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Synopsis

The derivation of performance indices for both optimal and suboptimal linear tracking systems is organised
so that the expressions for the indices consist of terms that may be calculated from the system input and its
parameters and which represent separately various identifiable components of the overall cost. The derivation
of the performance index for optimal linear tracking systems is necessary to give a complete solution to the
optimal linear tracking problem. A knowledge of the various cost terms in the performance index of
suboptimal linear tracking systems means that the performance of existing or approximate designs, or of
optimal designs either modified or having different noise inputs or performance indices, may be calculated.
Further, the improvement of existing or approximate designs may be carried out by a systematic trial-and-
error approach, which aims at reducing perhaps only the largest cost terms for each iteration.

List of symbols

x, xc,XJ = state, state estimate and desired state trajectory
F, G, H = matrices describing a finite-dimensional dynamic

system
v, w = additive noise

y, u, g = output, input to plant and input to the optimal
system

K = feedback law
v = performance index

Q, R = weighting matrices
M, N = noise-covariance matrices
Xo, m = initiaI state and mean initial state

S = state-estimate covariance
So =- initial S
L = feedback law for state estimator

to, t, = initial and final time
z, fi = state of suboptimal system and mean of its initial

state
E = expectation opemtor

1’, b = matrix and vector appearing in control problem

1 introduction

A number of results in linear control theory derived
for application to the linear regulator problem have been
generalised for application to the tracking (or servomechanism)
prob]em,1,2MeierandAnderson3 have given a derivation of

the performance index of both optimal and suboptimal linear
regulator systems having additive noise at the input and only
noisy measurements available at the outputs. The problem
considered in this paper is the generalisation of these results
for application to linear tracking systems.

The performances of both optimal and suboptimal stochastic
linear tracking systems have terms for cost which may arise
owing to uncertainty about the initial state of the plant, error
in the estimate of the state, error in the control owing to
additive noise at the input, or to a desired output differing
from the mean initial state. A suboptimal system, in addition
to having higher costs than the optimal system for these
terms, has cost terms which vanish as optimal control, optimal
estimation or optimal external input are used.

The derivation of the performance index of optimal linear
tracking systems so that the various costs are given in separate
terms is necessary to give a complete solution to the optimal
linear tracking problem. The derivation of the performance
index of suboptimal linear tracking systems so that the
various costs are given in separate terms means that the
performance of existing or approximate designs, or optimal
designs either modified or having different performance
indices or noise inputs, may be calculated. Further, the
improvement of existing or approximate designs may be
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carried out by a systematic trial-and-error approach, which
aims at reducing perhaps only the largest cost terms for each
iteration. It may be argued that the design of an optimal
system is a direct procedure and is the best design, but it must
be remembered that perhaps only small changes in perform-
ance index would result for maybe gross simplifications of the
controller. A further consideration is that the solution of a
Riccati differential equation is avoided using the trial-and-
error approach.

The systems under consideration are linear, finite-
dimensional systems, with additive Gaussian noise at the
input and output, and thus can be described by the state–
space equations

x. Fx+Gu+ w,. . . . . . . (la)

y= Hx+ v...... . . .. (lb)

where x is an rzvector (the state), u is a pvector (the input),
y is an mvector (the output) and the matrices F, G and H are
of the appropriate dimensions and may be time-varying. The
input noise w and output noise v are independent and
Gaussian with mean zero, and

cov {w(f), w(7)} = M(f)8(t -- 7) . . . . (2a)

cov {v(f), v(T)} -= N(f)8(r -- T) . . (2b)

Both M and N are nonnegative-definite symmetric matrices.
A further restriction necessary for the construction of an
optimal estimator for the plant described by eqns Ia and b is

(a) N is nonsingular

At the initial time to, it is assumed that the initial state .x. of
the plant described by eqns. la and b is known only to the
extent that its probability distribution is Gaussian with
mean m and

Cov(xo,xo)=so . . . . . . (3)

where So is a nonnegative-definite symmetric matrix.
The optimal performance index applicable for the stochastic

tracking problem is a natural generalisation of that for the
deterministic tracking problem:l

J
~(mfo, t,) -= E ‘~(x’ x:)Q(x -- Xd) + u’Ru}df

(11

. . . . (4)

where Xd is the desired state trajectory over the interval
(/., r,). It will be assumed throughout that tl > fo.

