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Abstract. We propose the use of weakly nonlinear passive materials for

prospective applications in integrated quantum photonics. It is shown that

strong enhancement of native optical nonlinearities by electromagnetic field

confinement in photonic crystal resonators can lead to single-photon generation

only exploiting the quantum interference of two coupled modes and the effect

of photon blockade under resonant coherent driving. For realistic system

parameters in state of the art microcavities, the efficiency of such a single-photon

source is theoretically characterized by means of the second-order correlation

function at zero-time delay as the main figure of merit, where major sources of

loss and decoherence are taken into account within a standard master equation

treatment. These results could stimulate the realization of integrated quantum

photonic devices based on non-resonant material media, fully integrable with

current semiconductor technology and matching the relevant telecom band

operational wavelengths, as an alternative to single-photon nonlinear devices

based on cavity quantum electrodynamics with artificial atoms or single atomic-

like emitters.
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1. Introduction

Emerging quantum photonic technologies mostly rely on the ability to generate, manipulate

and detect quantum states of light, with the challenging goal of bringing quantum information

and communication devices to large-scale applications (see [1, 2] for recent overviews). Single-

photon sources (SPS) and linear optical operations are necessary ingredients for prospective

developments in quantum information processing [3, 4], and remarkable progress toward a fully

integrated and complementary metal-oxide-semiconductor (CMOS)-compatible technology has

been achieved over the last few years [5]. However, the ability to generate pure single-

photon Fock states on demand in a fully integrated quantum photonic platform is still lacking.

Commonly employed SPS in quantum optical experiments rely on attenuated laser beams

and parametric down-conversion. Typically, a coherent source of radiation is sent through

a nonlinear medium possessing an intrinsic χ (2) nonlinear susceptibility [6], which is able

to produce entangled photon pairs and hence heralded single-photon states upon projective

measurement of one of the two channels [7]. Even though such sources inevitably suffer from

low efficiencies [8], this is currently the preferred way to inject single-photon wave packets

as the input for integrated quantum circuits through external fiber coupling [5], although an

integrated source of heralded single photons has recently been realized [9].

Generation of pure single-photon states requires a quantum nonlinear source, i.e. ideally

a two-level emitter that is prepared in its excited state and produces exactly a single quantum

of light per pulse when relaxing to its ground state. One of the measures of SPS efficiency is

determined by the degree of antibunching in its second-order correlation function at zero-time

delay, g(2)(0) < g(2)(τ ), whereby an ideal SPS satisfies g(2)(0)→ 0 [10]. Tremendous progress

in solid-state SPS has been made since the development of artificial quantum emitters, such as

semiconductor quantum dots or atomic-like defects in solids (for a review, see [8] and references

therein). In practice, cavity quantum electrodynamics (CQED) is the most straightforward way

of obtaining single-photon nonlinear behavior and hence an SPS on demand [11], allowing

one to efficiently access the underlying anharmonicity introduced by a single atomic-like

emitter through a high-finesse resonator [12, 13]. In solid-state CQED, the most promising

results on single-photon emission have been originally achieved with III–V materials, by using

non-resonantly excited semiconductor quantum dots coupled to photonic microcavity modes,

either in the Purcell regime [14–16], in strong light–matter coupling [17, 18], or even through

a direct coupling to a one-dimensional mode such as a nanowire [19] or a photon crystal
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waveguide [20–22]. Single-photon nonlinear behavior in the strong light–matter coupling

regime has been shown also under resonant excitation [23, 24], i.e. exploiting the photon

blockade effect [25]. The latter occurs in systems where two photons inside a resonant cavity

produce an anharmonic shift of its response frequency that is greater than the line broadening

induced by losses and decoherence. Under such conditions, the transmission of a coherent light

field is inhibited by the presence of a single photon within the cavity, until such a single-photon

state is released: the system converts a low-power coherent state into single-photon streams at

the same resonant frequency, thus behaving as a single-photon source. The efficiency of such

a source can be assessed by measuring the antibunched g(2)(0) in the transmitting channel, as

experimentally shown for the first time with single caesium atoms strongly coupled to an optical

Fabry–Pérot cavity [26].

