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OPTIMAL AND SYSTEM MYOPIC POLICIES FOR 
MULTI-ECHELON PRODUCTION/INVENTORY 

ASSEMBLY SYSTEMS* 

LEROY B. SCHWARZt AND LINUS SCHRAGE? ? 

In this paper optimal and near optimal policies are proposed for multi-echelon 
production/inventory assembly systems under continuous review with constant demand 
over an infinite planning horizon. Costs at each stage consist of a fixed charge per order or 
production setup plus a linear holding cost on "echelon" inventory. The objective is 
minimization of average cost per unit time. 

The major results of this paper are: a mathematically simple, often optimal, "system 
myopic" solution, a lower bound on the closeness to optimality of this solution, and a 
branch and bound algorithm which usually finds the optimal solution quickly. 

1. Introduction 

In this paper we describe optimal and near optimal policies for operating single 
product multi-echelon assembly production/inventory systems. In a multi-echelon 

assembly system each stage (which may be a production site, an assembly site, or 
merely a stocking site) obtains input from one or more immediate predecessors, 
perhaps with some delivery lag, and supplies output to a single successor, again with 
a possible delivery lag. The final stage, stage 1, satisfies the customer demand. 

Figure 1 shows three possible configurations of assembly systems, including (a) the 
serial system, in which each stage has only one predecessor stage; and (b) the pure 
assembly system, in which stages 2, 3, . . . , N are immediate predecessors of stage 1. 
Examples of assembly systems abound in the real world; e.g., the manufacture and 

assembly of automobiles, electrical appliances, etc. Serial systems are frequently 
found in processing industries; e.g., the steel or aluminum industries where the stages 
represent different physical and/or chemical transformations of the same basic 
material (ore, pig iron, sheet steel, etc.). Clark (1972) has an extensive survey of 

multi-echelon models. 
Our objective is to select ordering policies for assembly systems which minimize 

(or nearly minimize) average system cost per unit time over an infinite planning 
horizon when the customer demand rate is constant. Costs are of two types: a setup or 
order cost incurred at each stage whenever a batch is ordered or produced at that 

stage, and a holding cost for each stage charged continuously over time which is linear 
in the so-called "echelon" inventory at that stage. 

Clark and Scarf (1960) define the echelon stock of stage j as the number of units in 
the system which are in or have passed through stage j but have as yet not been sold. 

* Processed by Professor Edward J. Ignall, Departmental Editor for Dynamic Programming and 
Inventory Theory; received July 1973, revised April 1974 and October 1974. This paper has been with 
the authors 6 months for revision. 
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(a) 4 Stages Serial Assembly System 
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FIGURE 1 

The use of echelon stock holding cost rates permits some very convenient mathe- 
matical simplifications. However, this would not be sufficient reason to use this concept 
unless it fit many real world situations. In fact, echelon holding cost rates can be 
defined for any assembly system where the installation holding cost rates are non- 
decreasing as the goods get closer to the customer; e.g., where value is added (or extra 
costs incurred) at each successive stage of the production/inventory process. 

In recent years a number of algorithms have been developed for deterministic 
multi-echelon production/inventory assembly problems. Zangwill (1966, 1969), 
Veinott (1969), and Love (1972) present discrete time dynamic programming models 
under the assumptions of periodic review, finite time horizon, known but possibly 
varying demand, and concave costs. Love shows that under some conditions optimal 
periodic schedules can be determined for the periodic review infinite horizon serial 

problem when demands and costs are stationary. Kalymon (1972), using the Zangwill- 
Veinott approach, presents a decomposition algorithm which has been demonstrated 
to be computationally feasible for many problems. 