In the design of optimal linear tracking systems, a control u
is selected which minimises the performance index (eqn. 4).
In order for the minimisation problem to be well defined, it
is required that

(b) The matrices R( ) and Q( ) are nonnegative-definite
symmetric, with R( ) nonsingular
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Applying the separation theorem for linear tracking systems,*
the design of optimal linear tracking systems may be conve-
niently considered as two separate design problems. The tirst
is the design of a dynamic system, the state estimator,4 with
inputs U( ) and Y( ), whose output XJ ) is the minimum-
variance estimate of the state x( ). The second problem is the
selection of a linear controller having a feedback law K and
an external input g, as for the noise-free problem, 1 where K
is of dimensions p x n, and g is a pvector. The optimum
control law is then given by

t4=-Kxe+ g.... . . . . . (5)

A review of the theorems related to the estimation problem,
the deterministic tracking problem and the stochastic regula-
tor problem is given in Section 2; this is the background for
the derivation of the performance index (eqn. 4) for the
optimal stochastic linear tracking problem in Section 3.
Section 3 in turn serves as an introduction to the derivation
of the performance index for suboptimal stochastic linear
systems given in Section 4.

2 Review of estimation and control
theorems

Theorem 1.4 For the plant described by eqns. la and b,
with noise as defined in eqn. 2, the state estimator is a finite-

notse w

Theorem 2.1,2 For the tracking problem in the absence of
noise, the system equation is

x= Fx+Gu . . . . . . . . . . (lo)

The optimal performance index

J{P’(xO, to, t,) = min “ (x’ - x;) Q(x – Xd) + u Ru}d

to

. . . . (11)

is achieved, provided that (b) holds, by taking

u~—Kx+ g..... . (12)

where

K= R–l GAP...... . . .. (13)

g= R–l G’b, . . . . . (14)

P being the solution of the matrix Riccati differential equation

–P=FP+ PF– PGR-lGP+ Q . (15)

with the boundary condition

PRO.. . . . . . . . .. (16)
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Optimal tracking system

dimensional linear system as shown in Fig. 1. The initial state
of the estimator is taken as

x,(~o)= m...... . . ...(6)

and the gain matrix of the estimator, whose output x,(t) is
the minimum-variance estimate of the state x(t)l U(,o, ,),

w,, o is

L= SHN-”l . . . . . . . . ..(7)

provided that (a) holds, Here S is the solution of the matrix
Riccati differential equation

S= FS+SF’– SH’N-lHS+M . . . (8a)

subject to the initial condition

S(~o)= So . . . . . . . . . ..(8b)

The state–space equation for the state estimator is

+, =“Fx, + Gu + LH(x — Xe) + Lv . (9)

● RHODES, I.6,,and ANDERS0P4, 6. D, 0,: ‘Separation theorem for linear servo-
mechanisms’, in preparation
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and b being the solution of the linear vector differential
equation

–~=(F– GK)’b+Qxd . . . . . . (17)

with the boundary condition

boo.. . . . . . . . . .(18)

The optimal performance index reduces to

tl

J{V*(XO, 10,~1)= ,0 –:(x’Px) + 2#b’x)

}
+ xjQx~ – #& dt (19)

or

~*(xo, to, fl) = %WO)XO – z~’(~o)xo

+ ~’~x:Qxd – g’Rg)dt . (20)
to

which is well defined, since, for the conditions previously
stated, P and b exist and are unique.
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Theorem 3.3 For the stochastic-regulator problem, consider
the plant described by eqns. 1a and b to have noise defined
by 2 and 3. The optimal control

L( .. . K,y
e. . . . . . . . . . (21)

where Kisgivenfromeqns. 12, 13 and 15 andxe is given from
eqns. 6and9, minimises the performance index

/
~(?n, tolXd=O, tl) =E ‘~x’Qx+-u’Ru)df (22)

fo

provided that (b) holds.
Theoptimal performance index is

V*(m, folxcl = 0, f,) = E [“{-~ (x’Px) + 2x’/%v
Jfo L. af

}
+(x -xc)’K’~K(x- x,) dt .

or

V*(rn, folx, ==O, t,) = tr {SOP(tO)} + rrr’P(tO)m

f

~1
1- tr(SK’RK --- MP)dt .

to

All four terms of eqn. 24 are nonnegative and are
respectively, to

(i) uncertainty about the initial state
(ii) anonzero mean of the initial state

(iii) error intheestimate of state

(23)

(24)

due,

(ivj error inthecontrol duetothe additive noise at the input.

