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Dindar Öz dindar.oz@yasar.edu.tr
Yasar University
Bornova, Izmir, 35100, Turkey

Vural Aksakalli aksakalli@sehir.edu.tr

Istanbul Sehir University

Altunizade, Istanbul, 34662, Turkey

Abstract

Any-angle pathfinding is a fundamental problem in robotics and computer games. The
goal is to find a shortest path between a pair of points on a grid map such that the
path is not artificially constrained to the points of the grid. Prior research has focused
on approximate online solutions. A number of exact methods exist but they all require
super-linear space and pre-processing time. In this study, we describe Anya: a new and
optimal any-angle pathfinding algorithm. Where other works find approximate any-angle
paths by searching over individual points from the grid, Anya finds optimal paths by
searching over sets of states represented as intervals. Each interval is identified on-the-
fly. From each interval Anya selects a single representative point that it uses to compute
an admissible cost estimate for the entire set. Anya always returns an optimal path if
one exists. Moreover it does so without any offline pre-processing or the introduction of
additional memory overheads. In a range of empirical comparisons we show that Anya is
competitive with several recent (sub-optimal) online and pre-processing based techniques
and is up to an order of magnitude faster than the most common benchmark algorithm, a
grid-based implementation of A*.

1. Introduction

Any-angle pathfinding is a common navigation problem in robotics and computer games. It
takes as input a pair of points from a uniform two-dimensional grid and asks for a shortest
path between them that is not artificially constrained to the points of the grid. Such any-
angle paths are desirable to compute as they are typically shorter than their grid-constrained
counterparts and because following such a trajectory can give the appearance of realism and
intelligence; e.g. to the player of a computer game. Despite its apparent simplicity any-
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angle pathfinding is surprisingly challenging. So far many successful and popular methods
have been proposed, yet they all involve trade-offs of some kind. We begin with a few
examples that highlight, in broad strokes, the main research trends and their limitations,
to date.

In the communities of Artificial Intelligence and Game Development the any-angle
pathfinding problem is often solved efficiently using a technique known as string pulling.
The idea is to compute a grid-optimal path and then smooth the result; either as part of a
post-processing step (e.g. Pinter, 2001; Botea, Müller, & Schaeffer, 2004) or by interleaving
string pulling with online search (e.g. Ferguson & Stentz, 2005; Nash, Daniel, Koenig, &
Felner, 2007). Regardless of the particular approach, all string pulling techniques suffer
from the same disadvantages: (i) they require more computation than just finding a path
and; (ii) they only yield approximately shortest paths.

In the communities of Robotics and Computational Geometry a related and more gen-
eral problem has been well-studied: finding Euclidean shortest paths between polygonal
obstacles in the plane. Visibility Graphs (Lozano-Pérez & Wesley, 1979) and the Continu-
ous Dijkstra paradigm (Mitchell, Mount, & Papadimitriou, 1987) are among the best known
and most influential techniques that originate from this line of research. Even though both
of these methods are optimal and efficient in practice they nevertheless suffer from having
often undesirable properties: (i) the search graph1 must be pre-computed during an offline
pre-processing step; (ii) if the map changes at any point the search graph is invalidated and
must be recomputed, usually from scratch.

To date, it is not clear if there exists an any-angle pathfinding algorithm that is simul-
taneously online, optimal and also practically efficient (i.e. at least as fast in practice as
grid-based pathfinding using A* search). In this manuscript, we present new work that
answers this open question in the affirmative by introducing a new any-angle pathfinding
algorithm called Anya. Our approach bears some similarity to existing works from the
literature, most notably those algorithms based on the Continuous Dijkstra paradigm. In
rough overview:

• Where other methods search over the individual nodes of the grid, Anya searches
over contiguous sets of states that form intervals.

• Each Anya interval has a single representative point that is used to derive an admis-
sible cost estimate (i.e f -value) for all points in the set.

• To progress the search process Anya projects each interval, from one row of the grid
onto another, until the target is reached.

Anya always finds an optimal any-angle path, if one exists. In addition Anya does not
rely on any pre-computation nor does it introduce any memory overheads (in the form of
auxiliary data structures) beyond what is required to maintain an open and closed list. A
theoretical description of this algorithm has previously appeared in the literature (Harabor
& Grastien, 2013). In this study we extend that work in several ways: (i) we give a

1. We distinguish between the search graph and the input grid map. Though in some contexts these terms
coincide exactly this is not true in general. In particular the search graph may be a subset of the input
grid or may be a related but entirely separate data structure.
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Figure 1: Examples of visible and non-visible pairs of points.

detailed conceptual description of the Anya algorithm and provide an extended theoretical
argument for optimality and completeness; (ii) we discuss the practical considerations that
arise when implementing the algorithm and we give a technical description for one possible
and efficient implementation; (iii) we make detailed empirical comparisons showing that
Anya is competitive with a range of recent sub-optimal techniques from the literature,
including those based on offline pre-processing, and is up to one order of magnitude better
than our benchmark grid-based implementation of A*; (iv) we discuss a range of possible
extensions for further improving the current results.

2. The Optimal Any-Angle Pathfinding Problem

A grid is a planar subdivision consisting of W × H square cells. Each cell is an open set
of interior points which are all traversable or all non-traversable. The vertices associated
with each cell are called the discrete points of the grid. Edges in the grid can be interpreted
as open intervals of intermediate points; each one representing a transition between two
discrete points. Each type of point p = (x, y) has a unique coordinate where x ∈ [0,W ] and
y = [0, H], with discrete points limited to the subset of integer x and y values.

A discrete or intermediate point is traversable if it is adjacent to at least one traversable
cell. Otherwise it is non-traversable. A discrete point which is common to exactly four
adjacent cells is called an intersection. Any intersection where three of the adjacent cells
are traversable and one is not is called a corner. Two points are visible from one another
if they can be connected by a straight-line path (i.e. a sequence of adjacent points, either
intermediate or discrete) that does not: (i) pass through any non-traversable point or
(ii) pass through an intersection formed by two diagonally-adjacent non-traversable cells.
Figure 1 shows some examples that help to better illustrate this idea.

An any-angle path π is a sequence of points 〈p1, . . . , pk〉 where each pi is visible from pi−1

and pi+1. The length of π is the cumulative distance between every successive pair of points
d(p1, p2)+. . .+d(pk−1, pk). The function d(p = (x, y), p′ = (x′, y′)) =

√
(x− x′)2 + (y − y′)2

is a uniform Euclidean distance metric. We will say pi ∈ π is a turning point if the segments
(pi−1, pi) and (pi, pi+1) form an angle not equal to 180◦ 2. Finally, the any-angle pathfinding
problem is one that requires as input a pair of discrete points, s and t, and asks for an any-
angle path connecting them. The point s designates the source (equivalently, start) location

2. It is well-known that the turning points in optimal any-angle paths are corner points; e.g. as shown
by Mitchell et al. (1987).
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while the point t designates the target (equivalently, goal) location. Such a path is optimal
if there exists no alternative any-angle path between s and t that is strictly shorter.

Figure 2 provides an example of an optimal any-angle pathfinding problem. As can be
seen the source, target and all obstacles have discrete positions however the path itself does
not need to follow the grid. Notice also that the trajectory of this path appears much more
realistic than any alternative restricted to turning at modulo 45 deg or 90 deg.
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Figure 2: Example of an any-angle pathfinding problem together with its solution.

