
MATHEMATICS OF COMPUTATION
Volume 69, Number 231, Pages 1017–1034
S 0025-5718(99)01177-1
Article electronically published on May 20, 1999

OPTIMAL APPROXIMATION
OF STOCHASTIC DIFFERENTIAL EQUATIONS

BY ADAPTIVE STEP-SIZE CONTROL

NORBERT HOFMANN, THOMAS MÜLLER-GRONBACH, AND KLAUS RITTER

Abstract. We study the pathwise (strong) approximation of scalar stochastic
differential equations with respect to the global error in the L2-norm. For
equations with additive noise we establish a sharp lower error bound in the class
of arbitrary methods that use a fixed number of observations of the driving
Brownian motion. As a consequence, higher order methods do not exist if the
global error is analyzed. We introduce an adaptive step-size control for the
Euler scheme which performs asymptotically optimally. In particular, the new
method is more efficient than an equidistant discretization. This superiority is
confirmed in simulation experiments for equations with additive noise, as well
as for general scalar equations.

1. Introduction

We consider pathwise approximation for scalar stochastic differential equations

dX(t) = a(t,X(t)) dt+ σ(t,X(t)) dW (t), t ∈ T,(1)

on the unit interval T = [0, 1] with a one-dimensional Brownian motion W . We
study methods that yield processes X whose paths are close to the respective paths
of the strong solution X of (1).

Different notions of errors for pathwise approximation are studied in the liter-
ature. The majority of results deals with mean square errors E(X(τk) − X(τk))2

at discrete points τk ∈ T . See Kloeden and Platen [6], Milstein [9], and Talay [17]
for results and references. In this paper the pathwise distance between X and X is
analyzed globally on T in the L2-norm ‖ · ‖2, and the error of X is defined by

e(X) =
(
E(‖X −X‖22)

)1/2
.

See Talay [17] for a deterministic notion of error, which can be used for a worst
case analysis with respect to the Brownian paths.

We wish to determine (asymptotically) optimal approximation methods. To this
end we consider arbitrary methods Xn that use the values of a path of W at n
points. These points may be selected sequentially, where the only restriction is
measurability of the respective selection functions. Moreover, a finite number of
function values (or derivative values) of the drift a and the diffusion coefficient σ
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1018 N. HOFMANN, T. MÜLLER-GRONBACH, AND K. RITTER

may be used. The number infXn e(Xn) is the minimal error that can be achieved
by methods of the above type. We wish to find sharp upper and lower bounds
for the minimal error. Upper bounds may be derived by the analysis of a specific
method, while lower bounds must hold for every method Xn.

We show that infXn e(Xn) is of order

1/
√

6 · ‖σ‖1 · n−1/2

if σ is independent of the state variable. The corresponding equations are some-
times called equations with additive noise. We emphasize that the above result
provides for the first time a lower bound for arbitrary methods which use discrete
observations of a Brownian path. In particular, higher order methods do not exist
if the global error on T is analyzed. See Section 4 for further discussion. For equa-
tions with additive noise the optimal order is achieved by an Euler scheme with
adaptive step-size control. We take the step-size proportionally to the inverse of
the current value of σ. Numerical experiments indicate that it is reasonable to use
this method also for the general equation (1). We add that the computation time of
our method is bounded by c · n with a small constant c, and memory requirements
are negligible.

It is common to take equidistant discretizations for the numerical solution of
a stochastic differential equation. For the error of an Euler approximation with
constant step-size 1/n we obtain in the additive noise case the order

1/
√

6 · ‖σ‖2 · n−1/2,

which shows that it is not efficient to discretize equidistantly.
Only a few papers deal with adaptive step-size control; a partial list includes

Newton [11], Cambanis and Hu [2], Gaines and Lyons [5], and Mauthner [8]. How-
ever, optimality in the class of all methods Xn has not been addressed so far.
Cambanis and Hu [2] have shown that an adaptive step-size control is superior to
fixed (equidistant) step-sizes with respect to the mean square error at the point
t = 1.

2. Euler approximation with adaptive step-size control

Consider a discretization

0 = τ0 < · · · < τn = 1(2)

of the unit interval. The corresponding Euler scheme X̂ for equation (1) with initial
value X(0) is defined by

X̂(τ0) = X(0)

and

X̂(τk+1) = X̂(τk) + a(τk, X̂(τk)) · (τk+1 − τk) + σ(τk, X̂(τk)) · (W (τk+1)−W (τk)),

where k = 0, . . . , n − 1. The global approximation X̂ for X on T is defined by
piecewise linear interpolation of the data (τk, X̂(τk)) with k = 0, . . . , n.

