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OPTIMAL ARCS AND THE MINIMUM VALUE
FUNCTION IN PROBLEMS OF LAGRANGE

BY

R. TYRRELL ROCKAFELLAR(0

ABSTRACT.   Existence theorems are proved for basic problems of Lagrange in
the calculus of variations and optimal control theory, in particular problems for arcs
with both endpoints fixed.   Emphasis is placed on deriving continuity and growth
properties of the minimum value of the integral as a function of the endpoints of
the arc and the interval of integration.   Control regions are not required to be
bounded.   Some results are also obtained for problems of Bolza.

Conjugate convex functions and duality are used extensively in the develop-
ment, but the problems themselves are not assumed to be especially "convex".
Constraints are incorporated by the device of allowing the Lagrangian function
to be extended-real-valued.   This necessitates a new approach to the question
of what technical conditions of regularity should be imposed that will not only
work, but will also be flexible and general enough to meet the diverse applications.
One of the underlying purposes of the paper is to present an answer to this question.

1.   Statement of main results.   Let [fl, bl  be a real interval, and let L   be a

function on [a, bl x Rn x R"  with values in (- oo, + oo].   For each subinterval

[z„, t A C [fl, bl  and endpoint pair (cQ, c A £ Rn x R", we consider the problem of

Lagrange in which the integral

(1.1) f   l Lit, xit), x(t))dt

is minimized over all absolutely continuous arcs  x: [tQ, tA —> R"  such that

(1.2) xitQ) = c0    and    x(/j)=Cj.

Let the  infimum  in  this  problem  (possibly   + °c   or   - oo)   be  denoted  by

F(tQ, t., cQ, cA.   Our aim is to derive, from various assumptions on  L, results

on the continuity and growth properties of  F, as well as the existence of arcs

for which the infimum is attained.

These results yield the existence of optimal arcs in more general types of

problems, for instance control problems with unilateral constraints, variable
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54 R.T.ROCKAFELLAR

endpoints and variable time intervals. Certain existence theorems of Cesari [l]

and Olech [7], among others, are thereby extended. The fact that L is allowed

to have the value + oo, and only very weak regularity conditions are imposed, is

essential, of course, in achieving this degree of applicability.

We assume throughout that L(t, x, v) is lower semicontinuous in (x, v) and

measurable in (t, x, v) with respect to the cr-algebra in [fl,  bl x Rn x R" generat-

ed by products of Lebesgue sets in  [fl, bl and Borel sets in  R" x R".   The func-

tion H on [a, bix R" x Rn  defined by

(1.3) H(t, x, p) = supjp • v- L(t, x, v)\ v £ R"\

is called the Hamiltonian corresponding to the Lagrangian L. It is said to sat-

isfy the boundedness condition if

(1.4) sup H(t, x, p) < cb(t, r, p),
1*1*'

where  </S  is some real-valued function on [fl, bl x [0, + oo) x R"  such that

cb(t, r, p)  is summable in  t for fixed r and p.   This condition and the other as-

sumptions on  L  imply in particular that the integral (1.1) is well defined and not

- oo; this is shown in Lemma 1.

In most of our results, we invoke the boundedness condition in a somewhat

stronger form by applying it, not to H  itself, but to a certain function  HQ  which

majorizes  H.   We define  HQ  to be the least of all the extended-real-valued func-

tions on [fl, bl x Rn x Rn  which majorize H  and are upper semicontinuous and

concave in the x argument.   Thus for each t £ la, bl  and  p £ Rn  we have

\ix, a) £ Rn x R1] a< HQit, x, p)\ = cl co{(x, a) £ R" x pA\ a< Hit, x, p)\.

In the important case where  Lit, x, v) is convex in (x, v), the boundedness con-

dition on H and the boundedness condition on zV„  are equivalent, and in fact

Hç. = H (Lemma 2).   The two conditions are also equivalent obviously if there

is an r > 0  such that   |x| > r implies  Lit, x, v) = + oo, or more generally, if the

function cb in the boundedness condition on H  can be chosen constant in r.

Observe that if L  does not depend on t, the boundedness condition is satisfied

by HQ  provided only that HQ  is nowhere + oo  (equivalently:   for each p  there

is at least one affine function on  R"  majorizing the function x —► Hix, p)).

To state the main theorems, we introduce some further notation and terminol-

ogy.   An extended-real-valued function / on  R" x R"  is said to satisfy the

growth condition (G ), where  0 < r < + o°, if

ficQ, c1)>max!y(|c1- A0c0| -aQ • cA + bQ   • cQ,
(1.5)

y(|c0- AjCjI-flj • cx)+ bx-cx\,
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where A     and A     are nonsingular nxn  matrices, fl., a ,   t?.   and b    are vectors

in  Rn, and the function y: (- oo, + co) —> (- oo, + oo]  is nondecreasing, convex,

bounded below, and satisfies

(1.6) lim inf y(A)/A> r.
X—+00

(Observe that the right side of (1.5) is convex in (c„, cA.)   We define

(1.7) S = i(/0, tx)\ a<t0<tx< b\,

(1.8) S(  = \itQ, tx)\ a < t0< tx< b, tx - tQ < e\,

(1.9) H At, x, p) = lim inf    lim inf HQit, xit) + Xx, pp)Ap   .
fJ.—+ao     [_ X—+00 J

In the latter formula, x~it)  is any point of R"   such that the function v —>

Lit, x~it), v)  is not identically + co.   To ensure the existence of such a point, and

to avoid various trivialities, we henceforth make the harmless assumption that

Lit, ., .)  is not identically + 00 for any t, and in fact there exists at least one

absolutely continuous  x: [fl, bl —> Rn  such that the function  t —> Lit, xit), xit))

is majorized by a summable, real-valued function on  [a, bl.   The definition of H.

is actually independent of the particular choice of x it), since  H At, x, p)  is by

definition concave and upper semicontinuous in x and the condition on x~(t)

implies H At, x(t), p) > - 00.   We adopt the convention that

Fitf,, tv cn, c.) =0        if  /„ = /.   and   c„ = c.,
(1.10)

= +00    if  /0 = /,   and  c~4 c,.

Theorem 1.   Suppose that H0  satisfies the boundedness condition and

L(t, x, v) is convex in  v.    Let 0 < r < +00.   Then there is an e > 0" such that the

following is true.
(a) The infimum defining  F('n. t , c„, c A  is attained by at least one arc x

for each  (tQ, tv cQ, cx)  in S(x R" x R".
(b) F  is lower semicontinuous relative to S   x R" x R".

(c) The function  F(tn, t., -, ■) satisfies the growth condition (G ) for each

it     t  ) £ S .u0,    j/ c Jf.

Theorem 2.   Suppose that  H.   and H.   both satisfy the boundedness condition

and Lit, x, v)  is convex in v.    Then the following is true.

(a) The infimum defining  FitQ, i., cQ, cA  is attained by at least one arc x

for each  (tQ, t., cQ, c A  in  S x R" x R".
(b) F is lower semicontinuous relative to  S x R" x R".