A similar device can be realized when using a Kerr-type nonlinear medium, which

gives rise to an equivalent response in terms of the degree of photon antibunching of the

transmitted field [27]. Theoretical proposals have been presented over the last few years to

achieve single-photon blockade in solid-state systems with resonant Kerr-type nonlinearities,

such as fully confined polariton boxes below the diffraction limit [28–33]. In the latter, the

Coulomb interaction of electron–hole pairs in a semiconductor or insulating resonant medium

is responsible for a Kerr-type nonlinear coefficient, potentially able to produce photon blockade.

Owing to experimental difficulties in reaching diffraction-limited polariton confinement with a

sufficiently large cavity lifetime, no evidence of quantum nonlinear behavior from these systems

has been reported yet. Besides applications of such devices as SPS in integrated quantum

photonics, technologies might be limited in the long term by a lack of suitable active media

in the telecom band, necessary to be interfaced with long-distance communication networks,

and the commonly cryogenic working temperatures [8].

The possibility to engineer an SPS based on single-photon blockade from non-resonant

Kerr-type nonlinearities in passive devices (such as nano-structured silicon or GaAs platforms in

the near infrared) could represent a breakthrough from quantum photonics perspectives. Firstly,

it would allow large flexibility on the operational wavelengths to be engineered in the telecom

band by the photonic confinement in the materials transparency window. Secondly, it would

potentially allow room temperature operations and possibly the elevated temperatures required

for telecom devices. Finally, it would only require a coherent pump source such as a standard

fiber-coupled telecom laser, thus providing a compact, stable and relatively low-cost device.

It is a common perception that ordinary nonlinear media are intrinsically unable to display

significant single-photon nonlinear behavior and a very large number of photons are necessary

for producing appreciable effects, owing to the small value of the χ (3) elements in ordinary bulk

media [34]. However, interesting perspectives might come from a proper nano-structuring of

passive nonlinear materials, which could lead to strongly enhanced effective nonlinearities down

to the single-photon level [35], especially using photonic crystal type confinement allowing one

to reach ultra-high quality factors [36] and ultra-small confinement volumes [37] in a purely

dielectric structure. Even though potentially not unrealistic, such a goal is still quite challenging

with single resonators.

In this paper, we report on an alternative strategy to realize an integrated SPS based on non-

resonant Kerr-type nonlinearity, which exploits the effects of quantum interference in coupled

photonic resonators [32, 33]. These effects have been shown to arise even for a weak nonlinear

response, namely for an anharmonic shift of the two-photon energy levels much smaller than

the cavity mode linewidth. Although very small, this anharmonic shift is enough to introduce a
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phase shift between different excitation pathways to the two-photon state, which for well chosen

values of the system parameters suppresses its occupation as a result of destructive interference,

leading to antibunching of the output light. We note that an analogous mechanism has already

been characterized in the simplest CQED system—a two-level atom coupled to a single-mode

resonator—in a seminal work by Carmichael [38]. For a given value of the anharmonic shift,

this scheme is able to relax by more than three orders of magnitude the cavity loss rate over

conventional photon blockade devices, making the mechanism perfectly viable, for example,

with commonly achievable defect cavities in photonic crystal structures. For such structures, we

further show that the photon antibunching is robust to typically expected rates of pure dephasing.

A generalization of this scheme to multi-cavity arrays might give rise to interesting perspectives

on the generation of continuous variable entangled states on chip [39]. In this work, we focus

our analysis on the optimization of g(2)(0) as a figure of merit for SPS, leaving the specific

characterization of the device output in terms of single-photon wave packets for future work.

With this, we also expect this proposal to stimulate new research efforts in silicon quantum

photonics and CMOS-compatible quantum information technology.