It is reasonable to select a discretization that reflects the local properties of the
differential equation. We choose a basic step-size

h > 0
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and define the adaptive step-size control for the Euler method X̂h = X̂ by τ0 = 0
and

τk+1 = τk + h/σ(τk, X̂h(τk))(3)

as long as the right-hand side does not exceed one. Otherwise we put τk+1 = 1.
We perform an asymptotic analysis of the error e(X̂h) with h tending to zero for

equations

dX(t) = a(t,X(t)) dt+ σ(t) dW (t)(4)

with additive noise. In this case τk = τk(h, σ), and we use n(h, σ) to denote the
total number of steps, i.e.,

n(h, σ) = min{k ∈ N : τk(h, σ) = 1}.
We assume that the drift a : T × R→ R and the diffusion coefficient σ : T → R

have the following properties:
(A) There exist constants K1,K2,K3 > 0 such that∣∣∣∣∂a∂x(t, x)

∣∣∣∣ ≤ K1,

∣∣∣∣∂2a

∂x2
(t, x)

∣∣∣∣ ≤ K2,

and
|a(t, x)− a(s, x)| ≤ K3 · (1 + |x|) · |t− s|

for all s, t ∈ T and x ∈ R.
(B) The function σ is continuously differentiable and satisfies

σ(t) > 0

for all t ∈ T .
Furthermore we assume that the initial value X(0) satisfies
(C) X(0) is independent of W and

E|X(0)|2 ≤ K4

for some constant K4 > 0.
These conditions are standard assumptions when analyzing approximations for sto-
chastic differential equations. The only exception is the positivity of σ, which can
be replaced by integrability of σ−1/2. The latter property holds, for instance, if
σ only has simple zeros. Given the above properties, a pathwise unique strong
solution X(t), t ∈ T , of the equation (4) with initial value X(0) exists.

We use ‖ · ‖p to denote the Lp-norm of real-valued functions on T . Furthermore
we sometimes write e(X, a, σ,X(0)) instead of e(X).

Theorem 1. Assume that (A)–(C) hold for equation (4). Then

lim
h→0

n(h, σ)1/2 · e(X̂h, a, σ,X(0)) = 1/
√

6 · ‖σ‖1

for the Euler approximation with discretization (3). The Euler approximation X̂n

with constant step-size

τk+1 − τk = 1/n(5)

yields
lim
n→∞

n1/2 · e(X̂n, a, σ,X(0)) = 1/
√

6 · ‖σ‖2.
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Hence (5) is not efficient in general: taking (3) instead of (5) reduces the error
roughly by the factor ‖σ‖1/‖σ‖2 for the same number of steps. This fact is already
due to the choice of the discretization (5) and does not arise from choosing the
Euler method. A proof is easily obtained from the estimates in Section 6. See
Section 5 for simulation experiments.

In fact a much stronger optimality property holds for the method from Theorem
1. This method is asymptotically optimal for all equations with additive noise
among all methods that use values of W at arbitrary points. See Section 3.

We do not have asymptotic results for our step-size control in the case of arbitrary
scalar equations (1). However, simulation experiments indicate that (3) is still
superior to an equidistant discretization, see Section 5.

Remark 1. For small values of σ(τk) the equation (4) locally almost becomes an
ordinary differential equation. Still a reasonably small step-size is needed to get a
good approximation. Therefore we modify (3) according to

τk+1 = τk + min
(
h2/3, h/σ(τk, X̂h(τk))

)
.(6)

Due to (B) the asymptotic result from Theorem 1 also hold for the discretization (6).
The particular choice h2/3 is motivated by error estimates on intervals [τk, τk+1],
see Remark 3. The term h2/3 only matters if h > σ3(τk). It does not play any role
asymptotically, since σ is bounded away from zero.

Remark 2. In Theorem 1, as well as in Theorem 2 below, we give error estimates
that hold for individual equations. One can easily strengthen Theorem 1 so that
the upper bound holds uniformly on the class of equations (4) that is defined by
(A) and (C) and a quantitative version of (B).

To this end let K = (K1, . . . ,K7) with Ki > 0 and let F (K) denote the set of
all (a, σ,X(0)) such that (A) and (C) hold for a and X(0), respectively. For σ we
require

(B*) ‖σ‖1 ≤ K5, ‖σ′‖∞ ≤ K6, inft∈T σ(t) ≥ K7.

The maximal error of X̂h on the class F (K) is defined by

emax(h,K) = sup
(a,σ,X(0))∈F (K)

e(X̂h, a, σ,X(0))

and the maximal number of steps of this method is defined by

nmax(h,K) = sup
(a,σ,X(0))∈F (K)

n(h, σ).

We obtain

lim
h→0

nmax(h,K)1/2 · emax(h,K) = 1/
√

6 ·K5(7)

as a straightforward consequence of (17) and Theorem 1.
The estimate (7) is a worst case result on the class of equations corresponding

to F (K). We see that for differential equations with additive noise worst case
results and results for individual equations do not differ essentially if the number of
steps is large. For other problems of numerical analysis matters may be completely
different, see, e.g., Traub, Wasilkowski, and Woźniakowski [18, Chapter 10] and
Novak and Ritter [12].
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3. Lower bounds

The Euler approximation with adaptive step-size control is based on a realization
of the initial value X(0) and a realization of the Brownian motion, observed at a
finite number of points. Moreover, it uses a finite number of values of the drift a
and of the diffusion coefficient σ.