(c) The function  F(tQ, i., -, •) satisfies the growth condition  (G   ) for each

(in, t A £S.u        1
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56 R.T.ROCKAFELLAR

As we show in Lemma 5, H At, x, p)  is concave in x, so that in the

"autonomous" case the boundedness condition on H.   is equivalent to

Hx(t, x, p) <+ oo.   Thus:

Corollary. Suppose that L(t, x, v) is independent of t and convex in v,

and that HQ and H. nowhere have the value + oo. Then conclusions (a), (b)

and (c) of Theorem 2 are valid.

Theorem 3.   Suppose that Hn  satisfies the boundedness condition and

L(t, x, v)  is convex in  v.   Assume further that there is an absolutely con-

tinuous function p: [a, bl —» Rn (e.g. a constant function) such that

(1.11) sup   \H(t, x, pit)) + x ■ p(t)\ < + oo a.e.
xeRn

Then conclusions (a) and (b) of Theorem 2 are valid, and moreover:

(c) The function F(tQ, t., •, •) majorizes at least one affine function on

R" x R" for each (tQ, tx) £ S.

In the case of Theorem 3 with p(t) = pQ £ R", condition (1.11) requires

simply that the function  (x, v) —> L(t, x, v) - pQ • v be bounded below for

almost every t £ [a, bl.

Of course, it is not actually necessary to calculate  H„  and W,   explicit-

ly from H  in order to apply Theorems 1, 2 and 3.   It suffices to know a func-

tion H' > H  such that H' (t, x, p)  is concave and upper semicontinuous in

x, and H'   satisfies the boundedness condition.   Then H. < fL   (by the

definition of HQ), so that HQ  satisfies the boundedness condition.   Similarly,

if the function  Hi   obtained by substituting H^   for HQ  in (1.9) satisfies the

boundedness condition, then so does H..   For example, the boundedness

conditions on  HQ  and  H.   are both satisfied if

H(t, x, p) < ib x(t, x) + ib2(t, p) + p • A(t)x,

where  if/At, x), if/At, p) and the components of the matrix A(t) are summable

in t, and if/At, x)  is concave in x.

Theorem 1 implies that, for a large class of problems of Lagrange, op-

timal arcs exist when the r-interval is constrained to be sufficiently small.

One is reminded of various theorems on the local existence of solutions to

differential equations, and indeed there is a close relationship, apparent in

the proof.   Although no estimate is given for e, so that direct application may

be difficult, the result is nevertheless interesting theoretically, because it

shows that the general question of existence can often be reduced to finite-

dimensional questions about the growth properties of F(r0> t,, cQ, c A.
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For example, suppose that [¿„, tA is an interval of length between e and 2e,

where e has the properties in Theorem 1 for a certain r > 0. Let t2 = (tQ + tA/2.

Then properties (a), (b) and (c) are applicable to FitQ, f,, •, •) and Fit2, t , -, •).

Furthermore, by definition,

(1.12) FitQ, tx, c0, cx) =     inf   \Fit0, t2, c0, c2)+ Fit2, ty c2, cx)\.
c2eRn

Thus the question of the existence of optimal arcs over the interval  [/  , r.]   is

reduced in principal to the question of whether certain infima in  c    £ R"  ate at-

tained, and this in turn depends on the growth properties of FitQ, r,, •, •)  and

F(¿2, z., •, •).   This idea can be extended, of course, to intervals  [:„, /.]  whose

length is an arbitrary multiple of e by "concatenation".

There does not seem to be any direct counterpart in the literature to Theorem 1

or conclusions (c) of Theorems 2 and 3.   However, conclusions (a) and (b) of

Theorems 2 and 3 have been obtained under other assumptions.   We have already

proved Theorem 3 in [9] in the case where  Lit, x, v) is convex in  (x, z;)  (so that

//„ = H).   This previous version is essential to the present one.   In fact, most of

the results here rest on theorems in [91.   Thus it is demonstrated, in passing, that

the special case where  Lit, x, v)  is convex in (x, v), rather than just convex in

v, is really fundamental to a much wider class of problems.

Aside from the case just mentioned, the closest result to Theorems 2 and 3

previously obtained is the following one of Olech [7],   This theorem is not stated

as such in [7], but it is implicit in what is proved there.   (We contribute the novel

formulation in terms of an extended-real-valued Lagrangian  L   having an appropri-

ate measurability property.   Extended-real-valued functions have not been employed

in this way by previous authors on the subject.)

Theorem 4 (Olech [7]). Suppose that H satisfies the boundedness condition

and Lit, x, v) is convex in v. Assume further that one of the following two con-

ditions is satisfied, where cb  is the function in (1.4):

(I) (bit, r, 0)  is independent of r in (1.4), and there is a positive number s

such that we can write

(1.13) (bit, r, p) = cbQit, p) + rcb xit, p)

for all p £ R"  with   \p\ = s, or
(II) there is a positive number s such that  (1.13) holds for all p £ R"  with

\p\ > s, as well as for p = 0.    Furthermore, there is a constant m such that

a\cbx(t, p)\dt<m\p\     if\p\>s.
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Then conclusions (a) and (b) of Theorems 2 and 3 hold, and moreover,

(c)   F has the growth property that for every positive p and real a the (closed)

set

(1.15) í(¿0, /j, cQ, cx) £Sx Rn x R"\ F(tQ, ¿j, cn, Cj) < a awi/ min í|cn|,|cj| I < p\

is bounded.

The latter growth property is also implied obviously by conclusions (b) and

(c) of Theorem 2, and similarly by conclusions (b) and (c) of Theorem 1 if 5  is

replaced by S .
The reader may wonder about the case, prominent in other papers on problems

of Lagrange, where in minimizing the integral (1.1) there is the additional precon-

dition that xit) £ X for all t, where  X  is a fixed compact set.   Due to the fact

that  L   is allowed to have the value + oo, this case is fully covered by Theorems

2 and 4, as stated.   Namely, in this case one can assume without loss of general-

ity, redefining  L  if necessary, that whenever x 4 X one has  Lit, x, v) — + oo, and

hence  Hit, x, p) = — oo.    Then minimizing (1.1) subject to (1.2) and xit) £ X for

all  t is equivalent to minimizing (1.1) subject only to (1.2).   If H  satisfies the

boundedness condition, and Lit, x, v)  is convex in  v, all the assumptions in

Theorems 2 and 4 are trivially satisfied, and both theorems yield the same conclu-

sions.

It should be mentioned that Olech's paper [7], from which we have distilled

Theorem 4, treats a larger class of problems than those considered here, in par-

ticular certain problems with a vector-valued integral (1.1).   The earlier work of

Cesari [l], where a larger class of problems is also treated, likewise contains

a version of Theorem 4(1), where in effect the stronger assumptions are made that

the set

(1.16) {it, x, v)\  Lit, X, v)<+oc\

is closed and has a closed projection in the  it, x)-space, L   is continuous relative

to (1.16), the function  (b in the boundedness condition on  H  can be chosen con-

stant in  t, and for  \p\   sufficiently small, constant as well in  r.   Cesari's result

in turn generalizes classical theorems of McShane [5], Nagumo [6] and Tonelli

[15] for free problems of the calculus of variations.   At the same time, it has the

advantage of yielding for control problems (with unilateral constraints) existence

results more general than those of Filippov [3], Lee and Marcus [4], and Roxin

[14], among others, in that unbounded control regions are permitted.

