential equation (68) is exponentially stable.

Similarly to Theorem 5.3 there holds a convergence result in the nonlinear case.

THEOREM 5.6. Let the assumptions of Theorems 5.5 be satisfied. Then, for every ¢ > 0 there
exists a jo(h, p, 2°) such that

sup |o/ =2 <6 sup |ul| < e
JEN,72> 50 JEN,j2>j0

holds. For the continuous controllers, similarly, for every € > 0 there exists a time ¢, > 0 such that

sup |z(t) — z(t)| <e

t>10

holds true.

REMARK 5.1. The results of this chapter are generalized by Wunder in [110] where he investigates
plants of the form

T = Be! + Ev?, j=0,1,2,... withz® given.

Here, 77 € R, v/ € R™, m < n, B=(I+hA)" and £: R™ — R" denotes a control extension op-
erator. Among other things Wunder proves in [110, Satz 4.7] that instantaneous control is stabilizing
if h is sufficiently small and A is positive definite on N'( E?).

6. An example

As example investigate the linearization of the equation
p+sing =0

at the unstable stationary solution ¢ = 7, = 0 :
0 —1 0
Tr = .
—1 0 —

Here x = [, ]’ and the state z to be tracked is given by z = [, 0]’. Furthermore, let b = [0, —7], so
that Az = b holds.
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The stationary Riccati solution is computed in order to compare it to the results obtained by the
control law given by Algorithm 3.1. Using the stationary Riccati solutions P and p from (57) to
stabilize the linearized equations leads to the feedback law

i=—(A+LP)o+ (f=1P2) == (A+1P) (s -2),
where the positive definite matrix P and the vector p are given by

V4 e B o=
SR VATRE 0]

Using this, a short calculation gives the optimal state for the infinite horizon problem,
+€_t.\/1+% [ g ] 9

where « and /3 depend on the initial state of the differential equation. The control has the form

P =

Tr =

u = —>P(z — z) and is given by

ay/v* + v+ By
ay + B/ 4y

Two more lines of computation finally yield that the cost J = / |z — z||* 4 y||u||? dt is given by
0

e_t'\/@.

_1
~

u =

J =74 (o +208, /25 +5%) = 0(3) (v > 0).

Now proceed similarly for the instantaneous control law. To begin with, let + > || A|| = 1. Then,
B*=B=1d—hA+ O(h*) (h — 0) holds and B*B = 1 — 2hA + O(h*) (b — 0). For the matrix
C4 = —(A + 7 B*B) one obtains the approximation

N —£1-2
CA = g P H
1—2p £
which is of order O(h) (h — 0). Using this approximations it is sufficient to investigate the feedback
control for w = = — z given by
w = CN'Aw
the exact solution of which is given by

1
1

s

0

At

+

r = Qe

+ 56,\21‘ [

—1

and deviates from that of the control law (64) only by a term of size O(h) (h — 0). The eigenvalues
A1 /2 of the matrix C 4 are given by

My = —%:I:sign(l —20)1 = 2p],
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so that negative eigenvalues are guaranteed, provided the parameter % is sufficiently small. Finally,
the control and the costs are computed. For the control v = — 7 B*Bw + Az — b(z) one obtains

T ( (5 +20)

the value of the costs .J are given by

+Be (f + 2p)

>—>O(t—>oo),

o’ p 2\ | B p 2 h e
J= (14 (B420) )+ (149 (B+20) ) <0 (242
)\1<+’y h+p>+>\2<+’y L T2 <C p+h

with some positive constant C' independent of p, v and ~. As a result one obtains that the optimal

Riccati controller and the controller obtained by the instantaneous control Algorithm 3.1 have the
same qualitative behaviour.



CHAPTER 6

Instantaneous control for the instationary Navier-Stokes equations

This chapter investigates the stability properties of the instantaneous control method developed in
Chapter 5 applied to the control of the instationary Navier-Stokes equations with distributed controls.
In Section 1 the instantaneous control strategy is adapted to the Navier-Stokes equations and the
corresponding continuous and discrete controllers are introduced. Section 2 contains an existence
and uniqueness proof for the controlled Navier-Stokes equations with desired state equal to zero. In
Section 3 these results are extended to tracking of sufficiently smooth states and exponential decay
of the controlled state to the desired state is proved. In Section 4 similar results are provided for
the corresponding discrete-in-time control procedure. Finally the results are numerically justified in
Section 5.

1. Framework

The instantaneous stabilization method (61) developed in Chapter 5 is applied to construct a dis-
tributed feedback control policy for tracking of the instationary Navier-Stokes equations. As in the
finite dimensional case the control gain is to track a given state z which for example can be chosen
as the Stokes flow in an observation cylinder Q7 C Q7, say. In order to put this problem into the
framework developed in Chapter 5 let

A = v,

where S denotes the Stokes operator introduced in (8) and denote the nonlinearity by

bly) = b(y,Vy) = —P[(yV)y]

where P denotes the Leray projector. Note that this definition only makes sense for (yV)y € L?(Q)?,
compare [82]. However, it is utilized for notational reasons also for functions not satisfying these
regularity requirements and it will follow from the specific context how this term has to be understood.
In this setting the Navier-Stokes equations (9) for f = 0 in variational formulation may be rewritten
as Burgers equation in the space V/,

ye + Ay = b(y),

y(0) = yo,
which has to be understood in the sense of (11). The analogue to the operator B in (59) here is defined
through
v=DBf forfeV" < wv+4+hAv = finV"
71
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where for f € V* the equation is understood in the weak sense and due to Theorem 1.1 admits a
unique solution. It follows from Theorem 1.3 that B is linear, bounded, selfadjoint and compact in
H. With these preparations the continuous control law (64) is of the form

(71) yr + Ay —b(y) = Kry and  y(0) = yo,
where the controller K7, is given by
(72) Ky = —%BB(y — 2) — pBB(b(y) — b(z2)) + 2 + Az — b(z).

In this context the analogue to (63) is given by
yj+1 _ yj

(73) N

+ Ay —b(y') = Ky, j=0,1,... andy’ =y,

where for 7 > 0
p , _ , _ o
(74 Ky =—7BB(y =) = pBB(b(y') = b(=')) + —
(3

Recall that the system parameters & and p, respectively stem from a time discretization parameter and

4+ AL b(zj).

from a step size in the gradient algorithm, respectively. Unless otherwise stipulated, throughout this
chapter

ASSUMPTION 1.1. 0 # yo € V and z € H*'(Q)

is asssumed. Note that this assumption on the desired state z in particular implies that z(0) is
meaningful. Moreover, z(0) € V.

2. Existence and uniqueness of solutions

In this section existence and uniqueness of a solution to (71) is proven and its regularity is inves-
tigated. Since the desired state z in this context plays the role of an inhomogeneity whose regularity
properties could be adapted to the necessities of the proof, for the moment z = 0 is assumed. More-
over, 0f2 is assumed to be as smooth as required for the applications of Theorem 1.2.

THEOREM 2.1. Let yo € H be a given initial state and let &~ > 0 be fix. Then, there exits a
threshold py = po(|yo|m,v) > 0 such that for every 0 < p < p, the equation
75) yi+ Ay — bly) = =5 BBy — pBB(b(y))
y(0) = yo
for every T' > ( admits a unique weak solution y € W which satisfies the a-priori estimates

i <2e7 [yl forall € [0,T]

Y13y < 2 yolHs
(76) Loo(H) H

|y|iz(v) < % Yol 3 and

el 72y < CW) {1+ £} Twoldr
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Proof. The proof follows the lines of the existence proof for the time-dependent Navier-Stokes equa-
tions given in [103, Chap. III] and is divided into two parts, namely the derivation of a-priori estimates
and the passage to the limit. It is worth noting that in addition to the well understood analytical han-
dling of the nonlinearity of the Navier-Stokes equations one in essence has to cope with the technical
difficulties arising from non-local solution operator BB applied to the nonlinearity of the Navier-
Stokes equations. However, as will be demonstrated the smoothing properties of this operator and its
sign enhance the stability properties of the Navier-Stokes equations.

Let py be given by
1/2
7 " S Tl =0
2.1. Part 1: A-priori estimates via Galerkin-ansatz. Let,,...,,,,... denote the eigenfunc-

tions of the operator S~' (which exist as elements of D(S) due to Theorem 1.3 and are total in V).
For m € N define the discrete Ansatz space by V,, = span {¢,...,¢,,} C V and choose form € N
a vector (y7,...,y2) € R™ such that

Yo ::Z yoxi — Yo (m — o0)in V.
i=1

Set .
Un(tox) = 3 (1))
and note that by the linearity of the operator B -
(Byn) (1, ) = 32 uP(0) (B () and
(B((ymV)ym)) (1, 7) = é vy (1) (B(($:V)en) ()
holds. Inserting y,, into the state equation and using ¢';, 7 = 1,...,m, as test functions leads to the

system of nonlinear differential equations for the vector Y(¢) := (y7",...,y”)" given next.

m

(78) MY +vDY +

Tyt ) )i da
Z yr (O (1) / (6:9 )t

i=1

+ EMY +p

. yfn(t)yzm(t)[2 B((Tr"ﬁv)'lﬁ’l)B('ll’j)dI] =0,

t,0=1
Y(0)=Y, = (y?, e yfn)t.

Here, the matrix M denotes the mass matrix, D denotes the stiffness matrix and the matrix M is
defined by

M = ()], ha= / B By dz.
Q
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Since the mass matrix is regular, the nonlinear system (78) admits a solution in some maximal time
interval [0,1,,). It will follow from the a-priori estimates of the solution that this interval may be
chosen as large as desired.

To obtain a-priori estimates for y,, scalar-multiply (78) with Y. Application of Young’s inequality
then leads to the differential inequality
19 5 Wl 40 byl + 1Byl < ZB(n V)l + L 1Byl
for the function ¢ + |y, (t)|%. Note, that w, = B((ynV)ym) exists in V and is unique, since
(ym ¥V )ym is an element of V*. Next, estimate |w,,|%,. By the definition of B the function w,, satisfies

1
Q 124

%, utilizing the first estimate in (129) leads to

e

Estimation of the term |(y,, V )y

1
30 m2 < m2 m2.
(80) |w |H > 21/h|y |H|y |V

Note that in the first estimate in (129) C' = /2 holds. Estimate (80) together with the differential
inequality (79) leads to

Ld 2 p P 2
5 Lt (o= L) ol + 1Bl <0
(81) 2dtly 7+ (v 41/|y 7 ) |y |v+2h| Y|y <0

The outermost addend on the left-hand-side can be estimated with

LEMMA 2.1. Fory € V letw := By. Thenw € V N H*(2)? and Sw € V. Moreover,
lwlf > |yl — 2vhlyly.

Proof of Lemma 2.1. By the definition of the operator B the regularity claim for w follows from
Theorem 1.2. Thus, Sw € H'(R2)? [22, Remark 1.10] and since y € V even an element of V.
Therefore, Sw can be utilized as test function in the equation

w + hAw = y.
This gives
lw|} + vh|Sw|y = /Vwad:r: = |w|p + 2vh|Sw|; < |yli-
Q

Furthermore, using y as test function the latter estimate leads to

1 1 1 1
lyli = / yw + vhVyVwde < Syl + Slwli + hvlylvlwly < Slyly + Slwli +hvlyly,
Q
which gives the claim. O
From (81) it now follows that
1d 2 P P 2

82 o g ldm ( I — - m2) m2 a1 1Ym <0.

(82) 51 ¥m e + (V1 =p) = =yl ) lymly + 55 lymly <
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Since y,,,(0) — yo in H one may fix di and some rny € N such that
[y (0)|3 < 2lyoly; = dg forall m > mo.

Then, for all 0 < p < py with pg from (77) v(1 — p) — £dy > % holds true.

Since (78) describes a nonlinear system of ordinary differential equations there exists some %,
such that a solution exists and is continuous in the interval [0, ¢,,). It shall be shown that ¢,, = T'. To
begin with assume that |ym(t)|y — oo(t — t,,). Since

Tv

P 2 P v
1—p)— Ly > vl —p) = Ldyg > 25 2
v(l—p) 4Vly 0]z = v(1—p) w02 5>

there exists a time ¢, < {,, and ¢, > 0 such that

AN

10 * 2
1—p) — —|ym(t =
v(1=p) = o lym(ta)ln
and

forallt € [0,t,).

IR

p
(1= p) = Ly () >

Now (82) implies
2 —Bt 2 —Bt *
lym(Wlg < e B yn(0)[g < e Adg foralll €[0,47],

and this in turn together with a continuity argument gives

v P * 2 /) —
— = (1l —p) — —|yn(t > p(l —p)— =d
5 V( P) 41/|y (m)|H Z V( P) 1 HE

t

>

mos Y
2 bl
which is a contradiction. Therefore, ¢,, = {7, = T" and
2 -2t .

lym(U)|f; < € ® dg forallt € [0,T].
Integration of (82) with respect to time then yields

2 2 2 ’

YmlL2vy < o dp and  |ym|j2g) < ) dr.

