
To appear in Radio Science, 2006

Optimal aperture synthesis radar imaging

D. L. Hysell

Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York

J. L. Chau

Radio Observatorio de Jicamarca, Instituto Geofı́sico del Perú, Lima

Abstract. Aperture synthesis radar imaging has been used to investigate coherent

backscatter from ionospheric plasma irregularities at Jicamarca and elsewhere for

several years. Phenomena of interest include equatorial spread F, 150-km echoes,

the equatorial electrojet, range-spread meteor trails, and mesospheric echoes. The

sought after images are related to spaced-receiver data mathematically through an

integral transform, but direct inversion is generally impractical or suboptimal. We

instead turn to statistical inverse theory, endeavoring to utilize fully all available

information in the data inversion. The imaging algorithm used at Jicamarca is based

on an implementation of MaxEnt developed for radio astronomy. Its strategy is to

limit the space of candidate images to those that are positive definite, consistent

with data to the degree required by experimental confidence limits, smooth (in

some sense), and most representative of the class of possible solutions. The

algorithm was improved recently by 1) incorporating the antenna radiation pattern

in the prior probability and 2) estimating and including the full error covariance

matrix in the constraints. The revised algorithm is evaluated using new 28-baseline

electrojet data from Jicamarca.

Introduction

Coherent radar backscatter from fi eld-aligned plasma ir-

regularities can be used to assess the stability of ionospheric

regions from the ground and study the instability processes

at work. Radars provide relatively unambiguous informa-

tion about the range to and Doppler shift of the irregulari-

ties. Information about the spatial distribution of the irregu-

larities in the transverse directions is more ambiguous; even

steerable radars rely on the stationarity of the target to some

extent to construct images of regional irregularity structure,

and fi nite beamwidth effects introduce additional ambiguity,

particularly when the targets are spatially intermittent and

exhibit high dynamic range. Many radars use fi xed beams,

and the pseudo-images they produce (so-called “range time

intensity” images) are only accurate representations to the

extent that the flow being observed is uniform, frozen-in,

and lacks important details at scale sizes comparable to or

smaller than the scattering volume. It is generally not possi-

ble to assess the validity of these assumptions a priori, call-

ing the practice into question.

Radar interferometry makes it possible to discern the spa-

tial distribution of scatterers within the radar illuminated vol-

ume [Farley et al., 1981; Kudeki et al., 1981]. Interferom-

etry with two spaced antenna receivers (a single baseline)

yields three moments of the distribution. A powerful gen-

eralization of interferometry involves using more receivers

and baselines to yield more moments, a suffi cient number

of moments specifying an image of the scatterers in the illu-

minated volume [Woodman, 1997]. The fi rst true images of

ionospheric irregularities were formed this way by Kudeki

and Sürücü [1991] observing irregularities in the equatorial

electrojet over Jicamarca. A few years later, Hysell [1996];

Hysell and Woodman [1997] produced images of plasma ir-

regularities in equatorial spread F with higher defi nition by

incorporating statistical inverse methods in the data inver-

sion. The same basic algorithm has since been applied to

studies of large-scale waves in the daytime and nighttime

electrojet [Hysell and Chau, 2002; Chau and Hysell, 2004],
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bottom-type spread F layers [Hysell et al., 2004a], quasiperi-

odic echoes from midlatitude sporadic E layers [Hysell et al.,

2002, 2004b], and the radar aurora [Bahcivan et al., 2005].

Satisfactory performance of the original imaging algorithm

relegated low priority to further development, but some im-

provements have recently emerged.

In this paper, we review the algorithm and describe re-

fi nements that move it closer to an optimal solution to the

imaging problem. The improvements allow the incorpora-

tion of additional information. Specifi cally, we utilize the

radar radiation pattern and the full error covariance matrix.

Algorithm

The data underlying radar imaging are complex interfero-

metric cross-correlation or cross-spectral measurements de-

rived from spaced receivers separated by the vector baseline

d. We take for granted that incoherent integration is involved

in the measurements. The relationship between such mea-

surements, called visibilities, and the scattered power den-

sity as a function of bearing, called the brightness, is given

by [Thompson, 1986]:

V (kd) =

∫

4π

AN (σ)B(σ)ejkd·σdΩ (1)

which has the form of a continuous Fourier transform be-

tween baseline and bearing space, σ being a unit vector in

the direction of a place in the sky being mapped. Here, V
is the visibility, B is the brightness, k is the wavenumber,

and AN is the normalized two-way antenna effective area.

In the context of radio astronomy, AN represents the char-

acteristics of the receiving antennas. In radar imaging, the

antennas used for reception are usually much smaller than

those used for transmission, and AN is consequently domi-

nated by the characteristics of the transmitting antenna array.

Together, the product ANB is the effective brightness distri-

bution, Beff , which represents the angular distribution of the

received signals. It is this function we are interested in re-

covering from the data, the antenna radiation patterns being

known. The only time the radiation pattern need explicitly

be included in such integrals is in cases when dissimilar an-

tennas are used for different spaced receivers (see below).

The visibility data in (1) need not come from a fi lled array

but could equally well come from a sparse array of spaced

receivers. What matters is the number of independent in-

terferometry baselines and the length of the baselines rather

than the total antenna area or number of antenna array ele-

ments. This is the meaning of the term “aperture synthesis.”