Now we present lower bounds that hold for every method of the above form. We
even drop all restrictions on the available information about a and σ, so that, in
particular, partial derivatives of smooth functions a and σ may be used. We fix a
and σ, and we consider the corresponding equation (4). An arbitrary method Xn

that is based on a realization of the initial value X(0) and on n observations of a
trajectory of W is then defined by measurable mappings

ψk : Rk → T

for k = 1, . . . , n and
φn : Rn+1 → L2(T ).

The mapping ψk determines the observation point in step k in terms of the previous
evaluations. A pathwise approximation is computed according to

Xn = φn(X(0), Y1, . . . , Yn),

where Y1 = W (ψ1(X(0))), and

Yk = W (ψk(X(0), Y1, . . . , Yk−1))

is the observation in step k ≥ 2. Every such method is called an n-point method
in the sequel.

The quantity
e(n, a, σ,X(0)) = inf

Xn

e(Xn, a, σ,X(0))

is the minimal error that can be obtained by n-point methods for the equation
(4). Suppose that ψ1, . . . , ψn are fixed. Then e(Xn, a, σ,X(0)) is minimized by the
conditional mean of X given X(0) and W at the respective discretization. Hence
the choice of the discretization is the main problem in a theoretical minimization
of errors of n-point methods.

Theorem 2. Assume that (A), (B), and (C) hold for equation (4). Then

lim
n→∞

n1/2 · e(n, a, σ,X(0)) = 1/
√

6 · ‖σ‖1.

Due to Theorems 1 and 2 the Euler approximation with adaptive step-size con-
trol (3) is asymptotically optimal for every equation with additive noise. Theorem
2 remains valid for a larger class of methods, where the number of observations
depends on the trajectory of W . More precisely, after every evaluation a decision
is permitted, whether to stop or to continue with further observations. Clearly n
must be replaced by the expected number of observations.

The number n is a crude measure of the cost of n-point methods, since any
computational cost in addition to the evaluations of W is ignored. Observe, how-
ever, that the Euler method with constant step-size has the least computational
cost among all n-point methods that are used in practice. The adaptive step-size
control (3) requires only a few additional operations per step.
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4. Discussion

We relate our results to known error bounds for pathwise approximation meth-
ods. Concerning the specific smoothness assumptions for a and σ, we refer to the
literature. We stress that some of the known results hold for systems of equations.

4.1. Global error in Lp-norm. In our analysis of strong approximation meth-
ods the pathwise error is defined globally on the interval T in the L2-norm. The
following upper bounds are already known for general equations (1). The Euler
approximation X̂n with constant step-size 1/n satisfies(

E(‖X − X̂n‖22)
)1/2

≤ c · n−1/2,

see Milstein [9, Remark 1.2]. Moreover, this method also yields(
E(‖X − X̂n‖q∞)

)1/q

≤ c · (lnn)1/2 n−1/2

for every 1 ≤ q < ∞, see Faure [4] and Bouleau and Lépingle [1, Remark 5.B.1.5].
The constants c > 0 are unspecified in both cases.

4.2. Pointwise error. Usually errors of strong approximations are defined dis-
cretely at a finite number of points in T . Often these points coincide with the
discretization of the given method. In this case it is not clear how to compare
methods that are based on different discretizations. For simplicity we consider the
error only at the right endpoint of T .

The Euler approximation X̂n with step-size 1/n yields(
E(X(1)− X̂n(1))2

)1/2

≤ c · n−1/2

for general equations (1). A better upper bound is obtained by the Milstein method
X̌n with step-size 1/n. This n-point method satisfies(

E(X(1)− X̌n(1))2
)1/2 ≤ c · n−1

with an unspecified constant c > 0, see Milstein [9, eq. (2.32)]. The Milstein
method coincides with the Euler method for equations (4). Shoji [15] proposes a
local linearization method X̆n with step-size 1/n. For equations (1) with constant
diffusion coefficient, he shows that(

E(X(1)− X̆n(1))p
)1/p

≤ c · n−1.

We get sharp bounds for equation (4) with zero drift. In this case

lim
n→∞

n · inf
Xn

(
E(X(1)−Xn(1))2

)1/2
= 1/

√
12 ·

(∫ 1

0

(σ′)2/3(t) dt
)3/2

,(8)

which follows from Sacks and Ylvisaker [14] and Traub, Wasilkowski, and Woź-
niakowski [18, Chapter 6.5] because of (12).

Clark and Cameron [3] analyze n-point methods that are based on the equidistant
discretization (5). For an autonomous equation dX(t) = a(X(t)) dt + dW (t) with
additive noise they show that

lim
n→∞

n · inf
φn

(
E(X(1)− φn(W (1/n), . . . ,W (1)))2

)1/2
= c
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with an explicit constant c, which is positive in most cases. Here φn varies over
all measurable mappings Rn → R. For an arbitrary autonomous equation they
show that one cannot achieve errors of order n−1−δ for any δ > 0 using equidis-
tant discretizations. See Newton [11] for another concept of asymptotic efficiency
concerning the choice of φn for a given discretization.