The results in this paper are likewise relevant to optimal control, as we

explain in §4 pursuing a more general line of reasoning on the matter than Cesari

or Olech, and thereby extending certain theorems of those authors in several respects.
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A compactness result (Theorem 5) is proved in §3 which, as an obvious corol-

lary, gives the existence of optimal arcs in various "nonconvex" problems of

Bolza.   Other such theorems can easily be derived from Theorems 1 and 2, for

example, using the growth properties of F.   Related theorems of a more detailed

nature for "convex" problems of Bolza have been presented in [9] and [lO].

2.   Preliminary facts.   The lemmas stated below are needed in proofs of

Theorems 1, 2 and 3 in the next section.

Lemma 1.   Suppose that H satisfies the boundedness condition.    Then the

integral (1.1) z's well defined for any absolutely continuous function x: [tQ, t.1

—► R", in the sense that the integrand  L(t, x), x(t))   (where it exists, which is

almost everywhere in [/„, tA)  is Lebesgue measurable in  t and majorizes a

summable function of t.   i/Fhus the value of the integral is unambiguously a real

number or + oo. )

Proof.   The Lebesgue measurability of Lit, x(t), v(t))  in /, where x(r)  and

v(t)  are Lebesgue measurable in  /, follows easily from the Lebesgue measurabil-

ity of the mapping  t —► it, x(t), v(t))  and the special measurability property as-

sumed for  L  (cf. [12]).   (If L  were only Lebesgue measurable, the composed

function could fail to be measurable.)   The boundedness condition on  H  implies

further that

(2.1) L(t, x(t), x(t))>-cb(t,r,A)

if \x(t)\ < r for all t.   Since q>(t, r, 0)  is summable in t, the conclusion is ap-

parent.

Lemma 2.   Suppose that Hn  nowhere has the value + oo.    Define

(2.2) L0(t, x, v) = supip • v- HQ(t, x, p)\ p £ R"\ > - oo.

Then LAt, •, •)  is for each  t £ [a, bl the greatest, lower semicontinuous, convex

(extended-real-valued) function on  Rn x R"  majorized by  L(t, ■, •), and L_   z's

measurable on [fl, bl x Rn x R"  in the sense already described for L.   Moreover,

HQ  is the Hamiltonian corresponding to  L„, in other words

(2.3) HQ(t, x, p) = supip • v- LQ(t, x, v)\ v £ Rn\.

Proof.   Let

(2 4) M^' P' W^= SUP^- x+ H^' x' P>\ x e R"^

= supjzzz . x + p . v- L(t, x, v)\ (x, v) £ R" x R"\.
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Then M  is convex in  (p, z^) by the second expression, and M(t, p, •)  is the

convex function on   R"  conjugate to -H(t, -, p).   It follows from the fundamental

theorem on conjugate convex functions (see [13, Theorem 12.2]) that the conjugate

of M(t, p, ■)  is in turn the greatest lower semicontinuous convex function on  R"

majorized by -H(t, •, p), which is -HAt, •, p)  by definition, unless the latter has

the value — oo  somewhere.   Thus under our assumption that H0   nowhere has the

value  + oo  we have for all  (t, x, p)

(2.5) HQ(t, x, p) = inf ÍM(t, p, w) - w . x\ w £ Rn\.

Combining this with (2.2), we got

(2.6) LQit, x, v) = supizz; • x + p . v - Mit, p, w)\ iw, p) £ Rn x Rn\.

Thus for each  /  the function  LAt, •, ■) is conjugate to Mit, •, •), while the latter

is by (2.4) conjugate to  Lit, -, ■).   Applying once more the fundamental theorem

on conjugate convex functions, we see that LAt, •, •)  is the greatest, lower

semicontinuous, convex function on  R" x R" majorized by  L(t, ■, •).    Finally,

(2.2) defines  LAt, x, •)  as the conjugate of H At, x, • ).   But  H At, x, • )  is a

convex function on  Rn  by virtue of (2.5) and the convexity of M(t, •, • ) [13,

Theorem 33.1].   Since by hypothesis HQ  nowhere has the value + oo, H At, x, ■)

is either finite and continuous on  Rn  or identically — oo  on  Rn  [13, Theorem 7.2],

This implies that the conjugate of L At, x, • )  is in turn H At, x, • ), so that (2.3)

holds.   The lemma is now proved.

Lemma 2 is basic to our whole approach.   If H0   satisfies the boundedness

condition, Lemmas 1 and 2 imply that

(2.7) J     Lit, xit), xit))dt> fh LQit, xit), xit))dt> -oo,

where both integrals are well defined. Furthermore, since LAt, x, v) is convex

in ix, v), the integral on the right is convex as a function of the arc x. Results

in [9]  yield compactness properties of the set of arcs satisfying

(2.8) J     LQit, At), xit)) dt <a

for a fixed  a.   Lower semicontinuity properties of the integral on the left in (2.7)

enable us to transfer these compactness properties to the corresponding set of

arcs satisfying

(2.9) f* Lit, xit), xit))dt<a.
J a

The case of varying intervals  [tn, tA  is handled by reformulating the situation

in such a manner that only the fixed interval [a, bl  appears.
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Let u  denote the set of all absolutely continuous functions  x: [a, bl —» R".

We regard Cl as a Banach space under the norm

(2.10) ||*|| =   [b \xit)\dt+ \xia)\.
Ja

The lower semicontinuity we need is expressed by the following lemma.   This

lemma, essentially due to Olech [7], [8], is closely related to more recent results

of Cesari [2] that are more general in many respects, but more restrictive in others.

We furnish a proof based on the theory of conjugate convex functions.   For a fresh

discussion of the well-known fundamental connection between lower semicontinuity

of the Lagrangian functional and the convexity of Lit, x, v)  in  v, we refer the

reader to the cited paper of Cesari.

Lemma 3.   Suppose that H satisfies the boundedness condition and Lit, x, v)

is convex in v.    Then the functional

(2.11) ILix) = jb Lit, xit), xit)) dt

is lower semicontinuous sequentially in the weak topology on il.

Proof.   Since the function  Lit, x, • )  from  Rn  to (- oo, + oo]  is lower semi-
continuous and convex, it is the conjugate of its conjugate function.   The latter

is  Hit, x, •)  by definition.   Thus we have

(2.12) Lit, x, v) = supip • v - Hit, x, p)\ p £ R"\.

We demonstrate first that this implies, for every x £ (l,

(2.13) [h Lit, xit), xit))dt=    sup    ['° [pit) ■ xit)-Hit, xit), pit))1dt,
Ja pe$°°Ja

where ¿L°°  is the space of all bounded, measurable functions from [fl, bl  to  R".

