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Optimal and Sub-Optimal Spectrum
Sensing of OFDM Signals in Known and

Unknown Noise Variance
Erik Axell and Erik G. Larsson

Abstract—We consider spectrum sensing of OFDM signals in
an AWGN channel. For the case of completely known noise and
signal powers, we set up a vector-matrix model for an OFDM
signal with a cyclic prefix and derive the optimal Neyman-
Pearson detector from first principles. The optimal detector
exploits the inherent correlation of the OFDM signal incurred
by the repetition of data in the cyclic prefix, using knowledge
of the length of the cyclic prefix and the length of the OFDM
symbol. We compare the optimal detector to the energy detector
numerically. We show that the energy detector is near-optimal
(within 1 dB SNR) when the noise variance is known. Thus, when
the noise power is known, no substantial gain can be achieved
by using any other detector than the energy detector.
For the case of completely unknown noise and signal powers,

we derive a generalized likelihood ratio test (GLRT) based on em-
pirical second-order statistics of the received data. The proposed
GLRT detector exploits the non-stationary correlation structure
of the OFDM signal and does not require any knowledge of the
noise power or the signal power. The GLRT detector is compared
to state-of-the-art OFDM signal detectors, and shown to improve
the detection performance with 5 dB SNR in relevant cases.

Index Terms—spectrum sensing,signal detection, OFDM, cyclic
prefix, subspace detection, second-order statistics

I. INTRODUCTION

A. Background

THE INTRODUCTION of cognitive radios in a primary
user network will inevitably have an impact on the pri-

mary system, for example in terms of increased interference.
Cognitive radios must be able to detect very weak primary
user signals, to be able to keep the interference power at an
acceptable level [1], [2]. Therefore, one of the most essential
parts of cognitive radio is spectrum sensing.
One of the most basic sensing schemes is the energy

detector [3]. This detector is optimal if both the signal and the
noise are white Gaussian, and the noise variance is known.
However, all man-made signals have some structure. This
structure is intentionally introduced by the channel coding,
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the modulation and by the insertion of pilot sequences. Many
modulation schemes give rise to a structure in the form of
cyclostationarity (cf. [4], [5]), that may be used for signal
detection [6]. A cyclostationary signal has a cyclic autocorrela-
tion function that is nonzero at some nonzero cyclic frequency.
The cyclostationarity property is also inherent at the same
cyclic frequency in the cyclic spectral density, or the cyclic
spectrum, of the signal. The detectors proposed in [6] use the
cyclic autocorrelation and the cyclic spectrum in the time- and
frequency domain respectively, to detect if the received signal
is cyclostationary for a given cyclic frequency.

Many of the current and future technologies for wireless
communication, such as WiFi, WiMAX, LTE and DVB-T, use
OFDM signaling (cf. [7], [8]). Therefore it is reasonable to
assume that cognitive radios must be able to detect OFDM
signals. The structure of OFDM signals with a cyclic prefix
(CP) gives a well known and useful cyclostationarity property
[9]. Detectors that utilize this property have been derived, for
example in [10], [11], [12] using the autocorrelation property,
and in [13] using multiple cyclic frequencies. The detector
proposed in [13] is an extension of the one in [6], to multiple
cyclic frequencies. None of these detectors are derived based
on statistical models for the received data that capture the non-
stationarity of an OFDM signal, and they are not optimal in
the Neyman-Pearson sense. We will show that it is possible
to obtain much better detection performance.

In practice, the detector will have imperfect or no knowl-
edge of parameters such as the noise power, the signal power
and the synchronization timing of the transmitted signal. It
is well known that the performance of the energy detector
quickly deteriorates if the noise power is imperfectly known
(cf. [14]). Any parameter uncertainties lead to fundamental
limits on the detection performance, if not treated carefully
[15]. More specifically, it was shown in [15] that any uncer-
tainties in the model assumptions will have as consequence
that robust detection is impossible at SNRs below a certain
SNR wall. However, the problem of SNR walls can be miti-
gated by taking the imperfections into account. For example,
it was also shown in [15] that noise calibration can improve
the detector robustness.

In this work we consider the detection of an OFDM signal
with a CP of known length. The proposed detectors can either
be used stand-alone, or they can constitute building blocks in a
larger spectrum sensing architecture. For example, a cognitive
radio may look for different kinds of primary user signals in

0733-8716/11/$25.00 c© 2011 IEEE
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many different frequency bands, where OFDM with CP is one
example of a signal to be detected. The detectors used in each
frequency band, and for each type of primary user signal may
be different. Multiple detectors can then be run simultaneously,
and a data fusion unit can be used to collect sensing decisions
from all different detectors in order to make joint decisions
on what spectrum that is free and occupied, respectively. Note
also that many standards based on OFDM allow for multiple
possible CP lengths (cf. [8]). To cope with this several versions
of the proposed detectors, one for each CP length, can be
run in parallel and the (soft) decisions be fused together.
Moreover, the proposed detector can distinguish between an
OFDM signal with a specific CP length from any other kind of
signal. This can be an advantage in the presence of competing
secondary users, where the proposed detector can discriminate
between the primary and the secondary user signals.

B. Contributions

This paper contains two main contributions. First, we derive
the optimal Neyman-Pearson detector for OFDM signals from
first principles. In particular we give a closed-form expression
for its test statistic, for the case when the noise power and the
signal power are perfectly known. The optimal detector that
we present exploits knowledge of the lengths of the OFDM
symbol and its CP. This detector can be directly implemented
in practice, provided that sufficiently accurate estimates of
the noise and signal powers are available. The case when the
noise and signal powers are unknown, is also dealt with (see
the paragraph below). The optimal detector is also useful in
that it provides an upper bound on the performance of other,
suboptimal detectors. For example, we show numerically that
when the signal and noise powers are known, the energy
detector is near-optimal (within 1 dB SNR) for OFDM signals.
Second, we derive a computationally efficient detector based

on a generalized likelihood ratio test (GLRT), operating on
empirical second-order statistics of the received signal. A
GLRT is a standard test, that takes as test statistic a likeli-
hood ratio where the unknown parameters are replaced with
their maximum-likelihood estimates (cf. [18, p. 92]). The
so-obtained detector does not need any knowledge of the
noise power or the signal power. We compare this detector
to state-of-the-art methods [10], [11], [12]. The most relevant
comparison is that with the detector of [10], which also works
without knowing neither the signal variance nor the noise
variance. We show that our proposed method can outperform
the detector of [10] with 5 dB SNR in relevant cases. We
also make comparisons when the noise variance supplied to
the detectors is erroneous. We show that even for small errors
of the noise power, the proposed detector is superior to all
compared detectors which assumes perfect knowledge of the
noise variance.

II. MODEL

We consider a discrete-time (sampled) complex baseband
model. Assume that x is a received vector of length N that
consists of an OFDM signal plus noise, i.e.

x = s + n,

Data Data Data DataCP CP CP CP Data CP.....

1 2 3 K K + 1

τ N

Nc Nd

Fig. 1. Model for the N samples of the received OFDM signal.

where s is a sequence of K consecutively transmitted OFDM
symbols, and n is a noise vector. The noise n is assumed to be
i.i.d. zero-mean circularly symmetric complex Gaussian with
variance σ2

n, that is, n ∼ CN(0, σ2
nI). Each OFDM symbol

consists of a data sequence of length Nd, and a cyclic prefix
(CP) of length Nc (≤ Nd). Like in most related literature
(cf. [10], [13]) we consider an AWGN channel, in order to
study the most important fundamental aspects of OFDM signal
detection.
In practice one cannot know exactly when to start the

detection. That is, the receiver is not synchronized to the
transmitted signal that is to be detected. Let τ be the syn-
chronization mismatch, in other words the time when the
first sample is observed. That is, τ = 0 corresponds to
perfect synchronization. We assume that the transmitted signal
consists of an infinite sequence of OFDM symbols, so that
detection can equivalently start within any symbol. Then, it
is only useful to consider synchronization mismatches within
one OFDM symbol, that is in the interval 0 ≤ τ < Nc + Nd.
In a perfectly synchronized case (τ = 0) we would observe
a number (K) of complete OFDM symbols, in order to fully
exploit the structure of the signal. Without loss of generality,
we assume that the total number of samples in the vector x is
N = K(Nc + Nd). This implies that x will in general (when
τ > 0) contain samples from K+1 OFDM symbols, as shown
in Figure 1.
The model and methods that we present are valid for

any value of K . Generally, the detection performance will
improve with increasing K . However, choosing a very large
K in practice may cause problems. For example if the A/D
converter at the receiver is not synchronized (which it is
generally not) to the D/A converter at the transmitter, there will
be serious sampling errors due to the clock drift. There might
also be problems with Doppler effects and carrier frequency
offsets, if the number of samples is too large. Thus, our model
is mostly useful for quite moderate values of K . In addition,
for large values of K , our proposed detector can be run on a
smaller number of OFDM symbols and then the soft decisions
can be combined.