Cambanis and Hu [2] analyze discretizations of the form

τk+1 = τk + h/ξ(τk)

where ξ is a suitable continuous and positive function on [0, 1], cf. (3). They study
the Euler method as well as the conditional mean given X(0) and W at the dis-
cretization points. For autonomous equations they characterize the asymptotically
best choice of ξ with respect to the mean square error at the endpoint t = 1. For
the linear equation dX(t) = a · X(t) dt + b · X(t) dW (t), explicit formulas for the
optimal functions ξ are known.

Sections 4.1 and 4.2 indicate significant differences between global and pointwise
errors for stochastic differential equations. In contrast, this difference is not present
for ordinary differential equations, due to the global smoothness of the solutions.

4.3. Using additional information about W . From Theorem 2 and (8) we get
(rather large) lower bounds for arbitrary n-point methods. Faster convergence of
errors is sometimes possible for more general methods that use additional informa-
tion about W .

Instead of Dirac functionals one can apply arbitrary bounded linear functionals
on C(T ) to the trajectories of the Brownian motion. This happens, for instance,
in the order 3/2 strong Taylor scheme of Wagner and Platen [19], see also Kloeden
and Platen [6, Section 10.4]. In addition to the values W (τi) this method uses the
integrals

∫ τi+1

τi
W (s) ds. A constant step-size 1/n yields errors of order n−3/2 at

the right endpoint of T . We see that bounded linear functionals are more powerful
than Dirac functionals, if the pointwise error is studied.

Even more general methods are derived, for instance, from the stochastic Tay-
lor formula by including higher order multiple stochastic integrals. In principle,
pointwise errors of order n−γ for arbitrary large γ can be achieved. However, the
simulation of multiple integrals is a nontrivial task; sometimes these integrals are
approximated by bounded linear functionals, applied to W . See Milstein [9] and
Kloeden and Platen [6]. Similar statements are not true for the global error in
the L2-norm. All known methods of higher order in the pointwise sense only use
bounded linear functionals, if they are applied to equations (4) with zero drift. For
these equations the following lower bound is easily derived from the Karhunen-Loève
expansion of the Brownian motion. If a method uses n bounded linear functionals,
which may be selected sequentially as in Section 3, then its error is bounded from
below by c · n−1/2. Here c > 0 does only depend on σ and X(0).

Moreover, we can apply Maiorov’s result on average n-widths of the Wiener
space, see Maiorov [7]. Here even complete knowledge of the trajectory of W is
allowed. As long as all pathwise approximations are taken from an n-dimensional
subspace of C(T ), we have a lower bound c ·n−1/2. Note that this result applies in
particular to all methods that first compute approximate solutions at fixed points
τ1, . . . , τn and then apply a linear algorithm to these data, no matter how these
pointwise approximations are obtained.
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Complete knowledge of the trajectory of W is a reasonable assumption in the
search for lower bounds or from the point of view of approximation theory. However,
it does not lead to implementable numerical schemes.

5. Simulation experiments

We compare errors of the Euler method X̂h with adaptive step-size control and
of the Euler method X̂n with equidistant discretization.

5.1. Two equations with additive noise. First we consider the equation

dX(t) = −2 dt+ (20 exp(−(10t− 1)2)− t) dW (t), X(0) = 1.(9)

The assumptions (A) and (C) are trivially satisfied and the diffusion coefficient is
smooth with only a simple zero. The solution of (9) is not known explicitly. Instead
of X we therefore use an M -point Euler approximation X̂M with M sufficiently
large. We simulate K = 5000 trajectories of the driving Brownian motion and use

ε(X) =

(
1
K
·
K∑
i=1

‖X̂M (ωi)−X(ωi)‖22

)1/2

as an estimator for e(X). This quantity is easy to evaluate for X = X̂n or X = X̂h,
since X̂h, X̂n, and X̂M yield piecewise linear functions.

The number n(h, σ) of steps of X̂h is deterministic for equation (9). Hence we
express the efficiency of the adaptive Euler approximation by the ratio

eff(h) = ε(X̂h)/ε(X̂n),

where n = n(h, σ). From Theorem 1 we know that eff(h) is approximately

‖σ‖1/‖σ‖2 = 0.525 . . .

for sufficiently large K and small h. For every trajectory of W a certain number of
steps of X̂h have length h2/3, and we call these cases exceptions. We also show the
mean ratio ex(h) between exceptions and the total number of knots in Table 1.

We see the superiority of the adaptive step-size control already for small numbers
n(h, σ) of steps, and not only in an asymptotic sense. Moreover, the efficiency eff(h)
is close to the asymptotic value 0.525.