Theorem 4.3 For the plant described by eqns. la and b,
with noise defined as in eqns. 2 and 3, suppose an estimator
has feedback law L,,, while the plant has a feedback law K,,.
Theperformance index ofeqn. 22 is then

V,(m, to)xd = O, t,) = tr {SOP1(tO)} + m’P1(tO)m

+- J“ [tr {S3(GKSP1 + PIK;G’ – K,,RK;)
10

+ MP1 + 2( L,NL; – S#f’L,,P2)}]dt (25)

where the matrix

[1
P, P2

P, =
P; Pa””””””””””

(26)

is the solution of the linear equation

--~, =~;P$+P,,~, +Q, . . . . . . (27)

with the initial condition

P,,(tl)= O........ . .. (28)

where

[

F – GK,, – GK,,
F,, = o 1F–L,H ’””””

(29)

and

~ ,_ Q 1 K;RK,, K;RK,,

[ K;RK,, 1K;RK,

The matrix S,,, partitioned in the same way as P, is the
solution of the linear equation

sr=q,s,+s,F,;+A4, . . . . (30)

with the initial condition

So being given by eqn. 3. The matrix M,, is given by

[

M
M, =

–M 1–MM + L,,NL;

(31)

(32)

The importance of the particular expression (eqn. 25) for the
performance index (eqn. 22) is that the various cost terms in
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the expression can be allocated to different sources. It is
derived from the less complex but less instructive expression

V,(m, lolx~ = O, ~1) T tr {S,,oP,(to)}

J
(1

+ riFPA(to)fi -}- tr (M, P,,)d( . (33)
fo

where

[1

m
rii==

o“””””’”””””
(34)

3 Performance of optimal linear stochastic
tracking systems

For the plant described by eqns. la and b, state
estimator (eqn. 9) and the optimal control law (eqn. 5), the
equations of the combined system as shown in Fig. 1 are

x= Fx+G(– Kx, -Fg)+w . (35a)

Xe = Fx~ ~ G( –Kx,, ~ g) + LH(x – x,) ~ L~J

. . . . (356)

The optimal performance index may be calculated from
eqns. 4, 5, 12–18 and 35, using steps similar to those used
in calculating eqns. 19 and 23. However, since eqn. 4
reduces to eqn. 19 for the noise-free case and to eqn. 23
when Xd = O, it is not unreasonable to assume that the
integral of eqn. 4 may be rearranged to give a convenient
expression consisting of terms given in the integrand of
eqn. 19 or 23, together with maybe other terms which vanish
appropriately as v = w =- O or Xd = O. With this in mind,
terms suggested by the integrands of eqns. 19 and 23 are
expanded using eqns. 15, 17 and 35a:

– ; (X’PX) = -- i’Px – X’PX -- x’Pi

L X’QX – 2x’K’R(– Kx, -t g)

–- x’1(’RKx – 2x’Pw . (36)

2 $t (b’x) = 2(b’x -1 b’i)

2g’R.g – 2x; Qx +- 2g’RK(x - X,) -t- 2b’w

. . . . (37)

and the sum of such terms suggested from the integrands of
eqn. 19 or 23 is

– ~ (x’Px) + 2: (b’x) + (xc -- x) ’K’RK(x, -- X)

+ x;Qxd – .g’Rg i 2x’Pw = (X -- Xd)’Q(X – X<,)

+ (--Kxe + g)’R( Kx, + A’) i- 2b’w . . . (38)

Thus, from eqns. 4 and 38,

d (b’x)V*(m, to, t,) -- E ~~’ ~ - ~(x’Px) I 2dt

~+(Xe x) ’K’RK(x, -- X)

}
i- X~QX<l-- g’Rg + 2x’Pw 2b’w dt . (39)

since

E~;b’wdt O . (40)
r11

and

f

to
( 1)E ‘; -d (b’x)dr = E 2b’.x

,, dt ;/,

= – 2b’(to)m . . (41)

using eqn. 18. The evaluation of the expectation of the
integral of the first, third and sixth terms of the integrand
proceeds just as in Reference 3, and there results

V*(m, to, II) = tr {SoP(to)} -1 m’P(to)m 2b’(to)m

f]
}- J {tr (SK’RK i MP) ~ x;Qx,, ,g’Rg}d/ (42)

to
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We observe that all the terms are, in fact, terms in the perform-
ance indices for the deterministic-tracking problem (eqn. 20)
or the stochastic-regulator problem (eqn. 24).

4 Performance of suboptimal linear
stochastic tracking systems

There are three distinct ways in which the control law
of eqn. 5 may be varied to result in a suboptimal control.
A suboptimal estimate of x may be used, the feedback law K
may be changed or the external input g may be modified.