There have been two relatively recent approaches to the deterministic, continuous 

review, infinite horizon problem. For the serial problem, Taha and Skeith (1970) 
consider fixed order or setup costs at each stage, linear holding costs, noninstantaneous 

production, delivery lags between stages, and backorders for the product at the final 

stage. They assume that in an optimal schedule the lot size at any given stage is an 
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integer multiple of the lot size at its immediate successor stage (the integrality assump- 
tion) and suggest that the problem be solved by examining all combinations of such 
integer values. Under similar assumptions, but without backlogging, and using Clark 
and Scarf's (1960) concept of echelon stock, Crowston, Wagner, and Williams (1973) 
prove the optimality of the integrality assumption and present an algorithm which 
views the N stage assembly problem as an N stage dynamic programming problem 
with some appropriate computational refinements. Both of the above approaches 
assume that the lot size at stage 1 is an integer multiple of some basic unit, e.g., 1. 
The choice of the basic unit affects the computational difficulty. This assumption is 
not required in the model presented here; that is, Qi, the stage 1 lot size, need not be 
integer valued. If there are situations in which one wishes this restriction, it is easily 
incorporated. 

2. Problem Description 

Consider an assembly production/inventory system with N stages numbered from 
1 to N. Stage 1 is defined to be the final stage; it must provide output so that the 
outside customer demand, which occurs at a constant rate, is satisfied over an infinite 
horizon without backlogging or lost sales. 
Define: 

D = the demand rate at stage 1; 

pj = production or assembly rate at stage j when production is in progress (pj = 0o 
corresponds to instantaneous ordering); 

pj = D/pj for j = 1, 2, . . ., N; 

h'j = holding cost per unit time charged against the echelon stock of stage j; 
Kj = fixed cost of producing or ordering a batch at stage j; 

s( j) = the single immediate successor stage of stage j, j = 2, ... , N, s(1) = 0; 
without loss we require i > s(i); 

P( j) = the set of immediate predecessors of stage j; i.e., {k I s(k) = j}; 
A ( j) = the set of all predecessor stages of stage j. For the serial system A ( j) = 

{j+ 1,... ,N}; for the pure assembly system A(1) = {2,... .7N)) 
A( j # 1) = 0. In Figure l(c) A(2) = {4, 5, 6, 7}, A(5) = {7}, A(8) = 0. 

Qj = lot size produced or ordered at stage j (to be determined); 

nj = Qj/Qj(j) for j = 2, * N; 
mj = njm,(j) for j = 2, ...,N; m1 = 1. 

Crowston, Wagner, and Williams (1973) established that there exists an optimal 
policy in which Qj = njQ8(j) , j = 2, . .. , N, where nj is an integer. Thus, the optimal 
policy for the N stage problem is specified by a real positive number, Qi, and N - 1 

integers, nj , j = 2, ... , N. 
If one assumes that no lot splitting occurs in the shipping between stages, that is, no 

production is shipped from stage j to stage s ( j) until the entire batch is completed at 

j, and that shipping lead times are independent of batch sizes, then the optimization 
problem can be written as: 

(1) Minimize N (KjD/Qj + hjQjl2) 

subject to 

(2) Qj =njQ(j) for j = 2, . . . ,N, 

(3) nj 1 and integer, 
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where 

(4) hj = (1 + p,)h'j + 2Pi EkEA(&) h'k. 

See Appendix I for details. 
If one requires Q, to be an integer multiple of some basic unit Qo (given), one simply 

appends the additional constraint Q- = n,Qo, where ni is to be determined just as n1 

for] = 2 . .. . N. 
One can make a number of useful observations about the problem when stated in 

the above form. First of all one can obtain an easily computed lower bound on the 

cost of the optimal solution by dropping constraints (2) and (3) and solving. This 

relaxed problem is solved by applying the standard EOQ formula at each stage. The 

optimal "continuous" Qj's are then given by: 

(5) Qi'_(2KjD/h)"12 for j = 1, 2, . .. , N. 

The cost associated with this (possibly infeasible) solution is a lower bound on the 

cost of an optimal solution to problem (1) -(3). If the nj's implied by the Qjc's are all 

positive integers, then of course the Qjc's are optimal for the original problem. 

With slightly more effort a better bound may be obtained. We know that in any 

feasible solution Qj must be at least as large as Q,j) . Therefore consider these con- 

straints substituted for (2) and (3): 

(6) Minimize E (K1D/Q1 + hjQ1l2) 

(7) subject to Qj > Q,(j) for j = 2, . . . , N. 