Formula (2.12) expresses  /,    as the pointwise supremum of a certain collection

of functionals, one for each p £ jA°, and only the lower semicontinuity of the

latter functionals then needs to be proved to obtain the lower semicontinuity of I^.

Fix x £ u. and let

(2.14) f(t, v) = L(t, x(t), v)     and     hit, p) = Hit, xit), p).

From the measurability of the mapping it, v) —> it, xit), v), it is clear that / in-

herits from  L  the property of being measurable with respect to the  cr-algebra

generated by products of Lebesgue sets in [fl, bl  and Borel sets in  R".   The

convex functions  fit, •)  and  hit, ■) ate conjugate to each other, and hence  h  also

has this measurability property [8, Proposition l].   In particular, hit, pit))  is

measurable in  t  for each p £ X°°.   The boundedness condition on H  implies that
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for each p £ Rn  the function   h(-, p) is majorized by at least one summable function.

Therefore, by a fundamental theorem on conjugate integral functionals (see [8,

Theorem 2]) the integral j   h(t, p(t))dt is well defined for each p ei°° and we

have

(2.15) sup    fb [pit) ■ vit) - hit, pit))] dt =  Çb fit, vit)) dt
pe£°°Ja Ja

lot every summable  v: [a, bl —► Rn.   (The cited theorem hypothesizes  hit, p) ¿ — oo,

but the extension to allow the latter possibility is trivial.)   Taking vit) = x(t), we

get (2.13).
We now fix p £ X°° and proceed to investigate the lower semicontinuity of the

functional

(2.16) x — (b pit) ■ x(t)dt -  [b Hit, xit), pit))dt.
Ja Ja

The first integral describes a continuous linear functional on u, so the issue

revolves around the weak upper semicontinuity of functional

(2.17) x -, f    Mi, At), pit))dt.
J a

Given a sequence x     in (l converging to xQ   in the weak topology, we can find

an t > 0  such that   |x,(z)| < r for all  t  and k.   Let [p \ be a finite subset of  R"

whose convex hull includes p(t) for every  /.   The convexity of H(t, x, ■) and the

boundedness condition on  H  imply that, whenever  \x\ < r and  o £ coipi, we have

(2.18) H(t, x, q) < max. Hit, x, p.) < max.chit, r, p.) = ifi(t),

where  lb is a summable function.   Therefore,

(2.19) Hit, xAt), pit)) < if/it)    for all  t and  k.

Since in particular xAt) converges to xAt)  for each  /, we have by Fatou's

Lemma

(2.20) lim sup   f    Hit, xA.t), p(t)) dt <  f    H(t, xQ(t), pit)) dt
fe—oo

as desired, provided that

(2.21) lim sup H(t, x (t), p(t)) < Hit, xQ(t), pit)).
k— oo

Thus the proof is reduced to showing that for fixed  t £ [fl, bl  the function

Hit, x, pit)) is upper semicontinuous in x, at least as x ranges over the ball of

radius r and center  0  in  R".   Equivalently, we need to show that for any  a. £ R

the set

(2.22) |U, v) £Rn x Rn\ Lit, x, v) - pit) ■ v < a, \x\ < r\
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has a closed image under the projection (x, v) —> x.   The assumed lower semi-

continuity of L(t, -, ■) ensures that (2.22) itself is closed.   Hence boundedness

of (2.22) will suffice for our conclusion.   We may assume the points  p.  in (2.18)

chosen so that their Convex hull includes a ball of radius  s > 0 about p(t).   Then

(2.18) holds whenever  |x| < r and   \q - p(t)\ < s, so that from (2.12) we have

(2.23) L(l, x, v) - p(t) ■ v > s\v\ - ibit).

Therefore, every  (x, v)  in the set (2.22) satisfies   \v\ < [a + ifj(t)1/s, as well as

|x| < r, and the lemma is proved.

Remark.   A stronger property than described in Lemma 3 is actually true,

although we do not need it here.   It follows from Theorem 5, namely, that for

every  r > 0 and a £ R     the set

\x £ Q\ I, ix) < a,   |x(z-)| < r for all  t\

is compact in the weak topology. (One uses the device of redefinition mentioned

in §1 following the statement of Theorem 4.) Almost the same fact was established

tacitly by  Olech  [7];  see  also   [10] for refinements in the "convex" case.

Lemma 4.   Suppose that Hn  satisfies the boundedness condition.    For each

t £ [fl, b], define

(2.24)      E(r) = cl Up, w) £Rnx Rn sup   [Hit, x, p) + w • x] <
xeRn

Then Eit)  is nonempty and convex.    Furthermore, given any real s > 0  there

exist n x n matrices Nit) and vectors jit)  in  Rn, components summable in  t,

such that

(2.25) (p, Nit)p + jit)) £ Eit)     whenever \p\ < s.

Proof.   By definition we have

(2.26) E(t) = cli(p, w) £ Rn x R"\ Mit, p, w) < + ~.|,

where M  is given by (2.4).   Since Mit, -, ■)  is convex by the latter formula, Eit)

is convex.   From (2.4) and the definition of H„   we have

(2.27) Mit, p, w) = supiz^ • x + HQit, x, p)\ x £ Rn\,

and hence by (2.3)

(2.28) Mit, p, w) = supizzz . x + p ■ v - LQit, x, v)\ ix, v) £ Rn x Rn\.

This, combined with (2.6), shows that L„ and M ate Lagrangians dual to each

other in the sense of [9]. Then [9, Proposition 2a] asserts that the boundedness

condition on H„ is equivalent to a certain condition (C„), according to which in

particular there exists for each p £ Rn  at least one summable function w: [a, bl
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—> R"  such that Mit, p, wit)) < + oo.   (In particular,  Eit)  is nonempty.)   Then

[9, Proposition 3J  applied to M  furnishes for any s > 0 matrices  Nit) and vectors

j(t) with the specified property.

Lemma 5.   Suppose that H.  satisfies the boundedness condition.    Then

H At, x, p)  in (1.9) is concave in x and convex in p.    The boundedness condition

on  H     implies the existence of n x n matrices N(t) and vectors j(t) and k(t)

in  Rn, components summable in  t, such that

(2.29) (P. N(t)p + j(t) + sk(t)) £ E(t)    if   \p\ < s < +00.

Proof.   Let

(2.30) H At, x, p) = lim inf H At, xit) + Ax, p)/X,
X— +00

where x(/)  is chosen so that L(t, x~(t), ■)  is not the constant function + 00  (and

consequently  H At, x~(t), p) > - 00).   Thus  H At, -, p) is the recession function

for the upper semicontinuous, concave function H At, •, p) [13, p. 661.   Since

-HAt, •, p)  is by (2.5) conjugate to Mit, p, •), its recession function is the sup-

port function of the effective domain of Mit, p, •), in other words

(2.31) H2(t, x, p) = sup \w ■ x\ w £ R", M(t, p, w) < + 00J

[I3, Theorem 13.3].   Recall from the proof of Lemma 4 that the set

E0(t) = Kp, w)\ M(t, p, w) <+oo|

is convex and (because of the boundedness condition on HQ) has all of R"  as

its image under the projection (p, w) —> p.    It follows easily then that

clH (p, w) £ EQ(t)\ = \w\ (p, w) £ cl E0(t) = E(z)i

(see [13, §6]).   Thus, with  E(t) as in (2.24), we have

(2.32) H2(t, w, p) = supiuz • x\ (p, w) £ E(t)\ < +«.