3. An Overview of Anya

Consider the any-angle instance shown in Figure 3. In this example the optimal path
between s and t needs to first head towards the corner point n and then change direction
toward the target t. One possible approach to solving this problem involves computing
a visibility graph: i.e., identifying all pairs of corners that are visible from one another,
and also visible from the start and target locations, and then searching for a path on this
graph. The main drawback in this case is that the visibility graph can be quite large (up
to quadratic in the size of the grid) and very expensive to compute.

An alternative approach, which avoids these overheads, is to solve the problem online.
Unfortunately online search methods generally consider only the discrete points of the grid
and their immediate neighbours. For example, when expanding the point s it is common to
only generate the neighbours: (1, 0), (2, 1), and (3, 0) in the example of Figure 3. The A*
f -value for each of the three neighbours is, respectively, 1 +

√
34 ' 6.83, 1 +

√
20 ' 5.47,

and 1 +
√

26 ' 6.1 (using Euclidean-distance as a heuristic). By comparison the optimal
any-angle path has cost of

√
10 +

√
5 ' 5.4. Immediately we can see that the heuristic at

hand does not satisfy one of the essential properties of A* search: that the f -value of each
node should always be an underestimate of the actual distance to the goal. Without this
property A* is not guaranteed to be optimal.

The issue described above comes from the fact that the optimal path does not go through
any of the points (1, 0), (2, 1), or (3, 0). Instead the optimal path crosses row 1 at point y1,
which is not part of the search space. To ensure optimality we should consider all points
such as y1 rather than just the discrete points of the grid. There are however many such
points including e.g., points such as y′1 (leading to (3, 6)), which apriori seems a reasonable
candidate for expansion, but which does not appear on any optimal path.
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Figure 3: When pathfinding from s to n, online algorithms such as A* and Theta* only
expand discrete points from the grid and never intermediate points such as yi.

In general we need to consider all potential yi points defined as a fraction h
w where

h ∈ {0, . . . ,H} and w ∈ {1, . . . ,W}. This set is quadratic in n = min(W,H). To under-
stand why, we consider the Farey Sequence of order n, the sequence (ordered by increasing
number) of all rational numbers between 0 and 1 that can be written as a fraction whose
denominator is an integer lower than n. For instance, the Farey Sequence of order n = 6
is: 0, 1

6 ,
1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 , 1. Notice that 1

3 = 2
6 , which explains why the length of this

sequence is not n(n + 1) ÷ 2; still the asymptotic cardinality of this sequence is known to

be 3n2

π2 (Graham, Knuth, & Patashnik, 1989, ch. 9).

Since the quadratic behaviour of the Farey Sequence makes it impractical to enumerate
all potential yi points we propose to consider, instead of individual points, a set of points
that appear together as part of a contiguous interval on the grid. In the example of Figure 3
we would consider all the points lying between (0, 1) and (3, 1), at the same time and as
part of a single A* search node. In this framework we need to:

• define formally an Anya search node,

• define the set of successors of a search node,

• define how to compute the f -value of a search node,

• prove optimality of the returned path,

• terminate search when no path is available,

• ensure the Anya algorithm is efficient in practice.
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4. Algorithm Description

This section presents in detail the Anya algorithm and its properties. Since Anya is a
variant of A* we first present its search space: the search nodes, the successors of a node
and the evaluation function used to rank nodes during search. We then a give pseudo-code
description of the algorithm and discuss its properties. Improvements that make Anya
efficient in practice are presented in the next section.

4.1 Anya Search Nodes

We now define the notion of interval, which is at the core of Anya.

Definition 1 A grid interval I is a set of contiguous and pairwise visible points drawn
from any discrete row of the grid. Each interval is defined in terms of its endpoints a and b.
With the possible exception of a and b, each interval contains only intermediate and discrete
non-corner points.

By definition, all points in an interval share the same y position, which is a positive
integer. Moreover, the x position of all points in an interval (including that of endpoints
a and b) is a rational number3. We will use normal parentheses “(” or “)” to indicate an
interval endpoint that is open and square brackets “[” or “]” to indicate an interval endpoint
that is closed. For example, the interval I = (a, b] is open at (i.e. does not include) a and
closed at (i.e. does include) b.

Identifying intervals is simple: any row of the grid can be naturally divided into maxi-
mally contiguous sets of traversable and non-traversable points. Each traversable set forms
a tentative interval which we can split, repeatedly if necessary, until all corner points are
end points of intervals. Intervals can also be identified through an operation called projec-
tion. We discuss this procedure in the next sub-section. For now we note only that intervals
produced by way of projection can also have non-discrete and non-corner endpoints.

A significant advantage of Anya is that we construct intervals on-the-fly. This allows
us to start answering queries immediately and for any discrete start-target pair. Similar
algorithms, e.g. Continuous Dijkstra (Mitchell et al., 1987), require a pre-processing step
before any queries can be answered and then only from a single fixed start point.

Definition 2 A search node (I, r) is a tuple where r 6∈ I is a point called the root and I is
an interval such that each point p ∈ I is visible from r. To represent the start node itself,
set I = [s] and assume r is located off the plane and visible only from s; the cost from r to
s in this case is zero.

An A* search node, together with its parents, traditionally represents the single path
defined by travelling in straight line between the points in the search nodes from the root
to the current node. An Anya search node similarly defines paths obtained by visiting
the roots of each nodes and ending in the interval of the current node. A node therefore
represents many paths and the root of the search node is always the last (common) turning

3. As per the problem definition, every point (x, y) appearing on an optimal any-angle path belongs to a
Farey Sequence and all such points are rational.
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point of these paths: it will always be either the root of the parent node or one of the end
points of the parent interval.

Besides the start node, which we treat as a special case, there are two other types of
search nodes: cone nodes and flat nodes. An example of a cone node is shown in Figure 4.
Such nodes are characterised by the fact that the root r is not on the same row as its
associated interval I. Notice in the example that although the interval I = [a, b] is maximal,
it does not have any endpoints which are obstacles, corners or indeed even discrete points of
the grid (here the left endpoint a is (2.5, 4) while the right endpoint b is (5.5, 4)). Examples
of flat nodes are shown in Figure 5. The two nodes are: ((a1, b1], r) and ((a2, b2], r). Flat
nodes are characterised by the fact that the root r is on the same row as the interval I.
Notice in the examples given that a1 = r (resp. a2 = b1) is excluded from the first (resp.
second) interval. The semantics of every search node is that the current position is located
somewhere in the interval I and we reach that point by an any-angle path whose most
recent turning point is r.
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Figure 4: Example of a cone search node.
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Figure 5: Example of two flat search nodes.

4.2 Searching with Anya: Successors

The successors of a search node n are identified by computing intervals over sets of traversable
points; from the same row of the grid as the current node n and from the rows immediately
adjacent. We want to guarantee that each point in such a set can be reached from the root
of n via a local path which is taut. Taut simply means that if we “pull” on the endpoints of
the path we cannot make it any shorter. We now provide a formal definition of a successor
and then discuss how this definition can be applied in practice.

