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Optimal Approximation of Uniformly Rotated
Images: Relationship Between Karhunen–Loeve

Expansion and Discrete Cosine Transform

Michihiro Uenohara and Takeo Kanade

Abstract—We will present in this correspondence that for uniformly
rotated images, the optimal approximation of the images can be obtained
by computing the basis vectors for the discrete cosine transform (DCT)
of the original image in polar coordinates, and representing the images
as linear combinations of the basis vectors.

Index Terms—Discrete cosine transform, Karhunen–Loeve expansion.

I. INTRODUCTION

There are many problems in the computer vision area where we
apply convolution of an image with kernels at multiple orientations.
A typical case is that of filtering in early vision stage. Template
matching is another example of a problem where convolution of
an image with rotated kernels is applied. In template matching, we
use a collection of desired image patterns or “templates” to search
for objects of interest within a given image. In this search, we use
correlation as our measure of similarity. Unfortunately, correlation
is sensitive to target orientation. Therefore, when the orientation of
a desired target is unknown, we must prepare templates at multiple
orientations and compute the correlation with each of these rotated
templates at each point of the image. Since the computational expense
associated with such a computation increases linearly with the number
of orientations considered, true robustness with regard to target
rotation is achieved only at enormous computational expense.

A technique that greatly alleviates this difficulty is to compute the
best approximation of a given family consisting of the rotated images
of the original image using linear combinations of a small number
of basis functions [1]–[5]. The computational cost can be reduced
by convolving an image with a small number of basis functions and
taking linear combinations of the results. The basis functions are
orthonormal sequences of functions and can be computed by singular
value decomposition (SVD).

We show an interesting relationship between the eigenvectors by
Karhunen–Loeve (K–L) expansion and basis vectors for the DCT.
In the case of in-plane rotation, the basis vectors for the DCT of
the original image in polar coordinates become the eigenvectors. The
eigenvectors can be generated much more efficiently, which makes it
possible to detect a target in the image, generate the approximation
of its rotated images, and keep tracking the target moving and
changing orientation on the fly. One possible application is aerial
photo reconnaissance. The relationship between the DCT and the
K–L expansion derived in this work is different from the similarity
between them, which has been pointed out [5], [6], [8]. They are
dependent on the fact that the autocovariance matrix is a symmetric
Toeplitz matrix for a stationary Markov-1 signal. The set of data we
deal with are uniformly rotated images of a pattern. They are highly
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Fig. 1. Examples of eigenvectors. (a) Original image and some rotated
images (30, 60, and 90�). (b) Major eigenvectors (no. 1–12).

correlated and the data covariance matrix does not become a Toeplitz
matrix.

We will show that the vector inner product matrix of uniformly ro-
tated images becomes a symmetric periodic Toeplitz matrix. Because
periodic Toeplitz matrices are circulant matrices, their eigenvectors
are always the same regardless of the specific form of the matrices.
We prove that cosine basis are their eigenvectors. This leads to the
relationship between the eigenvectors derived from K–L expansion
and the basis vectors for DCT.

The result presented in this work is strongly related to the steerable
approximation derived by Perona [1], [2]. Perona [1] and Adelson
[3] have shown that steerable filters allow one to use a small set of
filters and still extract information corresponding to all orientations
in a uniform way. Perona proved that the optimal kernels are the
Fourier transform of the filter impulse response in polar coordinates.
The proof is based on the SVD of the filter impulse response and the
fact that the deformation involved (the rotations) is a group.

Perona’s result and our result are very similar, except that his result
is for the continuous case while our case is discrete. We start from
some number of uniformly rotated images and derive the result based
on the fact that their vector inner product matrix becomes the periodic
and symmetric Toeplitz matrix. In the case of template matching,
when object orientation is unknown but always limited to one out
of a certain number of degrees, our result shows that it is sufficient
to compute basis vectors from the rotated target object images once
every certain number of degrees. This situation obtains industrial
applications where parts are positioned by tools or parts feeders.

This correspondence is organized as follows. A finite-sum approx-
imation of rotated images is explained in Section II. In Section III,
the vector inner product matrix of uniformly rotated images is shown
to be the periodic and symmetric Toeplitz matrix, and in Section IV,
it is proved that the basis vectors for the DCT of the original image
become the eigenvectors with an experimental result.

II. UNIFORMLY ROTATED IMAGES BY A FINITE-SUM

LINEAR COMBINATION OF BASIS FUNCTIONS

In this section, we will explain the formalism of the approximation
of rotated images by a finite-sum linear combination of a smaller
number of basic functions.

1057–7149/98$10.00 1998 IEEE



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 1, JANUARY 1998 117

(a) (b)

Fig. 2. (a) Example of 3-D representation of the vector inner product matrix.
Thez coordinate gives the element value and thex andy coordinates are the
rows and the columns. The number of rotated imagesP is 360 (0–360�). (b)
Original images used for computing the vector inner product matrix in (a).