In a Cartesian coordinate system, (1) becomes

V (kdx, kdy, kdz) (2)

=

∫

Beff(η, ξ)
√

1 − η2 − ξ2
e
jk

(

dxη+dyξ+dz

√
1−η2−ξ2

)

dηdξ

where η and ξ are the direction cosines of the bearing σ with

respect to x and y coordinates, which can be arbitrarily ori-

ented. (The z direction can but need not be the pointing

direction of the instrument.) If the fi eld of view of the sky

being mapped is suffi ciently restricted, the radical in the de-

nominator of the integrand may be treated like a constant. In

that event, and in cases where the spaced receivers are copla-

nar so that dz can always be made to be zero, (2) retains the

form of a two-dimensional Fourier transform. Since Beff is

band limited by the fi nite width of the radar radiation pattern,

the visibilities can be completely represented by a discrete

set of periodic measurements, i.e., a Fourier series.

In practice, visibility samples are nonuniformly spaced,

sparse, and incomplete, making inversion of the integral

transform in (2) with a discrete Fourier transform imprac-

tical. Adaptive beamforming techniques such as the method

introduced by Capon [1969] may be used instead. However,

these make no prevision for statistical fluctuations in the data

and the possibility that the problem is ill conditioned. Nor do

they offer obvious means of incorporating prior information.

The preferred methods of inversion are therefore indirect

(probabilistic, model-based) rather than direct (see for exam-

ple Bertero and Boccacci [1998]). The algorithm described

here derives from the MaxEnt spectral analysis method, a

Bayesian method based on maximizing the Shannon entropy

of the candidate spectrum [Shannon and Weaver, 1949]. The

method should not be confused with the maximum entropy

method (MEM) or other autoregressive models, with which

it has only a remote connection [Jaynes, 1982]. MaxEnt was

fi rst applied to spaced receiver image reconstruction by Gull

and Daniell [1978] (and to a more general image reconstruc-

tion problem by Wernecke and D’Addario [1977]). Varia-

tions and refi nements to the technique were published soon

after by Wu [1984], Skilling and Bryan [1984], and Cornwell

and Evans [1985]. Our algorithm is based on one devel-

oped by Wilczek and Drapatz [1985] (WD85). Rationales

for MaxEnt have been advanced by Ables [1974], Jaynes

[1982, 1985], Skilling [1991], and Daniell [1991], among

many others.

In the following analysis, we simplify the notation by

working in one dimension, θi, the discretized zenith angle

in the equatorial plane. (One dimensional imaging is suf-

fi cient for observing fi eld-aligned irregularities at the mag-

netic equator. The two-dimensional generalization is mean-

while trivial.) The real valued brightness is represented by

the symbol fi = f(θi). The visibility data come from nor-

malized cross-correlation estimates

V (kdj) =
〈v1v

∗
2〉

√

〈|v1|2〉 − N1

√

〈|v2|2〉 − N2

(3)
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where we presume the absence of extraneous common sig-

nals due to interference or jamming. Here, the v1,2 repre-

sent quadrature voltage samples from two receivers spaced

by a distance dj in the direction of the magnetic equator,

and the N1,2 are the corresponding noise estimates. The an-

gle brackets above represent a time average associated with

incoherent integration of the data. We represent the visibil-

ity data with the symbol gj = g(kdj) and assign two real

values for each baseline; one each for the real and imaginary

part of (3). Given M interferometry baselines with nonzero

length, there are therefore a total of 2M + 1 distinct visibil-

ity data. (The visibility for the zero baseline is identically

unity.) Using this notation and invoking the Einstein sum-

mation convention, (2) becomes

gj + ej = fihij (4)

where hij is either the real or imaginary part of the point

spread function exp(jkdjθi), depending on whether gj is

the real or imaginary part of (3), and the ej are the corre-

sponding random error terms arising from the fi nite number

of samples used to compute (3). The sum is over the zenith

angles in the image to be constructed. We can form images

with arbitrarily narrow and numerous zenith angle bins, but

the attainable granularity is ultimately limited by the data

properties and longest baselines available. In practice, reso-

lution is increased until new details cease emerging.

Statistical inverse theory asks, “given a set of measured

visibilities and their error bounds, what is the probability

that a given brightness distribution produced them?” The

answer comes from Bayes’ theorem, which states that the

conditional probability P (f |g) is proportional to the product

of P (g|f) and P (f). The conditional probability or “likeli-

hood” that the visibilities arose from the brightness distri-

bution, P (g|f), can be derived from the forward problem.

The marginal or prior probability of the brightness, P (f),
is an expression of other information about the image inde-

pendent of the data. The image that maximizes P (f |g), the

posterior probability, is what we seek.

MaxEnt methods associate P (f) with the Shannon en-

tropy of the brightness distribution, S = −fi ln(fi/F ). Here,

F = Iifi = g0 is the total image brightness, Ii being a vector

if 1’s. Of all distributions, the uniform one has the high-

est entropy. In that sense, entropy is a smoothness metric.

The entropy of an image is also related to the likelihood of

occurrence in a random assembly process. All things being

equal, a high-entropy distribution should be favored over a

low entropy one. The former represents a broadly accessi-

ble class of solutions, while the latter represents an unlikely

outcome that should only be considered if the data demand

it. Finally, only positive defi nite brightness distributions are

allowed by S. In incorporating it, we reject the vast majority

of candidate images in favor of a small subclass of physically

obtainable (positive defi nite) ones.