Definition 3 A successor of a search node (I, r) is a search node (I ′, r′) such that

1. for all points p′ ∈ I ′, there exists a point p ∈ I such that the local path 〈r, p, p′〉 is taut;

2. r′ is the last common point shared by all paths 〈r, p, p′〉; and

3. I ′ is maximal according to the points above and the definition of a search node.
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The first requirement (tautness) implies that each successor p′ ∈ I ′ can be reached from
the root of the current node r by a path that is locally optimal. We will use this property
in the next subsection to show that Anya always finds a globally optimal path if one exists
at all. The third property, requiring that each successor have an interval that is maximal,
exists for the purpose of practical efficiency: simply put, we do not want to have arbitrarily
small and arbitrarily many successors. Instead, we will make each successor interval as
large as possible. The second property has two interpretations. When r′ = r we will say
that the successor node is observable. Similarly when r′ = p we will say that the successor
is non-observable. We explore each of these ideas in turn.
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Figure 6: Successors of a cone search node, n = ([a, b], r). There are five succes-
sors: ([v1, v2], r) and ((v2, v3], r) which are observable and ((r′, u1], r′), ((v3, u2), r′), and
([u2, u3], r′) which are not.

0 1 2 3 4 5 6

0

1

2

3

4

5

a b c

d e

Figure 7: Successors of a flat search node, n = ((a, b], a). There are two successors: ((b, c], a)
which is observable and ([d, e], b) which is not.
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Algorithm 1 Computing the successor set
1: function successors(n = (I, r)) . Takes as input the current node
2: if n is the start node s then
3: return generate-start-successors(I = [s])
4: end if
5: successors← ∅
6: if n is a flat node then
7: p← endpoint of I farthest from r . Successor interval starts from p
8: successors← generate-flat-successors(p, r) . Observable successors
9: if p is a turning point on a taut local path beginning at r then

10: successors← successors ∪ generate-cone-successors(p, p, r) . Non-observable successors

11: end if
12: else . If the node is not flat, it must be a cone
13: a← left endpoint of I
14: b← right endpoint of I
15: successors← generate-cone-successors(a, b, r) . Observable successors
16: if a is a turning point on a taut local path beginning at r then
17: successors← successors ∪ generate-flat-successors(a, r) . Non-observable
18: successors← successors ∪ generate-cone-successors(a, a, r) . Non-observable
19: end if
20: if b is a turning point on a taut local path beginning at r then
21: successors← successors ∪ generate-flat-successors(b, r) . Non-observable
22: successors← successors ∪ generate-cone-successors(b, b, r) . Non-observable
23: end if
24: end if
25: end function

An observable successor is characterised by the fact that all points p′ ∈ I ′ are visible from
the current root point r. In this case the last common point shared by all local paths of the
form 〈r, p, p′〉 is r. Observable successors are computed by projecting the current interval
on the next row. The projection identifies a maximal interval Imax that we will split at
each internal corner point point. Each interval produced by the split operation leads to a
new observable successor, and all such successors share the same root point as the original
(parent) node. This process is illustrated in Figure 6 where the interval I = [a, b] is projected
onto the next row. The projection identifies a maximal observable interval Imax = [v1, v3]
which is subsequently split to create two observable successors: ([v1, v2], r) and ((v2, v3], r).

By comparison, a non-observable successor is characterised by the fact that all points
p′ ∈ I ′ are not visible from the current root r. In this case all local paths of the form
〈r, p, p′〉 must pass through a (visibility obstructing) corner point whose identity is r′ := p.
Figure 6 illustrates the process of computing non-observable successors. First, from the
non-observable points to the right of the current interval I = [a, b], we construct a single
flat successor with I ′ = (b, u1] and root r′ := b. Non-observable points also exist to the
left of the current interval I but the local path to each such point (from r through a) is
not taut. Other non-observable successors can be found on rows of the grid adjacent to the
current interval I. By projecting the corner endpoint b onto the next row of the grid we
can construct two further non-observable successors: ((v3, u2), b) and ([u2, u3], b).

In Algorithm 1 we give an overview of the procedure that generates the successor set for
each search node. An overview of the sub-functions appearing in Algorithm 1 is given in
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the appendix. The implementation is straightforward, requiring nothing more complicated
than grid scanning operations and linear projections.

It is important to note at this stage that Anya does not perform any visibility checks
during the generation of successor nodes. Visibility checks are at the heart of many contem-
porary online algorithms, including Theta* (Nash & Koenig, 2013), which must determine
whether each successor is visible from some other node (e.g. the grand-parent node). On
the one hand visibility checks help Theta* et al. find shorter paths and expand fewer nodes
than traditional A* search. On the other hand, the computational overhead introduced by
these checks means that run-times can often be larger than A*. By comparison when Anya
projects an interval I, from one row of the grid to the next, the process involves only local
reasoning. In particular we can determine if the projection Imax is valid, invalid or if it
needs to be clipped by simply testing the traversability of cells located above, below and
to the left and right of the current interval I and the proposed Imax. The elimination of
visibility checks is an important practical advantage for Anya. As we will see in Section 9,
Anya not only finds shorter paths than online methods such as Theta* et al. it is also
usually much more efficient in terms of running time.

We now illustrate Algorithm 1 using previous examples. Consider the flat node ((a, b], a)
of Figure 7. The point p of Line 7 is set to b and the observable flat successor ((b, c], a) is
generated on Line 8. Furthermore since b is a turning point from a (Line 9), the interval
Imax = [d, e] is considered. Since Imax contains no interior corner points it is not split and
a single non-observable cone successor (I = Imax, b) is generated (Line 10).

Next, consider the cone node ([a, b], r) of Figure 6. First we generate the observable
successors (Line 15): the interval [a, b] is projected and the maximal interval Imax = [v1, v3]
is identified. Imax is then split at the internal corner point v2 leading to two observable cone
successor nodes, (I1 = (v1, v2], r) and (I2 = (v2, v3], r). Notice that no line-of-sight visibility
check is required here. Next since b is a turning point we look for non-observable successors
as well (Lines 20-22). The flat successor ((b, u1], b) is generated as per the previous example.
Meanwhile the maximal (non-observable) cone interval Imax = (v3, u3] is also identified.
This interval is split at the internal corner point u2 resulting in two non-observable cone
successor nodes, (I3 = (v3, u2], b) and (I4 = (u2, u3], b).

Algorithm 1 treats the start node (Lines 2-4) as a special case because its root point
is located off the grid. The successors of the start node (i) are all non-observable intervals
from the root and (ii) can be found to the left and right of the start location, on the row
immediately above the start location and on the row immediately below.

4.3 Evaluating an Anya Search Node

The search procedure of Anya, similarly to that of A*, always expands the “most promis-
ing” node found so far. It is therefore necessary to evaluate each root and interval pair.
This evaluation corresponds to an estimate f of the minimal length of a path from the
source to the target through the current interval. An optimality condition of A* is that
this estimate is optimistic (i.e. it is never larger than the actual optimal path length). In
classical A* where a search node n corresponds to a single point p on the grid the value
f(n) is computed as the sum of g(p), the length of the path from the source to p, and h(p),
an (under)estimation of the length of the shortest path from p to the target.
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As a search node n = (I, r) represents a set of points its f value is the minimum f value
of the points in the node:

f(n) = inf
p∈I

f(s, r, p, t)

where f(s, r, p, t) is an (under)estimate of the shortest path from s to t through r and p.
It should be noted that, because the set of points p is continuous and potentially open, the
minimum is replaced by the infimum. Since all points in the interval are visible from r, this
value can be broken down as follows:

f(s, r, p, t) = g(r) + d(r, p) + h(p)

where d(r, p) is the distance between the points r and p.
Finding the point of the interval that minimises the f value may seem like a hard problem

since the interval contains a large number of points and we want to avoid generating all of
them. However the straight-line distance heuristic h (h(p) = d(p, t)) makes it easy to isolate
the point p that minimises the f value, thanks to two simple geometric observations. More
precise heuristics are available but these could make it harder to find the point p.