III. OPTIMAL NEYMAN-PEARSON DETECTOR

In what follows, we provide a derivation of the optimal
Neyman-Pearson detector from first principles. The key ob-
servation for deducing the optimal detector is that the OFDM
signal lies in a certain subspace, owing to the structure intro-
duced by the repetition of data in the CP. If the synchronization
mismatch τ were known, this subspace would be perfectly
known. The theory of detection of a signal in a known
subspace has been extensively analyzed, both in white and
colored noise [16]. In realistic scenarios, τ will be unknown.



292 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 2, FEBRUARY 2011

Since the received signal depends on the synchronization
mismatch τ , the signal subspace will be only partially known
in general.

We start by formulating a vector-matrix model for the
received signal. Let qi be the Nd-vector of data associated
with the ith OFDM symbol. This data vector is the output of
the IFFT operation, used to create the OFDM data. An OFDM
symbol si is then obtained by repeating the last Nc elements
of qi at the beginning of the symbol. This operation can be
written in matrix form as

si = Uqi,

where

U =
[
0Nc×Nd−Nc INc

INd

]
∈ R

(Nc+Nd)×Nd .

Here 0n×m denotes the n×m all-zero matrix, and In denotes
the n × n identity matrix.

In a perfectly synchronized scenario (τ = 0) we only need
to consider samples from OFDM symbols 1, . . . , K . In all
other cases (τ = 1, . . . , Nc + Nd − 1), the received signal x
will contain samples from symbols 2, . . . , K and from parts of
symbols 1 andK+1. Thus, we let the generated data q consist
of K+1 data blocks, although x only consists of K(Nc+Nd)
samples. That is, we let q � [qT

1 qT
2 . . .qT

K+1]
T be a vector

of length (K +1)Nd, consisting of the data that correspond to
K + 1 OFDM symbols. Furthermore, let T be the following
block-diagonal matrix, where the “diagonal” consists of K+1
instances of the matrix U:

T �

⎡⎢⎢⎢⎣
U 0 · · · 0
0 U 0 · · ·
...

. . .
0 · · · 0 U

⎤⎥⎥⎥⎦ ∈ R
(K+1)(Nc+Nd)×(K+1)Nd .

Then, a vector consisting of K +1 OFDM symbols is created
by the multiplication Tq. The received signal s contains
samples τ, . . . , K(Nc + Nd) + τ − 1 of the transmitted signal
vector Tq. That is, s is equal to Tq but the first τ samples
and the last Nc + Nd − τ samples are excluded. This implies
that the received signal s can be written

s = Tτq,

where Tτ is the K(Nc + Nd) × (K + 1)Nd matrix obtained
by deleting the first τ rows and the last Nc + Nd − τ rows of
T.

Figure 2 shows an example of the created signal Tq and
the received data samples for Nc = 2, Nd = 4 and K = 2.
Note that the matrix Tτ will have a few all-zero columns
corresponding to the data samples that are not received. The
rank of Tτ is equal to the number of unique and independent
data samples that are observed. In the perfectly synchronized
case (τ = 0), KNd independent data samples are observed.
In the unsynchronized case (τ �= 0), there will be fewer
correlated samples, and thus more independent data. Consider
the example shown in Figure 2, when Nc = 2, Nd = 4 and
K = 2. Here, the number of unique samples and the rank of
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τ = 4

τ = 5

Tq =

Fig. 2. Example of received data samples for different τ , for Nc = 2,
Nd = 4 and K = 2.

Tτ is

rank(Tτ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

8 τ = 0,

9 τ = 1,

10 τ = 2,

10 τ = 3,

10 τ = 4,

9 τ = 5.

In general, it can be shown that the number of unique data
samples, and thus the rank of Tτ , is KNd + μ (τ), where

μ (τ) �

⎧⎪⎨⎪⎩
τ 0 ≤ τ ≤ Nc,

Nc Nc ≤ τ ≤ Nd,

Nc + Nd − τ Nd ≤ τ ≤ Nd + Nc − 1.

(1)

The function μ (τ) is the number of repeated samples that are
lost due to imperfect synchronization.
Assuming a sufficiently large IFFT, the data vector q can

be assumed to be Gaussian by the central limit theorem. That
is, q ∼ CN(0, σ2

sI), where σ2
s is the variance of the complex

signal samples. Conditioned on τ , the distribution of the signal
s is zero-mean Gaussian with covariance matrix

E
[
ssH |τ] = E

[
Tτq(Tτq)H

]
= σ2

sTτTT
τ .

That is, s|τ ∼ CN(0, σ2
sTτTT

τ ).
We wish to detect whether there is a signal present or not.

That is, we want to discriminate between the following two
hypotheses:

H0 : x = n,

H1 : x = s + n.
(2)

We start by considering detection when σ2
n and σ2

s are per-
fectly known.

A. Known σ2
n and σ2

s

In this subsection, we derive the optimal Neyman-Pearson
detector, for the unsynchronized case when τ is unknown.
Under H0, the received vector contains only noise. That is,

p(x|H0) =
1

πNσ2N
n

exp

(
−‖x‖2

σ2
n

)
,
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where, as before N is the length of the received vector (total
number of received samples).
Under H1, the received vector contains an OFDM signal

plus noise, and the first sample is received at time τ . Since τ
is unknown, we model it as a random variable, and obtain the
marginal distribution:

p(x|H1) =
Nc+Nd−1∑

τ=0

P (τ |H1)p(x|H1, τ).

We assume that τ is completely unknown, and model
this by taking τ uniformly distributed over the interval
[0, Nc + Nd − 1], so that

P (τ |H1) =
1

Nc + Nd
.

From the derivation in Section II, we know that s|τ ∼
CN(0, σ2

sTτTT
τ ), and thus x|H1, τ ∼ CN(0,Qτ ), where

Qτ � σ2
nI + σ2

sTτTT
τ .

That is,

p(x|H1, τ) =
1

πN det(Qτ )
exp(−xHQ−1

τ x).

The optimal Neyman-Pearson test is

Λoptimal � log
(

p(x|H1)
p(x|H0)

)

= log

⎛⎝∑Nc+Nd−1
τ=0

1
(Nc+Nd)πN det(Qτ ) exp(−xHQ−1

τ x)
1

πN σ2N
n

exp(− ‖x‖2

σ2
n

)

⎞⎠
= log

(
Nc+Nd−1∑

τ=0

1
det(Qτ )

exp(−xH

(
Q−1

τ − 1
σ2

n

I
)

x)

)

+ log
(

σ2N
n

Nc + Nd

)
H1

≷
H0

ηoptimal.

(3)

where ηoptimal is a detection threshold. There appears to be
no closed-form expression for the distribution of this test
statistic, so the threshold has to be computed empirically. The
computation of the threshold for a given probability of false
alarm also requires knowledge of σ2

n and σ2
s , as well as the

CP length Nc and the data length Nd.
For collaborative detection [17], the detectors should deliver

soft decisions that quantify how reliable the decision is. If
the signals received by a number of collaborative sensors are
independent, and the soft information is expressed in terms of
LLRs, then the optimal fusion rule is to add the LLRs together.
If no reliable soft decisions are available, then one is referred
to using suboptimal schemes that combine hard decisions via
AND- or OR-type voting rules [17]. For the optimal detector
derived here, the soft decision is the LLR value Λoptimal.
To compute the LLR (3), we need to compute det(Qτ )

and xH
(
Q−1

τ − 1
σ2

n
I
)
x. A direct computation of these quan-

tities can be very burdensome if N is large. However, the
computations can be significantly simplified by exploiting the
sparse structure of Qτ , as shown in Appendices A and B. The
simplified computations of xH

(
Q−1

τ − 1
σ2

n
I
)
x and det(Qτ )

are shown in (29)-(30) and (31) respectively.

B. Special cases

So far, we have considered the general unsynchronized case,
when σ2

n and σ2
s are known, but τ is unknown. In this section

we derive the optimal detector for some special cases, that
will be used as benchmarks for the detection performance.