Neglecting the error terms for the moment, the brightness

distribution that maximizes S while being constrained by (4)

is the extremum of the functional:

E(f(λj)) = S + λj(gj − fihij) + L(Iifi − F ) (5)

where the λj are Lagrange multipliers introduced to enforce

the constraints by the principles of variational mechanics and

L is another Lagrange multiplier enforcing the normaliza-

tion of the brightness. Maximizing (5) with respect to the fi

and to L yields a model for the brightness, parameterized by

the λj :

fi = F
e−λjhij

Z
(6)

Z = Iie
−λjhij (7)

Note how Z plays the role of Gibbs’ partition function here.

This is no accident; the same derivation lies at the foundation

of statistical mechanics.

An obvious strategy for incorporating the data and errors

in the imaging problem at this point would be to write an

expression for the likelihood, which is related to χ2, multi-

ply this by the prior probability (substituting (6) into S), and

maximize the resulting posterior probability. Like the origi-

nal Gull-Daniell algorithm, WD85 departs from this slightly

by adapting (5) so as to enforce a constraint on the expecta-

tion of χ2 rather than minimize it. The constraint is included

with the addition of another Lagrange multiplier (Λ):

E(f(ej , λj ,Λ))

= S + λj(gj + ej − fihij) + Λ
(

e2
jσ

−2
j − Σ

)

= λj(gj + ej) + F lnZ + Λ
(

e2
jσ

−2
j − Σ

)

(8)

where the last step was accomplished by substituting (6) and

(7) into S. The Σ term constrains the error norm, calculated

in terms of theoretical error variances σ2
j . Rather than fi nd-

ing the brightness which deviates minimally from the data

while also having high entropy, WD85 fi nds the brightness

which deviates from the data in a prescribed way so as to

have the highest possible entropy consistent with experimen-

tal uncertainties.

Maximizing (8) with respect to the Lagrange multipliers

yields 2M + 1 algebraic equations:

gj + ej − fihij = 0 (9)

which merely restates (4). Maximizing with respect to the

error terms ej yields equations relating them to the λj :

λj +
2Λ

σ2
j

ej = 0 (10)
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Figure 1. Two-way radiation pattern of the Jicamarca imag-

ing array in a cut through the locus of perpendicularity. Nor-

malization is with respect to a perfectly effi cient, optimally

directed aperture.

(no sum implied). Maximizing with respect to Λ yields one

more equation relating that term to the others.

Λ2 −
λ2

jσ
2
j

4Σ
= 0 (11)

The resulting system of 2M + 1 coupled, nonlinear equa-

tions for the Lagrange multipliers can be solved numerically

using a hybrid method [Powell, 1970]. Finally, (6) yields

the desired image. The algorithm is robust and virtually al-

ways converges in practice given uncontaminated data. An

analytic form of the required Jacobian matrix can readily be

derived from (9) and used to optimize the performance of

the numerical solver.

The algorithm is conceptually related to regularization,

whereby inversion is performed by minimizing a cost func-

tion that includes χ2 along with some other metric, the reg-

ularization parameter, that favors smoothness or some other

desirable property. The “negentropy” (−S) could be con-

sidered a suitable regularization parameter. The difference

between WD85 and regularization is that χ2 is constrained

rather than minimized here in an attempt to fi nd solutions

with the highest entropy consistent with the data and their

experimental uncertainties. To simply minimize χ2 would

be to seek solutions with statistical errors potentially much

smaller than expected, a seemingly suboptimal use of infor-

mation. That said, debate exists in the literature regarding

the optimal value for Σ (see Gull [1989] for discussion). In

practice, smaller values produce images with greater detail

at the expense of increased artifacts. The choice of Σ bal-

ances desire for the former against aversion to the latter but

should in no case depart drastically from expectation.

Radiation pattern

The original WD85 algorithm has been improved re-

cently with the incorporation of two pieces of information.

One is the two-way antenna radiation pattern. At Jicamarca,

imaging experiments are usually performed using the north

and south quarters of the main antenna for transmission and

the modules (64ths) for reception. The quarters are excited

with a phase taper intended to broaden the pattern and widen

the imaging fi eld of view, which is effectively about 10◦

wide given the 20–30 dB usable dynamic range of the im-

ages. Figure 1 shows the two-way pattern, which is rela-

tively flat and free of sidelobes but which exhibits a sub-

tle valley to the west of zenith. The pattern is also slightly

asymmetric and extends farther to the east than to the west

of zenith.

The radiation pattern can obviously be divided from the

Beff curves produced by imaging to yield something closer

to the true brightness. The practical merits of this procedure

are questionable, however, as it involves dividing small num-

bers by other small numbers at the image periphery. Features

lying outside the main radiation pattern cannot be recovered

in practice, and we do not attempt to do so. However, the

boundary can be clarifi ed and sharpened by incorporating

the beam shape in the prior probability. Doing so reduces

the solution space to images free of artifi cial features in ex-

cluded regions.

The prescription is to modify the entropy expression. If

Shannon’s expression favors a uniform brightness distribu-

tion, the expression that favors distributions that resemble

the beam shape can be shown to be

S′ = −fi ln(fi/piF )

where pi is the two-way radiation power pattern. Propagat-

ing this expression through the preceding analysis alters only

the brightness model:

fi = Fpi

e−λjhij

Z
(12)

Z = pie
−λjhij (13)

where (12) implies no sum on i. The remaining formalism

is unchanged. The only restriction is that pi should be posi-

tive defi nite. In practice, the effect of the modifi cation is to

suppress the brightness outside the main beam and enhance

it slightly within. Examples are shown in the next section of

the paper.