The paper is organized as follows. In section 2, we present the basic model, based on

a master equation for the system Hamiltonian and dissipative terms including the effects of

losses and dephasing. In section 3, we give an overview of the steady-state results, quantifying

the optimized antibunching as a function of the system parameters, and test its robustness with

respect to pure dephasing mechanisms. Finally, we draw conclusions from this work in section 4.

2. The model of driven/dissipative coupled nonlinear resonators

The formalism introduced in the previous work for a single resonator [35] can be straight-

forwardly generalized to the case of two tunnel-coupled resonators made of a Kerr-type

nonlinear material, or a photonic molecule, schematically represented in figure 1. Each resonator

is assumed to be single-mode, where âi ( â
†
i ) define the destruction (creation) operator of a single

photon (i = 1, 2 labels the two resonators). As in [32, 33], we consider the nonlinear second-

quantized Hamiltonian

Ĥ =
∑

i=1,2

[h̄ωi â
†
i âi + Unlâ

†
i â

†
i âi âi ] + J (â

†
1â2 + â

†
2â1)+ F e−iωL t â

†
1 + F∗ eiωL t â1, (1)

where the linear part describes two harmonic oscillators, neglecting the zero point energy, J/h̄

is the tunnel coupling rate between the two resonators4, and F/h̄ is the coherent pump rate at

the continuous wave laser frequency ωL. Following the scheme introduced in [32], only one

of the two resonators is driven, and light will be assumed to be collected only from the same.

For the case of a passive nonlinear resonator, the nonlinear energy shift for each mode can be

approximated as [35, 40]

Unl ≃
3(h̄ω0)

2

4ε0

χ (3)

ε2
r

∫

|Eαi(r)|4 dr = 3(h̄ω0)
2

4ε0Veff

χ (3)

ε2
r

, (2)

4 We are assuming here that a tight-binding scheme for neighboring photonic resonators holds, in which the tunnel

coupling rate derives from the overlap between the evanescent tails of the cavity mode profiles. Such a formal

expression of the coupled modes is valid only in the perfectly resonant condition, i.e. ω1 = ω2, as we will assume

in the following.
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Figure 1. Scheme of two coupled resonators made of a Kerr-type nonlinear

material. We highlight that just one of the cavities is resonantly driven by a

coherent light source, and output light is collected from the same according to

the scheme proposed in [32].

where the effective mode volume is defined as V −1
i,eff = V −1

eff =
∫

|Eαi(r)|4 dr, from the normalized

field profile in each cavity, Eαi , for the specific nanocavity implementation (see [41] for a review).

For this purpose, we will assume constant values for the average real part of the nonlinear

susceptibility and relative dielectric permittivity, χ (3) and εr, respectively, to have realistic order

of magnitude estimates on materials of current technological interest5. The Hamiltonian can be

expressed in a rotating frame with respect to the pump frequency, 1ωi = ωi −ωL,

Ĥ =
∑

i=1,2

[h̄1ωi â
†
i âi + Unlâ

†
i â

†
i âi âi ] + J (â

†
1â2 + â

†
2â1)+ Fâ

†
1 + F∗â1. (3)

The driven/dissipative character of this model is taken into account by a master equation

treatment for the system density matrix in the Markov approximation

ρ̇ = 1

ih̄
[ρ, Ĥ ] +L(1,2) +Ldeph, (4)

where

L
(1,2) =

∑

i=1,2

γi

2
[2âiρâ

†
i − â

†
i âiρ− ρâ

†
i âi ] (5)

is the Liouvillian operator in the usual Lindblad form for the two resonators modes, and

L
deph =

∑

i=1,2

γ ∗
i

2
[2â

†
i âiρâ

†
i âi − â

†
i âi â

†
i âiρ− ρâ

†
i âi â

†
i âi ] (6)

models the pure dephasing for the two resonators modes.