1) Known τ : First consider the case when the synchroniza-
tion mismatch, τ , is known. Note that τ being known is not
equivalent to τ = 0, because of the end effects. For example,
as already mentioned, the rank of the matrix Tτ depends on
τ . The rank of Tτ achieves its smallest value for τ = 0. Thus,
the dimension of the signal subspace is smallest for τ = 0, and
then the signal should be easier to detect. For short OFDM
symbols (small Nc and Nd) and/or small number of symbols
K , these end effects can be quite large.

If τ is known (but not necessarily τ = 0), then x|H1 ∼
CN(0,Qτ ) under hypothesis H1. In this case, the LLR can
be written

Λsynch = log
(

p(x|H1)
p(x|H0)

)

= log

⎛⎝ 1
πN det(Qτ ) exp(−xHQ−1

τ x)
1

πN σ2N
n

exp(− ‖x‖2

σ2
n

)

⎞⎠
= log

(
σ2N

n

det(Qτ )

)
− xH

(
Q−1

τ − 1
σ2

n

I
)

x.

(4)

In practice, the detector will not be able to perfectly
synchronize to the received signal. However, the performance
of the synchronized detector can be used as an upper bound on
the performance of the optimal detector in the unsynchronized
case.

2) No cyclic prefix, Nc = 0 (energy detection): Consider
the case when Nc = 0 (no CP), so that there is no structure
in the signal that can be used. Then TτTT

τ = I, and x|H1 ∼
CN(0,

(
σ2

n + σ2
s

)
I). In this case, the LLR is

log
(

p(x|H1)
p(x|H0)

)
= log

⎛⎝ 1
πN (σ2

n+σ2
s)N exp(− ‖x‖2

σ2
n+σ2

s
)

1
πN σ2N

n
exp(− ‖x‖2

σ2
n

)

⎞⎠ .

By removing all constants that are independent of the received
vector x, we obtain the test statistic

Λe = ‖x‖2 =
N−1∑
i=0

|xi|2. (5)

Hence, the optimal detector is in this case the energy detector,
also known as the radiometer [3]. It is optimal if there is
no knowledge about the signal, but the noise variance σ2

n

is known. The energy detector is simple and widely used.
Therefore it will be used as a benchmark to the optimal
detector derived in Section III-A, that utilizes the knowledge
of the lengths of the CP and the data. The performance of
the energy detector is well known, cf. [18]. The probability of
false alarm PFA is given by

PFA = Pr(Λe > ηe|H0) = 1 − Fχ2
2N

(
2ηe

σ2
n

)
. (6)
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Thus, given a false alarm probability, we can derive the
threshold ηe from

ηe = F−1
χ2

2N
(1 − PFA)

σ2
n

2
. (7)

The probability of detection Pd is then given by

PD = Pr (Λe > ηe|H1) = 1 − Fχ2
2N

(
2ηe

σ2
n + σ2

s

)

= 1 − Fχ2
2N

⎛⎝F−1
χ2

2N
(1 − PFA)

1 + σ2
s

σ2
n

⎞⎠ .

(8)

It is clear from (7) that σ2
n is the only parameter that needs to

be known at the detector to set the decision threshold (PFA is a
design parameter). Thus, the energy detector does not require
σ2

s to be known.
3) Longest possible CP and perfect synchronization, Nc =

Nd, τ = 0: If the CP has the same length as the data
(Nc = Nd) and the receiver is perfectly synchronized (τ = 0),
then each signal sample is repeated and both versions ex-
perience independent noise. That is, U = [INd

INd
]T and

s = [qT
1 qT

1 qT
2 qT

2 . . .qT
KqT

K ]T . This is approximately true also
for τ �= 0 if the number of samples is large (K � 1).
This scenario is not realistic in practice, but it provides a
feeling for how much the CP structure of the signal can
ultimately improve the detection performance relative to that
of the energy detector.
Consider two received samples, corresponding to the two

identical versions of a signal sample. Both samples contain
i.i.d. noise added to the same signal value. Then the average
of the two samples is a sufficient statistic for detection. Thus,
when all data samples are repeated it is optimal to take the
pairwise average of the samples corresponding to identical
signal values. Let yi be the average of the two received
samples corresponding to identical signal values, and let n

(1)
i

and n
(2)
i be the noise experienced by the first and the second

version of the signal sample respectively. Then, the detection
problem becomes

H0 : yi =
1
2

(
n

(1)
i + n

(2)
i

)
, i = 0, . . . ,

N

2
− 1

H1 : yi = qi +
1
2

(
n

(1)
i + n

(2)
i

)
, i = 0, . . . ,

N

2
− 1.

We get N/2 independent samples yi, where yi|H0 ∼
CN(0, σ2

n/2) and yi|H1 ∼ CN(0, σ2
s + σ2

n/2). Thus, the
optimal detector is the same as for Nc = 0 in Section III-B2,
i.e. the energy detector, but with half as many samples and
half the noise variance (twice the SNR). Since this is also an
energy detector, σ2

n needs to be known, but not σ
2
s . Replacing

N with N/2 and σ2
n with σ2

n/2 in (8), we get the relation
between the probability of false alarm and the probability of
detection as

PD = 1 − Fχ2
N

⎛⎝F−1
χ2

N
(1 − PFA)

1 + 2 σ2
s

σ2
n

⎞⎠ . (9)

C. Unknown σ2
n and σ2

s

When σ2
n and σ2

s are unknown, the optimal strategy is to
eliminate them from the problem by marginalization. That is,

compute

p(x|H1) =
∫

σ2
n,σ2

s

Nc+Nd−1∑
τ=0

p(x|H1, τ, σ
2
n, σ2

s)×

P (τ |H1)p(σ2
n, σ2

s |H1)dσ2
ndσ2

s

(10)

and
p(x|H0) =

∫
σ2

n

p(x|H0, σ
2
n)p(σ2

n|H0)dσ2
n. (11)

We need to choose proper a priori distributions for σ2
n and

σ2
s to get p(σ2

n, σ2
s |H1, τ) and p(σ2

n|H0), and then compute
the integrals (10)-(11). It is not clear how these a priori
distributions should be chosen. One possibility is to choose
a non-informative distribution, for example the gamma distri-
bution as we used in [19] to express lack of knowledge of
the noise power. For most sensible distributions, the integrals
are very hard to compute analytically. Therefore, for the case
of unknown σ2

n, σ2
s , we proceed by instead using generalized

likelihood-ratio tests.

IV. DETECTION BASED ON SECOND-ORDER STATISTICS

In this section, we propose a detector that exploits the
structure of the OFDM signal by using empirical second-order
statistics of the received data. The approach is inspired by the
works of [10], [11], [12], which also use second-order statistics
although in a highly suboptimal manner, see Section IV-D for
a discussion. The case of most interest is when σ2

n and σ2
s are

unknown, and we start our treatment with this assumption.

A. GLRT-approach for unknown σ2
n and σ2

s

The repetition of data in the CP gives the OFDM signal a
nonstationary correlation structure. We will propose a detector
based on the generalized likelihood-ratio test (GLRT), that
exploits this structure. Without loss of generality we assume
throughout this section that the number of received samples is
N = K(Nc + Nd) + Nd. Note that this is slight redefinition
of N compared to Section III, to simplify notation. Define the
sample value products

ri � x∗
i xi+Nd

, i = 0, . . . , K(Nc + Nd) − 1. (12)

The expected value of ri of an OFDM signal is non-zero,
for the data that is repeated in the CP of each OFDM
symbol. This property will be used for detection. The re-
ceived vector x consists of K consecutive OFDM symbols.
Moreover, we know that if si = si+Nd

(= qi+τ = qi+Nd+τ ),
0 ≤ i < Nc +Nd, then si+k(Nc+Nd) = si+Nd+k(Nc+Nd), k =
1, . . . , K−1. Analogously, if si = qi+τ and si+Nd

= qi+Nd+τ

are independent (qi+τ �= qi+Nd+τ ), then si+k(Nc+Nd) and
si+Nd+k(Nc+Nd) are also independent. Thus, we define

Ri � 1
K

K−1∑
k=0

ri+k(Nc+Nd), i = 0, . . . , Nc + Nd − 1. (13)

Under H0, all the averaged sample value products Ri are
identically distributed. UnderH1, there will beNc consecutive
values of Ri (starting with Rτ ) that have a different distribu-
tion than the other Nd values. Figure 3 illustrates this for a
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Fig. 3. Example of the correlation structure of a noise-free OFDM signal.
Nc = 8, Nd = 32, K = 50, τ = 20.

noise-free OFDM signal with Nc = 8, Nd = 32, K = 50
and τ = 20. Since Ri is complex-valued, the figure shows
|Ri|. It is clear that the 8 samples corresponding to the CP
are significantly larger than the other. The aim of our proposed
method is to detect whether Ri are i.i.d. or whether their
statistics depend on i as explained above and as illustrated
in Figure 3. Essentially, our proposed method implements a
form of change detection. We propose a detector based on a
GLRT that deals with the difficulty of not knowing τ, σs, σn.
Let R � [R0, . . . , RNc+Nd−1]

T . The GLRT is then

ΛGLRT � log

⎛⎝ max
τ,σ2

n,σ2
s

p
(
R|H1, τ, σ

2
n, σ2

s

)
max
σ2

n

p
(
R|H0, σ

2
n

)
⎞⎠

= max
τ

log

⎛⎝p
(
R|H1, τ, σ̂2

n, σ̂2
s

)
p
(
R|H0, σ̂2

n

)
⎞⎠ H1

≷
H0

ηGLRT,

(14)

where θ̂ denotes the maximum-likelihood (ML) estimate of
the parameter θ.