Referring to Fig. 1, the systems to be considered are those
where L is replaced by L$, K is replaced by KS and g is
replaced by g,,. The state-space equations of the plant,
estimator and feedback-law realisation as a combined system
may be written using eqn. 35 with the appropriate substitu-
tions as

x = (F – GK,,)x – GK,(x, – x) + w + Gg,, (43a)

X, —x=(F—L,H)(x, —x)+L~w —W.

This may be written

z=F~z+w~+G~.. . . . .

where the state vector of the combined system is

[1xz=

xc—x “

The remaining terms are

[

F – GK,
F, =

o

[1w““ = L,,v – W

and

[1@sG,, = o .

. . . .

– GK,

F – L,,H1
....
....

. .

. . . .

. . . .

. . . .

(43b)

(44)

(45)

(46)

(47)

(48)

The cost of using laws KC, L, and g. for control of the plant
described by eqns. 1a and b k - “

J
c1~,(rrz,to,11)=E {(X -- Xd)’Q(X – Xd)

to

+ ( –K$x, + g,)’R( –K,x, + g,)}d . (49)

This may be expressed in terms of the state vector (eqn. 45)
of the combined system (eqn. 43), after some elementary
calculations, as

J

11
V’,(m, 10, tl) –- E (z’f?,,z+ X:QX(I

to

+ g#g,, – 2xj[Q O]z – 2g;RK,,[I I]z)d[ (50)

In order to evaluate this integral, the results of eqns. 23 and 39
suggest attempting to use P,, and b, (the solutions of differential

equations), chosen such that expansion of --$ (z’P,,z) and

2 ~; (b~z) result in terms of the integrand of eqn. 50, quadratic

and linear in z, respectively. The linear differential equation
(eqns. 27 and 28) is indicated for P,, and the following linear
differential equation gives b,,:

–~,, ==F;b, + [Q 0]’x~ -- P,,G,, + [11] ’K;Rg,, (51)

with the initial condition

b,(tl)– o........ . .. (52)

Thus, using equations 17, 28, 51, 52 and 44, the following
expansions are calculated:

– :t (z’P,,z) =- z’Q,z -- 2w;p~z -- 2G,; p,\z (53)

2;; (b;z) - - 2xj[Q o]z + 2b,w,,

+ 2G;P,z + 2b;G, – 2g;RK,[II]z (54)
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Eqn. 50 may now be expressed, using eqns. 53 and 54, as

~1
Vj(m, [., tl) = E

J{
– ; (Z’~,Z) + 2 j (b;z)

to

}
+ X@Xd + g:&, -- 2b;w, – 2b;G$ + 2w~P,z dt

. . .

Using calculations like those of Reference 3 for
eqn. 24 from eqn. 23, and as used in Section 3 for
eqn. 42 from eqn. 39, eqn. 55 may be rewritten as

V,(m, 10, (1) == tr {S,,OP,,(fO)} + fi’P,,(tO)fi – 2bj(t)fi

.1,

(55)

deriving
deriving

J+ {tr (M,, P,,) + xjQxd – 2b~G,, + gjRg,,} dt . (56)
to

Applying the results of the derivation of eqn. 25 from eqn. 33,
and considering an even partitioning of b, as

[1b,
b, --

-be”””””””””” “
(57)

eqn. 56 may be written as

V,(m, ~0, [1) = tr {SOP1(tO)} + m’P1(tO)m

!
– 2b~(/O)m + ~tr {SJGK,P1 + P, K;G’ – K$RKJ

fo

+ MP, + 2(L#L; ‘- ~#f’L#’2)}

+ X~QXd – g;Rg,, -t-2(g;R – b; G)g,,]dt (58)

Eqn. 58 is the most general result of the paper, since, by
setting K,, L,, and g,, to the optimal values given in eqns. 13,
7 and 14, the suboptimal performance index (eqn. 58) reduces
to the optimal performance index (eqn. 42). This is readily
shown using the following results from eqns. 27, 28, 15, 16,
26 and 13:

P,== PIK, =K . . . (59u)

P2=OIK,, =K . . . . . . (59b)

and from eqns. 51, 52, 17, 18, 13, 57 and 14:

bl=b/K, =K, gJ=g . . . . . . (60)

and also using eqns. 30, 31, 7 and 8:

S3=SIL,, =L . . . . . (61)