Utilizing these estimates one obtains for the time derivative the estimate

oy < C@) {142} dn

Altogether,

a) The sequences {Ym }men C L(H) and {ym }men C L*(V), are bounded independent of
the parameter ~ and the dimension m of the Ansatz space, for 7' > 0 arbitrary, but fixed .

b) The sequence {ym, }men C L*(V*) is bounded by a constant of size 1 + £ and independent
of the dimension m of the Ansatz space, for 7' > 0 arbitrary, but fixed.
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2.2. Part 2: Passage to the limit. Now a) and b) from above are equivalent to {4y, }men C
W bounded and since W << L*(H) and W < C([0,T]; H) one concludes convergence of a
subsequence, again denoted by {y,, tmen, weakly in W, weak™ in L°°(H) and strong in L*(H) to a
function y € W. Thus, passing to the limit in (78) in the linear terms is straightforward, as is for the
non-linear term of the Navier-Stokes equations due to the strong convergence of the subsequence in
L*(H), see [103, Lemma 3.2]. It finally remains to establish

// y)Bw;x(t)dzdt -0 (m — o)

/oT /Q B((ymV)ym — (yV)y) Bw;x () dzdt

/ / Ym V — (yV)y)BBw;x(t)dzdt — 0 (m — o),

where x € C5°(0,T). For the first term the boundedness of B and the strong convergence of {y, }men
in L?(H) gives the result. Since for y € C$°(0,T') the functions BBxw; € C''(Q) a further applica-
tion of [103, Lemma 3.2] gives the convergence in the second term. Uniqueness of the solution is an
immediate consequence of inequality (82). This completes the proof of Theorem 2.1. O

REMARK 2.1. In the proof of Theorem 2.1 only yo € H is required.

The decay rate for the L>°( H )-estimate in (76) holds for all 2~ > 0 provided 0 < p < po. This
means that the controller (72) enhances the stability properties of the system up to exponential decay
of order ;. As is shown next a similar result holds for the .°°(V') norm of the solution y.

THEOREM 2.2. Let py be given by (77) and let 0 < p < po. Then the solution y of problem (75)
is an element of H*'(Q) and satisfies the a-priori estimates

l} <Ce iyl forall ¢ € [0, 7],
(83) |y|2,oo(v) < C) ol

|y|%2(H2(Q)2r‘1V) < C() lyoly and

|yt|%2(H) < C(v) {1 + %} [yol? -

Proof. Choose the sequence {y, } men such that |y, (0)]3 < 2]y(0)|%.. This is possible since y,,(0) —
y(0) in V. Proceeding as in the proof of Theorem 2.1 it is now sufficient to establish a-priori estimates
for the solution of (75) in appropriate norms. To begin with denote by y = y,,, the solution of (78).

LEMMA 2.2. Let k := By and 7 := Bk. Then

/ By BSydx = |yly — yh/ (Sk + St) Sydzx

Q Q
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and

(84)

1
Stli. 1Sl < — lyli-
4vh

Proof of Lemma 2.2. The definition of x and 7 implies k € H*(Q)>’ NV, € H*(Q)*NV.
Moreover, Sk and ST are elements of V. Integration by parts gives the first part of the claim. To
obtain the second claim test the equation for « with S«. This gives

1
2 < yl? d 2 < — 3.
kly <lyly an S| oh lyly

Since the same estimate holds with « replaced by 7 and y replaced by « the lemma is proved. O
Now test (78) with Sy to obtain

1d
ST |y|€v+1/|5y|§1+/(yv)y5ydx = —%/ ByBSydfc—p/ B((yV)y)BSydz.

Q Q Q

Straightforward estimation utilizing the fourth inequality in (129), (76), (84), Young’s inequality and
the estimate

2
P 20,12 v 2
p [ BUTWBSyds < SLoliluly + %1sul

Q

leads to

1d

v p p
(85) Srlult + ZISulh + 2 (1= p = Ladur) ol < ool

h

P4

3
By (77) 1 — 4p — 5%dp > 1 so that Gronwall’s lemma (2.1) applied to the function v(t) = eht|y|%r
gives

P 2 2 (76) P
w2 < 2ol e i 2O Wea ¥y 90 () ey 2.

This is the first inequality in (83) and it implies the second one. The third one follows by integrating
(85). Finally the fourth inequality in (83) is obtained by testing (78) with y, and straightforward esti-
mation, utilizing (129). As a consequence of the a-priori estimates for {y,, } men the unique solution
of (75) is an element of /%*(()), which completes the proof of Theorem 2.2. O

3. Stability of the continuous controller

In this section the stability properties of the control law (71) are investigated. It follows from the
a-priori estimates to be derived that this feedback law admits a unique solution provided Assumption
1.1 is satisfied. Moreover, the H and V' norms of difference w = y — z decay exponentially with rate
— &, which coincides with the results for z = 0. To achieve these results the value of po in (77) has to
be decreased depending on the size of |z|%oo( #ry- From now onwards let dy = 2|yo — 2(0)]%.
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Using w as test function in the variational formulation of (71) leads to

p
Sl + vllt + 2 Bufl =

/ (wV)w + (2V)w + (wV)z) w dz
P/ (wV)w + (zV)w + (wV)z)) Bude = (1) +--- 4+ (6).

Since (1) = (2) = 0, and addend (4) can be estimated according to (79) and (80) for w replaced by
y, it remains to estimate the terms (3), (5) and (6) to derive a differential inequality for y — z which
is similar to that given in (82) for y. To begin with, estimate

v 2
(3) < §|w|%' + ;|Z|%/|w|in

p p p
() < phl BVl + LBuly < Lol + L Buf,

(5)+(6) < ph {|B(w¥))l}; + BVl } + L [Bul,
p
< g 1Bl + o wlbleli + =3l

and proceed as for the derivation of (82). This leads to

1d 1 p P 12 4+p
aplut (v (5=0) = L Gl + el )l + Lrlaty < L2L1e oy,

Now, with py from (77) let the range of p be implicitly defined by the relation

2

(86) 0 < p <min | po, o v
202 4+ ¢ TPy + |2[f 0
e, . . ..
sothatv (3 — p) — (e Vel ) dy + |z|f:(x,(H)> > 0. For p in this range arguments similar to those
applied to (82) glve
(87)

1d 1 p o e, P A+p
sttt (v (5=0) = 2 (FFh0r + alin) ) ol + Sobolly < S22 ol

Since the right-hand-side in (87) is integrable a further application of Gronwall’s Lemma (2.1) finally
proves
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THEOREM 3.1. Let p satisfy (86) and let y be the unique solution of (71). Then w = y — z satisfies

p
|2, v, |2|w) e k' forall ¢ € [0, T,

(88)

<O )
0y S C 0 2lw)
<O ) and

|'U)|3:2(V) V7|Z|W
|wt|%2(V*) <C (’/7 |Z|W) {1 + %} )

where C' (v, |z|w) is a positive constant independent of p and h.

Note that the estimate for w; is a direct consequence of the second and third estimate in (88).
REMARK 3.1. For the result of the previous theorem only yo € H and z € W is required.

To prove decay also for the V' norm of w use Sw as test function in (71). This leads to

1d
5 dl lwl|? 4 v |Sw|}, -I-/ (yV)y — (2V)z) Swdz =

Q

>

/ BwBSwdx — p/ B((yV)y — (V)z)BSw dx.
Q Q
Now require for the range of p

. 1 v?
(89) 0 < p <min | po, =

2 2 4:',-_‘)|Z|i2 v 2
20?2 + 3e WM dg + 3|z| oo (1)

sothat 1 —p—22 <e o202 vy dy + |z|%(x,(H)> > 1. Restricting p to this range, similar to the derivation

2

of (87) after several applications of (129), (84), Lemma 2.2 and Young’s inequality one ends up with
the inequality

ld o Vi o P 3p ( epp, 2 2
©0) 5 ggloly + 15wl + § (1= = 55 (70 +lelin) ) ol
< Gy {wlylwly + 12lul Szl + |2y + |2[y } [wli.
Since the right-hand-side in (90) is integrable a further application of Lemma (2.1) finally proves

THEOREM 3.2. Let p satisfy (89) and let y be the unique solution of (71). Then w = y— z satisfies
_Ly

|w|? < C (v, |2]m2a(q)) €7k forall ¢ € [0, 7],
[} vy < C (v, |2lm20(g)) »

w72 (g2 ay2vy < € (v, l2lm21(0)) and

il ) <C (v, lelmae) {1+ £},

where C (v, |z|g21(g)) is a positive constant independent of p and /.
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4. Stability of discrete controllers

Here, first stability properties of the instantaneous control procedure (73) are investigated. As
will be shown stability for a certain parameter range of /4 and p can only be ensured by requiring
additionally either largeness of the viscosity parameter v or smallness of the initial defect yo — z(0)
between the state and desired state. As will be sketched the latter restriction can be dropped when the
procedure is applied to the instationary Burgers equation, see also [54]. Finally, a slightly modified
version of the control operator (74) is applied to stabilize the fully implicit Euler-discretization of the
Navier-Stokes equations and it turns out that stability can be obtained for a considerable parameter
range, without requiring smallness of the data or largeness of the viscosity parameter. Fully implicit
discretization of the state is a realistic situation, since the discrete controller is applied to stabilize
a physical system which is described by the Navier-Stokes equations. Therfore, the choice of the
discretization procedure for the uncontrolled state need not be linked to the discrete controller.

Throughout this section it is assumed that

ASSUMPTION 4.1. 0 £ yo € V and z € C([0,T]; H'>(Q)* N V).

To begin the investigation for the instantaneous control procedure (73) set w = yiT! — z/+!
v = y/ — 27, abbreviate = = z/, 7 € N, and use w as test function in the variational formulation of
(73). This gives

1 1 1
O slwliy = Floli + gl = vlf + vhlwly =

h/ ((UV)U + (ZjV)1) + (7)V)Zj) w dr — p/ BvBwdx

Q Q

—ph/B UV v+ ZJV)U—}-(UV)ZJ)BU)d&?—( Y4+ (7).

Estimating the odds using (129), (80) and Young’s inequality one obtains

VAN

g lwly + 2wkl

IN

2wl + Et oz,

il
blwff + = fof3,

_phf |Bw|2d;c —pg{ B(v—w)Bw < £(p—1)|Bwl|}; + v — w3,

~—~ o~ ~~
~—r ~—r \83/ ~— N
VAN

2v(1=p)

—ph [ B((vV)v) Bude < 3 Joliloly + (1= p)|Bulg,
Q



4. STABILITY OF DISCRETE CONTROLLERS 81

and finally

(6)+(7) = —ph/ B((vV)z! + (2/V)v) Bwdz

3ph?|z|} h|z|? 1—
< [ 211 0o | 3ph|z|? Ivliﬁp( P)|Bw|§[.
1—p 4(1 = p)v 6

Now introduce ;
1 p )
h) = =+ (1 — - —
C] (IO’ L) 2 + 4( p) 2 bl
and

- 1 2h 3hp
J h P a2
('2([)’ ’Z) 2 + {V + 21/(1 _p):| |U|V
zzooh 2 h 3h22200 3phlz|?
n | |1, +|Z|oo n ph?| |1, 4 P |Z|oo
2 v 1—p (1—p)v

=:C2(h,p,2)
With this notation the estimates above and Lemma 2.1 together with (91) give
: vh
(92) alp, ) wlly = o h2) ol + 50— p+ ) Jolt < 0.
From now onwards let w’ := y’ — 2/, where y’ denote the iterates obtained by (73).

THEOREM 4.1. (Conditional H-norm stability of instantaneous control)

3 . +12 / 02
e (0,1)3h%(p), 0< n<1Vje N W E < R e,
provided 0 < h < h*(p) and

4—p |w02

crit =
Al —p)1—p+p?) 7

is sufficiently small.

Proof. Fix p € (0,1), define

1 . -
éa(p,h,z) = §+cmt—}— é(p,h, z)

and argue by induction as follows.
(1) Set j = 0, choose kg = ho(p) and crit so small that forall 0 < k < hg
(@) é2(p,h,z) < land &§(p,h,z) <1,

(b)%:maand

0
cy(phyz)
(C) Cl(p7h> =R <l
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holds. This is possible, since the for p € (0, 1) the term '2(1 — p) in the definition of ¢, (p, h)
is positive. Define x := max(k1, £2). Then (92) implies
'} < s’}
and
2

vh(l —p+p?)
(2) Now assume that for 7 € N

(@ |wi |} < w/[w’|} and

iz

holds true.

(3) Then conclude from (92)

2
W% = KO .

12
<
|w |V = Wy V;L(l _p+p2>

—p+p?)