Since E(t)  is a convex set, we see from this formula that for each (/, x) the

function zf,(?, x, ■) is convex and nowhere + 00.   Hence it is the conjugate of

its conjugate:   defining

LAt, x, v) = supip • v - HAt, x, p)\ p £ Rn\
(2.33)

= supip • v + x • w\ (p, w) £ E(t)\,
we have dually

(2.34) H2(t, x, p) = supip • v- L2(t, x, v)\ v £ Rn\.

We note now that, by definition,

(2.35) Hx(t, x, p) = lim inf HÄt, x, up)/u.
/x—+00
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Since HAt, x, • )   is  convex and  nowhere + oo, (2.35) says that H At, x, • )  is the

recession function for HAt, x, • )  (in fact, "lim inf" can be replaced by "lim").

Therefore, pursuing the same reasoning as above, H At, x, • )  is the support func-

tion of the effective domain of the conjugate of HAt, x, •), which is  L At, x, ■):

q 35) Hx(t, x, p) = supip • v\ v £ Rn, L2(t, x, v) < + ooj

= supip • v\ (x, v) £ D(t)\,
where

(2.37) D(t) = \(x, v)\ L2(t, x, v) < +oo¡.

The convexity of D(t)  is apparent from (2.33), and, as a consequence, HAt, x, p)

is by (2.36) not only convex and lower semicontinuous in p, but concave in x.

Next define

(2.38) Mx(t, p, w) = sup\w ■ x + Hx(t, x, p)\ x £ R"\,

(2.39) -R¡it, x, p) = supizz- • x- Mx(t, p, w)\ w £Rn\.

In other words, M At, p, •)  and -Hx(t, -, p) are the conjugate and biconjugate of

— HAt, -, p), respectively.   In view of the concavity of H At, x, p)  in x, the bound-

edness condition on H.   is equivalent to the boundedness condition on H., so

that henceforth we work solely with the latter.   Combining (2.38) and (2.36), we

see that

(2.40) Mx(t, p, w) = sup\w . x + p ■ v\ (x, v) £ D(t)\.

But D(t) consists of the vector pairs  (x, v) such that the linear functional (p, w)

—> w • x + p • v  is bounded above on  E(t).   Hence [13, Corollary 14.2.1]:

Mx(t, p,w)=0        if (p, w) £ E (t),
(2.41)

= +oo    if (p, w) 4 Ex(t),

where  E.   is the recession cone of  E(t):

(2.42) Ex(t) = {(p, w)\ Eit) + (p, w) C Eit)\.

Note that M .it, p, w)  is convex and lower semicontinuous in (p, w), and

Mxit, 0, 0) = 0.   We claim that M.   is also measurable in  it, p, w) with respect

to the  ff-algebra in [fl, bl x R" x Rn   generated by products of Lebesgue sets in

[a, bl  and Borel sets in  R" x R".   This property is needed so that M.   satisfies

condition (B), as well as (A), (C) and (D) of [9].   We can then apply [9, Proposi-

tion 2a], according to which (in view of (2.39) and (2.41)) //.   satisfies the bound-

edness condition if and only if there exists for each p 6 R"  a summable function

w: [a, bl —> R"  such that
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(2.43) (p, w(Ù) £ Ex(t)    for ail  t.

To prove the measurability property of M.   in question, we argue first that M

has this property, because LQ has it (Lemma 2) and M(t, -, •)  is the conjugate of

EQ(z, •, •)  (see (2.28)) [12, Proposition l].   The measurability property of M  implies

for each a £ R     the measurability of the set

(2.44) \(t, p, w)\ Mit, p, w) < a\

in the sense described.   For each t  let E  it) denote the (p, tz^)-section of (2.44),

and let d it, p, w) denote the distance of (p, w) from  E  it) (distance from the

empty set being + oo).   Since zM(r, -, •)  is lower semicontinuous, E  it)  is closed.

It is known that in this event measurability of (2.44) (with respect to the  a-field

generated by products of Lebesgue sets in  [a, bl  and Borel sets in  Rn x Rn)  is

equivalent to the (Lebesgue) measurability of dait, p, w) with respect to  z  for

each (p, w)  (see [12, Theorem l]).   Let dit, p, w) denote the infimum of d\t, p, w)

over all real  a (or equivalently, over all integers  a).   Then  d(t, p, w)  is the

distance of (p, w)  from  E(z")  (which is the closure of the union of the sets  E  (r)),

and d(t, p, w)  is again measurable in  t.   Therefore, by the  fact just cited, the set

(2-45) \it, p, w)\ ip, w) £ Eit)\

is measurable in the desired sense in [a, bl x Rn x Rn.   Now choose any summable

function ;': [a, bl —> Rn  such that

(2.46) (0, jit)) £ Eit)    for all  t.

Such a function exists by Lemma 4, since H     satisfies the boundedness condition.

Since E At)  is the recession cone of E(t) by (2.42), we have

(2.47) Ex(t) = fl A/m)[Eit) - (0, jit))],
m

where the intersection is over all natural numbers  ttz  [13, p. 61].   This shows

that the set  \it, p, w)\ ip, w) £ E.(z")| is the intersection of a countable collection

of measurable sets and therefore measurable.    The desired measurability property

of M.   is now verified.
Summarizing to this point, we have proved that the boundedness condition

on H.   is equivalent to the existence for each p £ Rn  of a summable function

w: [a, bl —> Rn  for which (2.43) holds.   We argue now from the latter property.

Applying [9, Proposition 3] to M   , we obtain N(t) £ Rnxn  and  k(t) £ Rn  with

components summable in  t, such that

(2.48) (p, N(t)p+ kit)) £ Exit)    for all  t if  \p\ = 1.

Since  E At)  is a closed convex cone, we have accordingly
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(2.49) ip, Nit)p + skit)) £ E xit)    if|p|<s<+oo.

Then

(2.50) (0, fit)) + ip, N(t)p + sk(t)) £ E(t)    if  \p\ < s < +oo,

where ;'  still denotes a summable function such that (2.46) holds.   Since (2.50)

and (2.29) are equivalent, Lemma 5 is proved.

3.   A compactness theorem and the proofs of the main results.   Our arguments

are based on the following generalization of a result we established in [9, Theo-

rem la] in the case where L(t, x, v) is convex in (x, v).