Next we consider the same scenario as above for the equation

dX(t)=(t−0.5)(5−X(t)) dt+(1.001−t)4dW (t), X(0) = 1.(10)

Table 1. Simulation for (9) with different basic step-sizes h

h ε(X̂h) n(h, σ) ε(X̂n) eff(h) ex(h)
1 · 10−1 0.551628 38 1.050418 0.53 0.0263
1 · 10−2 0.107464 368 0.173890 0.62 0.0027
5 · 10−3 0.069409 734 0.112526 0.61 0.0013
2 · 10−3 0.039607 1832 0.067495 0.58 0.0005
1 · 10−3 0.026602 3662 0.046838 0.56 0.0005
1 · 10−4 0.007783 36601 0.014526 0.53 0.0000
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Table 2. Simulation for (10) with different basic step-sizes h

h ε(X̂h) n(h, σ) ε(X̂n) eff(h) ex(h)
1 · 10−2 0.048146 33 0.050019 0.96 0.45
1 · 10−3 0.009217 248 0.010322 0.89 0.23
5 · 10−4 0.005796 471 0.006852 0.85 0.18
2 · 10−4 0.003225 1122 0.004168 0.77 0.13
1 · 10−4 0.002112 2184 0.002926 0.72 0.10
1 · 10−5 0.000592 20761 0.000927 0.64 0.04

The assumptions (A)–(C) are obviously satisfied, and eff(h) is approximately

‖σ‖1/‖σ‖2 = 0.60 . . .

for sufficiently large K and small h (see Table 2).
In Table 2 the numbers ex(h) are large, since σ gets small as time approaches

one. In fact, this is important to obtain a good performance of X̂h for equation
(10); see Remark 1. For the same reason eff(h) tends to its limit 0.60 . . . rather
slowly.

5.2. An equation with multiplicative noise. Now we consider the equation

dX(t) = 2X(t) dW (t), X(0) = 1.(11)

Its solution is given by
X(t) = exp(−2t+2W (t)).

We use a sufficiently accurate piecewise linear interpolation X̃ of X in our simula-
tion experiments and take

ε(X) =

(
1
K
·
K∑
i=1

‖X̃(ωi)−X(ωi)‖22

)1/2

as an estimator for e(X) as before.
Due to large fluctuations of the sample paths of X , the empirical variance of the

errors ‖X̃(ωi)− X̂h(ωi)‖22 is much larger than the corresponding quantity for (9) or
(10). Taking this into account, we simulate K = 600 000 trajectories of the driving
Brownian motion to calculate ε(X̂h).

The number of steps of X̂h is now a random variable, and we use n(h, σ, ωi)
to denote its counterparts in the simulation. The efficiency of the adaptive Euler
approximation is again given by the ratio

eff(h) = ε(X̂h)/ε(X̂n)

where

n = n(h, σ) =

⌈
1
K
·
K∑
i=1

n(h, σ, ωi)

⌉
.

For the constant step-size methods the empirical variances of the errors are even
larger. Therefore we use K = 2 500 000 and K = 7 500 000 trajectories to calculate
ε(X̂n) for n = 2009 and n = 204, respectively. Again we observe superiority of the
adaptive step-size control (see Table 3).
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Table 3. Simulation for (11) with different basic step-sizes h

h ε(X̂h) n(h, σ) ε(X̂n) eff(h) ex(h)
1 · 10−2 0.359392 204 0.626733 0.57 0.085
1 · 10−3 0.112864 2009 0.192832 0.59 0.026

For the particular equation (11) we were able to analyze the asymptotic behavior
of the error e(X̂n) in the case of constant step-size 1/n. We have

lim
n→∞

n1/2 · e(X̂n) = 1/
√

3 · (5 · e4 + 1)1/2 = 9.56 . . . ,

which yields approximate values 0.66 and 0.21 for e(X̂204) and e(X̂2009), respec-
tively. This is in good accordance with the simulated errors above.

For the equation (11) the empirical standard deviation of n(h, σ, ·) is huge,
namely 469 for h = 10−2 and 4909 for h = 10−3. ‘Hard’ trajectories are detected
automatically, and accordingly a large number of knots is chosen. For instance, if
h = 10−2 then the number of knots ranges between 24 and 123 162 for the 600 000
trajectories simulated.

6. Proofs

For the solution X of equation (4) with additive noise we have

X(t) = X(0) + V (t) + Y (t)− Z(t)(12)

with
V (t) = σ(t) ·W (t),

Y (t) =
∫ t

0

a(s,X(s)) ds,

and

Z(t) =
∫ t

0

σ′(s) ·W (s) ds.

For every discretization (2) the Euler approximation X̂ to X may be written as

X̂(τk) = X(0) + V̂ (τk) + Ŷ (τk)− Ẑ(τk)

with
V̂ (τk) = σ(τk) ·W (τk),

Ŷ (τk) =
k∑
i=1

a(τi−1, X̂(τi−1)) · (τi − τi−1),(13)

and

Ẑ(τk) =
k∑
i=1

(σ(τi)− σ(τi−1)) ·W (τi).(14)

Piecewise linear interpolation yields processes V̂ , Ŷ , and Ẑ over T .
An outline of the proofs reads as follows. Under the assumptions (A)–(C) the

processes Y and Z are smooth compared to the process V . Therefore the error
of the Euler approximation is essentially determined by V − V̂ . Moreover, the
following holds for an arbitrary method that is based on n observations of W . Its
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error is roughly as large as the error of the best method for approximation of V on
the basis of n observations of V .