Alphz) = b+ |2+ 2] Wi} + &(p, b 2)

<L 2 ] St W O + (o, by 2)

< % + crit + 52([),h,2) = éQ(ﬂvhaz)

Thus, a further application of (92) implies

- S(pyh,2), Ealpohyz), .
w2 < Fz(Pv ) 1?2 20 2) ) 012 T 02
| |H = e (p’ h) | |H = ](p’ h) | |H = | |H
and
W < (., )l Sy
~ vh(1 —p+p?) -

vh(l —p+p?)
which completes the proof of Theorem 4.1. O
From the previous proof also stability with respect to the V' norm can be inferred.

THEOREM 4.2. (Conditional V'-norm stability of instantaneous control)

p4

e opyd ji—11,,.0
Voe(0.1)3n(p). 0<k<1¥jeN 0<h<hr i Wl S ZEm e .
provided

4 —
crit = P |w®|%

Vi1 =p)(1 = p+p?)

is sufficiently small.

REMARK 4.1. The smallness of ¢r:t in Theorems 4.1 and 4.2 is a condition either on the smallness
of the initial difference between state and desired state or on the smallness on the Reynolds number
of the fluid. It has to be required since there are no better estimates available for the term (1) above.
The term (5) could be estimated in a slightly different way to obtain a p? in front of |v|3,, see the proof
of the next Theorem, and therefore could be reduced by decreasing p. However, for (1) there is no



4. STABILITY OF DISCRETE CONTROLLERS 83

further knob to fix its size. For the Burgers equation the situation is much more comfortable at this
stage. Due to the continuous embedding H! « > and the well known L?- H' interpolation estimate
for L°° functions in one spatial dimension one has

h 1
h/ vw'wdr < %|w|€ + B2 wliy + R ——=|w|} |wl|;; forall a € (0,1).

2\v

Following the lines of the proof of Theorem 4.1 one can now conclude that the smallness requirement

Q

on crit may be dropped provided p is sufficiently small, since the power of & in the last addend on
the right-hand-side of this estimate is larger than one. For more details see [54].

Consider now the discrete controller
D p : . : . P R - -

(93) K,y= —EBB(y] —2') = pBB(b(y’) — b(2")) + — + AT = b(2T),
which differs from the controller defined in (73) only in the last addend on the right-hand-side. In
the next theorem the uncontrolled Navier-Stokes equations are discretized with time step size h using
the fully implicit Euler scheme and the discrete controller (93) is applied to stabilize the discretized
Navier-Stokes system. The modified controller stabilizes the Navier-Stokes equations for the param-
eters p and A in a considerable range, without any smallness or largeness requirements on the data of
the Navier-Stokes system. The controlled equation has the form
Yt — yi

h

with K7 from (93).

(94') + ij+1 —-b yj+1 = X’Dyj7 j = 07 17 .. and yo = Yo,
h

THEOREM 4.3. (H- and V-norm stability of (93))
There exists some p* € (0, 1) such that for every 0 < p < p* there exists a 2*(p) > 0 and a positive

k < 1 such that forall j € N
W} < k7 |w’lf and
wlf, < mﬁj_l w7,

provided 0 < h < h*(p).
Proof. Test (94) with w. Then one obtains

1 2 1 2 1 2 2
(95) §|w|H - §|'U|H + §|w — vl + hvfwly =

h/ ((wV)w + (zjV)w + (wV)zj) w dr — p/ BvBwdzx

Q Q

— ph / B((vV)v+ (2'V)v + (vV)2?) Bwdz = (1) + (2)' + (3)' + (4) + (5)' + (6) + (7).
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There holds (1) = (2)’ = 0 and (3)’ can be estimated as

vh h
@Y<—+%f V@Mﬂ

Utilizing the estimate | BBw|y < |w|y one obtains

vh, 3p*h

(5)" < 3 —|wly + WM%M%

The remaining addenda can be estimated as above. Now introduce

1 p 2h, h
ci(p,h,z) = 5‘1‘ g(l —p) — 7|Z|L°°(V) Bk
and
; 1 3p%h 3ph®|z|} oo 3phlz|%
cé(p,h,z) = S+ | |‘/ .
2 2v 1—p 4(1 = pv
=:83(h,p,z)
With this notation and the estimates above one concludes from (95)
vh 2 2
(96) (o hs ) wlly = o, 2) ol + S0 = Zp+ Zp7) [wl} < 0.
Now define
1 3p? .
co(p, h = — 02 2 (p, h
R R P L A
and proceed as follows.
(1) Choose p* € (0,1) such that
3 1
97) ? W} < —(1—p) forallpe (0,p].

A= 29+ 207) 6

(2) Fix p € (0, p*] and choose h* = h*(p) > 0 such that
(a) 52(h,p, Z) S }Z
(b) 3§2h| O|%/ S 1
© 5+ %H%m+®Wm) s(1—p)
()22,:,2 <k o<1
holds for all % in the interval (0, 2*]. Let h € (0, h*].
(3) Now conclude from (97) and p € (0, 1) that

3p? 02 P 1
< =(1 - < -,
AT 2pr gl = gm0 <
which together with (c) implies that
h
é(p,hyz) < 1 and (p, b, 2) < Ko< 1
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Furthermore, (a) and (b) give ¢)(p, h, z) < 1, so that with (96)

2¢5(p, h, 2)
vh(l = 3p + 30°)

w'ly <

2
w’lf < 7
3

I/h(l —

(4) Now assume that for j € N
(@) |w'[} < w'[w’|f and
b) |w!|} <
® v = o=t
holds true, where x :=max(k1, k) < 1.
(5) Then conclude from (b)

A

cé(p,h,z) = % + 321//)2 |wj|%/ + 62(:07}%2)

1 + 3hp? 2
2 2u yh(l—%p-l—%/ﬂ)

< é(p, by 2).

IN

K [w°|f + E(p, b, 2)

Thus, utilizing (96) one more time gives

e T
and
Wt < il < L
vh(l —3p+ 5p%) vh(l = 5p + 5p%)
which completes the proof of Theorem 4.3. O

5. Numerical validation

Here the results obtained in the previous sections are numerically validated. In order to value
the performance of the control laws (72) and (74) the numerical example is taken from [58]. As is
demonstrated below the instantaneous controller presented here steers the H-norm and the V-norm
of the difference y — z to zero with exponential decay. This is similar to the numerical results for
the (1,1)-receding horizon controller (i.e. control horizon length coincides with time step size) im-
plemented in [S8]. The instantaneous controls are compared to the optimal control and it turns out
that instantaneous controls give a much better reduction of the control gain, but at significant higher
overall costs.

The control problem considered here is of tracking type and is given by (21) with cost functional

1
J(y,u) = 5/ |y—z|2dxdt+g/ |u|? dadt
QT QT
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and control space U := L*(Q)?, with B denoting the injection from U into L?(V*). The initial value
of the uncontrolled flow is chosen as

(cos2mxy — 1)sin 27,

y(z,0) = ¢

—(cos2mxy — 1) sin 2wz,

with e denoting the Euler number, and the desired state is time dependent and given by

Py (tv L, xZ)

t —
Z( 71.) _@xl(t7$17x2>

3

where ¢ is defined through the stream function

o(t,zy,22) = 0(t,21)0(L, z2)
with
0(t,y) = (1 —y)*(1 — cos 2knt), y €0,1].

For the results presented o = 1.e—2, k = 1 and the time interval is chosen as [0, 2], i.e. 7' = 2. For
the discretization in time a equidistant grid with width ¢ = 0.01 is used, for the spatial discretization
the Taylor-Hood finite element [55] is used on a grid containing 1024 triangles with 2113 velocity
and 545 pressure nodes. The number of unknowns in the discretized control problem therefore has
the magnitude 1.65x10°, including the primal, adjoint and control variables.

In Fig. 1 the desired flow at 7' = 2 is shown. It forms four cells with opposite flow directions near
the cell boarders.

FIGURE 1. Desired flow at 7" = 2

In Figs. 2, 3 the evolution of the optimally controlled flow computed with Newton’s method and
the instantaneously controlled flow is illustrated a selected time instances. The costs are compared
in Fig. 4. For the instantaneous control strategy they become larger with increasing time. This is
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due to the increasing dynamics of the desired state. As is expected the optimal control strategy equi-
distributes the costs over the time horizon. The performance of Newton’s method applied to solve for
an optimal solution is illustrated in Table 1. As one can deduce from the same table and Fig. 5 the
numerical solution computed by Newton’s algorithm seems to be only a local one. For v = 1/Re
= 1/10 and v = 1.e — 2 the numerical computation of the optimal control takes about 45 minutes
cpu-time on a DEC-ALPHA™M station 500, which is one half of that needed by the gradient algorithm
with step-size rule (51) for the same problem. The instantaneous feedback controller takes about 2
minutes to compute a control function on the time horizon [0, 2].

Fig. 6 shows a comparison of the control actions at £ = 0.1 and { = 1 between the instantaneous
and the optimal controls. In Fig. 7 the evolution of the I*-cost for the instantaneous control law is
shown for p = 0.1 and different values of . In Fig. 8 ~ = 0.1 is fix and the evolution of the control
gain in the ?- and the H'-norm for different values of p are shown. Exponential decay is observed
and thus, the theoretical results of Theorems 3.1, 3.2, 4.1 and 4.2 are confirmed.

Iteration | CG-steps ||}7,/((;g))|| | ;Zi'ﬁ(] J(ub)

1 - 1.e0 - 2.385417
2 6 1.388822e-1 | 1. 2.583791
3 7 2.671826e-3 | 6.53e-2 | 2.539879
4 8 5.783690e-6 | 2.84e-2 | 2.538508

TABLE 1. Performance of Newton’s method for Example 1
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CHAPTER 7

Instantaneous feedback control for backward facing step flows

In this chapter a more applied control setting is considered. Are distributed control problems with
distributed observations the topic of investigation in the previous chapters now the focus is on a rather
general boundary control problem with boundary observations. From the mathematical point of view
the exposition is formal. However, the corresponding numerical results speak for their own. In Section
1 the model problem is introduced whose optimality system is derived in Section 2. The instantaneous
control approach is described in detail in Section 3. Section 4 is dedicated to the step-size estimation
in the gradient step. Finally, Section 5 presents some numerical examples.

1. Problem formulation

As model problem consider the control of a backward facing step flow. The control objective is
the reduction of the recirculation bubble behind the step, and thus reducing the re-attachment length
of a backward-facing-step flow, by controlling the flow at the boundary near the edge of the step. For
the following presentation it will be convenient to refer to Fig. 1 which depicts the spatial domain €2
which in this chapter is assumed to be a bounded subset of R? that constitutes the flow region and
the subsets of the boundary that shall be refered to. The optimal control problem to be investigated in

Iy

Q

—
—
I‘out
>
Ty To Qs
L.
X1 Fs
|
]
Fo ‘n

FIGURE 1. Flow region

93
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this chapter is given by

rninj(g) = J(y,9)
S.t.
y— =Ay+(y-Vy+Vp = 0 inQ7
—divy = 0 inQ7
(98) (P) T .
y = ya only
y = g onl’
Oy = pyn onll,
y(O) = Yo-

Here y = (y1,y2) denotes the velocity of the fluid in the directions (x1, z3) and p denote its pressure.
Recall that the space-time cylinder is denoted by Q7 = Q x (0,7), T > 0. In the case of the backward
facing step flow the Reynolds number Re is determined by the bulk velocity of the inlet profile U, the
step hight H and the kinematic viscosity v and is given by Re = % As usual y, denotes the initial
condition of the flow at ¢ = 0. The Dirichlet boundary consists of the inflow part I';,, the control
boundary I'. and the homogenous part I'y. The latter one together with I';, forms I';. Typical for
channel flow configurations is an outflow boundary on which boundary conditions of a different type
than Dirichlet boundary conditions may be described in order to model physical flows. Here the so
called do-nothing boundary conditions

v ’f/y - pn on Fout;

are used, where 7 denotes the unit normal to 9€) in outward direction. This boundary condition is used
as a downstream condition in [33, 44] and it has been observed numerically in [9], e.g. that this choice
of boundary condition has little artificial influence on practically observed flow patterns. Control is
applied along the boundary I'. in form of blowing and suction modelled by the function ¢ which has
to be chosen in such a manner that an appropriately defined performance index is minimized.

REMARK 1.1. To prove existence for solutions to the instationary Navier-Stokes equations with
do-nothing boundary conditions is a non-trivial task, even in two space dimensions [8, 44]. Moreover,
regularity results for solutions have not yet been proved. Thus, at the moment a proper functional
analytic setting ensuring existence of solutions to problem (98) is not available.