Theorem 5.   Suppose that H„  satisfies the boundedness condition and

L(t, x, v) is convex in v.   Let  1: R" x Rn —» (- oo, + oo]  be an arbitrary lower semi-

continuous function.   For the sets

(3 1) \x £ Q.   J     L(t, xit), xit)) dt + lixia), xib)) < a},        a real,

all to be compact in the weak topology of ii, it is sufficient that the following

condition be satisfied.    Let C.   and C2  be the convex subsets of R    x Rn  de-

fined by

(3.2) x =   <Ad0, dA\      sup    [c0 ■ dQ - cx • dx - HcQ, cx)1 <+<x\ .
{ I  (c0,cj) )

(3.3) C2 = i(p(fl), pib))\ 3 p £ (3, (pit), pit)) £ Eit) a.e.\,

where Eit)  is given by (2.24).    The condition is that the relative interiors of C.

and C7  have a nonempty intersection, and the affine hull of C    u C»   is all of

Rn x R".   Here C2  has the same relative interior and closure as the convex set

C7  C C?, where

C2 = hpia), pib))\ p efl, lß€-L\a, bl,
(3.4) )sup   [Hit, x, pit)) + pit) • xl < Bit)}.

x€Rn >

Proof.   Let  L   be the greatest, lower semicontinuous, convex function on

Rn x Rn  majorized by  /.   Assuming that the condition in question holds, the set

C.   is in particular nonempty, so that  /„   nowhere has the value — oo.   The func-

tion  LQ  in Lemma 2 satisfies the regularity assumptions imposed on  L, so that

by Lemma 1 the functional

(3.5) 4>U) = fb L0it, xit), xit)) dt + l0ixia), xib)),       x £ d,
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is well defined.   Since  lQ  and  LJt, -, • )  are convex, we can apply to 0 our

compactness result in  [9, Theorem la]: the boundedness condition on Hn   is, in

view of (2.3) and [9, Proposition 2], equivalent to condition (C„) of [9], and the

other property required by [9, Theorem la] is precisely the condition we have stated

on the sets  C.   and  C?.   Thus the sets

(3.6) ix e(5|$(x) < a!,       a real,

are all weakly compact.   These sets contain the corresponding sets (3-1), since

L0 < L  and  /„ < /.   It follows then from Lemma 3 that the sets (3.1) are likewise

weakly compact, since a relatively weakly compact subset of a Banach space is

weakly closed if and.only if weakly sequentially closed.   The fact that  C,   and

C2   have the same relative interior and closure is asserted by [9, Corollary 4 to

Theorem 3], applied to the function M  in (2.4), (2.27) and (2.28).   (In the cited
corollary, condition (D„) is mislabelled (CQ).   In the context of [9], the function

M  is dual to  L_   and therefore satisfies conditions (A), (B), (C)   and (D„), since

L     satisfies (A), (B), (C.) and (D).   Thus the corollary is applicable.)   This
completes the proof of Theorem 5.

The proofs of Theorems 1, 2 and 3 also use a new device of reformulation

that has wider theoretical applications.   There are other methods, of course, for

representing a problem with a variable ¿-interval in terms of a problem with a

fixed /-interval, but these require that  L(t, x, v)  be more than just measurable

in  t.

Reduction of variable interval case to fixed interval case.    Each triple

(x, tn, t.), where x  is an absolutely continuous function from [tQ, tA  to  R",

[tQ, t.] C [fl, b], may be identified with an absolutely continuous function x'  =

(x, tq, rx) from [fl, bl  to  Rn+2, where  rQ(t) = tQ, tx(t) = t,, x(t) = 0 if a < t < tQ
or /    < t <b.   Denote the set of all such functions  x'  by u.   Define

(3.7) L': [a, bix Rn+2x Rn+2 -,(-«., +oo]

as follows, where .x' = (x, rn, r.) and v' = (v, ct0, oA:

(3.8) L'(t, x', v) = +oo    unless  fl < rQ <r. < b,  oQ = 0,  o x = 0,

and when the latter conditions are satisfied

L'(t, x', v) = L(t, x, v)    if  rQ < t < Tj,

i-i Q) = &A,p) if  t < tq or  t > rx,

= k(t, x, v)     if  t = tq or  t = tx,

where SAv)  is 0  if v = 0 and + oo  if v ¿ 0, and kit, x, ■)  is the greatest l.s.c.

convex function majorized by  Lit, x, •)  and ¿L.   Then for an absolutely continuous

function x' : [a, bl —> Rn+    we have
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(3.10) Cb l'U x'it), x'(t))dt= f'1 L(t, xit), x(t))dt
Ja JtQ

if x'  belongs to CI '   and corresponds to x: [tQ, t A —' R", while

(3.11) fb L'it, x'it), x'it)) dt = +oo     if  x' i fl'.
Ja

Thus minimization problems for L  with  [tn, t.] variable can be regarded as prob-

lems for L'   over the fixed interval [a, bl.

To see by way of Lemma 1 that the integrals of L    make sense, observe that

L it, x', v')  is again lower semicontinuous in (x', v') and measurable in  it, x', v')

in the same sense that we have imposed on  L.   Furthermore, if H  satisfies the

boundedness condition, then so does the Hamiltonian H    corresponding to  L ,

since for p    = (p, 7T„, 77.)  we have

(3.12) H (t, x , p ) = -oo    unless   a < r„ < r   < b,

and in the latter case

H'(t, x , p') = Hit, x, p) if  TQ< t < tx,

(3.13) = 0 if  t < TQ or t> rx,

= max\Hit, x, p), OS     if  t = rQ or / = tv

Note also that  L'(t, x', v')  is convex in  v'  ii L(t, x, v)  is convex in  v.

Unfortunately, it is not necessarily true that if H_   satisfies the boundedness

condition, then the analogous function  H„   corresponding to  L   satisfies the

boundedness condition.   The essential difficulty is that there may be no finite

concave function majorizing both H(t, -, p) and  0, even though H(t, •, p)  is

majorized by such a function.   However, this is a minor complication which, for

our purposes, is easily obviated.   We need only add to SqÍ^)  in (3.9) the term

8B(x) = 0       if  x £ B,

(3-14> -(      Jn= +oe      if   X f. a,

where  B   is some compact subset of Rn x Rn.   Then the identification (3.10)

still holds provided that

(3.15) x(t0) £ B     and     xitx) £ B.

The effect of this alteration on H'  is to teplace the  0  in (3.13) by -z5„(x).   It

can then be verified that the boundedness condition on  H.  does imply the

boundedness condition on  B„ .

(We sketch the proof of the last assertion.   Fix p £ Rn.   Assuming that HQ

satisfies the boundedness condition, we can actually find summable functions
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w:: [a, b] —> R"  and  a: [fl,  fe] —> R     such that

(3.16) HQit, x, p) < wit) ■ x+ a(t)     for all  t and  x

[9, Proposition 2],   Since  B  is compact, we can also find a summable function

ß: [a, bl  —> R     such that

(3.17) 0 < w(t) . x + ß(t)    for all  t if  x £ B.

We then have

(3.18) max {Mr, x, p),-8ß(x)\ <w(t) • x+ \a(t)\ + \ß(t)\

for all x  and  t, and consequently

(3.19) H'it, x, p') < w(t) • x + \a(t)\ + \ß(t)\.