The latter problem deals with approximation of a stochastic process using ob-
servations of the same process on a finite number of points. Problems of this kind
are well studied; see, e.g., Ritter [13] for results and references. In particular, n ob-
servations of V at suitably chosen points and piecewise linear interpolation roughly
yield the error

1/
√

6 · ‖σ‖1 · n−1/2,

and this is best possible, see Su and Cambanis [16] and Müller-Gronbach [10].

6.1. Preliminary estimates. In the sequel we use c to denote unspecified positive
constants, which depend only on the constants Ki from conditions (A), (B*), and
(C). First we determine the smoothness of V , Y , and Z.

Lemma 1. Let
Γ = E

(
(V (t2)− V (t1)) · (V (t4)− V (t3))

)
and

∆ = max(t2 − t1, t4 − t3),
where t1 ≤ t2 and t3 ≤ t4. Then

|Γ| ≤ c ·∆2

if t2 ≤ t3, and
|Γ− σ2(t2) ·∆| ≤ c ·∆2

if t1 = t3 and t2 = t4.

Proof. We use

V (t)− V (s) = σ(t) · (W (t)−W (s)) + (σ(t) − σ(s)) ·W (s)

as well as property (B*) of σ. If t2 ≤ t3, then

Γ = (σ(t4)− σ(t3)) · σ(t2) · (t2 − t1) + (σ(t4)− σ(t3)) · (σ(t2)− σ(t1)) · t1,
which implies |Γ| ≤ c ·∆2. If t1 = t3 and t2 = t4, then

Γ = σ2(t2) · (t2 − t1) + (σ(t2)− σ(t1))2 · t1,
which implies |Γ− σ2(t2) · (t2 − t1)| ≤ c ·∆2.

Lemma 2. Let s, t ∈ T . Then

E(Y ′(t)− Y ′(s))2 ≤ c · |t− s|
and

E(Z(t)− Z(s))2 ≤ c · (t− s)2.

Proof. The process Y is differentiable with probability one, and its derivative is
given by

Y ′(t) = a(t,X(t)).
Property (B*) implies

|Y ′(s)− Y ′(t)| ≤ c ·
(
|X(s)−X(t)|+ (1 + |X(t)|) · |s− t|

)
.

From (A)–(C) we get

E(X(s)−X(t))2 ≤ c · |s− t|
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and
E(X(t)2) ≤ c,

see Bouleau and Lépingle [1, p. 274]. Hence the first statement follows.
Clearly

E(Z(t)− Z(s))2 =
∫ t

s

∫ t

s

σ′(u)σ′(v) ·min(u, v) du dv.

Together with (B*) this implies the second statement.

Now we analyze linear interpolation of the processes V , Y , and Z on (small)
subintervals of T . We consider a fixed discretization (2) and we put

∆i = τi − τi−1.

Moreover, we use X̃ to denote the corresponding piecewise linear interpolation of
an arbitrary process X . Thus, if t ∈ [τi−1, τi], then

X̃(t) =
(
(t− τi−1) ·X(τi) + (τi − t) ·X(τi−1)

)
/∆i.

Note that V̂ = Ṽ .

Lemma 3. We have∣∣∣∣∣
∫ τi

τi−1

E(V (t)− Ṽ (t))2 dt− 1/6 · σ2(τi−1) ·∆2
i

∣∣∣∣∣ ≤ c ·∆3
i .

Moreover, ∫ τi

τi−1

E(Y (t)− Ỹ (t))2 dt ≤ c ·∆4
i

and ∫ τi

τi−1

E(Z(t)− Z̃(t))2 dt ≤ c ·∆3
i .

Proof. Let t ∈ [τi−1, τi] and put

A(t) = E(V (t)− Ṽ (t))2 − σ2(τi−1) · (τi − t) · (t− τi−1)/∆i.

Observe that

A(t) = (t− τi−1)2/∆2
i ·
(
E(V (t)− V (τi))2 − σ2(τi−1) · (τi − t)

)
+ (τi − t)2/∆2

i ·
(
E(V (t)− V (τi−1))2 − σ2(τi−1) · (t− τi−1)

)
+ 2 · (τi − t) · (t− τi−1)/∆2

i · E
(
(V (t)− V (τi)) · (V (t)− V (τi−1))

)
.

Lemma 1 and the Lipschitz continuity of σ2 imply

|A(t)| ≤ c ·∆2
i .

Hereby we obtain the first estimate:∣∣∣∣∣
∫ τi

τi−1

E(V (t)− Ṽ (t))2 dt− 1/6 · σ2(τi−1) ·∆2
i

∣∣∣∣∣ =

∣∣∣∣∣
∫ τi

τi−1

A(t) dt

∣∣∣∣∣ ≤ c ·∆3
i .

The estimates for the processes Y and Z are well known consequences of Lemma 2,
see Ritter [13].