The choice of the cost functional appropriate to capture the goal of influencing and reducing the
recirculation bubble is certainly a delicate one. Here, the control methods to be developed relate to
functionals of the form

A

T
(99) J(g) =J(y,g9) = / [/ F(0,y)dls + %/ deFc} di,
FS [
0
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where v > 0 and F' : R* — R is a given, sufficiently smooth function. In the numerical part of this
chapter also the functional

(100) Ji(g

T
/U ly — yse|® d”c+7/ ng}d
re

[\D|H

is investigated. Here €2, C () denotes an observation volume inside {2, and y,; denotes the Stokes flow

in (). Although J relies on volume observations which is not practical from the applications point of

view it serves as validation for the boundary observation-based instantaneous control strategy.
Referring to Fig. 1 one has = (0, —1)" on I'; and hence a special case of (99) is given by

T

181/1 aT/l alh ’Y/ 2 ]
101 _ ar. + 1 Jar. | dar.
aon T(y.9) /[/F 502, 9, 1, M T 5 .

The first part of the cost penalizes a negative wall velocity gradient in the sensor area I's which is
supposed to contain the re-attachment point. The second addend weighs the costs for the control
acting along I'.. For a discussion of further functionals of type (99) see [19]. Methods utilizing
boundary control with boundary observation are discussed for instance in [45, 66, 81, 88, 94, 105].

2. The optimality system for (P)

The optimality system for problem (98) can formally be derived as in Appendix 1 with R(a, b, c)
replaced by F'(a) and S(d, ¢, f) := £|d|*. In order to state it let g* denote a solution to (98) (which is
assumed to exist) and let (y*, p*) = (y(g*), p(¢*)) denote the corresponding optimal velocity field and
pressure, respectively satisfying the Navier-Stokes system. Then (y*, p*, g*) satisfies the following
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system of coupled equations in the ’primal variables’ (y, p, ¢) and the ’adjoint variables’ (£, 7, i):
(102)
v~ ReAy+(y-Viy+Vp = 0 inQ7

—divy = 0 inQ7
y - {yd onT'?
g onlT
Redwy = pn onll,
y<0> = Yo

—& — RLeAf +(Vy)ie—(y-V)E+Vr = 0 inQT

—divé = 0 inQf
- {0 on (9Q\ (Tpu UT, )Y
ReVF(d,y) onIT
(r)y =0
ReME+ (y-mé = mn onTl,
’yg—I—RLeanf = 75 onll.

Here ((Vy)'€): = 37 ,(0x,y;)¢;. The gradient of J at g in direction y is given by

T
, 1
J'(g)x = // (vg + R—anf —mn) x dl'.dt,
r. c
0

where (£, 7) are computed from (102) with (y*, p*, ¢*) replaced by (v, p, g). The primal and dual
variables are strongly coupled in system (102). The coupling in the coefficient of the state equation
for ¢ and the boundary condition on I',,,; for £ is due to the nonlinear character of the Navier-Stokes
equations. The coupling between ¢ and (£, 7) and the fact that the primal equation is solved forward
whereas the adjoint equation for (£, 7) is solved backwards in time are characteristic for optimal
control problems gouverned by time-dependent partial differential equations.

Note that for the cost functional in (99) the compatibility condition (124) for I (or g) is equivalent
to

(103) VF(dy)-n=0 onT?.

For the special case of .J given in (101) and the geometry of Fig. 1 one has (note that = (0, —1)")

1
F(2’1,Z2> = 52’1(21 + |2’1|)

and

9
31‘2

_n
VF(any) = [ 92 —g ] ”
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so that (103) is trivially satisfied.

In principal (98) or (102) can numerically be solved with the methods developed in Chapter 4,
at least for two-dimensional problems with laminar flow regime. However, even in the latter case
the numerical costs are expected to be very high since already for distributed control with distributed
observations the computing time on modern workstation environments is in the range between hours
and days. As shall be shown in Section 5 the instantaneous control method introduced in Section 3
computes good controls at low computational costs. Moreover, as already worked out in Chapter 6
it allows for an interpretation of nonlinear discrete-in-time feedback control law which in the case of
boundary observation and boundary control relies on observable state information alone.

3. Instantaneous control for boundary controls and boundary observations

Recall that instantaneous control is based on a time discretization of (98). At each discrete time
level ¢; a stationary control problem is approximately solved by applying one step of the gradient
algorithm and the resulting control g is used to steer the system from ¢; to ¢,;,, where a new control
is determined. Recall further that it cannot be claimed that the controls obtained in this manner
approximate the optimal control for (98) as the discretization parameter tends to zero. However, this
procedure is justified by the effectiveness that it exhibits for numerical examples and the interpretation
that it allows for suboptimal feedback controls.

To commence, let rn > 1 be fixed and set 6t = %, t; = 16t,2 = 0,...,m. As an intermediate
step in the derivation consider the case where the Navier-Stokes equations in (102) are approximated
by a Crank-Nicolson scheme. At the :-th level of the Crank-Nicolson based suboptimal strategy one
approximately solves the following stationary optimal control problem (compare also [20]), where
the variables (y, p, g) correspond to (y(tz-), p(ti), g(ti)).

min J(g) = = [ F(0yy)dls + 2 [ g*dr.
(104) s.t.
el((l/aP)a.‘]) = 07
where
%y + %(y V)y—2LAy+Vp = ff(y(t,;_l)) in O
—divy = 0 in 0
(105)  e((y,p),g9) = 0 <= y = yd only
GOy —pn = —F0py(lic1) on Loy
y = g onl..

Here R(y(ti1)) = Ly(tic1) + RaAy(ti-1) = 5(y(ti-1) - V)y(ti-1) is a known inhomogeneity at
time ¢, and ¢; := 1/Re.
For a given control g the gradient of the cost functional J in (104) at point g is given by

(106) J'(9) = (v + 10,6 — 7).
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Here (&, ) is a solution to e’{(w)((y,p),g)(f, ) =—J,(y,9),1ie.

- My VETH(VIE = SAE-Vn in 0
—diveé = 0 in )
(107 ¢ - 02 on I\ (I, UTY)
~VF(dyy) onT,
Enp =0 onl'
Ghé+ 5yt = m on Ty,

with (y, p) a solution of the primal equations (105) with boundary values g on I'.. The instanta-
neous control Algorithm 3.1 for the control problem (98) and Crank-Nicolson time integration can be
reformulated as

ALGORITHM 3.1. (Instantaneous control with Crank-Nicolson)

(1) Given an initial state vy, set j = 0, tp = 0.
(2) Given g?, solve
i. Solve for (y, p) in (105) with g = g?.
ii. Solve for (¢,7) in (107).
(3) Set J'(g]) = (v} + c10n&; = w0y,
(4) Given p > 0, set gj1; = g;-) —p J'(_q?).
(5) Solve for (y;41,pj+1) in (105) with ¢ = g;41 and R(y;).
(6) Sett;p1 =1t;+h,g=7+1.
(7) Goto 2.

Note that (107) requires information of the velocity inside the domain as well as on its boundary.
For computations this requires recalculation of the system matrix for the adjoint equation whenever
the primal velocity field y changes. Even more importantly from the feedback-control point of view,
one aims for replacing y by observable quantities of the system and computing ¢ from (107) and
(106). This would require knowledge of the velocity field y inside {2 which is impractical. To circum-
vent these drawbacks the discretization is further simplified by replacing the implicit Crank-Nicolson
scheme for the nonlinear equation by a semi-implicit time discretization scheme (see also [20]). In
what follows the Euler method implicit in the viscous term and explicit in the nonlinear convective
term is chosen, but different discretization schemes treating the non-linear term explicitly would also
work. As is shown below in this case only measurements of the wall shear stress are necessary to
compute the adjoint, which in turn determine the control.

Consider the minimization problem

minJ(g) = J(y.9) = fr. F(Opy)dls+7 [ g*dT.
(108) (P){ st
e((y.p),g9) = 0,
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where
y—cAy+6tVp = R(y(ti=1))inQ
—divy = 0 in )
(109) e((y,p),9) = 0 <= y = Y on Iy
cOyy = otpn on [y
y = g on ..

Here, R(y(ti—1)) = y(ti=1) — 0t(y(ti=1) - V)y(t;—1) and ¢ := ﬁ—;. Note that the information from
time level ¢;_; to ¢; is passed solely through the inhomogeneity K. Again for a given control g the
gradient of the cost functional J in (104) at point g is given by (106), where now (£, 7) is a solution

0 ef, »((y,0),9)(&,7) = —Jy(y,9). e

£ —cA{+ Vn 0 in O
=itdiveé = 0 in
(110) ¢ = { ?VF on 00 (Tow U )
VF(9y) onT;
E-n = 0 on I’y
cO,6 = my on 'y

with (y, p) the solution of the primal equations e((y, p), g) = 0in (109). Hence, only state information
on ['; enters into the computation of gradient information. Consequently the instantaneous control
Algorithm 3.1 for the control problem (98) can be interpreted as feedback algorithm. The following
feedback algorithm may be applied to control arbitrary fluid flows governed by the Navier-Stokes
equations.

ALGORITHM 3.2. (Instantaneous feedback control)

(1) Measure d,y on I';.

(2) Solve for (¢, ) in (110).

(3) Given ¢°, set J'(¢°) = (7¢° + cp€ — 70}y

(4) Given p > 0, set g = ¢° — ,oj'(go).

(5) Apply blowing/suction determined by ¢ on I'. to the flow.
(6) Goto 1.

In a practical applications Algorithm 3.2 may be applied whenever measurements on [’ are avail-
able. Time stepping in this algorithm is contained implicitly with step size determined by the CPU-
time necessary to solve for the adjoint variables in (110) together with the time span necessary to take
the measurements.



100 7. INSTANTANEOUS FEEDBACK CONTROL

4. Line search

In Algorithms 3.1 and 3.2 the descent parameter p is a degree of freedom which due to the non-
linear dependence of the state on the observation in (104) and (108) in general can not be determined
explicitly as is the case in a fully linear setting, compare (58). Now concentrate on Algorithm 3.2. In
order to maximize the descent in step 4. it is natural to seek a minimizer p* of the function

H(p) = J(g—ps),

where s = J/(g). Applying the usual linearization technique to the equation H'(p*) = 0 leads to the
approximation

. Tk

T (J(g)s s)u

of the optimal value p*, where the second derivative J" (¢) is given by (33) with u replaced by g. The
space U denotes the Hilbert space of the boundary controls, which is identified with its dual. Since
the state equations (109) are linear a close inspection of (33) shows that

A o)l
AT+ Jr (c0,(s) — m(s))sdT

where ({(s), 7(s)) is obtained by solving first e, .,y ((y, p), 9)((y(s), p(s)) = —e,((y,p), g)s, i.e.

(111) P

y(s) — cAy(s) +0tVp(s) = 0 inQ
—divy(s) = 0 inQ
(112) OonTy
yis) = { sonl',
cOyy(s) = dtp(s)n onTyy.

.and then utilizing (y(s), p(s)) to solve for ({(s), w(s)) in efy’p)((y, p),g)(E(s),m(s)) = =Ty (y,g)(y(s)),

£(s) —cA&(s)+Vm(s) = 0 inQ
—0tdivé(s) = 0 inQ
B 0 only
(1 13) 6(3) - { %VQF(any)any(s) on Fs
E-n = 0 only
cOyé(s) = w(s)n onT,u,.

Here, y = y(g) satisfies the linear state equation (109), i.e. ¢((y, p), g) = 0.
The linearization procedure which leads to the approximate value p; , can be made more trans-
parent by applying a Lagrange approach to the minimization of the function H(p) similar to that
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sketched in Appendix 1. To begin with consider for s = .J'(g) the constraint minimization problem

min H(p fr (Oyy)dls + 2 fr g—ps)*dl,
(L) 4 st (?J,P) (y(p), p(p)) a solution to
e((y,p),g - :05) =0.

The corresponding Lagrangian is given by
G(y,p,p,&,m 1) = / F(0yy) dl's + %/ (g —ps)*dl'. + / (y—g+ps)udl.
r, r. r.