To simplify the derivation of the joint distribution and the
ML estimates, we assume that the variables Ri are approx-
imately independent. Then, the likelihood function can be
approximated as

p(R|Hk, τ, σ2
n, σ2

s) ≈
Nc+Nd−1∏

i=0

p(Ri|Hk, τ, σ2
n, σ2

s)

and we only need to derive the marginal distributions of
Ri. Since Ri is a complex-valued random variable, we must
consider its real and imaginary parts separately. Let a and ã
denote the real and imaginary parts of a respectively. Then,
Ri = Ri + jR̃i, where

Ri =
1
K

K−1∑
k=0

ri+k(Nc+Nd), i = 0, . . . , Nc + Nd − 1,

R̃i =
1
K

K−1∑
k=0

r̃i+k(Nc+Nd), i = 0, . . . , Nc + Nd − 1.

TABLE I
FIRST AND SECOND ORDER MOMENTS OF Ri .

H1

Moment H0 i /∈ Sτ i ∈ Sτ

E
[
Ri|·

]
0 0 σ2

s

Var
[
Ri|·

] σ4
n

2K

(σ2
s+σ2

n)2

2K

σ4
s+

σ4
n
2 +σ2

sσ2
n

K

E
[
R̃i|·

]
0 0 0

Var
[
R̃i|·

]
σ4

n

2K

(σ2
s+σ2

n)2

2K

σ4
n
2 +σ2

sσ2
n

K

Cov
[
Ri, R̃i|·

]
0 0 0

The terms ri+k(Nc+Nd) and ri+l(Nc+Nd) of the sum (13)
are i.i.d. for k �= l by construction. Hence, Ri is a sum of

i.i.d. random variables. Let Ri �
[
Ri R̃i

]T

. Then, for large
K , by the central limit theorem (cf. [20, pp. 108–109]), Ri

has the two-dimensional Gaussian distribution

Ri ∼ N
⎛⎝[

E
[
Ri

]
E
[
R̃i

]] ,

⎡⎣ Var
[
Ri

]
Cov

[
Ri, R̃i

]
Cov

[
Ri, R̃i

]
Var

[
R̃i

] ⎤⎦⎞⎠ .

(15)
A similar approximation was also used in [11]. This ap-
proximation approaches the true distribution with increasing
K . Moreover, while the distribution of the product of two
Gaussian variables has a relatively heavy tail, it is still
exponentially decreasing (cf. [21, pp. 49–53]). Thus, the
convergence to the Gaussian distribution should be quite fast,
and the approximation should be acceptable even for rather
small K . Moreover, this approximation allows us to derive the
log-likelihood ratio in closed form, as shown in the following.

The structure of the OFDM signal incurs that the equality
si = si+Nd

holds for Nc consecutive variables Ri, and
that si and si+Nd

are independent for all the other Nd

variables. Let Sτ denote the set of consecutive indices for
which si = si+Nd

, given the synchronization mismatch τ .
The expectations, variances, and covariances of Ri and R̃i

respectively are derived in Appendices C–E and summarized
in Table I. Inserting the statistics of Ri from Table I in (15)
yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ri| {H0} ∼ N
(
0,

σ4
n

2K I
)

,

Ri| {H1, i /∈ Sτ} ∼ N
(
0,

(σ2
s+σ2

n)2

2K I
)

,

Ri| {H1, i ∈ Sτ}

∼ N
⎛⎝[

σ2
s

0

]
,

⎡⎣σ4
s+

σ4
n
2 +σ2

sσ2
n

K 0

0
σ4

n
2 +σ2

sσ2
n

K

⎤⎦⎞⎠ .

(16)

Detection is most crucial at low SNR (σ2
n � σ2

s ). We use
this low-SNR approximation in the remainder of this section to
simplify the computations of the ML estimates of the unknown
parameters. A similar approximation was used in [10]. Define
σ2

1 � σ4
n

2K . Then, at low SNR, the variances of Ri and R̃i are
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approximately equal to σ2
1 in all cases, and (16) simplifies to⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ri| {H0} ∼ N (
0, σ2

1I
)
, i = 0, . . . , Nc + Nd − 1,

Ri| {H1, i /∈ Sτ} ∼ N (
0, σ2

1I
)
,

Ri| {H1, i ∈ Sτ} ∼ N
([

σ2
s

0

]
, σ2

1I

)
.

(17)
Under the assumptions made, the likelihood functions can
approximately be written as

p(R|H0, σ
2
1) ≈

Nc+Nd−1∏
i=0

p(Ri|H0, σ
2
1)

≈
Nc+Nd−1∏

i=0

1
2πσ2

1

exp

(
−|Ri|2

2σ2
1

)

=
(
2πσ2

1

)−(Nc+Nd)
exp

(
− 1

2σ2
1

Nc+Nd−1∑
i=0

|Ri|2
)

,

(18)

and

p(R|H1, τ, σ
2
1 , σ2

s) ≈
Nc+Nd−1∏

i=0

p(Ri|H1, τ, σ
2
1 , σ

2
s)

≈
∏

i∈Sτ

exp
(
−|Ri−σ2

s |2
2σ2

1

)
2πσ2

1

∏
j /∈Sτ

exp
(
− |Rj |2

2σ2
1

)
2πσ2

1

=
(
2πσ2

1

)−(Nc+Nd)
exp

⎛⎜⎜⎜⎝−

∑
i∈Sτ

∣∣Ri − σ2
s

∣∣2 +
∑
j /∈Sτ

|Rj |2

2σ2
1

⎞⎟⎟⎟⎠ .

(19)

It can be shown that the ML estimates are

σ̂2
s | {H1, τ} =

1
Nc

∑
i∈Sτ

Ri,

σ̂2
1 | {H1, τ}

=
1

2 (Nc + Nd)

⎛⎝∑
i∈Sτ

∣∣∣∣∣Ri − 1
Nc

∑
k∈Sτ

Rk

∣∣∣∣∣
2

+
∑
j /∈Sτ

|Rj |2
⎞⎠ ,

σ̂2
1 | {H0} =

1
2 (Nc + Nd)

(
Nc+Nd−1∑

i=0

|Ri|2
)

.

(20)

If we insert the ML estimates (20) and the likelihood
functions (18)-(19) in (14), and remove all constants that are
independent of Ri, we obtain the test

max
τ

Nc+Nd−1∑
i=0

|Ri|2

∑
k∈Sτ

∣∣∣∣∣Rk − 1
Nc

∑
i∈Sτ

Ri

∣∣∣∣∣
2

+
∑
j /∈Sτ

|Rj |2

H1

≷
H0

ηGLRT. (21)

This test is computationally efficient. We only need to compute
the empirical averages Ri from (12) and (13), then compute
the likelihood ratio (21) for each τ , 0 ≤ τ < Nc + Nd, and
take the maximum. Again, there appears to be no closed form

expression for the distribution of the test statistic. Hence, the
decision threshold has to be computed empirically. It should
be noted that this is a constant false alarm rate (CFAR)
test, meaning that the threshold can be computed for a fixed
probability of false alarm independent of the SNR.

Any knowledge of the parameters σ2
n, σ

2
s or τ can easily be

incorporated in the proposed detector by inserting the corre-
sponding true parameter value into (14). See Subsections IV-B
and IV-C for a brief discussion. If the synchronization mis-
match τ is known, then the maximization in (21) can be
omitted.