In the event that antennas with different confi gurations

are used for reception, the prescription is as follows. The

pi in (12) can be set to match the radiation power pattern

of the transmitting antenna array, which has a common ef-

fect on all the signals received. The radiation patterns of the

receiving antennas should then be explicitly incorporated in

the expressions for the effective brightness, Beff , associated

with each baseline. In view of (1) and (4), this can be ac-

complished by modifying the point spread function for the

given baseline j such that hij → hij℘1i℘2i (no sum im-

plied), where ℘1,2i are the radiation amplitude patterns for
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the antennas at either end of the baseline. In view of the

principle of pattern multiplication, characteristics of the ra-

diation pattern common to all the receiving antennas can be

incorporated in pi instead of ℘1,2i so as to better constrain

the image.

Error covariances

A signifi cant shortcoming of the WD85 algorithm for

radar imaging is its utilization of error variances alone. Off-

diagonal terms in the error covariance matrix arising from

correlated errors are neglected. This practice is widespread

in inverse theory but may not always be justifi ed. The prob-

lem is addressed below.

The complete error covariance matrix for interferometric

cross-correlation or cross-spectral estimates is derived in the

appendix and summarized in (23), (29), and the discussion

leading to (27). The former pair gives the error covariance

for the cross-products

〈er12er34〉 = ℜ(δ2 + δ′2)/2

〈ei12ei34〉 = ℜ(δ2 − δ′2)/2

〈er34ei12〉 = ℑ(δ2 + δ′2)/2

〈er12ei34〉 = ℑ(δ′2 − δ2)/2

where er12 stands for the error in the estimate of the real

part of the correlation of the signals from spaced receivers

1 and 2, for example, and where the indices may be re-

peated depending on the interferometry baselines in ques-

tion. The latter extends the results to the fi nite signal-to-

noise ratio (SNR) case and must be applied to the terms

with repeated indices. Taken together, these formulas show

that the error covariance matrix is diagonally dominant only

in the low SNR case or in cases where the coherence is

small. These limits seldom apply to coherent scatter, how-

ever. Even the longest interferometry baseline at Jicamarca,

nearly 100 wavelengths long, can exhibit high coherence.

Even the low-power, portable imaging radar used to study

mid- and high-latitude plasma irregularities runs in the high

SNR limit [Hysell et al., 2002, 2004b]. The error covari-

ances are not diagonally dominant in general, and discarding

the off-diagonal terms misrepresents statistical confi dence in

the data. Some detail may be lost in the image as a result.

Our procedure is to evaluate the full error covariance ma-

trix according to the formulas in the appendix. We then in-

vert the matrix and calculate its eigenvectors and eigenval-

ues. The inverse covariance matrix is real symmetric, and

its eigenvalues are real. They are positive except in cases

where the condition number of the error covariance matrix

is too low to permit reliable inversion. In these rare events,

the new algorithm fails, and the original one must be used.

The transformation matrix Tjk whose rows are the eigen-

vectors defi nes a space in which the error covariances are di-

agonal. We can transform the system into this space through

a similarity transformation and still utilize most of the orig-

inal formalism. Reciprocals of the eigenvalues become the

new error variance estimates, i.e. σj → σ′
j . The measured

visibilities must also be transformed, i.e., g′
j = Tjkgk. Like-

wise, we transform the point spread function in (9), i.e.

g′j + e′j − Tjkfihik = 0

No further changes need be made to the algorithm. The ad-

ditional computational burden is modest compared to the it-

erative solution of the coupled equations.

Prior to similarity transformation, we fi nd that the auto-

covariances (the diagonal elements of the error covariance

matrix) are relatively uniform, with values of the order of

(2m)−1, where m is the number of statistically indepen-

dent samples entering into the estimated visibilities. The off-

diagonal terms, meanwhile, are smaller but of the same or-

der. After diagonalization, however, the variances are more

widely distributed, with values both much smaller and much

larger than (2m)−1. The explanation is discussed in the

appendix, where it is pointed out that normalized interfer-

ometric coherence measurements are much more accurate

than phase measurements, particularly when the coherence

is large. The large phase errors distribute themselves about

evenly between the real and imaginary parts of the visibil-

ities given arbitrary phase angles, which is why the error

variances are uniform prior to diagonalization, and the real

and imaginary errors are highly correlated in general, con-

tributing to the magnitude of the off-diagonal terms in the

covariance matrix. Diagonalization is tantamount to rotating

the phase plane so as to align an axis with the interferometric

phase angle. In this space, the errors decorrelate. Errors for

parameters aligned with (normal to) the phase angle become

smaller (larger) than the original autocovariances. The effect

is only important for data with high coherence in the large

signal-to-noise ratio limit.

Overall, the effect of considering correlated errors is to

produce more detailed radar images. The small error vari-

ances arising from diagonalization permit MaxEnt to pro-

duce fi ne structure that is pointed to by the data but that

would otherwise have too low entropy to be considered. At

the same time, diagonalization suppresses some presumably

artifi cial features in the images that can no longer be sup-

ported in view of the large error variances now associated

with a number of the visibility data. These effects are illus-

trated in the examples in the following section.
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Figure 2. Radar images of plasma irregularities in the equatorial electrojet. The imaging algorithm included the radar

radiation pattern and the full error covariance matrix.