5 Note that we are neglecting self-consistent nonlinear effects on the cavity field profile induced by the Kerr

nonlinearity itself (e.g. field expulsion from the cavity region), which could renormalize the effective value of Unl.
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In this work, we generalize the model to account for possible unbalanced losses between

the two normal modes of the system. In the following, we will only consider the case

1ω1 =1ω2 (with straightforward generalization), under which conditions one has the two

symmetric and antisymmetric combinations, respectively, given by

â+ = 1√
2
(â1 + â2), â− = 1√

2
(â1 − â2). (7)

In this case, the losses can be described through the corresponding Liouvillian for the two

coupled modes in the Lindblad form

L
(±) = γ+

2

[

2â+ρâ†
+ − â†

+â+ρ− ρâ†
+â+

]

+
γ−
2

[

2â−ρâ†
− − â†

−â−ρ− ρâ†
−â−

]

. (8)

One can easily show that when γ1 = γ2 = γ and hence γ± = γ , we obtain L(±) = L(1,2), as

expected. For the latter model, pure dephasing is taken into account by the Lindblad term as

in equation (6), but for the operators â+ and â−.

3. Toward passive single-photon sources

We hereby analyze the device represented in the scheme of figure 1 as a potential SPS:

a photonic molecule is driven by a low power input laser impinging only on cavity 1, and output

light is collected from the same cavity (see the next section for a possible realization). The device

could realize an efficient SPS if the light emitted from cavity 1 is strongly antibunched [32].

In the following, we assume the normalized degree of second-order coherence from the first

resonator, g(2)(0)= 〈â†2
1 â2

1〉/〈â†
1â1〉2, as the figure of merit quantifying the device efficiency.

3.1. Model parameters

We consider passive materials where the non-resonant nonlinearity is determined by the bulk

contribution to the third-order material susceptibility, where the real part of the χ (3) elements

is responsible for the nonlinear frequency shift while the imaginary part gives rise to an

additional contribution to losses, such as two-photon absorption (TPA). As shown in [35],

TPA is essentially negligible for the low power intensities that would be required for single-

photon nonlinear operation in such devices. For this reason, we will neglect its effect here.

Typical semiconductor or insulator materials employed in the optoelectronic industry possess a

real part of third-order susceptibility of the order of 10−19–10−18 in Si units (m2 V−2) [34, 35].

We focus here on photonic crystal type confinement, where remarkable figures of merit (such

as, e.g., ultra-high quality factors) have already been shown with both silicon (for a review,

see [42]) and GaAs materials [43]. Moreover, a strong enhancement of second- and third-order

nonlinearities has also been reported [43–45]. In such nanostructures, a realistic cavity mode

confinement can be of the order of Veff = (λ/nr)
3 ≃ 0.1µm3 (for near infrared operation, i.e.

λ∼ 1µm and nr = 3 for typical semiconductors in this wavelength range), from equation (2)

we have an estimate for the single-photon nonlinearity of the order of Unl ≃ 10−3 µeV. This is

certainly a very small value, as compared to typical resonant nonlinearities induced by QD

or QW transitions [28]. However, we aim at exploiting the photon blockade mechanism in

weakly nonlinear tunnel-coupled devices, as introduced in [32]. To this end, we assume a very

specific realization of such a proposal involving coupled photonic crystal cavities and access

waveguides integrated on the same photonic chip, as schematically represented in figure 2. In
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Figure 2. Sketch of a possible realization of an SPS based on the scheme shown

in figure 1, with a photonic crystal integrated circuit fabricated with a nonlinear

material as the underlying platform.

this case, typical tunnel-coupled micro-cavities display modes with spectral splitting of the order

of 1E± = 2J ∼ 1 to a few meV [46, 47]. Finally, the quality factor of cavity modes in the near

infrared is typically of the order of Q ∼ 104–105, and we can safely assume Q ∼ 30 000 as a

realistic value, which gives a typical cavity mode linewidth h̄γ ≃ 0.025 meV for a resonance

around h̄ω1 ≃ 0.8 eV (the typical telecom wavelength λ= 1.55µm). Such realistic values for

silicon- or GaAs-based photonic crystal chips at operational wavelengths in the most interesting

telecom band allow us to assume normalized parameters in the model Hamiltonian (3) that

are consistent with state-of-the-art semiconductor-based photonic technology: Unl ∼ 5 × 10−5,

J ∼ 50 (in units of h̄γ ).