Note that although the expected value of the correlation is
real-valued, the test statistic (21) depends on both the real and
the imaginary parts of Ri. This is so because of the unknown
noise power. Both Ri and R̃i add information to the ML-
estimate (σ̂2

1) of the noise power.

B. Special case: Known σ2
n and unknown σ2

s

If σ2
n is known, it can be directly inserted into (14) instead

of the ML estimate. Knowledge of σ2
n does not change the

ML estimate of σ2
s given by (20). After some algebra, we get

max
τ

log

⎛⎝p
(
R|H1, σ

2
n, σ̂2

s

)
p (R|H0, σ2

n)

⎞⎠
∝ max

τ

(∑
i∈Sτ

Ri

)2

.

(22)

The detector (22) may be compared with the energy detector,
since both only need to know σ2

n in order to set the decision
threshold.

Note that when the noise power is known (or rather σ2
1 =

σ4
n

2K is known), and the low-SNR approximation (17) is used,
the test statistic depends only on the real parts Ri. This is
so because the imaginary parts R̃i have the same distribution
under both hypotheses, and Ri and R̃i are uncorrelated.

C. Special case: Known σ2
n and σ2

s

If both σ2
n and σ2

s are known, they can be directly inserted
into (14), instead of the ML estimates (20). In this case we
do not need to use the low-SNR approximation, since both
σ2

n and σ2
s are known. Using the distributions (16) and some

algebra, the LLR is given by

max
τ

log

(
p
(
R|H1, σ

2
n, σ2

s

)
p (R|H0, σ2

n)

)

∝ max
τ

⎛⎝ 1
σ2

1

Nc+Nd−1∑
k=0

|Rk|2 − 1
γ2
1

∑
i/∈Sτ

|Ri|2

−
∑
j∈Sτ

((
Rj − σ2

s

)2
γ1

2 +
R̃2

j

γ̃1
2

)⎞⎠ ,

(23)
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where

γ2
1 � Var

[
Ri|H1, i /∈ Sτ

]
= Var

[
R̃i|H1, i /∈ Sτ

]
=

1
2K

(
σ2

s + σ2
n

)2
,

γ1
2 � Var

[
Ri|H1, i ∈ Sτ

]
=

1
K

(
σ4

s +
σ4

n

2
+ σ2

sσ2
n

)
,

γ̃1
2 � Var

[
R̃i|H1, i ∈ Sτ

]
=

1
K

(
σ4

n

2
+ σ2

sσ2
n

)
.

Note that the proposed GLRT detector with complete
knowledge of the parameters is not equivalent to the optimal
genie detector (3). Therefore, the detector in (23) is subopti-
mal. However, it is interesting to use for comparison purposes,
since a comparison between (23) and (3) provides a feeling for
how much performance that is lost by basing the detection on
the second-order statistics Ri instead of on the received raw
data x.
In this case, even though σ2

n is known, the test statistic
depends on both Ri and R̃i. This is so because the low-SNR
approximation is not used, but instead the true moments as
shown in Table I are used. Then, even though E[R̃i|·] = 0 in
all cases (underH0 and underH1 both for i ∈ Sτ and i /∈ Sτ ),
the variance Var[R̃i|·] is different in the different cases. Thus,
the imaginary part adds information, since the distribution is
not exactly the same in all cases.

D. Benchmarks

In the following, we present three competing detectors [10],
[11], [12] that are also based on second-order statistics of the
received signal. To our knowledge, [10], [11], [12] represent
the current state-of-the-art for the problem that we consider.
1) Autocorrelation-based detector of [10]: The method

of [10] was called an autocorrelation-based detector and it
uses the empirical mean of the sample value products ri,
normalized by the received power, as test statistic. More
precisely, the test proposed in [10] is

ΛAC =
∑(Nc+Nd)−1

i=0 Ri

Nc+Nd

N

∑N−1
i=0 |xi|2

H1

≷
H0

ηAC. (24)

The detector proposed in [10] does not require any knowledge
about the noise variance σ2

n.
Referring to Figure 3, the detector of [10] essentially uses

the average of the 40 samples, and does not exploit the fact
that only 8 of the samples have non-zero mean and the other
32 have zero mean. Thus, the detector of [10] ignores the
fact that the received signal under H1 is not stationary. The
basic problem with this is that the samples xi and xi+Nd

that
correspond to signal samples that are repeated in the CP (si =
si+Nd

) are strongly correlated. On the other hand, the samples
xi and xi+Nd

that correspond to signal samples that are not
repeated in the CP, are independent (because si and si+Nd

are
independent). Hence, taking the average of the sample value
products as in (24) does not exploit all of the structure in the
problem.
2) CP-detector of [11]: The detector of [11] is similar

to the detector of [10] described in Section IV-D1, in the
sense that it also uses the empirical mean of the sample value

products ri and therefore does not exploit the non-stationarity
of the signal. The test proposed in [11] is

ΛCP =

∣∣∣∣∣∣ 1
N

(Nc+Nd)−1∑
i=0

Ri + c

∣∣∣∣∣∣
2

H1

≷
H0

ηCP, (25)

where

c �
Nc

Nc+Ndσ2
n((

1 + 2
(

Nc
Nc+Nd

)2
)

σ2
s

σ2
n

+ 2
) .

It should be noted that this test statistic depends on σ2
n and

σ2
s . The work of [11] also proposed to use c = 0, to remove
the required knowledge of these parameters. However, even if
c is set to zero, the decision threshold depends on the noise
variance σ2

n.
3) Sliding-window detector of [12]: The detector of [12]

uses a sliding window that sums over Nc consecutive samples,
and takes the maximum. The test statistic is

max
τ

∣∣∣∣∣
τ+Nc−1∑

i=τ

ri

∣∣∣∣∣ .
The statistic (26) only takes one OFDM symbol at a time into
account. A straightforward extension of this detector for K
symbols, is to use the test

ΛSW � max
τ

∣∣∣∣∣
τ+Nc−1∑

i=τ

Ri

∣∣∣∣∣ H1

≷
H0

ηSW. (26)

We will use the extended statistic (26) in our comparisons.
The main drawback of the detector proposed in [12] is that it
requires knowledge about σ2

n to set the decision threshold.

E. Detector complexity

In this section, we compare the proposed second-order
GLRT detector with the benchmarks of Section IV-D in terms
of complexity. We use the number of summations as an
approximate measure of the detector complexity, because the
number of summations is much greater than the number of
divisions and multiplications. It should be noted that all these
detectors require (K − 1)(Nc + Nd) = O(KNd) additions
to create the Nc + Nd averaged sample value products Ri

from (13). Note that the CP length Nc is proportional to the
data length Nd. The autocorrelation-based detector (24) and
the CP-detector (25) require additionally O(Nd) summations,
given the averaged sample value products. That is, the total
number of required additions is O(KNd) (K ≥ 1). The
sliding-window detector (26) and the proposed second-order
GLRT detector (21) contain sums over Sτ , which have to be
computed for each τ . However, since only two terms differ
in the sums between two consecutive values of τ , the sums
can be computed differentially. Then, both the sliding-window
detector and the proposed GLRT detector require additionally
O(Nd) summations, and their total complexity is O(KNd). To
conclude, the complexities of all the presented detectors based
on second-order statistics are in the same order of magnitude.
It should also be noted that the proposed GLRT detector and
the sliding-window detector [12] exploit knowledge of Nc.
Usually multiple values of Nc are possible. Then, these two
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Fig. 4. Probability of missed detection PMD versus SNR for different schemes
with known parameters. PFA = 0.05, Nd = 32, Nc = 8, K = 10.

detectors have to perform detection with several CP lengths in
parallel, whereas the autocorrelation-based detector [10] and
the CP-detector [11] need not do this.

V. COMPARISONS

We show some numerical results for the proposed detection
schemes, obtained by Monte-Carlo simulation. All simulations
are run until at least 100 detections (and missed detections) are
observed. Performance is given as the probability of missed
detection, PMD, as a function of SNR. The SNR in dB is
defined as 10 log10(σ

2
s/σ2

n). The noise variance was set to
σ2

n = 1, and the SNR was varied from −20 dB to 5 dB.
The data vector q was drawn randomly with the distribution
q ∼ CN(0, σ2

sI). In the simulations, the probability of false
alarm PFA was fixed to find the detection threshold, η, and
the probability of missed detection, PMD. The thresholds have
to be evaluated empirically, as there appears to be no closed
form solution in most cases. The number of received OFDM
symbols was set to K = 10. Choosing a larger K or larger
Nc and Nd yield a larger number of received samples, and
thus better performance. Note however, that scaling K is not
equivalent to scaling Nc and Nd for most detectors, because
the synchronization error τ depends on the absolute values
of Nc and Nd. All detectors and their parameter knowledge
requirements are summarized in Table II.