This is a problem with a convex objective function to be minimized over a convex 

set so any local minimum is also a global minimum. Denote the optimal batch sizes for 

this "constrained continuous" problem by Q'` for ] = 1, 2, ... , N. A simple procedure 

for solving (6) -(7) is: 

(a) Solve (6) by itself; i.e., compute Qjc for j = 1, 2, . . . ,N. 

(b) If all constraints (7) are satisfied, i.e., Qkc > Q:(k) for all k, then stop; else find 

the largest i such that there is a k in P (i) for which Qkc < Qic. Find that j in 

P(i) which minimizes QjC and then modify (6)-(7) in the following fashion: 

K8(j) , K8(j) + Ki ; 

h*()- h8(i) + hi ; 

Kj -- 0; 

h- 0, 

s(t) -i for any t in P(j) and 

P( -P(i) UP(j). 

All that step (b) does is select a constraint in (7) which is violated and force the 

violated constraint to hold at equality. This is done by "collapsing" stage j into its 

successor stage, s (j). Steps (a) and (b) are similar in spirit to a procedure suggested 

by Geoffrion (1967). 
To show that this procedure finds an optimal solution to (6)-(7), we must show 

that if a constraint in (7) is selected at any step in the procedure then it must hold as 

an equality in the optimal solution to (6)-(7). 



POLICIES FOR MULTI-ECHELON PRODUCTION/INVENTORY SYSTEMS 1289 

PROOF. First we make three observations. They can be easily proven by analyzing 

the Kuhn-Tucker conditions for (6)-(7) (see Appendix II). 

(i) If QZk > Q&C) , then Q"' _ Qkc; 

(ii) If Q C > Q. for all k in P(i), then Q. > Q 
(iii) For any'k in the P(i) selected in step (b), Q > Qkc. 

Now assume the contrary of what is to be shown; that is, assume: (a) QjC > QT' 

where j and i are as chosen in step (b). Now (a) and observation (i) imply: (,B) 

QjC _ QjC. By (iii), plus the manner of choosing j in step (b), and (A) we have: 

(y) QjC < Q"" for all k in P(i). Now (a) and (y) imply: (a) Q"" > QT for all k in 
P(i). Combining (a) and (ii) gives us: (0) QT> > QiC. Now (A), (0) and the fact that 

QjC < Q.C lead to the conclusion that Qj < QC, which directly contradicts our initial 
assumption, (a). Therefore, we must have what was to be proven: QjC = Q$C. 

3. Optimal Integer Solutions 

Optimal solutions to problem (1)-(3) can be found by a branch-and-bound pro- 

cedure. There are N - 1 levels in the enumeration tree, corresponding to the number 

of nj's which must be specified. If the N - 1 optimal values for the nj's are specified 

then one need only determine the optimal value for Qi by applying the standard EOQ 
formula to the problem: 

(8) Minimizew.r.t. Q, Z,=1 (Kj/mj)/Qi + (Q1/2) 2j-1 m3h1. 

This yields 

(9) Qi = [2D EZ8_1 (Kj/mj) / mihi]1. 

Note that this corresponds to the standard EOQ where _ Kj/mj is the average 

system setup cost per batch at stage 1 and EJ=2 mjhj is a composite system holding 
cost. 

We will assume that the reader is familiar with the rudiments of branch-and-bound 
as described in, say, Lawler and Wood (1966). The search begins by solving problem 

(6)-(7) using the procedure described in ?2. If the solution to (6)-(7) satisfies (3); 
that is, if ni = Qjc/Q() is integer for j = 2, . . . , N, the optimal policy is at hand. 

Otherwise a noninteger nj is chosen for branching. The branches at a particular level in 

the tree correspond to the possible integer values (1, 2, . . .) that can be realized by 
the particular nj assigned to the level. An apparent theoretical difficulty with this tree 

structure is that it has an infinite number of branches. However, for practical purposes 

this poses no difficulty for reasons to be given below. 