Figure 3. Same as Fig. 2, except the radar radiation pattern was not used in the data inversion.

Figure 4. Same as Fig. 2, except the full error covariance matrix was not used in the data inversion.
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Examples

Figure 2 shows example radar images of plasma irreg-

ularities in the equatorial electrojet observed at Jicamarca

on July 26, 2005. The image space is in the plane of the

magnetic equator. The waveform used to collect the images

was an uncoded 3µs pulse with an interpulse period of 2.5

ms. The incoherent integration time was 4 s. A low-power

transmitter was used for the experiments, and reception was

performed using 8 approximately collinear antenna mod-

ules yielding 28 distinct baselines. The distances between

the modules, projected on the line of the magnetic equator,

ranged from 13.2 m to 570.8 m. While the imaging fi eld

of view is consequently precisely 26◦, the antenna illumi-

nated a much narrower range of angles (see Figure 1), and

so only half the actual fi eld of view reconstructed through

imaging is shown. The antenna confi guration used was pri-

marily designed for experiments with spread F, where sig-

nifi cant backscatter can sometimes be received from very

large zenith angles.

The images depict the backscattered characteristics ver-

sus range and zenith angle in the equatorial plane. We pro-

cess the signals into four spectral bins and generate images

for the lowest three frequency components. The red- and

blue-shifted Doppler bins are assigned red and blue colors,

and the remaining, zero-shifted bin is assigned green. The

intensity of the colors plotted is proportional to the SNR, on

a logarithmic scale from 20–40 dB. By combining the colors

in the images this way, the brightness, hue, and saturation of

the pixels come to represent the scattered power, Doppler

shift, and spectral width in an intuitive way.

The bands evident in Figure 2 are large-scale gradi-

ent drift waves that predominate in the daytime electrojet

[Kudeki et al., 1982]. Not only are the intensities modulated

by the bands, but so are the Doppler shifts, signifying the

reversal of the electron E×B drift in opposite phases of the

electrostatic waves. Inspection of the Doppler spectra shows

that type I echo signatures are present, signifying that the

polarization electric fi elds produced by the gradient waves

were strong enough to excite Farley Buneman instabilities.

The large-scale wave wavelengths are kilometric, and they

propagate westward during the day with phase speeds of up

to about 200 m/s. They exhibit considerable shear, propagat-

ing fastest at high altitudes. The shear causes the waves to

twist, break, and collapse. The waves then reform, exhibit-

ing a nonlinear relaxation behavior that has been described

and simulated by Ronchi et al. [1991]. This behavior is can

be seen clearly in animated sequences of images like those

in Figure 2. A detailed analysis of properties of the waves

deduced from imaging was presented by Hysell and Chau

[2002].

Figure 3 shows the same plasma irregularities as Figure 2,

only this time computed without specifying the radar radia-

tion pattern in the prior probability. These images have a

higher tendency to indicate the presence of backscatter out-

side the radar illuminated volume, something that is almost

certainly artifi cial. The fault is not grave, but correction is

desirable. The inclusion of the radiation pattern in the en-

tropy expression appears to be an effective remedy. Since

the total power in the images is conserved, the darker pe-

ripheries in Figure 2 are accompanied by slightly brighter

images in the radar illuminated volume. This could be a

useful for accurately quantifying signal strengths.

Figure 4 shows the same radar images, this time com-

puted using the radiation pattern in the prior probability but

neglecting the off-diagonal terms in the error covariance es-

timator. While the effect is arguably subtle when presented

in log intensity format, there is more detail in in Figure 2

than in Figure 4, and the former are sharper than the latter.

Blank space appears in gaps between some of the large-scale

waves in Figure 2 whereas there are almost no gaps in Fig-

ure 4. The generally sharper images in the middle panels

arise from a number of smaller error variance estimates. At

the same time, the features in Figure 2 seem to be better con-

fi ned to the zenith angles illuminated by the radar.

Summary

Aperture synthesis radar imaging is emerging as a pow-

erful tool for studying the spatial structure of plasma irreg-

ularities in the Earth’s ionosphere. The resolution of the

technique is limited by the longest interferometry baselines

which can, in practice, be much longer than the dimensions

of the main radar antenna array. Because the data tend to

be sparsely and incompletely sampled and because of the

poorly conditioned nature of the problem, imaging gener-

ally takes the form of a constrained optimization problem.

Statistical inverse theory in generally and MaxEnt in par-

ticular constitute an optimal solution to the problem, incor-

porating all available prior information and constraining the

solution with the data in terms of complete and precise confi -

dence limits. MaxEnt recovers much more detail than adap-

tive beamforming approaches such as Capon’s method, al-

though the latter reproduces broad morphological features

accurately and may still be useful in real time applications.

We have improved the WD85 MaxEnt algorithm by in-

corporating the two-way antenna pattern in the prior proba-

bility and by utilizing the full error covariance matrix in the

constraint. The former modifi cation suppresses artifi cial im-

age features outside the sector illuminated by the radar. The

latter gives rise to somewhat sharper images than would oth-

erwise be possible by exploiting the high degree of accuracy
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associated with normalized coherence estimates in interfer-

ometry. A thorough analysis of errors in radar imaging is

presented in the appendix that may be useful in a broad class

of signal processing problems.