A. Optimal Neyman-Pearson detector

We start by comparing the optimal detector of Section III,
with its special cases. We compare the following schemes,
where the enumeration refers to Table II:

(v) Energy, (5), σ2
n known, σ

2
s and τ unknown.

(vii) Optimal unsynchronized, (3), σ2
n and σ2

s known, τ
unknown.

(ix) Optimal synchronized, (4), σ2
n, σ2

s and τ known.
(x) Optimal longest CP (Nc = Nd), theory, (9), σ2

n known
and τ = 0.

Result 1: Comparison of Detectors (Figure 4).
In this first scenario we study the optimal detector (vii) with
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(ix) Optimal synch.
(x) Optimal Nc = Nd

Fig. 5. Same as Figure 4, but with Nd = 20, Nc = 20.

known σ2
n and σ2

s , and the special cases thereof. The IFFT size
is set to Nd = 32 and the CP is chosen as Nc = Nd/4 = 8.
The probability of false alarm is set to PFA = 0.05. The
results are shown in Figure 4. It is notable that the energy
detector is near-optimal (within 0.2 dB SNR), even though the
signal has a substantial correlation structure. This observation
is also in line with [1], where the optimal detector for a
BPSK modulated signal was derived, and it was shown that
knowing the modulation format does not appreciably improve
the detector performance over the energy detector. Notable is
also that knowledge of σ2

s does not significantly improve the
detection performance, since the energy detector only requires
knowledge of σ2

n to set the decision threshold. We also note
that perfect synchronization (knowing τ , scheme (viii)) does
not substantially improve the detector performance.
Result 2: Longest possible CP (Figure 5).

The purpose of the second scenario is to investigate what
happens when the CP is as long as possible (Nc = Nd) and
the OFDM signal therefore has as much correlation structure
as possible. Here we choose Nc = Nd = 20, to get the same
number of samples per OFDM symbol as in Figure 4. The
results are shown in Figure 5. Here, the (unsynchronized)
optimal detector outperforms the energy detector by about 1
dB SNR. Scheme (ix), where the synchronization mismatch τ
is known (but not necessarily zero), performs almost as well
as the repetition scheme (x). Some performance is lost, due to
lost correlation when the received signal does not consist ofK
complete OFDM symbols (as when τ = 0). Asymptotically,
when the number of received OFDM symbols K → ∞, these
two schemes should have identical performance.

B. Detectors based on second-order statistics

In this section, we compare the detectors of Section IV,
that are based on second-order statistics of the received signal.
We also include the optimal detector with known σ2

n and σ2
s ,

as a lower bound for the probability of missed detection. In
this case we compare the following detectors, where again the
enumeration refers to Table II:
(i) Autocorrelation-based of [10], (24), σ2

n and σ2
s un-

known.
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TABLE II
SUMMARY OF DETECTORS, WHERE− MEANS UNKNOWN AND × MEANS KNOWN PARAMETER RESPECTIVELY.

ID Ref. Detector Test σ2
n σ2

s τ Nd Nc

i [10] Autocorrelation (24) − − − × −
ii Proposed 2nd order, GLRT (21) − − − × ×
iii [12] Sliding Window (26) × − − × ×
iv Proposed 2nd order, GLRT (22) × − − × ×
v [3] Energy (5) × − − − −
vi Proposed 2nd order, GLRT (23) × × − × ×
vii Proposed Optimal unsynch. (3) × × − × ×
viii [11] CP detection (25) × × − × ×
ix Proposed Optimal synch. (4) × × × × ×
x Proposed Optimal Nc = Nd (9) × − 0 × ×

(ii) Proposed GLRT, (21), σ2
n and σ2

s unknown.
(iii) Sliding window of [12], (26), σ2

n known, σ
2
s unknown.

(iv) Proposed GLRT with known σ2
n, (22).

(vi) Proposed GLRT with known σ2
n and σ2

s , (23).
(vii) Optimal unsynchronized, (3), σ2

n and σ2
s known.

(viii) CP detection of [11], (25), σ2
n and σ2

s known.

Result 3: Comparison of Detectors (Figure 6).
In this first scenario of detectors based on second-order
statistics, the parameter values are the same as for Figure 4,
except that the number of received symbols is increased
to K = 50. The smaller complexity of the second-order
statistics detectors compared to the optimal detector allows
for a larger value of K . Figure 6 shows the results. The
results show that knowledge of the parameters can improve the
detector performance significantly, in the order of 5 dB SNR.
We also note that the GLRT detector (ii), proposed in this
paper, outperforms the autocorrelation-based detector (i) in
the low PMD region. Moreover, the improvement increases with
decreasing PMD (increasing SNR). In the IEEE 802.22 WRAN
standard, a secondary user must be able to detect a primary
user DVB-T signal with PMD ≤ 10−1 [22]. At PMD = 10−1,
the performance improvement of the GLRT detector (ii) over
the autocorrelation-based detector (i) is in the order of 2.3
dB SNR. At lower PMD, the improvement can be up to 5
dB SNR. The gain comes from exploiting the knowledge of
the CP length, Nc, and the fact that the proposed detector
exploits the non-stationarity of the OFDM signal. However,
at high PMD the autocorrelation-based detector (i) slightly
outperforms the GLRT detector (ii). With these settings, this
occurs approximately for PMD > 0.8. We believe this effect
appears owing to the suboptimality of GLRT, especially with
respect to the synchronization error.
Result 4: Comparison of all detectors (Figure 7).

In this scenario, we show a comparison of all the presented
unsynchronized detectors, using the same parameter values as
in Figure 4. It is clear that the detector based on second-
order statistics is suboptimal if σ2

n and σ2
s are known. In this

scenario there is a 2−3 dB gain in using the optimal detector
(vii) based on the received data compared to the detector
based on second order statistics (vi). Parts of the performance
loss can also be attributed to the approximations made when
deriving the second-order statistics detector. We note that the
proposed detector based on second-order statistics (iv), and
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P
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D

(vii) Optimal unsynch.

(v) Energy

(iii) Sliding Window

(ii) 2nd order, GLRT

(vii) CP-detection

(i) Autocorrelation

Fig. 6. Comparison of the correlation-based detection schemes. PFA = 0.05,
Nd = 32, Nc = 8, K = 50.

the sliding window detector (iii) have essentially the same
performance when σ2

n is known. Worth noting is also that if σ
2
n

is known, the energy detector is near-optimal and outperforms
the detectors based on second-order statistics. Thus, if σ2

n is
known, no significant improvement over the energy detector
can be achieved. However, if σ2

n is unknown, there can be a
significant gain, as is shown in Result 5 below. The number
of received symbols (samples) in this scenario is only a
fifth compared to Figure 6. Moreover, the largest PMD value
where the GLRT detector (ii) outperforms the autocorrelation-
based detector (i) is again approximately 0.8. This means
also that the probability of detection is approximately 0.2.
The introduction of cognitive radios in a primary network
will require a larger probability of detection to avoid causing
too much interference. Then, in most relevant cases, the
GLRT detector (ii) is preferable over the autocorrelation-based
detector (i).

Result 5: Noise uncertainty (Figure 8).
In this scenario, we consider noise uncertainty of 1 dB. That is,
the noise variance supplied to the detectors deviates 1 dB from
the true noise variance. The parameters are otherwise the same
as in Figure 4. The results are shown in Figure 8. We note
first of all that the performances of the detectors (i)-(ii), which
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Fig. 7. Same parameters as Figure 4. Solid lines: known σ2
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lines: known σ2

n, unknown σ2
s , and dotted lines: unknown σ2

n and σ2
s .
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Fig. 8. Same parameters as Figure 4, and noise uncertainty 1 dB.

do not depend on the noise variance, are unaffected by the
noise uncertainty. Furthermore, we note that the performances
of both the optimal detector (vii) and the energy detector (v)
have deteriorated with approximately 5 dB SNR, as compared
to Figure 7. The sliding window detector (iii) and the CP-
detector (vii) seem to be slightly more robust to the noise
uncertainty. To conclude, even for small noise uncertainty
levels, the proposed GLRT detector is superior to all compared
detectors that assumes perfect knowledge of σ2

n.
Result 6: Receiver operating characteristics (ROC) (Fig-

ure 9).
The receiver operating characteristics at −5 dB SNR, and
otherwise the same parameters as in Figure 4, are shown in
Figure 9. The results, in particular the order of the detectors,
are similar to the previous results.