The Branching 

When taking a branch at some level in the tree we set some variable nj equal to some 

integer, say Ij, and require Qj = IjQs(j). This will give us a condensed problem 

identical in form to problem (1)-(3) but without variables Qj and nj . The following 

parameter adjustments are made to (1) and (2): 

.Ks(j) - Ks(j) + Ki/Ij, 

ks(i) <- s(i) + Ijhj, 

and for any k in P ( j) we replace the constraint 

(2') 
Qk = nkQs(k) by 

Qk = nklQ(J) 
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For any stage i such that s(i) = j, the constraint Qi > Q,i is modified to 

(V) ~~~~~~~~Qi >_ IjQs(j) 

The bounds obtained are used in the standard fashion to limit the depth of the tree 
search. 

The bounds can also be used to limit the breadth of the search because the bounds at 
a particular level in the tree are quasiconvex in nj . For example, if at the level where we 
are branching on nj we find that the minimum of the lower bound occurs at nj = 10, 
then we need not examine any branches withnj > 15, say, if the bound at nj = 15 was 
sufficiently high so that the depth search could be stopped at that branch. Similar 

arguments would apply for nj < 6, say, if the bound at nj = 6 was sufficiently high to 
stop the depth search. We know that the bounds could only get worse for nj < 6 
or nj> 15. 

In order to show that the bounds are quasiconvex in nj at a given level in the tree, 
consider the manner in which a new level is added to the enumeration tree. We solve 
the bounding problem at the previous level and then select a stage j for which the 
implied value for nj is noninteger. Suppose that the implied noninteger value for nj is 

fj. Consider adding either of the following two constraints to the bounding problem 
just solved: 

(10) Qj _ fj + k) Qj 

or 

(11) Qj (fj -k)Q 

where k is strictly positive. 
The fact that the objective function in the bounding problem is strictly convex in 

Qj and Q8fj) implies that there must be unique minimizing values for Qj and Q.(j) . 
Therefore, if either (10) or (11) is added to the problem they will be binding. It 

follows that the minimal cost for the bounding problem with either constraint added 

is a nondecreasing function of k. This is true because the larger the value of k, the 

smaller is the set of feasible solutions. Therefore the bound computed at the level in 

the tree in which we branch on nj is quasiconvex in nj . 

4. System Myopic Policies 

Ignall and Veinott (1969) and others have suggested myopic policies for multi- 

period optimization problems. Such policies optimize a given objective function with 

respect to the current period and ignore multiperiod interaction effects. Multistage 
planning systems permit a different type of nearsightedness, one which we call "system 

myopia." System myopic policies optimize a given objective function with respect to 

any two stages and ignore multistage interaction effects. The system myopic policy 
we chose to investigate determines the ni values for problem (1)-(3) by considering 
each stage j and its s( j), j = 2, . . . , N, as a two-stage system. Schwarz (1973) has 

shown that the optimal integer nj = Qj/Qs(j) for such systems is the smallest integer 

nj satisfying 

(12) nj(ni + 1) > M1 

where Mj is the myopia ratio defined as 

(13) Mj = (Kjh,(j)/K,(j)hj). 
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We shall denote these n values njm,j = 2,... , N. After the njm are computed, Qi is 

computed using (9). 
There is much to recommend the application of system myopic policies. First, the 

system myopic policy is trivially easy to determine when compared to the algorithm 

for determining the optimal nj's. Second, the cost of the system myopic policy may be 

quite close to the cost of the optimal policy. In order to see this, note that the njm 

represent one of the lattice points immediately surrounding the optimal solution to 

problem (1)-(2). That is, if we denote the set of optimal continuous nj's as njf = 

Qjc/QC(j) = M'2, where the Qjc are defined as in (5), it is easily shown that 

lnjM - njc I < 1. Such proximity suggests that if we define C (nj) as the value of (1) 

for given values of nj, j = 2, ... , N, and the correspondingly optimal Q, from (9), 
then C (njM) may be close to the value of C (njc), which is a lower bound on the value 

of C(nj*) where nj/ is the optimal nj, j = 2, . . . , N. Hence it follows that C(njM) 

may be close to C (nj*), j = 2, ... , N. Moreover, since it can be shown that 

(C(n3M) - C(njc))/C(njc) is in general a decreasing function of (njM -njc)/njc 

one can argue that the larger the Mj, the closer C(njM) is to C(nj*). In other words, 
the larger the Mj's, the better the system myopic solution, all other things being equal. 