Since the right side of (3.19) is affine in x, the left side can be replaced by

H'Q(t, x', p').   Thus

(3.20) H'0(t, x\ p') <   | wit)\ ■ r+ \ait)\ + \ß(t)\     if  \x'\ < r,

where the right side of (3.20) is summable in  t.   We conclude from this that

//„   satisfies the boundedness condition.)

Proof of Theorem 3.   In establishing (a) and (b), it suffices to show that

the assertions are valid for (/„, z., c„, c.)  in 5 x B x B, where  B   is a fixed

compact subset of R".   However, this case can be reduced by the reformulation

device just described to the case of a fixed interval.   Thus we need only prove

that  E(fl, b, ., •)  is lower semicontinuous relative to B xB, and that for each

(cn, c A £ B x B  the infimum defining  Fia, b, c0, c.)  is attained.   To do this,

we apply Theorem 5 with

/(cQ, Cj) = 0       if cQ £ B and  cx £ B,

(3-21) =+oo    if  c0 4 B or  cx 4 B.

The compactness of B  implies that the set  C.   in Theorem 5 is all of  R" x R".

On the other hand, C    is nonempty by the hypothesis of Theorem 3.   We may

therefore conclude from Theorem 5 that every set of the form

(3.22) \x £ Q    fb Lit, xit), xit)) dt < a, x(a) 6 B, xib) £ B }

(a real) is weakly compact.   The set

(3.23) i(c0, cx) £ Bx B\ Fia, b, cQ, c,) < ai

is the image of (3.22) under the weakly continuous mapping x —> (x(a), xib)).

Hence every set of the form (3-23) is compact.   In particular, Fia, b, -, ■)  is
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lower semicontinuous relative to B x B.   From the weak compactness of (3.22) we

also see the weak compactness of

(3.24) |xe(î L(t, x(t), x(t))dt <a, x(a) = c0, x(b) = cx\

if cfl £ B  and c    £ B.   Since this is true for arbitrary real a, the infimum of

j"^L(r, x(t), x(t)) dt subject to x(«) = cQ,  x(b) = c,, is attained by at least one arc

x.   This is of course the infimum defining  E(fl, b, cn, cO, so assertions (a) and

(b) are proved.

Assertion (c) of Theorem 3 is a consequence of the last part of Theorem 5,

which implies in particular that, since the set  C2 is nonempty in the argument

above, so is   C' .   Thus we can find functions  q £ & and ß £ L  [a, bl  such that

(3.25) ß(t) > H(t, x, q(t)) + qit) - x     for all  x £ Rn,

or in other words

(3.26) Lit, x, v) > qit) • x + qit) ■ v - ßit)    for all  (x, v) £ R" x R".

It follows that

f   ' Lit, xit), xit))dt >   f  ' [qit) ■ xit) + qit) - xit) - ßit)1dt

(3.27) rtx
= qitx) • xitx) - qitA • xitQ)- J       ßit)dt,-

'o

and hence

(3.28) F(tQ, tx, c0, cx)>q(tx) ■ cx- q(t0) • c0-  \       ß(t) dt.

Proof of Theorem 2.   Applying Lemma 5, we consider the differential equation

(3.29) p(t) = N(t)p(t) + jit) + \pit)\k(t)     a.e.

The summability of Nit), jit) and kit) in t  yields a global Lipschitz property

of (3-29) which implies in particular the existence of a solution over the whole

interval [fl, b].   Any such solution p  satisfies

(3.30) (pit), pit)) £ E(t)     a.e.

by virtue of (2.29), and hence the hypothesis of Theorem 3 is satisfied.   There-

fore (a) and (b) of Theorem 2 are true.

To prove (c) of Theorem 2, we note first that for each pn £ Rn  there is ac-

tually a unique solution p 6 U  to (3-29) with p(fl) = pQ.   Furthermore, in view of

(3.30) each solution to (3-29) satisfies  (p(fl), pib)) £ C., where  C2   is the convex

set introduced in (3.3).   Thus C2  has all of R"  as its image under the projection
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(Pry ^1^ —' ^0' an<^ nence Cl ^2  (tne relative interior of C A likewise has all of

R"  as its image under this projection.   Therefore, we can select &,  £ R" with

(0, bx) eri C2.
We now consider the differential equation

(3.31) qit) = Nit)qit) + \qit)\kit),

which similarly has for each initial point  ofl £ Rn  a unique solution  o £ Ct. with

q(a) = a  .   Denote the value of qib) for this solution by QiqQ); observe that

(3.32) QiXqA = XQiqA     if A> 0.

If p   satisfies (3-29) and fl satisfies (3-31), we have for any À > 0

(3-33) pit) + Xqit) = Nit)[pit) + \qit)1 * fit) + oit)kit),
where

oit)=  \pit)\ + \\qit)\>\pit)+ Xqit)\,

so that

(3-34) ipit) + Xqit), pit) + Xqit)) £ Eit)    a.e.

by (2.29).   Then (p(fl) + Xqid), pib) + Xqib)) £ C2-   In other words, for each qQ £
Rn the convex set  C2   contains half-lines of the form  !(p0, pj) + XiqQ, QiqQ)) \

X > 0\.   Each pair iqQI QiqA) therefore belongs to the recession cone of cl C2,

which is the same as the recession cone of ri C2 [13, Corollary 8.3.1].   In par-

ticular,

(3.35) (0, bx) + (q0,Q(q0)) £ti C2     ior all   q0£R".

We recall now from Theorem 5 that C.   has the same relative interior as the

convex set  C2   in (3-4).   This enables us to infer from (3.35) that

(3.36) (qQ, Q(qQ) + bx) eri C\     for all   qQ £ Rn.

Let iflg | z: = 0, ■ • • , n\ be the vertex set of a simplex in   R"  which includes the

unit ball.   There exist a unique matrix A.   £ R"*"  and vector fl    £ Rn  such that

(3-37) 'Vo + ai = Ö(?u)>       ¿=0, 1, ... , ttz.

If flj,   is any nonzero vector in  R", the vector   |fln|~   qn  belongs to the unit ball

and hence is expressible as a convex combination of the  ql:

m

(3.38) l?orIflo= Z  Xi1lo-
z'=0

We then have
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m
(3.39) ÄjdflJ-^+fl^ £  À.UjZ^ + flj),

z' = 0

so that by (3.37) and (3.32)

_ mm

(3.40) Äjiq0) + \<¡0\aj = |?n| £   A.ßi^) = ^  A.O(k0|fl'n).
z=0 z=0

It follows from (3.36) and the convexity of ri C'   that

TTZ

(3.41) iq0,Axq0+\q0\ax + bx)='£    X.i\ q Q\ q\ ,  Q(\ q Q\ qA + b j)  £ ri C'  .
¿ = 0

We have shown this for q0 ¿ 0, but it also holds trivially for qQ = 0 by (3.36).
Thus

(3-42) (fl0, Ajflg + \q0\ax + bx) eri C\    for all flQ e R".