3.2. Optimal antibunching

Given the basic numbers, we now explore the efficiency of such SPS spanning the parameters

space for the corresponding master equation, which is solved in its steady state by numerically

determining a quantum average on ρss, which is the density matrix corresponding to the

eigenvalue λss = 0 in the linear eigenvalue problem Lρ = λρ.

First, in order to numerically infer the optimal resonance-pump detunings, we show in

figure 3 the calculated g(2)(0) as a function of 1ω1 and 1ω2, respectively. We truncate the

Hilbert space to consider a maximum number of photons Nmax = 12 in the basis set of Fock

states, which we checked to be sufficient for convergence. Realistic model parameters are

assumed, as described in the previous section and reported in the figure caption. Again, we

point out that all the energies are intended in units of h̄γ = 25µeV, as explained above. The

minimum value of g(2)(0) identifies the optimal operation detuning of the laser frequency from

the bare resonators, which is 1ω1 =1ω2 ≃ 0.2, for which g(2)(0)≃ 0.42.

While the previous parameter can be experimentally adjusted with a tunable laser as

the input source, there are characteristics that depend on the specific device implementation.

In particular, coupled modes of photonic crystal molecules may display asymmetric losses

according to the mode parity, i.e. γ+ 6= γ−, as experimentally shown, e.g., in [46]. This effect

is not surprising, since unbalanced Q-factors of symmetric and antisymmetric modes can be

traced back to the peculiar loss mechanism in such planar photonic crystal cavities, where

perturbative coupling to radiative modes depends on the mode parity with respect to a defined
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Figure 3. Numerical solution for the zero-time-delay second-order correlation

represented in color scale plot as a function of 1ω1 6=1ω2, with parameters

(units of h̄γ ): h̄γ = 25µeV, Unl = 4 × 10−5 and J = 56, F = 10.

Figure 4. Color scale plot of the numerical solution for the zero-time-delay

second-order correlation as a function of γ+/γ and γ−/γ , with parameters (in

units of h̄γ = 25µeV): 1ω1 =1ω2 = 0.2, F = 15, Unl = 4 × 10−5 and J = 56.

symmetry plane of the system [48]. In figure 4, we consider the case in which the two resonators

possess the same basic characteristics, i.e. the same frequency detunings 1ω1 =1ω2 = 0.2,

and the same dissipation rates for each isolated cavity mode, γ . We then study the behavior of

the SPS in terms of the symmetric and antisymmetric modes losses. Numerical solutions are
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reported for the zero-time-delay second-order correlation as a function of γ+/γ and of γ−/γ .

Quite remarkably, the figure of merit is optimal for unbalanced losses, i.e. γ+ 6= γ−. In fact,

breaking the symmetry of the system and for appropriate resonators parameters the photonic

molecule in examination represents an almost ideal source of single-photon Fock states (down

to g(2)(0) < 10−4). Incidentally, this is exactly the situation that is most naturally realized in

a photonic crystal molecule [46], although not generally valid for any type of tunnel-coupled

photonic resonators (such as, e.g., coupled microdiscs or micropillars).

The numerical results reported in figure 4 can be understood by employing a perturbative

analytical treatment [31, 33]. The pump laser frequency in the present scheme is strongly off-

resonance with respect to the two eigenfrequencies of the system, corresponding to the â+ and