Next we compare piecewise linear interpolation with Euler approximation for
the processes Y and Z.
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Lemma 4. We have∫ τi

τi−1

E
(
Z̃(t)− Ẑ(t)

)2

dt ≤ c ·∆i ·
i∑

j=1

∆3
j

and ∫ τi

τi−1

E
(
Ỹ (t)− Ŷ (t)

)2

dt ≤ c ·∆i ·
i∑

j=1

∆3
j

for i = 1, . . . , n.

Proof. Clearly

E
(
Z(τi)− Ẑ(τi)

)2

= E

 i∑
j=1

∫ τj

τj−1

σ′(t) · (W (t)−W (τj)) dt

2

=
i∑

j=1

∫ τj

τj−1

∫ τj

τj−1

σ′(s) · σ′(t) · (τj −max(s, t)) ds dt

≤ K2
6 ·

i∑
j=1

∆3
j .(15)

Hence

E
(
Z̃(t)− Ẑ(t)

)2

≤ 2 ·
(

(τi − t)2

∆2
i

E
(
Z(τi−1)− Ẑ(τi−1)

)2

+
(t− τi−1)2

∆2
i

E
(
Z(τi)− Ẑ(τi)

)2
)

≤ c ·
i∑

j=1

∆3
j ,

and the first estimate follows.
By Theorem 3 we have

E
(
X(τi)− X̂(τi)

)2

≤ c ·
i∑

j=1

∆3
j .

Hence

E
(
Y (τi)− Ŷ (τi)

)2

= E
(
X(τi) + Z(τi)− X̂(τi)− Ẑ(τi)

)2

≤ c ·
i∑

j=1

∆3
j

by (15), and the second estimate follows as above.

6.2. Proof of the upper bound in Theorem 1. For every discretization (2) the
corresponding Euler approximation X̂ satisfies

e(X̂) ≤
(∫ 1

0

E(V (t)− V̂ (t))2 dt

)1/2

+A,

where

A =
(∫ 1

0

E(Y (t)− Ŷ (t))2 dt

)1/2

+
(∫ 1

0

E(Z(t)− Ẑ(t))2 dt

)1/2

.
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1030 N. HOFMANN, T. MÜLLER-GRONBACH, AND K. RITTER

Combining Lemmas 3 and 4, we get

A ≤ c ·

 n∑
i=1

∆3
i + ∆i ·

n∑
j=1

∆3
j

1/2

≤ c ·
(

n∑
i=1

∆3
i

)1/2

.(16)

Together with the first estimate from Lemma 3, this implies that

e(X̂) ≤
(

n∑
i=1

1/6 · σ2(τi−1) ·∆2
i

)1/2

+ c ·
(

n∑
i=1

∆3
i

)1/2

.(17)

Now we consider the particular discretization (3), and we put τk = τk(h, σ).
Since σ is bounded away from zero according to (B), we have

∆i(h, σ) = τi(h, σ)− τi−1(h, σ) = h/σ(τi−1(h, σ))

and

n(h, σ) · h =
n(h,σ)−1∑
i=1

∆i(h, σ) · σ(τi−1(h, σ)) + h.

Hence
lim
h→0

max
i=1,...,n(h,σ)

∆i(h, σ) = 0

and
lim
h→0

n(h, σ) · h = ‖σ‖1.

Moreover,

n(h, σ) ·
n(h,σ)∑
i=1

∆3
i (h, σ) ≤ n(h, σ)2 · max

i=1,...,n(h,σ)
∆3
i (h, σ)

yields

lim
h→0

n(h, σ) ·
n(h,σ)∑
i=1

∆3
i (h, σ) = 0.

Summarizing, we obtain

lim sup
h→0

n(h, σ)1/2 · e(X̂h)

≤ lim sup
h→0

1/6 · n(h, σ) ·
n(h,σ)∑
i=1

σ2(τi−1(h, σ)) ·∆2
i (h, σ)

1/2

= lim sup
h→0

(1/6 · n(h, σ)2 · h2)1/2 = 1/
√

6 · ‖σ‖1.

Remark 3. For every discretization (2) the contribution of a subinterval [τi−1, τi]
to the error e(X̂)2 is given by

εi = 1/6 · σ2(τi−1) ·∆2
i + c̃ ·∆3

i .

Here c̃ only depends on K1, . . . ,K6. Clearly εi is of order h2 for the step-size
∆i = h/σ(τi−1). We get the uniform estimate

εi ≤ (1/6 + c̃) · h2

without any lower bound for σ, if the step-size is defined by (6).
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6.3. Proof of the lower bound in Theorem 1. In addition to (17) we also have

e(X̂) ≥
(

n∑
i=1

1/6 · σ2(τi−1) ·∆2
i

)1/2

− c ·
(

n∑
i=1

∆3
i

)1/2

.

The above arguments yield

lim inf
h→0

n(h, σ)1/2 · e(X̂h) = 1/
√

6 · ‖σ‖1

for the discretization (3).

6.4. Proof of the lower bound in Theorem 2. Note that the upper bound in
Theorem 2 follows from Theorem 1.

Consider an arbitrary sequence of methods Xn that uses n observations of the
Brownian motion W . It remains to show that

lim inf
n→∞

n1/2 · e(Xn) ≥ 1/
√

6 · ‖σ‖1.