Do we expect the Mj's to be large or small for problems with realistic parameters? 

If, as in many instances, the Kj's increase in j and the hj's decrease in j, we may expect 

the Mj's to be larger than one, how much larger depending on the increase (decrease) 

in the setup (holding) costs at higher stages of the system. 

In order to empirically test the goodness of system myopic policies we compared the 

cost of optimal and system myopic policies by computing 

(C (nim) - C (n.*)) 0 
(14) E = C (nj*) 

for a number of test problems. In particular, 500 serial and pure assembly problems 

with N = 3, 4, and 5 stages each were generated. The closeness measure, E, which is 

the difference in cost between the optimal and the system myopic policy as a per- 

centage of the cost of the optimal policy can be shown to be independent of K1, hi, 

and D. Therefore, in order to generate a problem it was only necessary to generate 

K2,. . . , KN and h2, . .. , hN . We did so by randomly selecting values of Ks(j)/Kj and 

hs(j)/hj from the quantities 0.1, 0.5, 1, 2, 10. For each set of 500 problems the average 

TABLE 1 

Closeness of System Myopic Policies to Optimal 

Number of Optimal 
Stages Problems E Emax Frequency 

Serial Systems 

3 500 0.77 15.44 2.28 362 = 72.4% 

4 500 2.61 35.05 5.80 262 = 52.4% 

5 500 4.24 72.89 8.10 198 = 39.6% 

Assembly Systems 

3 500 1.05 20.76 2.63 333 = 66.6% 

4 500 2.12 52.47 4.81 248 = 49.6% 

5 500 4.06 62.10 8.21 153 = 36.0% 
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TABLE 2 

Closeness to Optimality of System Myopic Policies 
(all Mj > 1) 

Number of Optimal 
Stages Problems E Emax Frequency 

Serial Systems 

3 164 0.15 3.28 0.44 118 = 72.0% 
4 106 0.21 4.88 0.55 56 = 52.8% 
5 54 0.53 6.90 1.12 15 = 27.8% 

Assembly Systems 

3 215 0.02 0.62 0.07 172 = 80.0% 
4 177 0.03 0.59 0.08 131 = 74.0% 
5 170 0.09 1.65 0.25 84 = 49.4% 

E, E, the maximum E, Emax, the standard deviation a-, and the number of times the 
system myopic solution was optimal was determined. The results appear in Table 1. 

Computation time to determine both the optimal and system myopic policies averaged 
less than 0.2 seconds per problem on the IBM 360/65 computer. 

As Table 1 shows, system myopic policies in general were close to optimal: the 

average error never exceeded 5% of the cost of the optimal policy and system myopic 

policies were optimal for about half of the problems generated. 
If we consider the subset of problems for which all Mj > 1, system myopic policies 

did even better, as is shown in Table 2. Note that the average error never exceeded 1%. 
Although the above tests are by no means conclusive, they do provide evidence to 

support the hypothesis of the "near optimality" of system myopic policies, at least for 

systems with relatively few stages. 

5. Summary and Conclusion 

In this paper we have described optimal and near-optimal solutions for the deter- 

ministic N-stage assembly production/inventory problem. Although the largest 

amount of space in this paper was concerned with optimal policies, the potentially 

most important aspect of this paper is its concern in presenting theoretical and em- 

pirical evidence for the near optimality of system myopic policies which: (1) are easy 

to understand; (2) require less information; and (3) are fast and easy to compute. 

The implementation advantages of such policies are obvious. 