â− modes, respectively. Hence, even under the conditions F/(h̄γ )≫ 1, a low occupancy of the

two modes is expected and the Hilbert space can be truncated to the two-photon occupancy in

the basis of Fock states {|n1, n2〉}, with n1 and n2 counting the number of photons in the first

and second mode, respectively. The mode losses can be treated at the Hamiltonian level by

considering

H̃ = Ĥ − i
h̄γ+

2
â†

+â+ − i
h̄γ−

2
â†

−â−, (9)

where Ĥ is given in equation (3). With a straightforward substitution, equation (9) can be

written as

H̃ =
∑

i=1,2

[1̃i â
†
i âi + Unlâ

†
i â

†
i âi âi ] + J̃ (â

†
1â2 + â

†
2â1)+ F(â

†
1 + â1), (10)

where we have defined 1̃i = h̄[1ωi − (γ+ + γ−)/4] and J̃ = J − h̄(γ+ − γ−)/4. With the ansatz

|ψ〉 = C00|00〉 + C10|10〉 + C01|01〉 + C20|20〉 + C11|11〉 + C02|02〉 + . . . , (11)

the steady-state solution can be found by solving the coupled equations for the coefficients Cn1n2

from ih̄ ∂

∂t
|ψ〉 = H̃ |ψ〉 = 0

1̃C10 + JC01 + FC00 = 0, (12)

1̃C01 + JC10 = 0, (13)

2(1̃+ Unl)C20 +
√

2JC11 +
√

2FC10 = 0, (14)

21̃C11 +
√

2J (C20 + C02)+ FC01 = 0, (15)

2(1̃+ Unl)C02 +
√

2JC11 = 0, (16)

where we have approximated J̃ ≃ J , since J ≫ h̄1ω,Unl, h̄γ . Equations (12)–(16) can be

simplified by considering the condition C00 ≃ 1 and C00 ≫ C10,C01 ≫ C20,C11,C02. The

second-order correlation for light emitted from cavity 1 can be analytically approximated as

g(2)(0)≃ 2|C20|2/|C10|4. Hence, minimizing |C20|2 with respect to 1ω1 =1ω2 =1ω (keeping

fixed γ+ + γ−, J , Unl), which corresponds to minimizing the complex function |21̃3 + J 2Unl|2,

we obtain the optimal conditions for the antibunching behavior at a fixed 1ω as

[γ+ + γ−]opt ≃ 4
√

31ω . (17)

This result quantitatively explains the dependence of the optimal antibunching (minimum in

g(2)(0)) in figure 4. At small pumping rates, the value of g(2)(0) grows monotonically with
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F [32]. In this sense, the smaller the pumping rate, the better the single photon behavior of

the output. However, in a practical device this would also lead to a vanishingly small number of

photons in the systems, and hence of single photons emitted from cavity 1. In our conditions, the

average number of photons 〈â†
1â1〉 is always much smaller than 1, but of the order of 10−5–10−4,

depending on the pumping strength, which means an expected single-photon emission rate of

10–100 kHz. In terms of SPS efficiency, the possibility of enhancing even further the single-

photon emission rate (possibly beyond the MHz) is an unequivocal advantage of the present

source as compared to typical heralded ones [7, 9].

A still open question, in view of actual applications of this scheme as an SPS, concerns

the feasibility of pulsed operation, which would be required for single-photon emission on-

demand. The delay dependence of g(2)(τ ) is determined by beatings between the two oscillators.

It shows pronounced oscillations at a rate determined by the tunnel coupling, and the condition

g(2)(τ ) < 1 is fulfilled only over a delay of the order of τ ≃ h̄/J [32, 33], i.e. much shorter

than the photon lifetime. This feature prevents observation of photon antibunching in the pulsed

excitation regime. However, it should be possible to address this issue by further processing the

output of the two-cavity system. On the one hand, a post-selective temporal filter with a h̄/J

delay window can be applied at the output of the coupled cavity device to ensure the presence

of single-photon Fock states. Moreover, it was already shown that photon antibunching can be

optimized in similar situations through passive interferometry [49] or active quantum feedback

schemes [50]. In this sense, we believe that g(2)(0)≪ g(2)(τ ) is a necessary condition to be

optimized before realizing an SPS, but further analysis is needed to characterize its output,

depending on the specific device implementation. Such an analysis is beyond the scope of the

present work.