Choose 1/2 < γ < 1 and put

τnk = k/dnγe(18)

for k = 0, . . . , dnγe. Let Ŷn and Ẑn be given by (13) and (14), respectively, for the
equidistant discretization (18). Define a method V †n by

V †n = Xn −X(0)− Ŷn + Ẑn.

Clearly

e(Xn) ≥
(∫ 1

0

E
(
V (t)− V †n (t)

)2
dt

)1/2

−Bn

with

Bn =
(∫ 1

0

E
(
Y (t)− Ŷn(t)

)2

dt

)1/2

+
(∫ 1

0

E
(
Z(t)− Ẑn(t)

)2

dt

)1/2

.

Employing Lemmas 3 and 4, we have

Bn ≤ c ·

dnγe∑
j=1

dnγe−3

1/2

≤ c/nγ ,

see (16). Since γ > 1/2 we obtain

lim inf
n→∞

n1/2 · e(Xn) ≥ lim inf
n→∞

n1/2 ·
(∫ 1

0

E
(
V (t)− V †n (t)

)2
dt

)1/2

.

We claim that

lim inf
n→∞

n1/2 ·
(∫ 1

0

E
(
V (t)− V †n (t)

)2
dt

)1/2

≥ 1/
√

6 · ‖σ‖1,(19)

which is sufficient to establish the lower bound in Theorem 2.
Note that V †n uses at most m(n) = n+ dnγe observations of W , an observation

of the initial value X(0) and a finite number of values of a and σ. Equivalently, V †n
uses at most m(n) observations of V , the initial value, and values of a and σ.

The process V is Gaussian, and approximating V in L2-norm from finitely many
observations of V defines a linear problem with a Gaussian measure in the sense of
Traub, Wasilkowski, and Woźniakowski [18, Chapter 6.5]. For problems of this kind
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adaptive selection of the observation points does not help, see Traub, Wasilkowski
and Woźniakowski [18, Theorem 6.5.6.1]. Hence we may assume that V †n is based
on observations of V at a priori fixed points

0 = sn0 < · · · < snm(n)+1 = 1.

Recall that X(0) and W are independent by assumption (C). For every t ∈
[sni−1, s

n
i ] we have

E
(
V (t)− V †n (t)

)2 ≥ E(V (t)− E(V (t) |V (sni−1), V (sni ), X(0))
)2

= σ2(t) ·E
(
W (t)− E(W (t) |W (sni−1),W (sni ))

)2
= σ2(t) · (sni − t) · (t− sni−1)/(sni − sni−1).

Therefore ∫ 1

0

E
(
V (t)− V †n (t)

)2
dt ≥ 1/6 ·

m(n)+1∑
i=1

σ2(ξni ) · (sni − sni−1)2

for some ξni ∈ [sni−1, s
n
i ].

Observing that
lim
n→∞

m(n)/n = 1

and
lim
n→∞

max
1≤i≤m(n)+1

(sni − sni−1) ≤ lim
n→∞

1/dnγe = 0,

we thus conclude that

lim inf
n→∞

n ·
∫ 1

0

E
(
V (t)− V †n (t)

)2
dt

≥ 1/6 · lim inf
n→∞

(m(n) + 1) ·
m(n)+1∑
i=1

σ2(ξni ) · (sni − sni−1)2


≥ 1/6 · lim inf

n→∞

m(n)+1∑
i=1

σ(ξni ) · (sni − sni−1)

2

= 1/6 · ‖σ‖21.

Hence we have shown that (19) holds.

Appendix A. An upper bound for one-step methods

with nonequidistant discretization

An upper bound for the pointwise error of one-step methods with equidistant
discretization is formulated in Milstein [9, Theorem 1.1]. It is easy to generalize
Milstein’s proof to the case of nonequidistant discretizations. We use the same
notation and assumptions concerning a and σ as in Milstein [9]. The assumptions
are satisfied in particular for scalar equations (4) with additive noise, given the
properties (A)–(C). We use subscripts t, x to indicate starting at x ∈ R at time t.

Theorem 3. Suppose that a one-step approximation Xt,x(t+ h) satisfies∣∣E(Xt,x(t+ h)−Xt,x(t+ h))
∣∣ ≤ K · (1 + |x|2)1/2 · hp
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and (
E|Xt,x(t+ h)−Xt,x(t+ h)|2

)1/2 ≤ K · (1 + |x|2)1/2 · hq

for arbitrary 0 ≤ t ≤ 1− h. Moreover, assume that

q ≥ 1/2, p ≥ q + 1/2.

Then, for every discretization

0 = τ0 < · · · < τN = 1

and every k = 0, . . . , N , the following estimate holds:

E|X0,X(0)(τk)−X0,X(0)(τk)|2 ≤ K · (1 + E|X(0)|2)1/2 ·
k∑
i=1

(τi − τi−1)2 q.

Specifically, for the Euler scheme it is known that Theorem 3 may be applied
with p = 2 and q = 1. However, for equations (4) with additive noise one may even
take q = 3/2. See Milstein [9, p. 20].
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