VI. CONCLUDING REMARKS

We derived the optimal Neyman-Pearson detector for an
OFDM signal when the noise power and the signal power
were known. Numerical comparisons showed that the energy
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(i) Autocorrelation
(ii) 2nd-order GLRT
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(v) Energy
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Fig. 9. ROC curve at −5 dB SNR, and otherwise the same parameters as
Figure 4.

detector is near-optimal (within 1 dB SNR) even if the cyclic
prefix is relatively long, so that the signal has a substantial
correlation structure.

We also proposed a detector based on the second-order
statistics of the received OFDM signal, that does not require
any knowledge of the noise variance or the signal variance. We
showed numerically that the proposed detector can improve
the detection performance with 5 dB SNR compared to state-
of-the-art detectors such as the one in [10]. For simplicity, we
made a few approximations in the derivation of the proposed
GLRT detector. We assumed low SNR, and that the averaged
sample value products are independent. We also used a Gaus-
sian approximation via the central limit theorem. The detector
performance might be further improved by not making these
approximations. In this work we used a GLRT-approach,
which is suboptimal. There are other ways of dealing with the
unknown parameters, for example by marginalization. This is
a topic for future research.

APPENDIX

A. Efficient Computation of xH
(
Q−1

τ − 1
σ2

n
I
)

x

The covariance matrix Qτ has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0
σ2

n + σ2
s 0 · · · 0 σ2

s

0 σ2
n + σ2

s · · · 0 0

0
...

. . .
... 0

0 · · · σ2
n + σ2

s 0
σ2

s 0 · · · 0 σ2
n + σ2

s

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the nonzero off-diagonal elements correspond to sam-
ples of the OFDM signal that are equal. Because of the simple
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structure of Qτ , its inverse has the form

Q−1
τ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0
a 0 · · · 0 b
0 c · · · 0 0

0
...

. . .
... 0

0 · · · c 0
b 0 · · · 0 a

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

The elements a, b, c can be obtained from the equation
QτQ−1

τ = I, which yields the following linear system of
equations⎧⎪⎨⎪⎩

a
(
σ2

n + σ2
s

)
+ bσ2

s = 1
aσ2

s + b
(
σ2

n + σ2
s

)
= 0

c
(
σ2

n + σ2
s

)
= 1

⇒

⎧⎪⎪⎨⎪⎪⎩
a = σ2

n+σ2
s

2σ2
nσ2

s+σ4
n

b = − σ2
s

2σ2
nσ2

s+σ4
n

c = 1
σ2

n+σ2
s

.

For the computation of the likelihood function, we are not
interested in the matrix inverse in itself, but in the quadratic
form xH

(
Q−1

τ − 1
σ2

n
I
)

x. This quadratic form can be effi-

ciently computed by using (27). First note that Q−1
τ − 1

σ2
n
I is

of the form shown in (28). The product y �
(
Q−1

τ − 1
σ2

n
I
)
x

is a vector where the elements yi and yi+Nd
correspond-

ing to a signal sample qi that lies in the CP and have
been observed twice (i.e. i ∈ Sτ ), are yi = yi+Nd

=
−σ2

s

σ2
n(σ2

n+2σ2
s) (xi + xi+Nd

). The element yk corresponding to
a signal sample qk that has been observed only once, is
yk = −σ2

s

σ2
n(σ2

n+σ2
s)xk . Then,

xH

(
Q−1

τ − 1
σ2

n

I
)

x =
K(Nc+Nd)−1∑

i=0

αi, (29)

where

αi �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−σ2
s

σ2
n(σ2

n+2σ2
s)x

∗
i (xi + xi+Nd

) , i ∈ Sτ ,
−σ2

s

σ2
n(σ2

n+2σ2
s)x

∗
i (xi−Nd

+ xi) , (i − Nd) ∈ Sτ ,
−σ2

s

σ2
n(σ2

n+σ2
s) |xi|2, if qi is observed once,

0, if qi is not observed.
(30)

B. Efficient Computation of det (Qτ )

The computation of det (Qτ ) can also be simplified. We
start by rewriting the determinant as follows:

det (Qτ ) = det
(
σ2

nIN + σ2
sTτTT

τ

)
= det

(
σ2

n

(
IN +

σ2
s

σ2
n

TτTT
τ

))
= σ2N

n det
(
IN +

σ2
s

σ2
n

TτTT
τ

)
.

Using the identity det (Im + AB) = det (In + BA) for
matrices A and B of compatible dimensions, we can simplify
the determinant further:

det
(
IN +

σ2
s

σ2
n

TτTT
τ

)
= det

(
I(K+1)Nd

+
σ2

s

σ2
n

TT
τ Tτ

)
.

The matrix TT
τ Tτ is diagonal with diagonal elements

di =

⎧⎪⎨⎪⎩
0, if data qi is not observed,

1, if data qi is observed once,

2, if data qi is observed twice.

That is, a diagonal element di = 2 corresponds to a data
sample qi which is repeated in the CP. Consider again the
example shown in Figure 2, for τ = 1. Then the data samples
q4, q7, q8 are observed twice, q1, q2, q3, q5, q6, q11 are observed
once, and q9, q10, q12 are not observed at all. In general, the
number of data samples that are received twice (number of
di = 2) is KNc − μ (τ), where μ (τ) is given by (1). The
number of data samples that are not received at all (number
of di = 0) is Nd − μ (τ), and the number of samples that are
received once (number of di = 1) is K (Nd − Nc) + 2μ (τ).

Since the matrix I(K+1)Nd
+ σ2

s

σ2
n
TT

τ Tτ is diagonal, the
determinant is simply the product of the diagonal elements.
That is

det
(
I(K+1)Nd

+
σ2

s

σ2
n

TT
τ Tτ

)
=

(K+1)Nd∏
i=1

(
1 +

σ2
s

σ2
n

di

)

=
(

1 +
σ2

s

σ2
n

)K(Nd−Nc)+2μ(τ) (
1 + 2

σ2
s

σ2
n

)KNc−μ(τ)

.

To conclude,

det (Qτ )

= σ2N
n

(
1 +

σ2
s

σ2
n

)K(Nd−Nc)+2μ(τ) (
1 + 2

σ2
s

σ2
n

)KNc−μ(τ)

,

(31)

where μ (τ) is given by (1).

C. Moments of Ri

First we compute

E
[
Ri

]
= E

[
1
K

K−1∑
k=0

ri+k(Nc+Nd)

]
= E [ri] ,

where

ri = Re (x∗
i xi+Nd

) = xixi+Nd
+ x̃ix̃i+Nd

.

In general, the expected value of ri is

E [ri] = E [xixi+Nd
] + E [x̃ix̃i+Nd

] . (32)

The first term of (32) can be written as

E [xixi+Nd
] = E [(si + ni) (si+Nd

+ ni+Nd
)]

= E [sisi+Nd
] + E [sini+Nd

] + E [nisi+Nd
] + E [nini+Nd

]
= E [sisi+Nd

] .

Similarly, the second term of (32) is

E [x̃ix̃i+Nd
] = E [s̃is̃i+Nd

] .

There are three different cases we need to consider: there is no
signal (H0), there is a signal and the signal samples are equal
(H1, i ∈ Sτ ), there is a signal but the samples are independent
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Q−1
τ − 1

σ2
n

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0
−σ2

s

σ2
n(σ2

n+2σ2
s) 0 · · · 0 −σ2

s

σ2
n(σ2

n+2σ2
s)

0 −σ2
s

σ2
n(σ2

n+σ2
s) · · · 0 0

0
...

. . .
... 0

0 · · · −σ2
s

σ2
n(σ2

n+σ2
s) 0

−σ2
s

σ2
n(σ2

n+2σ2
s) 0 · · · 0 −σ2

s

σ2
n(σ2

n+2σ2
s)

0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

(H1, i /∈ Sτ ). Then,⎧⎪⎪⎪⎨⎪⎪⎪⎩
E [ri|H1, i ∈ Sτ ] = E

[
s2

i

]
+ E

[
s̃2

i

]
= σ2

s

2 + σ2
s

2 = σ2
s ,

E [ri|H1, i /∈ Sτ ] = E [si] E [si+Nd
] + E [s̃i] E [s̃i+Nd

]
= 0,

E [ri|H0] = 0.