The benefi ts of modifying the WD85 algorithm are not

drastic as the faults they remedy were not grave. The impact

on the kind of qualitative studies of ionospheric irregulari-

ties undertaken to date will probably not be very signifi cant.

However, as quantitative applications for radar imaging ap-

pear, corrections such as these will take on added signifi -

cance. Convection electric fi eld estimates from radar images

of auroral echoes are an example of an application that is

highly intolerant of artifacts and that can benefi t from this

analysis [Bahcivan et al., 2005].

Appendix

Here, we derive a general expression for the error co-

variance for normalized cross-spectral estimates in the pres-

ence of noise. The approach mirrors that outlined by Farley

[1969]. Our results reproduce those presented by Hysell and

Woodman [1997] but are more general and compact. The ex-

pressions derived should have a wide range of applicability

outside the context of radar interferometry in view of the fact

that the samples in question could equally come from differ-

ent times as from different antennas, as they are understood

to here.

Consider four complex signals which can be regarded as

the quadrature voltages present at the output from four re-

ceivers, each one attached to a different antenna receiving

radar backscatter. Let v1i represent the ith sample of the

voltage from receiver number 1, for example, which is taken

to be a Gaussian random variable with zero mean. If ρ12

is defi ned as the normalized cross-correlation of the signals

from receivers 1 and 2, then an obvious estimator of ρ12 is:

ρ̂12 =
1

m

∑m
i=1

v1iv
∗
2i

√

1

m

∑m
i=1

|v1i|2 1

m

∑m
i=1

|v2i|2
(14)

≡ A12√
B12

(15)

where the numerator and denominator are computed from

the same m statistically independent, concurrent samples.

The estimators A12 and B12 that make up ρ̂12 deviate from

their expectations due to the fi nite number of samples in-

volved, giving rise to errors that we express as

A12 = 〈A12〉(1 + ǫA12
)

B12 = 〈B12〉(1 + ǫB12
)

where A12 is an unbiased estimator and 〈A12〉 ≡ Sρ12, S be-

ing the signal power. Note however that B12 is a biased esti-

mator because of possible correlations in the signals from the

two receivers involved and that 〈B12〉 ≈ S2(1 + 1

m
|ρ12|2).

Assuming that m is large and that the relative errors are

small, we then have

ρ̂12

≈ 〈A12〉
√

〈B12〉

(

1+ ǫA12
− 1

2
ǫB12

− 1

2
ǫA12

ǫB12
+

3

8
ǫ2B12

)

(16)

The fi rst order error terms in (16) are the dominant contrib-

utors to the error covariance, and only they will be retained

in what follows. Higher-order terms introduce additional bi-

ases in ρ̂12 but will be neglected.

While the samples are random, they are correlated, and

consequently so are the errors in correlation functions esti-

mated from them. The error correlation can be expressed

as

δ2 = 〈(ρ̂12 − 〈ρ̂12〉) (ρ̂34 − 〈ρ̂34〉)∗〉

≈ ρ12ρ
∗
34

〈(

ǫA12
− 1

2
ǫB12

)(

ǫA34
− 1

2
ǫB34

)

∗

〉

(17)

where we do not differentiate between ρij and 〈Aij〉/
√

〈Bij〉
in the term multiplying the angle brackets, here or elsewhere

in the appendix.

What remains is the computation of the four quadratic

terms inside the angle brackets in (17) which are readily de-

termined with the application of the fourth moment theorem

for Gaussian random variables and its generalizations (e.g.

Reed [1962]). For example, we may write

〈A12A
∗
34〉

= 〈A12〉〈A∗
34〉

(

1 + 〈ǫA12
ǫ∗A34

〉
)

(18)

=
1

m2

m
∑

i,j=1

〈v1iv
∗
2iv

∗
3jv4j〉

=
1

m
〈v1iv

∗
2iv

∗
3iv4i〉 +

m(m − 1)

m2
〈v1iv

∗
2iv

∗
3jv4j〉i6=j

=
1

m
S2 (ρ12ρ

∗
34 + ρ13ρ

∗
24) +

(

1 − 1

m

)

S2ρ12ρ
∗
34

Making use of the last result and with a little rearranging of

(18), an expression for the corresponding quadratic term in

(17) can be derived:

〈ǫA12
ǫ∗A34

〉 =
1

m

ρ13ρ
∗
24

ρ12ρ∗34
(19)

Likewise, we may write

〈B12B
∗
34〉
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= 〈B12〉〈B∗
34〉

(

1 + 〈ǫB12
ǫ∗B34

〉
)

=
1

m4

m
∑

i,j,k,l=1

〈v1iv
∗
1iv2jv

∗
2jv3kv∗

3kv4lv
∗
4l〉

=

(

1 − 6

m

)

〈v1iv
∗
1iv2jv

∗
2jv3kv∗

3kv4lv
∗
4l〉i6=j 6=k 6=l

+
1

m
〈v1iv

∗
1iv2iv

∗
2iv3kv∗

3kv4lv
∗
4l〉i6=k 6=l

+
1

m
〈v1iv

∗
1iv2jv

∗
2jv3iv

∗
3iv4lv

∗
4l〉i6=j 6=l

+
1

m
〈v1iv

∗
1iv2jv

∗
2jv3kv∗

3kv4iv
∗
4i〉i6=j 6=k

+
1

m
〈v1iv

∗
1iv2jv

∗
2jv3jv

∗
3jv4lv

∗
4l〉i6=j 6=l

+
1

m
〈v1iv

∗
1iv2jv

∗
2jv3kv∗

3kv4jv
∗
4j〉i6=j 6=k

+
1

m
〈v1iv

∗
1iv2jv

∗
2jv3kv∗

3kv4kv∗
4k〉i6=j 6=k

where terms with leading factors smaller than m−1 have

been neglected. With the appropriate identifi cations, this

may be expressed as

〈B12B
∗
34〉 = S4

+
S4

m

(

|ρ12|2 + |ρ13|2 + |ρ14|2 + |ρ23|2 + |ρ24|2 + |ρ34|2
)