Lemma 1 Let t and r be two points s.t. the interval I is on the same row as t or on a row
between the rows of r and t. Then the point p of I with infimal f -value is the point in I
closest to the intersection of the straight-line path 〈t, r〉 with the row of I.

If the line between r and t intersects the interval then the point p is the intersection.
Otherwise this point p is one of the endpoints of the interval. In the event that the pre-
condition of Lemma 1 is not satisfied, it is possible to replace t by its mirrored version t′

through I and thus satisfy the precondition. This case is described in Lemma 2.

Lemma 2 The mirrored point t′ of target t through interval I is such that d(p, t) = d(p, t′)
for all p ∈ I.

Lemma 2 is a trivial geometrical result. Both lemmas are illustrated on Figure 8.

4.4 Search Procedure

The search procedure employed by Anya is presented in Algorithm 2. It follows the pattern
of A* and uses priority queue, open, that stores all the yet-to-be-expanded search nodes
ordered by f value. Each node stores a pointer to its parent. At each step of the search
Anya extracts the best node from open and checks if the corresponding interval contains
the target. In the event that the target is found (Line 6) the returned path is a sequence
of root points constructed by following back-pointers, from the current node to the start
location. If the target is not found the current node is expanded and its successors are
added to the priority queue (Line 8). Some successors may be considered redundant and
these can be safely discarded without insertion into the priority queue (Line 9). We discuss
this aspect of the algorithm in Section 6; for now it suffices to know that such successors
are not on any optimal path. The expansion process continues until the target is found or
the open list is exhausted, in which case the algorithm returns failure (Line 14).

In the next sections we will prove some fundamental properties about this algorithm:
correctness, optimality and completeness.
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Figure 8: An illustration of Lemmas 1 and 2. We evaluate the node n = ([a, b], r). The
points t1 and t′4 correspond to the case where the row of the target t intersects the interval
I; t2 and t3 where it does not; t4 where the mirrored target t′4 must be used.

5. Correctness and Optimality

In this section we prove that Anya is correct and always finds an optimal path. In particular
we will show (i) that the optimal path appears in the search space, (ii) when the target
is expanded we have found an optimal path, and (iii) that each node in the search space
will be reached in a finite number of steps. The topics of termination and completeness are
discussed in Section 6.
We begin the analysis by recalling that a search node n = (I, r) represents a set of potential
paths (from s to r and from r to each point p ∈ I). Following these semantics we will say
that n is a search node of a path π if r ∈ π and I intersects π.

Lemma 3 If n = (I, r) is a search node of an optimal path π∗ then: either n contains the
target t or n has at least one successor n′ that is also a search node of π∗.

Proof: Start node: n is the start node with I = [s] and r located off the grid. Addi-
tionally, n is a search node of π∗ (hypothesis). Algorithm 1 (Line 3) scans the traversable

Algorithm 2 Anya
1: input: Grid, source location s, target location t
2: open ← {(I = [s], r0 )} . Start node with root r0 located off the grid
3: while open is not empty do
4: (I, r)← pop(open)
5: if t ∈ I then
6: return path to(I)
7: end if
8: for all (I ′, r′) ∈ successors(I, r) do
9: if ¬should prune(I ′, r′) then . Successor pruning

10: open ← open ∪ {(I ′, r′)}
11: end if
12: end for
13: end while
14: return null
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points of the grid that are visible from and adjacent to s. These points are located to the
left and right of s and they are located on the rows immediately above and immediately
below the row of s. Algorithm 1 assigns each of these points to an interval I ′ and each I ′ is
associated with a successor node that has as its root r′ = s. Every optimal path must pass
through I = [s] and there are no traversable points that can be reached from s without
passing through an interval associated with a successor of s. This is sufficient to satisfy the
lemma.

Other nodes: n is an arbitrary node of π∗ and t 6∈ I (if t ∈ I there are no further successors
and we are done). By definition r ∈ π∗ and p ∈ I is the (apriori unknown) intersection of
π∗ with the interval I. There are now two possibilities to consider, depending on whether
p is a turning point or not. We will show that in both cases there is a successor of n whose
interval I ′ intersects π∗, which is sufficient to satisfy the lemma.

Case 1 p ∈ I is not a turning point. Algorithm 1 (Lines 8 and 15) scans all points that are
adjacent to I and (straight-line) visible from r through I. Each point is assigned to
a successor with observable interval I ′ and root point r. Thus at least one of the
successors of n intersects every straight line path from r through p which means at
least one successor of n intersects π∗.

Case 2 p ∈ I is a turning point. In this case p must be a corner endpoint of I, otherwise π∗

is not taut and thus cannot be optimal. Algorithm 1 (Lines 10, 17, 18, 21) scans all
points that are adjacent to I and reachable from r through p by a taut local path.
These points are located on the row of p or on a row that is immediately adjacent.
Each such point is assigned to a successor with a non-observable interval I ′ and root
r = p. As the process is exhaustive all points reachable by a taut local path, from
r though p, must be assigned to an interval. Thus π∗ must intersect at least one of
the successors of n.

�

Corollary 4 If there is a path between the source and the target, then the open list always
contains a search node of an optimal path (or this node is currently being processed).

Proof: By induction.

base case: The initial search node is a node of any path from s.

inductive case: assume that the open list contains a search node of an optimal path.
Then this node can only be removed if it is expanded. If this node does not contain the
target then we know from Lemma that one successor will be generated that is a search node
of this optimal path. Therefore a new search node of an optimal path will be inserted in
the open list. �

Lemma 5 The first expanded node that contains the target t corresponds to one optimal
path to t.
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Proof: Sketch. First we notice that the f -value of a node is indeed the minimal value of
all the nodes in the interval, which means that f is an under estimate (≤) of the actual cost
to the target. Second we notice that, given a search node (I, r) and its successor (I ′, r′), for
each point p′ ∈ I ′, the f -value of p′ is greater than or equal to the f -value of some point
p ∈ I ( p = r′ if r′ 6= r; p is the intersection of I and (r, p′) otherwise); the f function
is therefore monotonically increasing. Finally, the f function of a search node (I, r) is the
length of the path if t ∈ I. Hence the f function of the nodes representing a sub-optimal
path to t will eventually exceed the optimal path distance, while the f function of the nodes
representing the optimal path will always remain under this value. �

Lemma 6 If the target is reachable Anya will eventually expand a node whose interval
includes the target.

Proof: By contradiction, assume that Anya does not expand a node whose interval includes
the target. From Lemma 5 we know that failure to expand this node means that Anya
expand infinitely many nodes. We shall prove that doing so implies that the f value of
these nodes is unbounded and, therefore, the target is not reachable.

For most search nodes (I ′, r′), the interval I ′ is on a different row than that of its parent
(I, r). Therefore, for those nodes, the value g(p′) is larger than the value g(p) by 1 or more.
This does not happen when the node is flat, but there can be only a bounded number of
successive flat nodes.4 Hence an infinite sequence of successive Anya nodes has an infi-
nite length. Finally each Anya node has a bounded number of successors, meaning that an
infinite number of expansions will have to generate an infinite number of successive nodes. �

6. Completeness and Termination

Until now we have not specified any policy by which Anya can detect nodes that have
been previously expanded. In the context of optimal A* search such a policy is essential
to prevent cyclical re-expansion and to ensure that the algorithm eventually terminates,
even if there is no path between the start and target locations. In this section we describe
such a policy for Anya. Conceptually similar to the A* closed list our approach works
by tracking the best g-value associated with every root location (cf. every search node)
encountered during search.