+ /[(y — cAy + §tVp — R)¢ — wdivy] dQ,
Q

and the constraints on I'; and I',,; are understood as explicit constraints.
The first order optimality system for (L) is given by

(114) Gy(w) + Gp(q)=0,and G, =0

for all (w, ¢) satisfying w = 0 on I'; and ﬁ@nw = gn on I',,;. Condition (114) is equivalent to

(115) / VF(0,y)0,wdl'y + /(w — cAw)édx + 5t/ EVaqdx
T, Q Q

— / 7Tdivwd;c+/ wp dl, =0
Q e

and

(16 [ Btos =g+ lsar. =

From (115) it follows that C

(117) €y (Ys)s g = ps)(&m) = —Jy(y,9 — ps),

compare (110), and

(118) Oy +p=mn onl,.
From (116) one has
. 1
p 7/ (vg — p)sdl.
Isl7 I2(T.)
and hence with (118)
1
(119) pr = 27/ (vg + c0,& — mn)sdl.
’Y|5|L2(r) r

where (£, ) is given by (117) with (y, p) determined by the state equations in (L). Since (y, p) and
consequently (£, 7) depend on p, (119) is a nonlinear equation for p. An approximation to p* can
now be derived based on a linearization of V F at d,y(g). To begin with note first that the solution
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(y,p) = (y(p),p(p)) of the equality constraints in (L) is linear with respect to the inhomogeneity in
the boundary condition on I'. and hence
y(p) =y(9) = py(s), plp) = plg) — pr(s),

where (y(s), p(s)) is the solution to (112) and (y(g), p(¢)) denotes the solution of ¢((y, p),g) = 0.
The boundary condition for the adjoint variable along I'; is linearized according to

(120) VF(0y(y(g) — py(s))) = VF(0uulg)) — pV*F(95y(9))05y(9),
where VZF is the Hessian of F' : IR?* — IR. Accordingly the adjoint variables are approximated by

¢(p) = £(g) — pk(s),  m(p) = m(g) — pr(s),
where (£(s),m(s)) is the solution to (113) and (£(g), 7(g)) solves

(121) ¢l ((¥:0), 9)(E(9),m(9)) = —Jy(y(9),9),
which is equivalent to (110). From (116) and (117) with (£(p), 7(p)) linearized according to (120) an
approximation to the optimal step size is formed,
. Jr.(vg +c04€(g) — m(g)n)s d
Pure = T (s + cOyE(s) — m(3))s dT.

which coincides with that presented in (111).

To summarize, every iteration of the gradient algorithm with step size estimate p; ,, requires the
solution of four quasi-Stokes problems: (110) and (121) for the evaluation of the gradient and two
additional ones given by (112) and (113) for the computation of p; . Note that in the case that F’
is quadratic (120) is exact and hence p; , gives the optimal step length for (L). Using p7  a more
sophisticated feedback control law than that given in Algorithm 3.2 is then given by

ALGORITHM 4.1. (Instantaneous feedback control extended)

(1) Measure d,y on I';.

(2) Solve for (¢, ) in (110).

(3) Given ¢°, set J'(¢°) = (v¢° + cpé — mn)}y...

(4) Solve (112) for (y(s), p(s)) with s = J'(¢°)

(5) Evaluate d,y(s) on I'y and solve (113) for (£(s), w(s)).
(6) Compute p;,, from (111).

(7) Setg = ¢° = piy J'(5°).

(8) Apply blowing/suction determined by g on I'.. to the flow.
(9) Goto 1.

Note, that for the solution of the auxiliary problems (112) and (113) only observations on the
boundary are needed. Furthermore, in Algorithms 3.2, 4.1 it is assumed that the state measurements
depend on the control ¢°, i.e. the current state is determined by the control g°.



5. BACKWARD-FACING-STEP NUMERICS 103

For the cost in (101) the elements of the Hessian must be interpreted as directional derivatives.
Recalling = (0, —1), for the cost functional in (101) there holds

d 2]
—fu g jou

criao - [ 7[R

The Hessian of F' exists as directional derivative as long as g% # 0. At % = 0 the functional F
allows no second derivative. In practice

VEF (O5y) 0w = [ S Signo(%ﬂ e

is taken, where
sign(s) L, 520
S =
g 0, s<0.

5. Backward-facing-step numerics

In this section numerical results related to the approaches developed in the previous sections are
presented. The focus here is two-fold: to numerically prove the reliability of the feedback proce-
dures developed in Algorithms 3.2, 4.1, and to show that instantaneous feedback control applied to
laminar backward facing step flows yields remarkable reduction of the value of the cost functional at
considerable numerical costs.

The computational domain is the backward-facing-step shown in Fig. 1. The inflow boundary is
located at a distance of two step heights, i.e. 2h before the step, and an expansion ratio of 2 is used.
The outflow boundary is located at a distance of 8/ behind the step. The Reynolds number is based
on the step height ~ and the bulk velocity U at the inlet. The boundary conditions are no-slip at the
top and the bottom walls and do-nothing at the outflow boundary.

The optimization goal is the reduction of the recirculation bubble behind the step and thus, of the
re-attachment length of the two-dimensional laminar Navier-Stokes flow at Reynolds numbers up to
Re= 400. For this purpose instantaneous control is applied to problem (98) involving cost functionals
of tracking type (100) and of boundary observation type (101). Among other things dependencies on
parameters determining the problem formulation as well as on the step size in the gradient algorithm
are investigated.

For the discretization of the quasi-Stokes problems the Taylor-Hood finite element is used on a grid
containing 1152 triangles, 633 pressure and 2417 velocity nodes. For the numerical solution of the
quasi-Stokes problems the least-squares approach developed in [33] is used, see also [6]. The control
strategies applied here are based on first-order semi-implicit time discretization (explicit Euler for the
nonlinear term, implicit Euler for the viscous term) with time stepping ¢ = 0.01. The final time is
T = 100. This means that the total number of unknowns in the optimization problem (98) is of order
6 x 10® which makes the problem far too large to be handled with standard optimization software. It is
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worth noting that the computational time needed for the solution of the optimal tracking type control
problem discussed in the next subsection utilizing a gradient method lies in the range between two
days and one week on a ORIGIN™ 200, the time span depending on the required accuracy. This is
due to the long control horizon. The instantaneous control strategy takes about 6 hours of cpu-time
on the same workstation to compute the suboptimal control.

In all figures presented the label Cost refers to the evolution of the cost functional J, Control
Cost refers to the evolution of the square of the 7.2-norm of the control input taken over the control
boundary T'., Difference to Stokes Flow refers to the evolution of the square of the L?-norm in the
whole of 2 of the difference between the controlled flow and the Stokes flow.

5.1. Volume observations. Here the numerical results for the case of the reconstruction of the
Stokes flow in the observation volume Q, = [4,6] x [—1,0] C © behind the step of the flow domain
are presented. The functional to be minimized at each time instance is related to the functional Jy in
(100) and is given by

A 1
'](g) = 5\/9 |y - yst|2 dpc —I_ %/F 92 dFm

where ¢ denotes the boundary control applied at the upper part of the back wall [2, 2] x [—0.5,0] C ..
In all numerical computations presented Re= 400 and a hybrid version of Algorithms 3.2 and 4.1 is
used, see Tab. 2. Note that for this example the adjoint equations (110) and (113) have to be slightly
modified. The boundary conditions on I'; are now homogeneous, the right-hand-side in (110) is now
equal to —(y — ys+)xq. and the right-hand-side in (113) is equal to —y(s)xq,, Where xq, denotes the
indicator function on 2. Furthermore, in both algorithms 1. has to be replaced by

1. Evaluate y — y; in €.
and in Algorithm 4.1 in addition 5. by

5. Evaluate y(s) in €, and solve (113) for ({(s), 7(s)).

The time history of control and the gradient descent parameter is illustrated in Tab. 5.1.

Time |0 <t <2[2<¢<20[20<¢<100

p | no control 1 Prapp
TABLE 1. Time history of control and the gradient descent parameters p

The influence of the varying penalty parameter « on the controls is illustrated in Tab. 2. It can
be observed that the descent parameter p; ,, remains nearly constant over the whole time integration
interval. This may be due to the quadratic nature of linearly constraint tracking-type control problems.
Fig. 2(a) shows the evolution of the costs. For v = 1 one observes increasing costs for ¢ € [20, 30].
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~|1.e0|le-1]|1l.e2]|1.e-3

pzpp 0.82 ] 3.13 | 4.35 | 4.53
TABLE 2. Optimal descent parameter pzpp with the corresponding penalty parameter

~ at Re= 400

This is due to the suboptimal character of the approach. Decreasing v yields decreased costs at time
instances where the controls are stationary. The oscillations in the costs for small v are due to the
instantaneous character of the feedback control mechanism. As Fig. 3 shows, these effects can be
damped by performing further gradient steps in the instantaneous control problems, see also [19].
Moreover, the robustness of the control mechanism increases with the number of gradient steps. To
reduce the oscillatory effects the relative amount of changes in the control from one time step to the
next should be bounded.

In the evolution of the control costs in Fig. 2(b) one also observes oscillations of the control after
the inset of the use of p*. In the long term these oscillations disappear with time and the control
costs converge to steady states. This means that the feedback control mechanism is stable. The
same holds true for the evolution of the I2-difference of the flow to the Stokes flow in Fig 2(c).
The feedback controller presented here yields a significant reduction of the costs of all targets under
consideration. The controlled flows for different penalty parameters are shown in Fig.4. The controls
as expected adjust the re-attachment point in a neighbourhood of = = 4 (note that the flow is observed
in [4,6] x [—1,0]).

In Figs. 5 and 6 a numerical comparison between optimal and instantaneous control is presented.
Here v = 10~! and Re=300. The optimal control is computed with the gradient Algorithm 7.1,
where in step 2. p = 0.2 is used as descent parameter. The iteration of the algorithm is stopped if the
L?-difference of two successive iterates is smaller than 10~". Instantaneous control is performed with
step size p;,,,.-

Fig. 5, top shows the uncontrolled Navier-Stokes flow with re-attachment point at 8.75. The
application of the feedback mechanism up to 7' = 70 yields the flow presented in Fig. 5, bottom with
re-attachment point located at = 4, which is expected in view of the location of the observation
volume €. Fig. 5, middle shows the optimal controlled flow. As one can see, the blowing direction
on the control boundary is not longer perpendicular to I'.. For both approaches the downstream
recirculation vanishes nearly completely.

Fig. 6 shows costs for the instantaneous control approach in Algorithm 4.1 (dotted) compared to
those for the optimal solution (dash-dotted), compare [S0]. The numerical amount of instantaneous
control corresponds approximately to that for one gradient step in the optimal control problem (2x
Navier-Stokes, 1x linearized Navier-Stokes). As is expected, the optimal control approach yields
smaller overall cost than the instantaneous control strategy. Nevertheless, the suboptimal control
strategy proposed here also achieves a remarkable reduction of the costs.
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FIGURE 2. Boundary control at Re=400: v =I1(solid), 1.e-1(dashed), 1.e-2(dotted),
1.e-3(dash-dotted). (a) Cost; (b) Control Cost; (¢) Difference to Stokes Flow

Further numerical examples involving different cost functionals are presented in [19]. Related

approaches to the control of fluid flow can be found in [12, 35, 49, 56, 62, 81, 87, 102] and the
references cited therein.

5.2. Boundary observations. In this section numerical investigations on the influence of sensor
area ['; on the feedback control mechanism are presented. The functional to be minimized at each



5. BACKWARD-FACING-STEP NUMERICS

Cost

10

time

@

L L L L
60 70 80 90 100

0.5

Control Cost

L L L L L
o 10 20 30 40 50

L L L L
60 70 80 90 100

Difference to Stokes Flow

n n n n
o 10 20 30 40 50

©

FIGURE 3. Boundary control at Re=400, v =
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l.e — 2: 3 gradient steps(solid), 1

gradient step(dash-dotted). (a) Cost; (b) Control Cost; (c) Difference to Stokes Flow

time instance is related to the functional .J in (101) and

1 8y1 8y1 8y1

J(g) =5 (5 —|

2 Is 81:2 81:2 8:1:2

is given by

|>drs+1/ g2,
2 r,

107
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FIGURE 4. Boundary control at Re= 400: Controlled flows at ¢ = 100. (a) v =1; (b)
v =le-1;(c)y =l.e-2;(d)y =1.e-3

where again g denotes the boundary control applied at the upper part of the back wall I'. and v,
denotes the stream-wise velocity. Consequently, the first part in the cost functional vanishes when
there is no recirculation region at I';.

In Fig. 7 the flows corresponding to different sizes of I'; are shown. It can be observed that
the larger the distance between the control boundary I'. and the sensor area I, the more the control



FIGURE 5. (a) Navier-Stokes flow at Re=300, (b) Optimal controlled flow at t= 50,
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mechanism becomes periodic. This is due to the fact that without control the flow evolves to the un-
controlled Navier-Stokes flow and the time span lapsing until the evolving flow affects the sensor area
is larger for larger distances between I'. and I's. This can also be observed for the evolution of the costs
in Fig. 8(a) and the costs of the boundary control in Fig. 8(b). Of course, the dead time in the system
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FIGURE 6. Optimal control versus instantaneous control, evolution of cost: uncon-

trolled (solid), optimal control (dash-dotted), instantaneous control (dotted)

for transport dominated flow is proportional to the distance between I'; and I'.. Moreover, the con-
trolled flow also depends on the size of I, but numerical experiments show that the latter dependence
plays a less important role. Several videos demonstrating the performance of the instantaneous feed-
back Algorithms 3.2, 4.1 can be found on the author’s homepage at http://www.math.tu-berlin.de/”
hinze.
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APPENDIX A

A general optimal control problem, lemmata and proofs

1. A general control problem

Consider the control problem

minJ(y, p,u, g)
S.t.
y—vAy+ (y-V)y+Vp = pBu inQ:=(0,T)xQ
(122) (P) _divy = 0  inQ
y = JdEg onI7
viyy = pp onll,
y(0) = o,

with the cost functional defined by

T
Jyapa 79 a//vyavya dIdt—I—ﬁ//C T.L VU u1>d.fdt
0 Q

0 Q¢

T
oy / / (9, p, Vup) dUdt + 6 / / $(g, Vogs g0) dTdt

0 Ty 0 T.

+ 6/ G(y(T),Vy(T),p(T)) dz.