With some further rearranging, we have

1 + 〈ǫB12
ǫ∗B34

〉

=
1 + 1

m

(

|ρ12|2+|ρ13|2+|ρ14|2+|ρ23|2+|ρ24|2+|ρ34|2
)

1 + 1

m
(|ρ12|2 + |ρ34|2)

To order m−1, this leads to the result:

〈ǫB12
ǫ∗B34

〉 =
1

m

(

|ρ13|2+|ρ14|2+|ρ23|2+|ρ24|2
)

(20)

Similar calculations can be performed to yield the re-

maining two quadratic terms:

〈ǫA12
ǫ∗B34

〉 =
1

m

ρ13ρ
∗
23 + ρ14ρ

∗
24

ρ12

(21)

〈ǫA∗

34
ǫB12

〉 =
1

m

ρ13ρ
∗
14 + ρ23ρ

∗
24

ρ∗34
(22)

Finally, incorporating (19)–(22) into (17) yields the com-

plete expression for the error covariances:

δ2 =
1

m

[

ρ13ρ
∗
24 −

1

2
ρ∗34 (ρ13ρ

∗
23 + ρ14ρ

∗
24) (23)

−1

2
ρ12 (ρ13ρ

∗
14 + ρ23ρ

∗
24)

+
1

4
ρ12ρ

∗
34

(

|ρ13|2 + |ρ14|2 + |ρ23|2 + |ρ24|2
)

]

Several comments about this result are in order. First, in the

case of small correlations, the quadratic term in (23) domi-

nate, and the expression reduces to the one derived by Farley

[1969]. Second, in the case where the correlations tend to-

ward unity, the covariance vanishes, even when the number

of samples m is small. This property can permit very ac-

curate interferometric measurements to be made even given

relatively short integration times [Farley and Hysell, 1996].

Third, (23) is a general one that applies even in the cases of

repeated indices. For example, if the subscripts 3 and 4 are

replaced by 1 and 2, respectively, (23) reduces to the expres-

sion for the variance derived by Farley [1969]. Note that any

correlation term that appears with repeated indices (e.g. ρii)

is merely unity.

Finally, (23) applies to the case of no noise but can easily

be generalized to encompass the effects of added noise. In

what follows, we assume that the noise has been estimated

from a large number of samples and consequently neglect

errors introduced by the computation of the noise estimate.

The appropriate estimator for the correlation function in

the presence of noise is

ρ̂12 =
〈A12〉(1 + ǫA12

) − NρN
√

〈B12〉
(

1 + 1

2
ǫB12

)

− N
(24)

where S and N are the signal and noise powers associated

with the given voltage samples, respectively, ρS and ρN refer

to the signal and noise correlation functions such that (S +
N)ρ = Sρs + NρN , and where 〈A12〉 = Sρs + NρN and

S + N replaces S in 〈B12〉. With some rearranging and the

expansion of its denominator, (24) can be written as:

ρ̂12 = ρs

(

1 + ǫA12

SρS + NρN

SρS

)(

1 − 1

2
ǫB12

S + N

S

)

(25)

At this point, we limit the discussion to estimator errors

for correlation functions with nonzero lags and make the as-

sumption that the antennas upon which different signals are

received are suffi ciently distant that the noise correlation ρN
vanishes. In that case, ρs = ρ(S + N)/S, and (25) adopts

the form of (16) except with additional factors of the ratio

(S + N)/S. Propagating those factors through the calcula-

tions performed earlier leads to the following expression for

the covariances:

δ2 =
1

m

(

S + N

S

)2

[ρ13ρ
∗
24 (26)

− 1

2

(

S + N

S

)

ρ∗34 (ρ13ρ
∗
23 + ρ14ρ

∗
24)

− 1

2

(

S + N

S

)

ρ12 (ρ13ρ
∗
14 + ρ23ρ

∗
24)
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+
1

4

(

S + N

S

)2

ρ12ρ
∗
34

(

|ρ13|2 + |ρ14|2

+|ρ23|2 + |ρ24|2
)]

In addition, it is convenient replace all the ρ factors in (26)

with the corresponding ρS factors, each multiplied by a fac-

tor of S/(S + N). Doing so returns the expression to the

form of (23), only with the correlation functions now rep-

resenting the correlations of the signal components only

(ρ → ρS). The exceptions to this rule are the correlation

terms with repeated indices, ρii, which should be replaced

by unity. The consequences of all of this is that the normal-

ized correlation function error covariances for signals in the

presence of noise are ultimately given by (23), only substi-

tuting the factor

ρSii → S + N

S
(27)

wherever correlation terms with repeated indices appear.