As a motivating example consider Figure 9 where the root r is reached via two paths of
different length. In the example the green path is strictly longer than the red path and any
points reached via the green path will have a g-value that is strictly larger than the same
point when reached via the red path. Figure 10 shows a similar example where both green
and red paths reach the root point r with the same cost, resulting in two identical copies
of the successor node (I, r). Without any strategy to handle such root-level redundancies
the search process can generate many unnecessary nodes that slow progress to the goal.
Moreover, if there exists no path between the start and target location, the search may not

4. And, furthermore, the value g(p) does not increase significantly only for an unobservable flat cone.
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Figure 10: Root r is reached via two
paths of equal length.

terminate (e.g. when the input graph contains cycles it is possible to endlessly generate
copies of states with ever increasing g-values).

We propose the following strategy to avoid root-level redundancies:

1. We store a hash table of all visited roots with their best g-values. We call this table
the root history and apply it in a similar way to (and indeed in lieu of) a traditional
A* closed list.

2. When generating a search node n we check if its root is already in the root history
with a g-value less than or equal to its current g-value.

3. If the current g-value of the root improves on the value stored in the root history we
add the node to the open list. We also update the g-cost of the root5 in the root
history list.

4. Alternatively, if the current g-value of the root does not improve on the value stored
in the root history we simply discard the node (i.e. it is not added to open).

The root history is implemented as a hash table. Its size is O(n) where n is the number of
discrete points on a given input map. We now show that keeping a root history list does
not affect the correctness or optimality of search and that Anya is indeed complete and
does terminate.

Lemma 7 Anya search prunes only sub-optimal paths.

5. Similar updates to nodes on the closed list are sometimes performed in the context of incremental,
bounded cost or bounded sub-optimal search. Such updates are performed as part of an operation called
node re-opening. Our updates are not the same as node re-opening. In particular root points are never
directly expanded and thus never appear on the open list (Anya search comprise root-interval pairs).
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Proof: Trivial. If a search node has a root with a sub-optimal g value, then it represents
a sub-optimal path. �

Lemma 8 Anya always terminates.

Proof: For Anya to not terminate, it must explore paths of arbitrary length. Such paths
must eventually involve the same root twice with the root being different in-between. Let
n and n′ be the two such search nodes. The g value associated with n′ must be higher than
the g value associated with n and, therefore, node n′ must be pruned. Indeed all sufficiently
long paths will be pruned and the open list will eventually be empty. �

Lemma 9 Anya with redundant node pruning keeps at least one optimal path.

Proof: If a search node n = (I, r) is removed there exists another search node n′ (but
with different search parents) with a smaller (or equal) g-value that is kept. Assume that
n is a search node of an optimal path p1, . . . , pk, and let pi ∈ I be the point of this path
that intersects I. Since the g-value of n is similar to that of n′, there exists another path
p′1, . . . , p

′
i, pi+1, . . . , pk of similar length, and this path is not pruned. �

7. Practical Pruning Strategies

A* orders nodes for expansion by evaluating and ranking how promising they each appear
(i.e. by their f -values). It is, however, possible to alter the order of expansion without
compromising the guarantees provided by A*: correctness, optimality and completeness.
Indeed such a strategy can even have a positive effect on the efficiency of the overall search.
In this section we discuss two practical strategies that modify expansion order and speed up
search. Both enhancements are applied on-the-fly and both focus on reducing the size of the
priority queue. The first strategy, Cul-de-sac Pruning, identifies nodes that can be safely
discarded because they cannot possibly lead to the goal. The second strategy, Intermediate
Pruning, is similar but works by avoiding the explicit generation of nodes that have only
a single successor (these successors are expanded immediately, without being added to the
open list).

7.1 Cul-de-sac Pruning

One way of reducing the size of the priority queue involves the early identification of cul-
de-sacs (cds). A cds is a search node that has no successor and does not contain the target.
By definition a cds does not need to be added to the open list since its expansion cannot
lead to the target. A simple test to identify cds nodes is given in Algorithm 3 by way of
the procedure Is-cul-de-sac.

Early pruning of cds nodes speeds up search (and reduces required memory) by prevent-
ing some unnecessary operations on open and also by reducing the size of the list, which
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Algorithm 3 Cul-de-sac and intermediate node pruning.
1: function Is-cul-de-sac(n = (I, r)) . Assumes I does not contain the target point
2: Imax ← projection of n . Flat projection or cone projection depending on n
3: if Imax is valid then . Valid means every p ∈ Imax is visible from r
4: return false . n cannot be a cul-de-sac; it has at least one successor with interval I ′ ⊆ Imax

5: end if
6: return true . n is a cul-de-sac; it cannot be projected further and it has no successors
7: end function

8: function Is-Intermediate(n = (I, r)) . Assumes I does not contain the target point
9: if n is a flat node then

10: p← endpoint of I furthest from r
11: if p is a turning point for a taut local path with prefix 〈r, p〉 then
12: return false . n has at least one non-observable successor; it cannot be intermediate
13: end if
14: else . n is not a flat node so it must be a cone node
15: if I has a closed endpoint that is also a corner point then
16: return false . n has at least one non-observable successor; it cannot be intermediate
17: end if
18: I ′ ← interval after projecting r through I
19: if I ′ contains any corner points then
20: return false . n has more than one observable successors; it cannot be intermediate
21: end if
22: end if
23: return true
24: end function

makes every other operation faster. For reference, when the open list is implemented as a
binary heap each add or remove operation has a time complexity of log n, where n is the
size of the list. Examples of cds pruning, for cone nodes and for flat nodes, are illustrated in
Figure 11 and Figure 12. In both cases the current node and root are shown in blue while
the intervals in red can be pruned.

7.2 Intermediate Pruning

Our second pruning strategy can be described as “pushing” the expansion in one direction
as far as possible as long as it does not increase the branching factor. Practically, if a search
node is generated that is guaranteed to have only one successor, then we immediately
generate this successor instead of the originally intended node. If said successor also has
only one successor the process can be recursively applied. Examples showing the application
of intermediate pruning are given in Figure 13 for cone nodes and on Figure 14 for flat nodes.
A simple test to identify intermediate nodes is given in Algorithm 3 by way of the procedure
Is-Intermediate.

The first obvious benefit of intermediate pruning is a reduction in the number of oper-
ations on the open list. However a second benefit is that pushing the expansion of a node
can lead to a cul-de-sac. When this happens no node at all is added to the open list, which
helps keep the size of this list small and the operations on this list fast.

A potential issue with Intermediate Pruning is that that recursive application to non-
promising successor nodes could be more costly (in terms of time) than simply adding those
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Figure 11: Cul-de-sacs in cone nodes:
nodes ([c, d), r) and ((e, f ], r) are not gen-
erated.
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Figure 13: Intermediate node ([a, b], r) has
only one successor, ([c, d], r), which is im-
mediately generated.