The suboptimal performance index (eqn. 58) is also the most
general performance index discussed in the paper, since, with
the appropriate substitutions, all the previously mentioned
performance indices are readily calculated. For example,
setting g, and Xd to zero means that from eqns. 51 and 52,
b, equals O, and the tracking-problem suboptimal performance
index (eqn. 58) reduces to the regulator-problem suboptimal
index (eqn. 25). This means that the following terms may be
identified as in Reference 1. The term m’P1(tO)m is the
performance index of a deterministic linear regulator when
the feedback law K,, is used instead of the optimal law K.
Note, for this case, that m = XO.The term tr {SOP1(tO)} is the
additional contribution if the initial state XO is only known
to the extent of its mean m and covariance ,S.. The first term
in the integrand of eqn. 58 corresponds to error in the estimate
of the state for the optimal case, and the second term corre-
sponds to error in the control from additive noise at the input,
also for the optimal case. The third term arises from sub-
optimality for the regulator problem and is dependent
on S3, a modified estimation error covariance, and a
matrix Pz which depends on the feedback law chosen.
The remaining terms are identified using eqn. 20. The terms

Jm’P1(rO)m -- 2b~m + ~xjQxd – g~Rg,,)dt give the perform-

ance index for the deterministic tracking problem with

J
optimal g, and K,, while the term ~g~R – b~G)g#f results

from suboptimality of the external $put g, and the feedback
law K,.
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Thus we see that all the various terms are identifiable costs,
and, since they are in a form suitable for digital computation,
the derivation of the tracking-problem performance index as
given in eqn. 58 is justified. Then too, if not all g,, K,, and L.$
are suboptimal, simplifications to the expression of eqn. 58
may be made using the appropriate eqns. 59, 60 or 61.

A particular case which may correspond to a practical
situation is when K, and L., are suboptimal and g, may be
selected to minimise the performance index (eqn. 58). From
eqn. 58, the optimal g$ minimises

J
-- b{(fo)m + ~g;Rg$ - 2b;Gg,,)cit . . . (62)

to

subject to the constraints given by eqns. 51, 52 and 57:

–61 = (F – GKJ’frl + ~Xd + (K;R – PIG)g,, . (63a)

and

bl(tJ= O . . . . . . . . . . .(63b)

Evidently this is a nonstandard quadratic loss-minimisation
problem. If it is not convenient to solve the minimisation
problem, a reasonable g, may be calculated from an equation
suggested by the completely optimal case:

g,, = R–l G’bt . . . . . . . . (64)

When this is inserted in eqn. 63 the following equation results
for bl:

–~1 = F’bl – PIGR-lG’bl + Qx~ . . (65a)

I!J1(tl)=O . . . . . . . . . . (65b)

Expr. 62 then reduces to

J

~1
–b*(to)m – (g;l?g,)dt . . . . . . (66)

[O

This corresponds to the elimination of the last term in the
performance index (eqn. 58), previously identified as a term
introduced due to suboptimality of the external input g~.

The main res tdt of this section is now summarised as
theorem 5.

Theorem 5. For the plant of eqn. 1 with noise defined as in
eqns. 2 and 3, suppose an estimator has feedback law L,,,

while the plant has feedback law K,$ and the external input
is g ~.The performance index (eqn. 4) is then eqn. 58, where b,
is given from eqns. 63 (being derived from eqns. 51 and 52),
F’l and Pz are linear differential equations, being derived from
eqns. 27 and 28 as

–Pl = (F -- GK$)’P1 + P1(F – GK,) + Q + K;RK, (67)

-Pz = (F – GK,)’PZ + PZ(F – L,TH) -- PIGK,, + K;RK,,

. . . (68)

Pl(t1)=P2((l) --0 . . . . . . (69)

and 5’3 is given from a linear differential equation derived
from eqns. 30 and 31 as

S3 = (F – L5H)S3 -t S3(F -- L,TH)’ } M + L,TNL,;

Sq(fo)= so

5 Conclusions

A performance

. . . (70a)

. . . . . . . . . (70b)

index having many terms has been
derived for suboptimal stochastic linear tracking systems.
The number of terms may be reduced only as the complexity
of the problem is reduced or as the feedback law and input
signals become optimal. For example, if the desired state
trajectory X(I is zero, the index reduces to that for the
stochastic-regulator problem, or, if the deterministic optimal
tracking problem is considered, the index reduces to the well
known optimal tracking-problem index.2

The significance of the particular form of the result is that,
since each term is an identifiable cost and is suitable for
digital computation, the systematic design of linear stochastic
tracking system controllers with controller-complexity con-
straints is now possible.
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