Given a template imagexo, uniformly rotated imagesxi; i =

1; � � � ; (P � 1) are generated by rotating the original imagexo by
(2�)=P; (4�)=P; � � � ; 2�(P � 1)=P rad, respectively. We calculate
the averagec = (1=P ) P�1

i=0 xi of the rotated images, subtract it
from all the rotated images, and normalize them to unit energy, i.e.,
xTi xi = 1. The next step is to compute the covariance matrix as
follows:

A =
1

P

P�1

i=0

xix
T
i : (1)

SVD gives us the eigenvectors�j and eigenvalues�j(�1 �

�2 � � � � � �P�1) of the matrixA, and we obtain the optimal
approximation of the rotated images by selecting the eigenvectors in
decreasing order of magnitude of the eigenvalues and representing
each image by a linear combination of majorK eigenvectors as

xi �

K

j=1

pij�j (2)

wherepi = [�1�2 � � � �K ]T xi. Fig. 1 shows an original image and
some rotated images. Major eigenvectors computed from them are
displayed in Fig. 1(b). Correlation between the above rotated images
and the portion of the imagey is now formulated as

xi � y =

K

j=1

pij(�j � y): (3)

The correlation computation is carried out by calculating the
correlation betweenK eigenvectors and the portion of the image
y, and taking the linear combination of the results. Because the
computational cost for the linear combination is negligible compared
to that for correlation, total cost is reduced toK=P .

III. V ECTOR INNER PRODUCT MATRIX OF ROTATED IMAGES

As explained in the last section, we have the set ofP training
imagesxi; i = 0; 1; � � � ; (P � 1) obtained by rotating the original
image by0; (2�=P); 4�=P; � � � ; 2�(P � 1)=P rad, respectively.
For this case, them, nth element of theP �P vector inner product
matrixR = XTX depends only on the magnitude of the difference

j(m � n)j [9].

R =X
T
X =

xT0

xT1
� � �

xTP�1

[x0 x1 � � � xP�1]

=

xT0 x0 xT0 x1 � � � xT0 xP�1

xT1 x0 � � � � � � � � �

� � � � � � � � � � � �

xTP�1x0 xTP�1x1 � � � xTP�1xP�1

: (4)

Proof: Let us denote the rotation matrixT 1
0 that rotates images

by (2�)=N rad.

T
1

0 xi = xi+1: (5)

This is the matrix that translates each pixel from one location in
the image to another. This matrix represents rotation and should not
depend on each image, which gives

xi = T
1

0 xi�1 = T
1

0 T
1

0 xi�2 = � � � = T
1i
0 x0: (6)

This relationship obviously leads to the following relationship be-
tween images:

x
T
0 x1 =x

T
1 x2 = x

T
2 x3 = xixi+1 (7)

x
T
i xj =x

T
i+kxj+k: (8)

It is assumed that the locations of pixels change with rotation, but no
pixel disappears or appears. This is true in the continuous case and
with a black background (or perfect segmentation). The real image
data is discrete, so the relationship above is not accurately satisfied.
However, the experimental results show that it is approximately
satisfied.

An example of the vector inner product matrix is displayed in
Fig. 2. In Fig. 2, the vector inner product matrix for the chip image
[see Fig. 2(b) is represented in a three-dimensional (3-D) form. The
x andy axes represent the rows and columns of the matrix and thez

axis represents the element values. The main diagonal has values of
unity because the training vectors are normalized. The elements at the
locations with the samej(m � n)j have the same value. This gives
the matrixR the properties of being Toeplitz and symmetric. The
property of being periodic results from the correlation repeating its
values in reverse order as the angular difference goes beyond 180�.
Thus, the matrixR is in periodic Toeplitz form.

IV. EIGENVECTORS OFUNIFORMLY ROTATED IMAGES

Because periodic Toeplitz matrices are circulant matrices, their
eigenvectors are always the same regardless of the specific form of
the matrix. Therefore, in their eigenvector/eigenvalue equation

R�k = �k�k (9)

the only features distinguishing one periodic Toeplitz matrix from
another are its eigenvalues.

When ck = xixi�k is autocorrelation of the original image with
respect to in-plane rotation, we can rewrite the matrixR as

R =

c0 c1 � � � cP�1
cP�1 c0 � � � cP�2
� � � � � � c0 � � �

c1 c2 � � � c0

: (10)
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Since ck = cP�k, the matrixR is real symmetric as well as a
circulant matrix as mentioned above. Equation (9) can be equivalently
represented as theP difference equations

m�1

l=0

cP�m+l�kl +

P�1

l=m

cl�m�kl = �k�km: (11)

By direct substitution, it is easily verified that for anym =

0; 1; � � � ; P � 1, that �km = cos[2�m(k=p)] are solutions to
(11), resulting in the eigenvalues

�k =

P�1

l=0

cl cos 2�k
l

P
: (12)

The covariance matrix of images is represented asA = XXT . With
the relationship between the eigenvalues/eigenvectors ofXXT and
XTX [7], the eigenvectors of the covariance matrix are represented
as

�k =�
�(1=2)
k [x0 � � � xP�1]

�k0
�k1
� � �

�kP�1

=
1p
�k

P�1

i=0

�kixi

=
1p
�k

P�1

i=0

cos 2�k
i

P
xi: (13)

It can also be shown that�k = �P�k as follows:

�P�k =

P�1

l=0

cl cos 2�l
P � k

P

=

P�1

l=0

cl cos 2�l
k

P
= �k: (14)

The above results show that the basis vectors for the DCT of
the original image in polar coordinates are the eigenvectors. The
basis vectors are chosen in decreasing order of magnitude of the
eigenvalues, which are the discrete cosine series coefficients of the
autocorrelationcl.