Figure 14: Intermediate node ([a, b], r) has
only one successor, ((b, c], r) which is im-
mediately generated.

nodes to open. We discuss this issue in more detail in Section 7.3. We also note that in our
run-time experiments the application of Intermediate Pruning has a net positive effect on
the performance of search.

7.3 Discussion

We have introduced two different ways in which nodes from the frontier of search can be
pruned: Cul-de-sac Pruning and Intermediate Pruning. Both modify the expansion order
of search and both improve performance along a single fixed path. They do this by pruning
away sterile branches and by skipping over intermediate locations where no actual branching
occurs. Similar strategies have been previously discussed in the literature. For example Cul-
de-sac Pruning is based on the same set of principles as the Dead-end Heuristic (Björnsson &
Halldórsson, 2006); although our method reasons more locally and is applied purely online.
Intermediate Pruning shares some similarities with Fast Expansion (Sun, Yeoh, Chen, &
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Koenig, 2009); the main difference is that we prune nodes without reference to their f -value.
Intermediate Pruning is also similar to Jump Point Search (Harabor & Grastien, 2014) but
applied outside the context of symmetry breaking and extended to sets of points taken as
intervals rather than applied over the individual cells of the grid.

Anya’s root history list, discussed in Section 6, can also be regarded as a type of pruning
enhancement. In this case we reason more generally about the set of all possible paths that
could be used to reach a given point and prune away only those successors that cannot
possibly be on any optimal path. The approach we have taken here is similar in principle
(but not in practice) to the pruning of redundant states in real-time search (Sturtevant &
Bulitko, 2011).

Pruning search nodes in Anya is more difficult than in classical A* search and its
many modern progenitors. This is because each Anya node represents a set of positions
rather than just one. Consider the example of Figure 15; we are particularly interested
in the interval [a, b] which can be generated with root r1 or r2. The shortest path from
s to t is through r1 (∼ 14.24 against ∼ 14.99 for r2). However if an obstacle is put on
the cell labeled with O, then the optimal path switches to r2 (∼ 15.62 against ∼ 15.94).
The diagram suggests that, when given the target and two search nodes sharing the same
interval, it may not be possible to prune either of them.

The situation described in Figure 15 is not uncommon in practice and such examples
may motivate us to derive new and more sophisticated pruning rules to further enhance the
performance of the Anya algorithm. We must be careful however to weigh the improved
pruning power of such new techniques against the overhead of applying them in the first
instance. For example, an alternative (arguably, better) approach to avoiding redundant
node expansions is to keep an interval history list in addition to (or instead of) a root history.
Such a method would certainly avoid the problem outlined in Figure 15 but there are many
more possible intervals than roots, which means the size of the hash table is potentially
much larger and memory accesses are potentially slower. Additionally, comparing intervals
for equality and membership requires extra time and may not be worth the investment6.

6. We attempted a similar experiment but the results were not clearly positive.
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Figure 15: Illustrating that search nodes cannot be trivially pruned with search nodes
n1 = ([a, b], r1) and n2 = ([a, b], r2): if O is not an obstacle the optimal path between s and
t goes through n1 (red); otherwise it goes through n2 (blue).

8. Experimental Setup

We conduct experiments on seven benchmark problem sets taken from Nathan Sturtevant’s
well known repository (Sturtevant, 2012). Three of the benchmarks originate from popular
computer games and often appear in the literature. They are: Baldur’s Gate II , Dragon
Age Origins and StarCraft. The maps in these benchmarks vary in size; from several
thousand nodes up to several million. The remaining four benchmarks comprise grids of
size 512 × 512 with randomly placed obstacles of varying densities, from 10% to 40%.
Table 1 gives an overview of the benchmark problems. We give the number of maps and
instances per problem set and a distribution for the number of node expansions required
by a reference algorithm, A* using an octile distance heuristic7, to solve all problems in
each benchmark set. The latter metric gives us a baseline for comparing the “difficulty” of
problems appearing in each benchmark set.

7. Octile distance is analogous to Manhattan distance but generalised to 8-connected grids.
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Benchmark #Maps #Instances Nodes Expanded by A*
Min Q1 Median Mean Q3 Max StDev

Baldur’s Gate II 75 93160 2 166 2019 6302 9170 86720 9136
Dragon Age 156 159465 1 622 5880 14080 19150 126800 19744

StarCraft 75 198230 3 4808 26840 50000 70110 578900 63507
Random 10% 10 16770 2 239 548 1886 1485 59280 3921
Random 20% 10 17740 3 749 3869 8606 14680 53760 9905
Random 30% 10 19200 4 3520 14190 20290 33710 96090 19162
Random 40% 10 35360 3 12520 42850 51920 83770 169900 43558

Table 1: An overview of the seven benchmark problems used in our experiments. We give the
number of maps and problem instances in each benchmark and the distribution of nodes expanded
by a reference algorithm (A*) when solving all problems in each benchmark set.

We compare our purely online and optimal Anya algorithm with a number of state-of-
the-art any-angle techniques. These are: Theta* (Nash et al., 2007), Lazy Theta* (Nash,
Koenig, & Tovey, 2010), Field A* (Uras & Koenig, 2015a) and an any-angle variant of
two-level Subgoal Graphs (SUB-TL) (Uras & Koenig, 2015b). All of these approaches are
near-optimal and are not guaranteed to return the shortest path. The methods Theta*, Lazy
Theta* and Field A* are all purely online. Only SUB-TL relies on an offline pre-processing
step to further improve the performance of search. We use C++ implementations for each of
these algorithms; the source codes are made publicly available by Uras and Koenig (2015a).

Anya is implemented in Java and executed on JVM 1.8. To allow for comparisons across
different implementation languages we use the A* algorithm (Hart, Nilsson, & Raphael,
1968), implemented in both C++ and Java, as a reference point8. We compare the per-
formance of Anya against the Java implementation of A* and all other algorithms with
the C++ implementation of A*. All experiments are performed on a 3GHz Intel Core i7
machine with 8GB of RAM and running OSX 10.8.4. Source code for our implementation
of Anya is available from https://bitbucket.org/dharabor/pathfinding.

9. Results

We evaluate performance using three different metrics: search time, nodes expanded and
path length. All results are presented relative to a benchmark algorithm, A*, which we
combine with a standard octile distance heuristic. For example, when comparing search
time or nodes expanded, we will give figures for the relative speedup of each algorithm vs
A*. Under this paradigm a search time speedup of 2 means twice as fast while a node
expansion speedup of 2 means half as many nodes were expanded. When comparing path
length we give the percent improvement in path length vs A*. In all cases higher is better.

8. The C++ implementation is due to Uras and Koenig (2015a); the Java implementation is our own.
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Benchmark Avg. Node Expansion Speedup Avg. Path Length Improvement (%)
Anya Theta* L.Theta* F.A* SUB-TL Anya Theta* L.Theta* F.A* SUB-TL

Baldur’s Gate II 91.13 1.95 1.96 1.01 907.10 4.65% 4.62% 4.61% 4.38% 4.58%
Dragon Age 19.60 1.05 1.05 0.90 57.45 4.34% 4.27% 4.22% 4.05% 4.28%

StarCraft 40% 40.73 1.27 1.27 0.95 166.00 5.02% 4.95% 4.92% 4.70% 4.88%
Random 10% 0.80 2.34 2.38 1.14 6.60 4.77% 4.63% 4.58% 3.83% 4.59%
Random 20% 0.77 1.23 1.17 0.80 2.56 4.57% 4.34% 4.15% 3.26% 4.30%
Random 30% 1.06 0.82 0.75 0.64 1.68 4.44% 4.12% 3.77% 3.12% 4.03%
Random 40% 2.20 0.90 0.86 0.82 2.40 4.14% 3.95% 3.48% 3.22% 3.74%

Table 2: We compare the performance of each algorithm in terms of average node expansion speedup
and average path length improvement. Both metrics are taken with respect to a reference algorithm
(A*). In both cases higher is better.