Lastly, when considering error terms associated with zero

lag estimators, the noise correlation terms in (25) must be re-

tained, and ρS = ρ = 1 must be used for that lag. Doing so

and carrying the results through the calculations leading to

(26), is is easily shown that the covariance terms involving

the zero lag estimator are all identically zero. This result

should be obvious because the normalized correlation func-

tion for the zero lag and its estimator are identically unity

and cannot suffer from statistical errors.

The preceding analysis yielded the complex error covari-

ances for complex visibility estimates. We can be more ex-

plicit and derive the error covariances for the real and imag-

inary parts of the visibilities treated as separate entities. The

result are the most complete description of the experimen-

tal error bounds possible. The additional information they

contain can be used to constrain the imaging problem more

precisely.

We return to (23),the complex covariance for complex

correlation functions, and express it as

δ2 = 〈(er12 + iei12)(er34 + iei34)
∗〉

where the er,i terms stand for the real and imaginary parts of

the errors for the correlation estimate for the given antenna

pair. Regrouping terms, we have

δ2 = 〈er12er34 + ei12ei34〉
+i〈(er34ei12 − er12ei34)〉 (28)

Consider next the related quantity:

δ′2 = 〈(ρ̂12 − 〈ρ̂12〉) (ρ̂34 − 〈ρ̂34〉)〉

≈ ρ12ρ34

〈(

ǫA12
− 1

2
ǫB12

)(

ǫA34
− 1

2
ǫB34

)〉

which is like (17) only without the complex conjugate. Fol-

lowing the procedure outlined above and borrowing on the

existing formalism, it can be shown that:

δ′2 =
1

m

[

ρ14ρ
∗
23 −

1

2
ρ34 (ρ13ρ

∗
23 + ρ14ρ

∗
24) (29)

−1

2
ρ12 (ρ∗13ρ14 + ρ∗23ρ24)

+
1

4
ρ12ρ34

(

|ρ13|2 + |ρ14|2 + |ρ23|2 + |ρ24|2
)

]

Furthermore, we note that:

δ′2 = 〈er12er34 − ei12ei34〉
+i〈(er34ei12 + er12ei34)〉

Therefore, the variances and covariances of the real and

imaginary parts of the errors are contained in the real and

imaginary parts of the sum and difference of δ2 and δ′2:

〈er12er34〉 + i〈er34ei12〉 =
δ2 + δ′2

2
(30)

〈ei12ei34〉 − i〈er12ei34〉 =
δ2 − δ′2

2
(31)

The effects of a fi nite signal-to-noise ratio are accounted for

by the prescriptions given in (27).

For example, (30) and (31) can be used to derive the au-

tocovariances for the real and imaginary parts of a certain

correlation function estimate in the large signal-to-noise ra-

tio limit. In this case, δ2 = (1/m)(1− 3|ρ|2/2+ |ρ|4/2), δ′2

= (1/m)(−ρ2/2 + ρ2|ρ|2/2), and

〈e2
r〉 =

1

2m

(

1 − (ℜρ)2
) (

1 − |ρ|2
)

(32)

〈e2
i 〉 =

1

2m

(

1 − (ℑρ)2
) (

1 − |ρ|2
)

(33)

〈erei〉 =
1

2m
ℜρℑρ

(

|ρ|2 − 1
)

(34)

These expressions illustrate important properties of nor-

malized cross-correlation estimates (see Figure 5). The fi rst

is that the errors become small as the coherence |ρ| ap-

proaches unity. The second is that coherence errors are gen-

erally much smaller than phase errors, particularly when the

coherence is high. This is due to the tendency for normaliza-

tion to reduce (actually cancel) coherence errors. Errors are

smallest along the phase-plane axis aligned with the phase

angle of ρ, and the real and imaginary errors are highly cor-

related when ρ is aligned with neither axis. These proper-

ties suggest that the real and imaginary parts of the visibility

are somewhat unnatural parameters for imaging and that the

problem would perhaps be better formulated in terms of co-

herence and phase.
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Figure 5. Results of a Monte Carlo simulation illustrating

the nature of normalized correlation function errors. Co-

herence errors are smaller than phase errors in this large-

coherence case. Errors on axes aligned with (normal to) the

phase angle will be relatively small (large). Real and imag-

inary errors are highly correlated when the phase angle is

aligned with neither the real nor the imaginary axis.

The real and imaginary errors become uncorrelated when

the phase angle of the correlation is aligned with the real or

imaginary axis. Diagonalization of the error covariance ma-

trix therefore amounts to rotating into a coordinate system

where alignment occurs. In such a space, we expect half the

errors (corresponding to the aligned axes) to be small and the

other half (corresponding to the axes at right angles to the

correlation phase) to be large. In effect, M complex, nor-

malized visibility measurements imply M accurately mea-

sured parameters related to coherence and another M less

accurately measured parameters related to phase angle.

For the sake of completeness, we point out that (32) and

(33) lead automatically to expressions for the variances of

measurements of normalized coherence and phase:

〈δ|ρ|2〉 =
1

2m

(

1 − |ρ|2
)2

(35)

〈δφ2〉 =
1

2m

(

1 − |ρ|2
)

/|ρ|2 (36)

where (36) agrees with Eq. (13) of Woodman and Hagfors

[1969].

In closing, we note that the probability density functions

for the cross-spectra of highly coherent signals can depart

signifi cantly from Gaussian distributions, undermining the

validity of the preceding analysis to some degree. The ex-

pressions derived here provide the leading behavior, and

their failure is regarded as the topic for future work.
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