The K basis vector calculations for approximation ofP rotated
images are summarized as follows.

1) Compute the autocorrelationcl of the rotated images.
2) Compute the DCT ofcl by (12). Order them by decreasing

magnitude and call them�k.
3) Compute the basis vectors for the DCT of the rotated images

by (13) whose corresponding�k are the highestK.

We have conducted an experiment to show that the basis vectors for
the DCT become the eigenvectors. Autocorrelationc0; c1; � � � ; cP�1
and its discrete cosine transform are displayed in Fig. 4. The number
of data P is 360. The first 50 coefficients except for the DC
component are shown in Fig. 3(b). Fig. 3(b) indicates that there
are three major coefficients,k = 4; k = 8, and k = 19, which
means there are three pairs of eigenvectors. In Fig. 4, the three major
eigenvectors�j of the vector inner product matrixR are shown. They
are cosines. There are pairs of eigenvectors of the same frequency,
e.g., numbers 1, 2, 3, and 4, etc., which corresponds to (14). The
eigenvectors in Fig. 4 have some offset phase. We can easily show
that the basis vectors for the DCT with some offset phase�k

�km = cos 2�m
k

N
+�k (15)

are also the eigenvectors with the same eigenvalues�k in (12).

(a)

(b)

Fig. 3. (a) Autocorrelation of the image shown in Fig. 2(b) with respect to
rotation. (b) DCT of the autocorrelation above. The number of rotated images
P is 360 (0–360�). Only the low-frequency part is displayed.

V. CONCLUSIONS

We have shown that the optimal approximation of uniformly
rotated images is given by the basis vectors for the DCT of the
original image in polar coordinates. The derived result comes from
the fact that their vector inner product matrix becomes the pe-
riodic and symmetric Toeplitz matrix. Although the basis vectors
can also be obtained by K–L expansion of the uniformly rotated
images, DCT makes it possible to compute basis vectors much more
efficiently.

Perona’s result and our result are very similar, except that his result
is for the continuous case while our case is discrete. We start from
a certain number of uniformly rotated images and derive the result
based on the fact that their vector inner product matrix becomes
the periodic and symmetric Toeplitz matrix. In the case of template
matching, when object orientation is unknown but always limited to
one out of a certain number of degrees, our result shows that it
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(a)

(b)

(c)

Fig. 4. Major eigenvectors of the rotated images. The original image is
Fig. 2(b). The number of the rotated imagesP is 360.

is sufficient to compute basis vectors from the rotated target object
images once every such certain number of degrees. This situation
obtains industrial applications where parts are positioned by tools or
parts feeders.
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A Vector Quantizer for Image Restoration

David G. Sheppard, Ali Bilgin, Mariappan S. Nadar,
Bobby R. Hunt, and Michael W. Marcellin

Abstract—This paper presents a novel technique for image restora-
tion based on nonlinear interpolative vector quantization(NLIVQ). The
algorithm performs nonlinear restoration of diffraction-limited images
concurrently with quantization. It is trained on image pairs consisting
of an original image and its diffraction-limited counterpart. The discrete
cosine transform is used in the codebook design process to control com-
plexity. Simulation results are presented that demonstrate improvements
in visual quality and peak signal-to-noise ratio of the restored images.

Index Terms—Image restoration, nonlinear image processing, nonlinear
interpolation, vector quantization.

I. INTRODUCTION

Vector quantization (VQ) is another name for what Shannon called
block source coding subject to a fidelity criterion [1]. Coding of this
type maps consecutive, usually nonoverlapping, segments of input
data to their best matching entry in a codebook of reproduction
vectors. In the context of image coding, VQ is generally considered
a data compression technique. However, VQ algorithms have been
presented that perform other signal processing tasks concurrently with

Manuscript received April 8, 1996; revised November 1, 1996. This work
was supported by the U.S. Air Force Maui Optical Station. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Stephen E. Reichenbach.

D. G. Sheppard, A. Bilgin, B. R. Hunt, and M. W. Marcellin are with
the Electrical and Computer Engineering Department, University of Arizona,
Tucson, AZ 85721 USA (e-mail: sheppard@ece.arizona.edu).

M. S. Nadar is with Siemens Corporate Research, Inc., Princeton, NJ 08540
USA.

Publisher Item Identifier S 1057-7149(98)00395-9.