We begin with Table 2 which shows average performance figures for nodes expanded and
path length on each of our seven benchmark problem sets. We make the following observa-
tions:

• Anya is the best of the four purely-online algorithms, expanding fewer nodes in
five of the seven benchmarks. On the three benchmarks drawn from real computer
games Anya expands one order fewer nodes, on average, than its nearest purely-
online contemporary. Only the pre-processing-based SUB-TL algorithm expands fewer
nodes, on average.

• Anya, as with all methods in our comparison, struggles to achieve a speedup on the
four random benchmarks. In two of the four cases its performance is below that of
the reference A* algorithm. Again, only the pre-processing-based SUB-TL algorithm
is able to achieve a consistent, though much reduced, node expansion speedup.

• Anya, being optimal, shows the best improvement in path length; however all algo-
rithms in our comparison are very close to optimal, on average.

Next, we evaluate performance in terms of search time. Rather than taking a simple
average on a per benchmark basis (or across all benchmarks) we instead sort instances
according to difficulty, as measured by the number of node expansions required for the
reference A* algorithm to solve each problem. This approach gives a more holistic overview
of performance and reduces the effect of any bias associated with the selection of instances
that comprise each benchmark set9. Results from this analysis are given in Figure 16. We
make the following observations:

• Anya is often more than one order of magnitude faster than the reference A* algo-
rithm on the benchmarks drawn from real computer games. Performance is mixed
on the four random benchmarks, with all evaluated methods struggling to achieve a
speedup.

9. As per Table 1, problem instances that can be regarded as “easy” often outnumber instances that can
be regarded as “hard”. These difference have the effect of skewing performance indicators that are
computed as simple averages over all instances in each benchmark set.
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Figure 16: Search time speedup. We compare performance on each of our seven benchmarks
in terms of search time. Figures are given as relative speedup vs. a reference A* algorithm.
Problem instances are sorted by difficulty using A* node expansion rank. Note that each
plot is log-log.
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• Anya is the fastest of the four purely online methods under evaluation. Its perfor-
mance is often comparable with the pre-processing based SUB-TL technique and, on
particularly challenging instances from the StarCraft domain, Anya is non-dominated10.

• Anya’s performance in terms of search time is less than the value suggested by the
(previously evaluated) node expansion metric. This reflects the fact that each node
expansion made by Anya involves analysing the grid; looking for roots and searching
for intervals.

9.1 Discussion

We have seen that Anya compares well with current state-of-the-art any-angle pathfinding
algorithms. In an (almost) apples-to-apples comparison with three contemporary and purely
online search technique (Theta*, Lazy Theta* and Field A*) we have seen that Anya usually
expands fewer nodes per search and terminates up to one order of magnitude faster. These
results are further underscored by the fact that Anya is the only online algorithm that is
guaranteed to return a Euclidean-optimal path. We may surmise that, in many cases and
applications, Anya appears preferable to each of these alternative algorithms.

Next, we make an apples-to-oranges comparison between the purely online Anya algo-
rithm and the near-optimal and offline enhanced SUB-TL algorithm. We have seen that
while Anya is usually not as fast as SUB-TL its performance is sometimes comparable.
Moreover, Anya retains an advantage when solving especially challenging instances drawn
from real computer games. SUB-TL appears to be preferable to Anya in cases where addi-
tional space and time is available to create and store its associated subgoal graph or in cases
where such overheads can be amortised over many online instances. When extra space and
time is not available, or in cases where the map is subject to change (e.g. new obstacles are
added or existing obstacles are removed), Anya appears to be preferable to SUB-TL.

The main strength of Anya is that it searches over sets of nodes from the grid rather
than considering individual locations one at a time. Expansion can thus be considered as
a macro operator, meaning that Anya bears some similarity to speedup techniques using
hierarchical abstraction; e.g. HPA* (Botea et al., 2004). An important difference is that
Anya constructs its abstract graph on-the-fly rather than as part of a pre-processing step.

One current drawback associated with Anya is that nodes can contain overlapping
intervals. This occurs when an interval is reachable from two different root points, neither
of which can be pruned (e.g. when both root locations are reached for the first time; as
illustrated in Figure 15). Such nodes are, either in part or in whole, redundant and —
provided their f -value is smaller than the optimal distance to the goal — will themselves
beget yet more redundant successors. We can see this behaviour especially in the results for
benchmarks Random 10% and Random 20% where SUB-TL achieves a speedup of several
factors while Anya struggles to maintain parity with the reference A* algorithm. It seems
reasonable to improve the current algorithm by attempting to identify such overlaps in order
to prune them from consideration. An efficient and effective algorithm for achieving this
goal is the subject of further work.

10. In the Pareto sense; i.e. there are problem instances where Anya is better than SUB-TL according to
some metric of interest such as node expansions or search time
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10. Related Work

Among the simplest and most popular approaches for solving the any-angle pathfinding
problem is string-pulling. The main idea is to find a path on the input grid map, often
using some variant of A* (Hart et al., 1968), and then post-process that path in order to
remove unnecessary turning points. Several such methods have appeared in the literature
of Game Development; e.g. see the work of Pinter (2001) and Botea et al. (2004).

A number of algorithms improve on string-pulling by interleaving node expansion and
path post-processing during online search. Particular examples include Field D* (Ferguson
& Stentz, 2005) and Field A* (Uras & Koenig, 2015a), both of which use linear interpolation
to smooth grid paths one cell at a time, and Theta* (Nash et al., 2007), which introduces a
shortcut each time a successful line-of-sight check is made; from the parent of the current
node to any of its successors. Though still sub-optimal in many cases such approaches
are nevertheless attractive for being able to search purely online and for being efficient in
practice. In addition to the two examples given there are numerous other works, often
appearing in the literature of Artificial Intelligence, that apply and improve on the basic
interleaving idea. We refer the interested reader to Nash & Koenig, 2013 for a recent survey
and overview.

Accelerated A* (Šǐslák, Volf, & Pěchouček, 2009) is an online any-angle algorithm that is
conjectured to be optimal but for which no strong theoretical argument is made. Similar to
Theta*, it differs primarily in that line-of-sight checks are performed from a set of expanded
nodes rather than a single ancestor. The size of the set is only loosely bounded and, for
challenging problems, can include a large proportion of nodes on the closed list.

One recent and successful line of research involves the combination of string-pulling with
an offline pre-processing step. Such works are compelling because they can significantly
improve on the performance of purely online search; not just in terms of solution quality
but also running time. Block A* (Yap, Burch, Holte, & Schaeffer, 2011) is one such example.
This sub-optimal algorithm pre-computes a database of Euclidean-optimal distances in all
possible tile configurations of a certain size (e.g. all possible 3x3 blocks). The database
obviates the need for explicit visibility checks or indeed any type of online string-pulling.
The pre-processing step needs to be performed exactly once; the database remains valid if
the tiles on the map change or indeed if the map itself changes entirely. Another recent
work improves on Theta* by combining that algorithm with a pre-processing based graph
abstraction technique (Uras & Koenig, 2015b). This approach, referred to in Section 9 as
SUB-TL, is shown to improve on both the running time and solution quality of Block A*.
The main disadvantage (vs. Block A*) is that the abstract graph needs to be re-computed
or repaired each time the map changes.