Appendix I 

In this appendix we will establish that the optimal policy for the N-stage assembly 

system corresponds to the solution to problem (1) -(3). 
By arguments quite similar to those used for the one-stage EOQ problem, it can be 

proven that there exists an optimal policy for the N-stage assembly problem which is a 

stationary "cycling" policy; that is, a policy under which each stage in the system 

orders (produces) the same quantity each time that it orders (produces). See Schwarz 

(1973) for a more general discussion of cycling policies. Hence the average incremental 

cost per unit time (henceforth called average cost) for any stage j is the total cost 

accrued between orders (set-ups) divided by the time between orders (set-ups), 
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Qj/D. The average cost of the system is then simply the sum of the average costs for 
all stages. 

For the N = 1 stage system, the development of the average cost is straightforward. 
A cycle begins when (Ql/pl) D = piQj units are on hand. This inventory is used to 
satisfy the outside demand during the time it takes to complete the production of Qi 
units, Ql/pl. When production begins, stage l's inventory increases at the rate 

(Pi - D), reaches a maximum of (1 - P1) Qi + piQ1, at which time production ceases, 
and declines at the rate D until the cycle ends with p'Qi units on hand Thus the 
average cost for a one-stage system is KiD/Q1 + h1Q1/2 where hi = (1 + pi) h'1. 

Similarly, when there are no delivery lags a cycle for any stage in an N-stage system 
begins with an installation stock of pjQj and a corresponding echelon stock of 

P3Qj + EkES(j) PkQk , where S( j) is the set of all successors to stage j; that is, S ( j) = 
{s(j), s(s(j)), .. . , 1}. This stock grows at the rate (pj - D) until production 
ceases, at which time it declines at the rate D. Hence the average cost for stage j is 

KjD/Qj + h'j(pjQj + EkES(j) PkQk + (1 - pj)Qj/2). 
Therefore the average cost for the N-stage system is 

(15) 1n { KjD/Qj + h'j(1 - pj)Qj/2 + h'jpjQj + EkEs(j) h'jpkQk}. 

After rearranging (15) and substituting (4) we obtain (1). Constraints (2) and (3) 
follow directly for the integrality assumption established by Crowston, et al. 

The above development was based on the assumption that the delivery lag between 
stage j and s ( j), say lj, equals zero for all j = 2, . . ., N. However, fixed delivery lags 
have no incremental effect on costs because a given ij > 0 merely requires an addi- 

tional average pipeline inventory between j and s( j) of ljD units, which increases 

average costs by the constant h'jljD. 

Appendix II 

Let us write the Kuhn-Tucker conditions associated with problem (6)-(7). Let Xk 

be the Lagrange multiplier associated with the constraint Qk - Qs(k) for k = 
2, 3, ... , N. The Q" 's, for k = 1, 2, ... , N, must satisfy the Kuhn-Tucker conditions: 

(iv) -KkD/Qk2 + hk/2 - Xk + iEP(k) Xi = 0, 

(v) Qk - Q8(k) 0, 

(vi) Xk ? O, 

(vii) Xk(Qk - Qs(k)) = 0. 

The values Qkc are simply the values obtained for the Qk's in (iv) when we set all 
the X's = 0 and disregard (v). 

First consider observation (i), namely, if QC > Qc) then Qc <? Qkc. Now Q'c > Qk 

implies by (vii) that Xk = 0. But EiEP(k) X > 0 in (iv) which implies that Q'C < Qkc. 

Observation (ii) is: if Q'ci > Qkc for all i in P(k), then Q' > Qkc. Now Q7i > Q' 
for all i in P(k) implies by (vii) that Xi = 0 for all i in P(k). But -Xk < 0 in (iv), 
which implies that Qkc > Qkc. 

Observation (iii) is that for any k in the P (i) selected in step (b) of the algorithm 
we must have Q" > Qk". Suppose Qkc < Qkc for some k in P (i) as selected in step (b) 
of the algorithm. Consider an alternative solution wherein Q" = Qkc and Q7c = QjC 

for all j E P(k). By construction and the selection of i in step (b), the alternative 

solution satisfies (7). Moreover, the alternative solution has a lower cost, so Q" < Qkc 

cannot be true. 
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