Next, we compute the variance of Ri:

Var
[
Ri

]
= Var

[
1
K

K−1∑
k=0

ri+k(Nc+Nd)

]
=

1
K
Var [ri] . (33)

The variance of ri in (33) is

Var [ri] = E
[
r2

i

]− E [ri]
2
,

where

E
[
r2

i

]
= E

[
(xixi+Nd

+ x̃ix̃i+Nd
)2
]

= E
[
x2

i x
2
i+Nd

]
+ E

[
x̃2

i x̃
2
i+Nd

]
+ 2E [xixi+Nd

] E [x̃ix̃i+Nd
]

= 2E
[
x2

i x
2
i+Nd

]
+ 2E [xixi+Nd

]2

= 2E
[
(si + ni)

2 (si+Nd
+ ni+Nd

)2
]

+ 2E [sisi+Nd
]2

= 2E
[(

s2
i + n2

i + 2sini

) (
s2

i+Nd
+ n2

i+Nd
+ 2si+Nd

ni+Nd

)]
+ 2E [sisi+Nd

]2

= 2E
[
s2

i s
2
i+Nd

+ s2
i n

2
i+Nd

+ 2s2
i si+Nd

ni+Nd
+ n2

i s
2
i+Nd

+n2
i n

2
i+Nd

+ 2n2
i si+Nd

ni+Nd
+ 2sinis

2
i+Nd

+2sinin
2
i+Nd

+ 4sinisi+Nd
ni+Nd

]
+ 2E [sisi+Nd

]2

= 2E
[
s2

i s
2
i+Nd

+ s2
i n

2
i+Nd

+ n2
i s

2
i+Nd

+ n2
i n

2
i+Nd

]
+ 2E [sisi+Nd

]2 .

Firstly, consider the case i ∈ Sτ . Then, the variance of ri is

Var [ri|H1, i ∈ Sτ ] = E
[
r2

i |H1, i ∈ Sτ

]− E [ri|H1, i ∈ Sτ ]2

= 2E
[
s4

i + s2
i n

2
i+Nd

+ n2
i s

2
i + n2

i n
2
i+Nd

]
+ 2E

[
s2

i

]2 − σ4
s

= 2

(
3
(

σ2
s

2

)2

+
σ2

s

2
σ2

n

2
+

σ2
n

2
σ2

s

2
+

σ2
n

2
σ2

n

2
+
(

σ2
s

2

)2
)

− σ4
s

= 2
(

σ4
s +

σ2
sσ2

n

2
+

σ4
n

4

)
− σ4

s

= σ4
s + σ2

sσ2
n +

σ4
n

2
.

Secondly, consider the case i /∈ Sτ . Then, the variance of ri

is

Var [ri|H1, i /∈ Sτ ] = E
[
r2

i |H1, i /∈ Sτ

]− E [ri|H1, i /∈ Sτ ]2

= 2
(
E
[
s2

i

]
E
[
s2

i+Nd

]
+ E

[
s2
i

]
E
[
n2

i+Nd

]
+E

[
n2

i

]
E
[
s2

i+Nd

]
+ E

[
n2

i

]
E
[
n2

i+Nd

]
+E [si]

2
E [si+Nd

]2
)

= 2
(

σ2
s

2
σ2

s

2
+

σ2
s

2
σ2

n

2
+

σ2
n

2
σ2

s

2
+

σ2
n

2
σ2

n

2

)
= 2

(
σ2

s

2
+

σ2
n

2

)2

.

Finally, consider H0 (si = 0):

Var [ri|H0] = E
[
r2

i |H0

]− E [ri|H0]
2

= 2E
[
n2

i n
2
i+Nd

]
=

σ4
n

2
.

To conclude,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
Ri|H1, i ∈ Sτ

]
= σ2

s ,

E
[
Ri|H1, i /∈ Sτ

]
= 0,

E
[
Ri|H0

]
= 0,

Var
[
Ri|H1, i ∈ Sτ

]
= 1

K

(
σ4

s + σ2
sσ2

n + σ4
n

2

)
,

Var
[
Ri|H1, i /∈ Sτ

]
= 2

K

(
σ2

s

2 + σ2
n

2

)2

,

Var
[
Ri|H0

]
= σ4

n

2K .

D. Moments of R̃i

First we compute

E
[
R̃i

]
= E

[
1
K

K−1∑
k=0

r̃i+k(Nc+Nd)

]
= E [r̃i] ,

where

r̃i = Im (x∗
i xi+Nd

) = xix̃i+Nd
− x̃ixi+Nd

.

The expected value of r̃i is

E [r̃i] = E [xix̃i+Nd
− x̃ixi+Nd

]
= E [xi] E [x̃i+Nd

] − E [x̃i] E [xi+Nd
] = 0.

Next, we compute the variance of R̃i:

Var
[
R̃i

]
= Var

[
1
K

K−1∑
k=0

r̃i+k(Nc+Nd)

]
=

1
K
Var [r̃i] . (34)
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The variance of r̃i in (34) is

Var [r̃i] = E
[
r̃2
i

]− E [r̃i]
2 = E

[
(xix̃i+Nd

− x̃ixi+Nd
)2
]

= E
[
x2

i x̃
2
i+Nd

+ x̃2
i x

2
i+Nd

− 2xix̃i+Nd
x̃ixi+Nd

]
= E
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x2

i

]
E
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x̃2

i+Nd

]
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]
E
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x2

i+Nd

]
− 2E [xixi+Nd

] E [x̃i+Nd
x̃i]

= 2E
[
x2

i

]2 − 2E [sisi+Nd
]2 .

Firstly, consider the case i ∈ Sτ . Then, the variance of r̃i is

Var [r̃i|H1, i ∈ Sτ ]

= 2E
[
x2

i |H1, i ∈ Sτ

]2 − 2E [sisi+Nd
|H1, i ∈ Sτ ]2

= 2
(

σ2
s

2
+

σ2
n

2

)2

− 2E
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i
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s

2
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2
+

σ4
n

2
+ σ2

sσ2
n − σ4

s

2
=

σ4
n

2
+ σ2

sσ2
n.

Secondly, consider the case i /∈ Sτ . Then, the variance of r̃i

is

Var [r̃i|H1, i /∈ Sτ ] = 2E
[
x2

i |H1, i /∈ Sτ

]2
− 2E [sisi+Nd

|H1, i /∈ Sτ ]2

= 2
(

σ2
s

2
+

σ2
n

2

)2

.

Finally, consider H0:

Var [r̃i|H0] = 2E
[
x2

i |H0

]2
= 2E

[
n2

i

]2
=

σ4
n

2
.

To conclude,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
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]
= 0,

E
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]
= 0,
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R̃i|H1, i ∈ Sτ

]
= 1

K

(
σ4

n

2 + σ2
sσ2

n

)
,

Var
[
R̃i|H1, i /∈ Sτ

]
= 2

K

(
σ2

s

2 + σ2
n

2

)2

,

Var
[
R̃i|H0

]
= σ4

n

2K .

E. Derivation of Cov
[
Ri, R̃i

]
The covariance of Ri, R̃i is

Cov
[
Ri, R̃i

]
= E

[
RiR̃i

]
− E

[
Ri

]
E
[
R̃i

]
.

Since E
[
R̃i

]
= 0, we have

Cov
[
Ri, R̃i

]
= E

[
RiR̃i

]
= E

[
1
K

K−1∑
k=0

ri+k(Nc+Nd)
1
K

K−1∑
l=0

r̃i+l(Nc+Nd)

]

=
1

K2

K−1∑
k=0

K−1∑
l=0

E
[
ri+k(Nc+Nd)r̃i+l(Nc+Nd)

]
.

The expected value of the product rk r̃l is computed as follows

E [rk r̃l] = E [(xkxk+Nd
+ x̃kx̃k+Nd

) (xlx̃l+Nd
− x̃lxl+Nd

)]
= E [xkxk+Nd

xlx̃l+Nd
− xkxk+Nd

x̃lxl+Nd

+x̃kx̃k+Nd
xlx̃l+Nd

− x̃kx̃k+Nd
x̃lxl+Nd

]
= E [xkxk+Nd

xl] E [x̃l+Nd
] − E [xkxk+Nd

xl+Nd
] E [x̃l]

+ E [x̃kx̃k+Nd
x̃l+Nd

] E [xl] − E [x̃kx̃k+Nd
x̃l] E [xl+Nd

]
= 0.

Thus, Cov
[
Ri, R̃i

]
= 0 for all cases (H0, H1, i ∈ Sτ , i /∈

Sτ ).
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from Linköping University, Sweden. From February
2005 to December 2005 he was with the Ericsson
Research group in Linköping, Sweden. His main
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