The Euclidean Shortest Path Problem is a well known and well researched topic in the
areas of Computational Geometry and Computer Graphics. It can be seen as a general-
isation of the Any-angle Pathfinding Problem. It asks for a shortest path in a plane but
does not impose any restrictions on obstacle shape or obstacle placement (cf. grid aligned
polygons made up of unit squares).

Visibility graphs (Lozano-Pérez & Wesley, 1979) are a family of well-known and popular
techniques for optimally solving the Euclidean Shortest Path Problem. Searching in such
graphs requires O(n2 log2 n) time but the approach can be much faster in practice. There
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are two main disadvantages: (i) computing the graph requires an offline pre-processing
step and O(n2) space to store; (ii) the graph is static and must be recomputed or repaired
if the environment changes. More sophisticated variants such as Tangent Graphs (Liu &
Arimoto, 1992) and Silhouette Points (Young, 2001) are particularly efficient variants of
visibility graphs but the same disadvantages apply.

Another family of exact approaches for solving the Euclidean Shortest Path Problem
is based on the Continuous Dijkstra paradigm (Mitchell et al., 1987). The most effi-
cient of these algorithms (Hershberger & Suri, 1999) involves a pre-computation requir-
ing O(n log2 n) space and O(n log2 n) time. The result is a Shortest Path Map; a planar
subdivision of the environment that can be used to find a Euclidean shortest path in just
O(log2 n) time; but only for queries originating at a fixed source. Like visibility graphs,
this approach also introduces additional memory overheads (storing the subdivision) and
the pre-processing step must be re-executed each time the environment or the start location
changes.

11. Conclusion

We study any-angle pathfinding: a problem commonly found in the areas of robotics and
computer games. The problem involves finding a shortest path between two points in a grid
but asks that the path is not artificially constrained to the fixed points of the grid. The
best known online algorithms for the any-angle problem, to date, all compute approximate
solutions rather than optimal shortest paths. Additionally no online methods have been
able to achieve a consistent speedup vs. the A* algorithm — a common reference point
for measuring performance in the literature. In this work we present a new online, opti-
mal and practically efficient any-angle technique: Anya. Where other works obtain good
performance by reasoning at the grid level our method considers sets of points from the
grid which are taken together as contiguous intervals. This approach requires revisiting the
classical definition of search nodes and successors and requires the introduction of a new
technique for computing the f -value of each node. We give a thorough algorithmic descrip-
tion of this new search paradigm and we give theoretical arguments for its completeness
and optimality preserving characteristics.

In an (almost) apples-to-apples comparison we evaluate Anya against three contem-
porary near-optimal and online techniques: Theta*, Lazy Theta* and Field A*. We show
that, on a range of popular benchmarks, Anya is faster than each of these alternatives, all
while guaranteeing to find an optimal shortest path. In an apples-to-oranges comparison we
evaluate Anya against SUB-TL: a very fast pre-processing-based near-optimal any-angle
technique. We show that Anya is non-dominated when compared to SUB-TL and even
maintains an advantage on some particularly challenging instances drawn from real com-
puter games. Another advantage is that, unlike SUB-TL, Anya does not assume the map is
static; i.e. it can be readily applied to pathfinding problems involving dynamically changing
terrain.

Any-angle pathfinding has received significant attention from the AI and Game Devel-
opment communities but until now it has been an open question whether any optimal and
online algorithm exists. Anya answers this question in the affirmative.
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11.1 Future Work

There are several possible directions for future work. Perhaps most obvious is the devel-
opment of improvements and extensions to the current Anya algorithm. For example, we
believe the empirical performance of Anya could be enhanced by generating successors
nodes that do not contain any redundant (or partially redundant) intervals. One possibility
is to keep a closed list of previously encountered intervals. A stronger variant of this idea
involves bounding the g-value of grid intervals and only generating successor nodes when at
least one point inside a candidate interval can be relaxed. A related and orthogonal improve-
ment involves pre-processing the grid and identifying intervals apriori. This enhancement
can speed up search by avoiding entirely all grid scanning and interval projection operations
that are currently necessary in order to generate each node.

We have seen that reasoning over sets of points from the grid, rather than individual
locations, is computationally beneficial. We believe the same type of search paradigm
employed by Anya can be generalised to improve the performance of grid-optimal search
in addition to any-angle pathfinding.

As a final suggestion for further work, we believe Anya might also be generalised to
two-dimensional maps with arbitrarily shaped polygonal obstacles, rather than just grids.
A benefit of this generalisation would be to avoid the discretisation of the world in which
a path is searched for. This would even improve the quality of the path returned as the
optimal any-angle path is often non optimal in the non-discretised version of the map.
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Appendix A.

We provide additional details for the implementation of Anya’s successor set generation
algorithm. Our method depends on basic operations which are technically simple: grid
scanning, traversability tests and linear projection operations. We do not attempt to repro-
duce the mechanical details of such operations. Instead we focus our presentation toward
intuitive understanding of the overall process.

Algorithm 4 Computing the successor set, supplemental.
1: function generate-start-successors(a traversable and discrete start location s)
2: Construct a maximal half-closed interval I1max containing all points observable and to the left of s
3: Construct a maximal half-closed interval I2max containing all points observable and to the right of s
4: Construct a maximal closed interval I3max containing all points observable and from the row above s
5: Construct a maximal closed interval I4max containing all points observable and from the row below s
6: intervals← Split each Ikmax at each corner point and take their union
7: Construct for each I ∈ intervals a new (cone or flat) successor node with r = s
8: return all start successors
9: end function

10: function generate-flat-successors(an interval endpoint p, a root point r)
11: p′ ← first corner point (else farthest obstacle vertex) on the row of p such that 〈r, p, p′〉 is taut
12: Imax ← new maximal interval with endpoints p (open) and p′ (closed)
13: if points r and p are on the same row then . Observable successors
14: successors← new flat node n = (Imax, r)
15: else
16: successors← new flat node n = (Imax, p) . Non-observable flat successors
17: end if
18: return successors
19: end function

20: function generate-cone-successors(an interval endpoint a, an interval endpoint b, a root point r)
21: if a and b and r are from the same row then . Non-observable successors of a flat node
22: r′ ← a or b, whichever is farthest from r . Previously established this is a turning point
23: p← a point from an adjacent row, reached via a right-angle turn at a . Obstacle following
24: Imax ← a maximum closed interval, beginning at p and entirely observable from r′

25: else if a == b then . Non-observable successors of a cone node
26: r′ ← a
27: p← a point from an adjacent row, computed via linear projection from r through a
28: Imax ← a maximum closed interval, beginning at p and entirely observable from r′

29: else . Observable successors of a cone node
30: r′ ← r
31: p← a point from an adjacent row, computed via linear projection from r through a
32: p′ ← a point from an adjacent row, computed via linear projection from r through b
33: Imax ← a maximum closed interval, with endpoints a and b, which is entirely observable from r′

34: end if
35: for all I ∈ { split Imax at each corner point } do
36: n′ ← new search node with interval I and root point r′

37: successors← successors ∪ I
38: end for
39: return successors
40: end function
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