Q

Here V denotes the surface gradient and the operators B and F are control extension operators which
extend controls defined over the control domains €2, and I',, respectively to functions defined over ()
113
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and I';. Formally the optimality system for problem (122) is given by

(123)

ye —vAy+ (y-V)y+ Vp

—divy

Yy

vony — pn
y(0)

—p = vAp = (y- V)p+ (Vy)'p+ VE

—divp

7

(i

vOpp — & + (yn)p
w(T)

e G2 (T)n

¥ Ranr,

eG(T)

K+ v0yp —En + (yn)p

B(Cy —divC, — £C5)
B Can

B Cs(T)

B C3(0)

§ (S1 — div, S — £.55)
4 Sanr,
§ S3(T)
1) 53(0)

B8 Bu
0
o Fg
0
Yo

—a (Vi —divVy)
—aV,

7%31

—v (Ry — divs R3)
—aVyn

e (Gh — div Gy(T))

0
0
0

—aVin

BB

in Q7"
in Q7"

T
onl';
on T

out

in

in Q7
in Q7
onT'7
on T}
onT?,
in 0

on 0}

on (Ary)"
in )

T
onl';

in Q7
on 90T
in Q.
in Q.

on [T
on oT'T
onl.
onl..

Here, S; denotes the i-th partial derivative of the function S;(¢(¢, z),V.¢(t, z),g:(t, z)), the notation

Si(T) is an abbreviation for .S;(g(
similarly for V;, C;, R;.

T,2),Vug(T,x),g:(T,z))and S;(0) = Si(¢(0,2),V.g(0, x),g:(0, x)),

Note, that the boundary conditions for iz on I'; imply a compatibility condition for the function R

(or for the optimal state y and the optimal pressure p) on I';, namely

(124)

Proof. Keeping

(125)

1
; R17] = — (RQ — diVs Rg) on Fg

y(0,-)=yoinQ and vdy,y=pnponT

T

out
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as explicit constraints, the Lagrangian associated to the optimization problem (122) is given by

(126) L(y,p,u,g,p,&, ) = J(y,p,u, g) // (y —vAy + (yV)y + Vp — 3 Bu) pdzdl

//dlvyfd:vdt—l—// (y —d Eg) kdl'dt.

0 Ty

Every solution of (122) by necessity satisfies the variational equation

(127) DL(Ua pP,Uu, g, [, 57 K’)(Ua q,s, h?ﬂa ga E) =0

for all admissible test vectors (v, ¢, s, h, [, 5 , k). Due to the natural boundary condition which has to
be satisfied by (y, p) on I',,; the vectors v and the functions p are related by 0,y = pn on I',.
First exploit

(128) Ly(y,p,u,g,p, & 6)v+ Lp(y, pyu, g, 1, €, 6)g =0

for all (v, ¢) satisfying
v(0,-) =0inQ and vd,v=gnonTi,

Integrating by parts with respect to time and space (128) can equivalently be rewritten as

// (—pe —vAp — (y - VIu+ (Vy)'p+ VE+a(Vy —divy)) vdadt

+ // (xT 6 +vOyp — En + (yn)p + oVan) vdl'dt + // (xr,YR1 — vp) Oyvdldt

0 89 0 40
+ / (u(T) + e(Gh —divGy)) o(T) dx — / p(0)v(0) dz + e/ Go(T)no(T) dT
Q Q a9
T T
+// (—=divy + aV3) gdxdl +// (xr,7 (Ry — divs R3) + un) qdldt + 6/ G3(T)q(T) dx
0 Q 0 99 Q

+ ’y/ / Ranr, qd(0OT)dt =0 for all (v, q) satisfying v(0) = 0 and v8,v = gnon I'",

0 ATy,
(1) Choose ¢ = 0 and
e v with compact support in Q7. This gives

// (—,ut —vAu—(y-Vip+ (Vy)t,u +Vé+a(V)— diVVQ)) vdrdt =0 Vo
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and thus
—py —vAp = (y - Vp+ (Vy)'p +VEé+a(Vi —diviy) =0 in Q7.

e v(T,-))=0,0,v=0,v=0o0nT,, and v arbitrary on I';. Then

T
//(K+V8nu—§n+(yn)u+a%n)Udth:O Vo,

0Ty
which implies
K+ vOyu — &+ (yn)u = aVan onTj.

e v(T,-))=0,0,v=0,v=0o0nT, and v arbitrary on I',,;. This implies
T
/ (vOyp —&n + (yn)p + aVon) vdldt =0 Vo,
0 Fout

hence,
vOpu — &n + (yn)p = aVay  onT7,.

e v(T,-))=0,,v=00n0%, d,v =0onTl,, and J,v arbitrary on I';. Consequently,

T
// (vRy —vp) Oyudl'dt =0 Vo,

0 Ty
which leads to
YRy —vpp=0 on Fg.
e J,v = 0on 09N and v(T,-) with compact support on €. Then,
/ (u(T)+ e(Gy —divGy)) v(T)dz =0 Vo,
Q

which gives the initial values for the co-state p,
w(T)+e(Gy —divGy) =0 inQ.
e J,v = 0on 0N and v(T,-) arbitrary on 0f2. Thus
6/ Go(T)no(T)dl =0 Vo,

o8l

which is equivalent to
Gy(T)p =0 on 0f.

(2) Choose v = 0 and
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e ¢ with compact support in {2. Then

T
//(—div,u—{—an)qd:L‘dt:O Vg,
0 Q

which gives the mass balance for the co-state,
—divp4+aVs=0 inQ".

e ¢ with values on I'y, ¢ =0and g =0onI,,. This gives
lar, g

T
// (v (Ry — divs R3) + un) qdl'dt =0 Vg,
0 I'y

equivalently,
pn = —y (Ry —div, R3) onT%.
e ¢ with arbitrary valueson I'; and ¢ = 0 on I',,,;;. Then

T
7//R3nrqd8th:O Yaq,

0 ary

which gives the condition

Rsnr, =0 on (8Fd)T,

/G3(T)L](T> dr=0 Vg

finally gives the condition
G3(T) = in ).

For the remaining term there holds

T
/ / p (—vd,w + qn) d'dt = 0.

0 rout

The optimality conditions for the controls v and ¢ in (123) are obtained with the same technique.
Informations for the volume controls are obtained from the identity

Lu(y,p,u, g, p, € k)s = 0 for all s with values on Q.
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Recall, that B is an operator which extends controls defined over 2. to control functions defined over
the whole of the spatial domain (). Integration by parts with respect to time and space this identity
can equivalently be rewritten as

T T
ﬂ// <<Cl—div02—%03> — B",u) sdxdt+ﬂ// Cyn sdldt
0 Q.

0 a8,

—I—ﬂ/ Cs(T)s(T) — C5(0)s(0)dz = 0 for all admissible test functions s.
Qe

Similar as above, choose

e s with compact support in Q7. This implies

T
ﬁ// <<Cl—divcg—%cg> — B*,u> sdxdt =0 Vs,
0 Q.

which means
d
e s with s(7") = s(0) = 0 and s arbitrary on 0f).. Then

T
6//andedt:0 Vs,

0 98,

which implies the condition
BCy;m =0 on (99.)".

e s with arbitrary values on Q7, but s(7") = 0. Then

B[ —Cs5(0)s(0)dz = 0 Vs,
/

which gives the first boundary condition for the volume controls with respect to time,
603(0) =0 in Qc.

e s with arbitrary values on Q7 but s(0) = 0. Then
ﬁ/ Cy(T)s(T)dx = 0 Vs,
Q.

which gives the second boundary condition for the volume controls with respect to time,

603(T> =0 in Qc-
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To obtain informations for the boundary controls utilize the identity

Lg(y7p7uag7;ua£7"i)h = O

for all ~ with values on I'". Recall, that E is an operator which extends boundary controls defined
over ['. to control functions defined over the whole of I';.Integration by parts with respect to time and
space this identity can equivalently be rewritten as

T T
d
5// ((Sl —div 5y — ESg) — E%) hdxdt—{—d// Son h dl'dt
0 T, 0 ar.
-|—5/ Ss(TYh(T) — S5(0)h(0)dx = 0 for all admissible test functions A.
e

Similar as above, choose

e h with compact support in 'Y, This implies

T
d
5// ((5'1 —divp, S, — ES?’) — E*m) hdxdt =0 Vh,
0 T.

which means
d
§ ((Sl —div Sy — ES"‘) — E%) =0 inl7.

e h with h(T) = h(0) = 0 and / arbitrary on OI'.. Then

T

5//Sgnhdth=0 Vh,

0 ar.

which implies the condition
0Sonr, =0 on (8FC)T.
e /, with arbitrary values on T'Y, but 4(T') = 0. Then
5/ _Sy(0)h(0)dz = 0 Vh,

Te

which gives the first boundary condition for the volume controls with respect to time,
553(0) =0 in FC.

e /, with arbitrary values on I'”, but #(0) = 0. Then

5/ So(TY(T)dz = 0 Vh,
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which gives the second boundary condition for the volume controls with respect to time,
855(T) = 0 inT..

As is well known, the variations with respect to (fi, £, %) reproduce the state equations for (y, p) in
(123). Note that for I',,,; = () an additional Lagrange multiplier for the mass conservation constraint

| Egdz = 0 need to be introduced.
59

2. Proof of Proposition 2.1

In the proof of Proposition 2.1 the following Lemmata are frequently used.

LEMMA 2.1. (Gronwall) Let v, s, u be three non-negative locally integrable functions on R

satisfying
t
o(t) < s(t)+/ u(T)o(r)dr Vi>0.
0
Then,
¢ t t
u(7)dr u(o) do
v(t) < S(O)eof " + /s’(T)e[ D 4
0
Proof. In [109]. U

LEMMA 2.2. Let

b, 0, 1) = /(u-V)vwdm.

Then,
1 1 1 1
ul frlul¥ ol lols|wlvy - Vu,0,0eV
(129) b, v, w0) < C |u|§|u|€;|v|‘2—{|Sv|;}]|w|H VueViveVNH(Q)*we H
B lulg|v|v|w|F|Sw|% Vue HveV,weVn H*(Q)?
1 1
lul % |Su||v|v|wlg Vue VNH(Q)?veV,we H,

with a positive constant C'. The estimates are also valid for / replaced by L*(2)?, V replaced by
H'(Q)? and |Su|g replaced by |u|p2(q).

Proof. In [104]. U

LEMMA 2.3. There exists a positive constant C' such that

|(vu)tU|La(V*) + | (u - V)U|LQ(V*)

4—

42a |u|j§2(v) |u|1§°°(H) |U|L2(V) forall u € VV,’U € L2(V) and o € [1,4/3]

<CT
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Proof. Let ¢ € La'(V), o' denoting the dual exponent to «. Utilizing the first estimate in (129) and
Holder’s inequality gives

T T a_lf T
//(fV)uvd:cdtSCWEm(H) /|§|§fdt /|u|€,|v|§dt
0 Q 0 0

<COT 7 |§|Lu’(V) Iulia(V) IUIEm<H) |o]z2v).-

This gives the claim for the first addend. Estimation for the second addend is similar. 0.
Note that the power 4/3 in the previous estimate cannot be improved by requiring v € W. Sufficient
conditions for (Vu)'v +(uV)v € L?(V*) are given by requiring in addition that v or v € L (V).

Proof of Proposition 2.1. Existence and uniqueness of a solution to (12) can be shown following
the lines of the existence and uniqueness proof for the instationary two-dimensional Navier-Stokes
equations in [103, Chap.III]. In the following the derivation of the necessary a-priori estimates is
sketched.
i. Test (12) with v € V pointwise with respect to time, use b(u,v,v) = 0, b(u,u,v) =
b(u,v,u) and estimate, utilizing Young’s inequality and the first estimate in (129). This

results in

1 1d 2 < o 2 2012 Ve

(130) §E|U|H +rply < Gy {|g|v* + |?/|V|”|H} + §|U|V'
After integration from 0 to t Gronwall’s inequality (2.1) gives

(131) 0|y < Cexp (20, lyl2vy) {lgliz ey + [volm} -
Using (131) in (130), the Cauchy-Schwarz inequality yields

(132) |U|L2(V) < C(|.U|L2(V)) {|.C]|L2(V*) + |U0|H}-

Combining (131) and (132) yields the first claim.
ii. Test (12) with ¢ € V pointwise in time and estimate using the Cauchy-Schwarz inequality
and the first estimate in (129). This gives

/vtgod:r: < {|g

Q

1 1 1 1
vt vloly + Clylflyle o lilofs } el

which implies

|Ut|%2(v*) < C {|9|%2(v*) + |U|%2(v) + |y|Lco(H)|U|Lco(H)|y|L2(V)|U|L2(V)} .
This, together with y € W C L™ (H), and the estimates (131), (132) gives ii. Combining i.
and ii. implies

lolw < Cllylrawvy, [yle=n) {1glrzqe + lvolu } -
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iii. For y € W the linear operator A(y) coincides with ¢,(z) of Section 2. Due to i.,ii. this op-
erator admits a continuous inverse A(y)~' € L£(Z*, W). For the adjoint A(y)* € L(Z, W*)
one finds

(A(y)o, (w',w”)) 222 = (v, A(y) (', w°))wwe
= (v, w') + (v, (Vy)'w' = (y- V)w' —vAw)wwe + (0(0), w")n

forv € Wand w' € L*(V). Since A(y)™ € L(W™*, Z) for every f € W™ there exists a
unique solution (w', w?) € 7 to

(133) (v, w') 4 (v, (Vy)'w' = (y- V)w' = vAw )ww+ + (v(0), )y
= <U, f>W,W* forallv € W.