3.3. Effects of pure dephasing

In photonic crystal molecules, the loss mechanism naturally leads to unbalanced quality factors

for the symmetric and antisymmetric modes with respect to the quality factor of the isolated

cavity that can be of the order of Q−/Q+ = γ+/γ− ∼ 1 → 10. Neglecting the counterintuitive

effect of possible antisymmetric ground states [47], the lower energy mode is usually the

symmetric combination of the two isolated cavity states, which has a reduced quality factor

as compared to the isolated cavity [46]. Thus, we extract from the color plot in figure 4 the

curve corresponding to γ− = 0.2γ (i.e. the quality factor of the antisymmetric mode is larger

than that of the isolated cavity). The curve is plotted in figure 5 (curve corresponding to γ ∗ = 0),

showing a close-to-ideal antibunching of g(2)(0)≃ 7 × 10−5 for γ+ ≃ 1.2γ , remarkably not far

from the realistic ratio γ+/γ− ≃ 3 reported in the literature [46] for coupled photonic crystal

cavities.

A possible source of unwanted loss channels that could potentially spoil the effects of

photon blockade induced by tunnel coupling is pure dephasing. In a semiconductor cavity,

dephasing can be due to thermal fluctuations or other nonlinear mechanisms enhanced by

the same electromagnetic field confinement, giving rise to index fluctuations within the cavity

region and hence a pure dephasing rate. Even if such an effect is usually neglected, and it is

difficult to attribute a pure dephasing rate that is generally valid for any type of mechanism

and material, it is of utmost importance to estimate such detrimental effects on the SPS figure

of merit for the purposes of the present work. As discussed in section 2, the effects of pure

dephasing can be simply modeled by solving the master equation after adding the Liouvillian
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Figure 5. Numerical solution for the zero-time-delay second-order correlation

as a function of γ+/γ , for different values of pure dephasing rate (assumed

equivalent for both symmetric and antisymmetric modes). Parameters are the

same as in figure 4, with γ−/γ = 0.2.

term of the form represented in equation (6). We report in figure 5 the calculated g(2)(0) as

a function of γ+/γ for γ−/γ = 0.2 on increasing the pure dephasing rate, γ ∗. Suppression

of antibunching occurs for values of loss rates of the order of h̄γ ∗ ∼ Unl. Interestingly, the

SPS figure of merit tolerance is such that at h̄γ ∗/Unl ≃ 10−2 and γ+/γ ≃ 1.2, the system still

displays an acceptable single-photon nonlinear behavior with g(2)(0)≃ 0.1, which confirms the

robustness of such a scheme even with respect to loss channels that are difficult to control in

a real experimental setting. On the other hand, we expect that pure dephasing effects are most

probably going to play a marginal role in the present scheme, where small pump powers are

required to efficiently operate the SPS.

4. Conclusions

We have presented theoretical results supporting the proposal of a single-photon source built on

an integrated photonic platform made of passive material components, where cavity-enhanced

native nonlinearities are able to produce single-photon blockade. The building block is based on

tunnel-coupled resonators, or photonic molecules, coherently driven by an external laser source.

We have provided numerical evidence for the best combination of system parameters, such as

cavity-laser detunings and modes losses, leading to optimal antibunching of the output signal. In

particular, we found that a close to ideal single-photon output can be obtained from asymmetric

losses of the coupled modes, as it naturally occurs in photonic crystal molecules. The robustness

of such a device is tested against unwanted loss channels, e.g. giving rise to pure dephasing of

the normal modes.

Further analysis will be needed to engineer the output of the device as a useful single-

photon wave packet for actual applications in integrated quantum circuits. However, the results
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presented here provide a useful starting point to design highly innovative quantum photonic

devices based on integrated sources of pure single-photon states. The main innovations come

from the possibility of employing commonly nano-structured materials from the optoelectronic

and CMOS-compatible industry, working at room temperature, and in the telecom band for

long-distance low-loss data transmission. We believe that this work will further stimulate

research in this direction, also in view of recent experimental demonstrations of enhanced native

optical nonlinearities in semiconductor-based photonic crystal platforms [43–45].
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