From i. and ii. together with the fact that

1A(9) ™ leezewy = I1A@W) ™ lew,2)

one has

(134) w200y < C (lylrzys [yleseen) 1flwe,
which is iii.
iv. By Lemma 2.3 and the assumption that f € L?(1*) the mapping

1 (—yAw] + (y - V)w] — (Vy)tw] + f) (1)

is an element of L'*¢(V*), with ¢ € min{q — 1,1/3}. Now denote by w; the distributional
derivative of w' and recall that the scalar product (-,-)g can be continuously extended to
V* x V. It shall be shown that w; € L'*¢(V*) n W*. Utilizing (133) a short calculation

gives

T

— /wtlxdt,h =

0 H

T
/ {—I/Awl — (yV)uw' + (Vy)'w' — f} xdt,h VxeCse0,T),heV,
0 H

so that a density argument together with (134) yields w; € L't°(V*) N W*. Together
with w' € L*(V) this implies w' € W7, (0 < ¢ < min{q — 1,1/3}). In particular,
w € C([0,T]; V*), compare [24, p.521]. From (133) one deduces that the first equation in

(13) is well defined in L'*(V*). Choosing appropriate test functions in (133) and utilizing



(135)

(136)

(137)

Vi.

2. PROOF OF PROPOSITION 2.1 123

the fact that w'(7') is well defined in V* it follows that w'(7") = 0 and v’ = w'(0). By
Lemma 2.3 (with @ = 1 + ¢) there exists a constant (' such that

1-3

|wtl|L“(V*) < C {T4(1+€) y|%2(v) |y|1§oo(y) +T2(1—+€)} |w1|L2(V) + |f|L“(V*)-

Combining this estimate with (134) implies the estimate in iv.
Ify € L>(V)and f € L*(V*) then (y - V)w' —(Vy)'w' € L*(V*) and, utilizing (133) one
finds that w; € L*(V*). Moreover, by (129) we have

Wil < C (o) {2y + [Flzaps) }-
Together with (134) this gives the desired estimate in v.
Test (12) with (the Leray-projection of) Av pointwise in time and utilize Young’s inequality
and the last estimate in (129) to obtain
1d
2dt
Integration from O to t together with (132) results in

124
[wly + vlAvls < Co{lglh + lylvloli + lylulAyluloly } + S1Av[.

1
oy < C(|y|L2(V),|y|Lw(V)){|g|%2(H)+|vo|2v}+Cu / lyla|Aylulvly dt,
0

so that Gronwall’s inequality gives
|U|L<>°(V) < C(|y|L2(V)7 |y|L°°(V)7 |y|L°°(H)7 |y|L2(H2(Q)2)) {|9|L2(H) + |U0|V}-
Using this in (135) yields
[v|r2m2@)2) < Clylrawy, [yl [yl oo [ zee@yn) {192 + |volv } -
To estimate |v;|z> () test (12) with ¢ € V' and use the last estimate in (129). This gives
[ oo < {lglu -+ vl80li + ClylilAylioly + Clolhiolilaly } el
Q
so that v € L*(V') N L*( H*(Q)?) together with (136) and (137) implies
|’Ut|L2(H) < C(|y|L2(V)a |y|L°°(V)a |y|L°°(H)a |y|L2(H2(Q)2)) {|9|L2(H) + |’UO|V} .

Therefore,

|U|H2)1(Q) < C(|y|L2(V)7 |y|L°°(V)7 |y|L°°(H)7 |y|L2(H2(Q)2)) {|9|L2(H) + |U0|V} )

which is vi. The estimation for [w' | e (v)nr2(m2()2) i similar to that for [v] e vyar2 (2 (@)2)-
In order to cope with b(¢, y, w') in the estimation of |w; |72(zy one utilizes the third estimate
in (129) to obtain the estimate vii. O






Bibliography

[1] Abergel, F. & Temam, R. On some Control Problems in Fluid Mechanics. Theoret. Comput. Fluid Dynamics,
1:303-325, 1990.

[2] Afanasiev, K. & Hinze, M. Adaptive control of a wake flow using proper orthogonal decomposition. In Shape
Optimization & Optimal Design, Lecture Notes in Pure and Applied Mathematics 216. Marcel Dekker, 2001. see
also Preprint No. 648/1999, Fachbereich Mathematik, Technische Universitit Berlin.

[3] Alt, H.W. Lineare Funktionalanalysis. Springer, 1985. 2. Auflage.

[4] Atwell, J.A. & King, B.B. Proper Orthogonal Decomposition for reduced basis feedback controllers for parabolic
equations. ICAM Report 99-01-01, 1999. Interdisciplinary Center for Applied Mathematics, Virginia Polytechnic
Institute and State University Blacksburg, Virginia.

[5] Atwell, J.A. & King, B.B. Reduced Order Controllers for Spatially Distributed Systems via Proper Orthogonal
Decomposition. ICAM Report 99-07-01, 1999. Interdisciplinary Center for Applied Mathematics, Virginia Poly-
technic Institute and State University Blacksburg, Virginia.

[6] Binsch, E. An adaptive Finite-Element-Strategy for the three-dimensional time-dependent Navier-Stokes-
Equations. J. Comp. Math.,36:3-28, 1991.

[7] Béansch, E. Numerical methods for the instationary Navier-Stokes equations with a free capillary surface. Habili-
tationsschrift, 1998. Mathematische Fakultit der Universitit Freiburg.

[8] Bansch, E. Private Communication, 1999.

[9] Béarwolff, G.; Hinze, M. & Koster, F. Comparison of outflow boundary conditons for channel flows. Preprint in
preparation.

[10] Beirao da Veiga, H. On a stationary transport equation. Ann.Univ. Ferrara - Sez. VII - Sc. Mat., XXXII1:79-91,
1986.

[11] Bellman, R. Dynamic Programming. Princton University Press, 1957. Princeton.

[12] Berggren, M. Numerical solution of a flow control problem: Vorticity reduction by dynamic boundary action. Siam
J. Sci. Comput., Vol. 19(No. 3):829-860, 1998.

[13] Bewley, T.; Choi, H.; Temam, R. & Moin, P. Optimal feedback control of turbulent channel flow. CTR Annual
Research Briefs, 1993. Center for Turbulence Research, Stanford University/NASA Ames Research Center, 3-14.

[14] Bewley, T.R.; Moin, P. & Temam, R. DNS-based predictive control of turbulence: an optimal benchmark for
feedback algorithms. J. Fluid Mech., 447:179-225,2001.

[15] Bewley, T.; Temam, R. & Ziane, M. A general framework for robust control in fluid mechanics. Physica D, 138,
2000.

[16] Chang, Y. & Collis, S. Computer simulation of active control in complex turbulent flows. Preprint No. 571/1997,
1998.

[17] Chang, Y. & Collis, S. Active control of turbulent channel flows by large eddy simulation. In Proceedings of the
FEDSM99. ASME, 1999.

[18] Choi, H. Suboptimal Control of Turbulent Flow Using Control Theory. In Proceedings of the International Sym-
posium. on Mathematical Modelling of Turbulent Flows, 1995. Tokyo, Japan.

125



126 BIBLIOGRAPHY

[19] Choi, H.; Hinze, M. & Kunisch, K. Instantaneous control of backward-facing-step flows. Applied Numerical
Mathematics, 31:133—-158, 1999.

[20] Choi, H; Temam, R.; Moin, P. & Kim, J. Feedback control for unsteady flow and its application to the stochastic
Burgers equation. J. Fluid Mech., 253:509-543, 1993.

[21] Clerc, M.; Le Tallec, P.; Mallet, M.; Ravachol, M. & Stoufflet, B. Optimal control for the parabolized Navier-
Stokes system. In Computational Fluid Dynamics ’96, pages 139-145. John Wiley & Sons, 1996.

[22] Constantin, P. & Foias, C. Navier-Stokes Equations. The University of Chicago Press, 1988.

[23] Coron, J.M. On the controllability of the 2-d incompressible Navier-Stokes equations with the Navier slip bound-
ary condition. ESAIM: Control, Optimization and Calculus of Variations, 1:35-75, 1996.

[24] Dautray, R. & Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology, volume 5.
Springer Verlag, 1992. Evolution Problems I.

[25] Desai, M.C. & Ito, K. Optimal control of Navier-Stokes equations. Siam J. Control and Optimization, 32:1428—
1446, 1994.

[26] Deuflhard, P. Newton techniques for highly nonlinear problems - theory, algorithms, codes. Skriptum, 1985. Fach-
bereich Mathematik, Freie Universitét Berlin.

[27] Fabre, C. Uniqueness results for the Stokes equations and their consequences in linear and nonlinear control
problems. ESAIM: Control, Optimization and Calculus of Variations, 1:267-302, 1996.

[28] Fernandez-Cara, E. & Beltran, E.M.M. The convergence of two numerical schemes for the Navier-Stokes equa-
tions. Numer. Math., 55:33-60, 1989.

[29] Fursikov, A.V. Exact boundary zero controllability of three-dimensional Navier-Stokes equations. J. Dynamical
Control and Systems, 1:325-350, 1995.

[30] Fursikov, A.V.; Gunzburger, M.D. & Hou, L.S. Boundary value problems and optimal boundary control for the
Navier-Stokes system: the two-dimensional case. STAM J. Control and Optimization, 36:852—-894, 1998.

[31] Garcfa, C.E.; Prett, D.M. & Morari, M. Model predictive control: Theory and practice - a survey. Automatica,
25(3):335-348, 1989.

[32] Ghattas, O. & Bark, J. Optimal control of two- and three-dimensional incompressible Navier-Stokes flows. Jour-
nal of Computational Physics, 136:231-244,1997.

[33] Glowinski, R. Finite element methods for the numerical simulation of incompressible viscous flow; Introduction
to the Control of the Navier-Stokes Equations. Lectures in Applied Mathematics, 28, 1991.

[34] Griewank, A. The local convergence of Broyden-like methods in Lipschitzian problems in Hilbert spaces. SIAM
J. Numer. Anal., 24:684-705, 1987.

[35] Gunzburger, M.D. Flow Control. IMA. Springer, 1995.

[36] Gunzburger, M.D.; Hou, L.S. & Svobodny, T.P. Analysis and finite element approximation of optimal control
problems for the stationary Navier-Stokes equations with Dirichlet boundary controls. M2AN, 25(6):711-748,1991.

[37] Gunzburger, M.D. & Manservisi, S. The velocity tracking problem for Navier-Stokes flows with bounded dis-
tributed controls. Siam J. Contr. Optim., 1999. to appear.

[38] Gunzburger, M.D. & Manservisi, S. Analysis and approximation for linear feedback control for tracking the
velocity in Navier-Stokes flows. Comput. Methods Appl. Mech. Eng., 189:803-823, 2000.

[39] Gunzburger, M.D. & Manservisi, S. Analysis and approximation of the velocity tracking problem for Navier-
Stokes flows with distributed control. Siam J. Numer. Anal., 37:1481-1512,2000.

[40] Gunzburger, M.D. & Manservisi, S. The velocity tracking problem for Navier-Stokes flows with boundary con-
trols. Siam J. Control and Optimization, 39:594-634, 2000.

[41] Heinkenschloss, M. Private Communication. Trier, 1999.



BIBLIOGRAPHY 127

[42] Heinkenschloss, M. Time-domain decomposition iterative methods for the solution of discretized linear quadratic
optimal control problems. Draft, Department of Computational and Applied Mathematics, Rice University, Hous-
ton, USA.

[43] Heinkenschloss, M. Formulation and Analysis of a Sequential Quadratic Programming method for the Optimal
Dirichlet Boundary Control of Navier-Stokes Flow. Report TR97-14, Department of Computational and Applied
Mathematics - MS134, Rice University Houston, Texas USA, 1997. see also Optimal Control: Theory, Algorithms,
and Applications. Kluwer Academic Publishers B.V., 1998, pp. 178-203.

[44] Heywood, J.G.; Rannacher, R. & Turek, S. Artificial Boundaries and Flux and Pressure Conditions for the
Incompressible Navier-Stokes Equations. Int. J. Numer. Methods Fluids, 22:325-352, 1996.

[45] Hill, D.C. Drag reduction strategies. CTR Annual Research Briefs, 1993. Center for Turbulence Research, Stanford
University/NASA Ames Research Center, 3-14.

[46] Hinze, M. & Kauffmann, A. The instantaneous control method - convergence analysis for finite dimensional
systems. Preprint No. 602/1998, Fachbereich Mathematik, Technische Universitét Berlin, extended version, 1998.
Former title: A new class of feedback control laws for dynamical sytems.

[47] Hinze, M. & Kauffmann, A. Control concepts for parabolic equations with an application to the control of fluid
flow. Scientific Computing in Chemical Engineering II, Hamburg Harburg, Springer, 1999. see also Preprint No.
603/1998, Technische Universitit Berlin, Deutschland.

[48] Hinze, M. & Kauffmann, A. Reduced order modeling and suboptimal control of a solid fuel ignition model.
Preprint No. 636/1999, 1999. Technische Universitit Berlin.

[49] Hinze, M. & Kunisch, K. On suboptimal Control Strategies for the Navier-Stokes Equations. ESAIM: Proceed-
ings, Vol. 4, 1998, 181-198, http://www.emath.fr/proc/Vol.4 (1998), France.

[50] Hinze, M. & Kunisch, K. Control strategies for fluid flows - optimal versus suboptimal control. In H.G.Bock et al.,
editor, ENUMATH 97, pages 351-358. World Scientific, 1997. Singapore.

[51] Hinze, M. & Kunisch, K. Suboptimal Control Strategies for backward facing step flows. In A. Sydow, editor,
Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics,
volume 3, p. 53-58, Berlin, 1997.

[52] Hinze, M. & Kunisch, K. Newton’s method for tracking-type control of the instationary Navier-Stokes equations,
1999. ENUMATH 99, Eds. P. Neittaanmaéki et al., Jyviskyld, Finland.

[53] Hinze, M. & Kunisch, K. Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control
Optim., 40:925-946,2001.

[54] Hinze, M. & Volkwein, S. Instantaneous control for the Burgers equation: Convergence anlysis and numerical
implementation. Nonlinear Analysis TM.A., 50:1-26, 2002.

[55] Hood, P. & Taylor, C. A numerical soution of the Navier-Stokes equations using the finite element technique.
Comp. and Fluids, 1:73-100, 1973.

[56] Hou, L.S.; Gunzburger, M.D.; Manservisi, S.; Turner, J. & Yan, Y. Computations of optimal controls for
incompressible flows. In 1997 ASME Fluids Engineering Division Summer Meeting, 1997.

[57] Hou, L.S. & Svobodny, T.P. Optimization Problems for the Navier-Stokes Equations with Regular Boundary
Controls. J. Math. Anal. Appl., 177:342-367, 1993.

[58] Hou, L.S. & Yan, Y. Dynamics and approximations of a velocity tracking problem for the Navier-Stokes flows
with piecewise distributed controls. SIAM J. Control Optim., 35:1847-1185, 1997.

[59] Hou, L.S. & Yan, Y. Dynamics for controlled Navier-Stokes Systems with distributed controls. SIAM J. Control
Optim., 35:654-677,1997.



128 BIBLIOGRAPHY

[60] Ito, K. & Kang,S. A Dissipatative Feedback Control Synthesis for Systems Arising in Fluid Dynamics. Siam J.
Control and Optimization, 32:831-854, 1994.

[61] Tto, K. & Kunisch, K. Augmented Lagrangian-SQP-methods for nonlinear optimal control problems of tracking
type. SIAM J. Control and Optimization, 34:874-891, 1996.

[62] Ito, K. & Ravindran, S.S. Reduced basis method for optimal control of unsteady viscous flow. Journal of Guid-
ance, Control and Dynamics, 1997. submitted.

[63] Ito, K. & Ravindran, S.S. A reduced basis method for control problems governed by pdes. Control and estimation
of distributed parameter systems. International conference in Vorau, Austria, July 14-20, 1996., 1998. Desch, W.
(ed.) et al. Basel: Birkhaeuser. ISNM, Int. Ser. Numer. Math. 126, 153-168.

[64] Jadabaie, A.; Yu, J. & Hauser, J. Unconstrained receding horizon control of nonlinear systems. Preprint, 1999.
Caltech, Electrical and Computer Engineering.

[65] Joshi, S.S.; Speyer, J.L. & Kim, J. A system theory approach to the feedback stabilization of infinitesimal and
finite-amplitude disturbances in plane Poiseuille flow. J. Fluid Mech., 332:157-184, 1997.

[66] Joslin, R.D.; Gunzburger, M.D.; Nicolaides, R.A.; Erlebacher, G. & Hussaini, M.Y. A methodology for the
automated optimal control of flows including transitional flows. Proc. ASME Forum on Control of Transitional and
Turbulent Flows FED-237, ASME, 287-294, 1996.

[67] Justen, P. Optimal control of thermaly coupled Navier-Stokes equations in food industry. Preprint, 1998. Fach-
bereich IV - Mathematik, Universitit Trier.

[68] Kauffmann, A. Optimal control of the solid fuel ignition model. PhD thesis, Technische Universitit Berlin, 1998.

[69] Kelley, C.T. & Sachs, E.W. Quasi-Newton methods and unconstrained optimal control problems. SIAM J. Control
and Optimization,25:1503-1516, 1987.

[70] Kloucek, P. & Rys, F. Stability of the fractional step #-scheme for the nonstationary Navier-Stokes equations.
SIAM J. Numer. Anal., 31:1312-1335, 1994.

[71] Koumoutsakos, P. Active control of turbulent channel flow. Report, 1997. Center of Turbulence Research, Stan-
ford.

[72] Koumoutsakos. P. Active control of vortex-wall interactions. Phys. Fluids, 9:3808-3816, 1997.

[73] Koumoutsakos, P. Vorticity flux control for a turbulent channel flow. Report, 1998. Institut fiir Fluidmechanik,
ETH Ziirich, Switzerland.

[74] Kunisch, K. & Marduel, X. Optimal control of non-isothermal viscoelastic fluid flow. Bericht 1998. Spezial-
forschungsbereich Optimierung und Kontrolle, Institut fiir Mathematik, Karl-Franzens Universitit Graz, to appear
in Journal of Non-Newt. Fluid Mech.

[75] Kunisch, K. & Marduel, X. Suboptimal Control of Transient Non-Isothermal Viscoelastic Fluid Flow. Bericht
1999. Spezialforschungsbereich Optimierung und Kontrolle, Institut fiir Mathematik, Karl-Franzens Universitit
Graz.

[76] Kunisch, K. & Sachs, E.W. Reduced SQP methods for parameter identification problems. SIAM J. Numer. Anal.,
29:1793-1820, 1992.

[77] Kunisch, K. & Volkwein, S. Control of Burgers equation by a reduced order approach using Proper Orthogonal
Decomposition. J. Optimization Theory Appl., 102:345-371, 1999.

[78] Kunisch, K. & Volkwein, S. Galerkin proper orthogonal decomposition methods for parabolic problems. Nu-
merische Mathematik, 90:117-148, 2001.

[79] Kupfer, E.S. An infinite-dimensional convergence theory for reduced sqp-methods in Hilbert space. SIAM J. Opti-
mization, 6:126—163, 1996.



BIBLIOGRAPHY 129

[80] Lee, C.; Kim, J.; Babcock, D. & Goodman, R. Application of neural networks to turbulence control for drag
reduction. Phys. Fluids, 9(6):1740-1747,1997.

[81] Lee, C.; Kim, J. & Choi, H. Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech.,
358:245-258, 1998.

[82] Lions, P.L. Mathematical Topics in Fluid Mechanics. Clarendon Press, Oxford, 1996.

[83] Loncaric, J. Optimal control of unsteady Stokes flow around a cylinder and the sensor/actuator placement problem.
ICASE Report No. 98-18, 1998. NASA, Langley Research Center.

[84] Ly, H.V. & Tran, H.T. Modelling and control of physical processes using proper orthogonal decomposition. Report,
1998. CRSC-TR98-37, Center for Research in Scientific Computation, North Carolina State University.

[85] Ly, H.V. & Tran, H.T. Proper orthogonal decomposition for flow calculations and optimal control in a horizontal
CVD reactor. Preprint, 1998. Center for Research in Scientific Computation, North Carolina State University.

[86] Malek, J. & Roubicek, T. Optimization of steady flows for incompressible viscous fluids. Nonlinear Applied
Analysis, pages 355-372, 1999. Eds. A. Sequiera et al.

[87] Manservisi, S. Optimal boundary and distributed controls for the velocity tracking problem for Navier-Stokes
Sflows. PhD thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, 1997.

[88] Min, C. & Chei, H. Suboptimal feedback control of vortex shedding at low Reynolds nunmbers. J. Fluid Mech.,
401:123 - 156, 1999.

[89] Miiller-Urbaniak, S. Eine Analyse des Zwischenschritt-6-Verfahrens zur Losung der instationdren Navier-Stokes
Gleichungen. Preprint 94-01, Sfb 359, University of Heidelberg, Germany.

[90] Neittaanmiiki, P. & Tiba, D. Optimal control of nonlinear parabolic systems - Theory, Algorithms and Applica-
tions. Marcel Dekker, 1994.

[91] Nevisti¢, V. Optimal control: A review. Preprint, 1997. Automatic Control Laboratory, ETH Ziirich, Switzerland.

[92] Nevisti¢, V. & Primbs, J.A. Constrained finite receding horizon control: Stability and performance analysis.
Preprint, 1997. Automatic Control Laboratory, ETH Ziirich, Switzerland.

[93] Nevistié, V. & Primbs, J.A. Finite receding horizon control: A general framework for stability and performance
analysis. Preprint, 1997. Automatic Control Laboratory, ETH Ziirich, Switzerland.

[94] Protas, B. & Styczek, A. Theoretical and computational study of the wake control problem. Preprint, 1998. De-
partment of Aerodynamics, Warsaw University of Technology, Warsaw, Poland.

[95] Prudhomme, S. & Le Letty, L. A low order model-following strategy for active flow control. FLOWCON 1998,
Book of Abstracts. Gottingen, 1998.

[96] Rannacher, R. On the numerical solution of the incompressible Navier-Stokes equations. ZAMM, 73:303-216,
1993.

[97] Rautert, T. & Sachs, E.W. Computational Design of Optimal Output Feedback Controllers. Forschungsbericht Nr.
95-12, 1995. Institut fiir Mathematik, Universitét Trier.

[98] Ravindran, S.S. Proper orthogonal decomposition in optimal control of fluids. Technical report, NASA Langley
Research Center, Hampton, Virginia, 1999.

[99] Rawlings, J.B. & Muske, K.R. The stability of constrained receding horizon control. IEEE Transactions on Auto-
matic Control, 38(10):1512—-1516, 1993.

[100] Sirovich, L. Turbulence and the dynamics of coherent structures, Part I-1II. Quarterly of Applied Mathematics,
45:561-590, 1987.
[101] Sritharan, S., editor. Optimal Control of Viscous Flow. STAM, 1998.



130 BIBLIOGRAPHY

[102] Tang, K.Y.; Graham, W.R. & Peraire, J. Optimal control of vortex shedding using low-order models. I: Open
loop model development. II: Model based control. Int. J. Numer. Methods Eng., 44:945-990, 1999. see also ATIAA
paper Nr. 1996-19-46.

[103] Temam, R. Navier-Stokes Equations. North-Holland, 1979.

[104] Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second Edition. Springer, 1997.

[105] Temam, R.; Bewley, T. & Moin, P. Control of turbulent flows. In Proceedings of the 18th IFIP TC7 Conference
on System Modelling and Optimization, Detroit, Michigan, 1997.

[106] Troltzsch, F. & Unger, A. Fast solution of optimal control problems in selective cooling of steel. ZAMM, 81:447—
456, 2001.

[107] Volkwein, S. Optimal Control of a Phase-Field Model Using Proper Orthogonal Decomposition. to appear in
ZAMM. 1999.

[108] Volkwein, S. Mesh-Indipendence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Prob-
lems for the Burgers Equation. PhD thesis, Fachbereich Mathematik, Technische Universtiét Berlin, 1997.

[109] Werner, A. & Arndt, H. Numerik gewohnlicher Differentialgleichungen. Springer, 1985.

[110] Wunder, G. Zur Konstruktion von Reglern fiir groe dynamische Systeme. Diplomarbeit, 1998. Fachbereich Elek-
trotechnik, Technische Universitit Berlin.

[111] Zeidler, E. Nonlinear Functional Analysis and its Applications I. Springer Verlag, 1986.