Now if (pn, p.) e C' , there exist by definition functions p e U and /3 e

L  [a, ¿z]  such that p(fl) = p„, p(£>) = p., and (3-25) holds.   This implies, as we
have already seen in the proof of Theorem 3, that (3-28) holds, and in particular

(3.43) Fia, b, c0, cx)>px. cx- p0 ■ c0- Jb ßit) dt.

Therefore

(3-44) GipQ, px) < +oo    for all (p0, px) £ C'2,

where

(3.45) G(?o5 Pp = suP^i ' ci ~~ ̂ o ' co ~~ ̂ 8> b' co' cl^ > ~0°"

(The inequality  Gipa, p.) > — °° results from our basic assumption that for at

least one x £ il the function  / —> Lit, xit), xit))  is majorized by a summable

function.   In other words, there is at least one pair (cQ, c^  such that

Fia, b, c„, cA < + oo.) The function G  is convex according to its definition

(3.45).   Since C'   is a convex set, (3.44) implies that G is continuous relative to

ri C' .   Combining this fact with (3.42), we see that the function

(3.46) p0-*G(p0, Xxp0+\p0\ax+ bx)

is finite and continuous throughout  Rn.   Let

(3.47) g(p) =   max    G(p0, AjP0+ |p0|fl1+ ¿j) <+oo.
Kl*/-1
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Reasoning from (3.45), we deduce that for every pQ £ R"

(3.48) F(a, b, c0, cx)> (Axp0 + \pQ\ax + bA. ■ cx - pQ . cQ - g(|p0|)

and consequently, letting A.   denote the transpose of A   ,

F(a, b, cQ, cx)> bx ■ cx +   sup    \(A xcx - cQ) ■ p0 + \pQ\ax • cx - gi\pQ
P0eR

(3.49)

with

bx • cx + sup   ip|c0 - Axcx\ + pflj • Cj - g(p)|

bx ■ c, + yxi\c0- Axcx\ - fl, • Cj),

(3.50) y,(A) = sup  ipA-g(p)}.

The finiteness of giu.)  for all p e [0, + oo)  allows us to conclude from (3-50) that

y.   is a nondecreasing, convex function which is bounded below by — g(0)  and

satisfies

(3.51) lim    yi(A)A=+oo.
A^+oo

By a parallel argument (with the above roles of p0  and p.   reversed), we can find

a similar function y„, matrix A., and vectors  fl_   and  bQ   such that

(3-52) F(a, b, c0, cA>bQ- cQ + y0i\cx - AQc0\ + aQ • cA.

A function y can be constructed such that y <y0i Y S Yi> anc^  Y to° ^s non-

decreasing, convex, bounded below and satisfies (3.52).   Then  E(fl, b, -, •)

satisfies (1.5) and the growth condition  (G   )  holds as asserted.

Proof of Theorem 1.   Choosing any s  such that  2r < s < + oo, we consider

the differential equation

(3.53) pit) = N(t)pit) + jit)    a.e.,

where  Nit) and jit) have the property in Lemma 4.   Let  B    denote the closed

ball in  R"  with center 0  and radius  r.   Since the components of  Nit) and /(f)

are summable in  t, there is an  e > 0 such that, over interval  [fl, b ) C [fl, bl

of length < 2e, the differential equation has a (unique) solution in  B    emanating

from each point of B    , as well as a unique solution in B     terminating at each

point of B2 .   Each solution p  to (3.53) over [fl, bl that stays inside  B     sat-

isfies

(3.54) (p(t), p(t)) £ E(t)    for almost every  t £ [fl, 11
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by (2.25).   In particular, therefore, Theorem 3 can be applied with  [a, bl replaced

by any subinterval  [a~, bl  of length < 2c.   This shows that conclusions (a)

and (b) of Theorem 1 are valid.
For notational simplicity in the proof of (c), it suffices to assume that the

interval [a, b]  itself is of length < 2e and to demonstrate that then  F(a, b, ■, •)

satisfies the growth condition (G ).   Thus we can assume that for each pQ e B2

the solution  p  to (3-53) with p(a) = pQ   satisfies

(3.55) (pit), pit)) £ Eit)    for almost every  t £ [fl, ~b].

Let PApA denote the value of pib)  for this solution; of course, PQ   is an affine

transformation.   For the set  C2   in (3.3) we have

(3.56) (p0, P0ip0)) eC2    if p0 eß2r.

We see in particular from (3-32) that the image of the convex set  C2  under the

projection  (pn, p.) —> p„   includes  B? .   Hence the image of ri C?  under the

same projection (where "ri" denotes relative interior) includes the interior of

B2 .   Select an arbitrary d £ Rn   such that (0, d) £ ri C2.   Then

(3.57) (2/3)(p0, P0ip0)) + (1/3X0, d) £ ri C2    if p0 e B2f,

so that if we define

(3-58) P(po) . (2/3)P0((3/2)p0) + (l/3)d

we have

(3-59) (p0, P(p0)) eri C2    if p0 eßr.

Here  P  is again affine.   Once more we use the fact provided by Theorem 5 that

C2  has the same relative interior as the set  C2   in (3.4), and that the convex

function  G  in (3-45) is finite and continuous on ri C, .   This implies in view of

(3.59) that the function  p„ —> G(p0, Pip A)  is bounded above on  B , say by  aQ.
We see then from (3-45) that

(3.60) Fia, b, c0, cA> P(p0). cx-pQc0-a0    if pQ e Bf.

Since  P   is an affine mapping, we have  P(pQ) = AxpQ + bx, where  A,   £ R" x"

and  fe,  e R".   Substituting this expression in (3-60) and letting A     denote the

transpose of A ., we obtain

Fia, b, c0, cx) >    sup    i(A"jP0 + bx) ■ cx- p0. c0- aj
(3.61) \P0\<r

= -a0+ bx- cx + r\c0-A.c.\.
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By a parallel argument, we have

(3.62) Fia, b, cQ, Cj)>-a,+ bQ ■ cQ + r\cx - AQcQ\.

Therefore growth condition (G ) is satisfied by  F(a, b, ■ ,■)  for

(3.63) y(A)= rmaxiÀ, Oi

4.   Application to control problems.   The preceding sections have dealt with

minimization problems which are of the same form as the classical "free" prob-

lems of the calculus of variations, except that the Lagrangian function  L   is

allowed to have the value + oo.   Actually, the exception makes a world of differ-

ence, because it enables us to apply the same results to problems like those in

control theory, where there may be complicated constraints.   This application

can be carried out much in the manner of Cesari [l], and Olech [7].   However, we

take a different approach which yields somewhat sharper conclusions.

It is helpful at the outset to formulate the general control problem more

abstractly than is customary.   We assume we are given a function

(4.1) K: [a, bl x Rn x R" x Rm -* (-oo, +»]

such that  K(t, x, v, u)  is lower semicontinuous in (x, v, u)  and measurable in

(t, x, v, u)  (with respect to the cr-algebra generated by products of Lebesgue

sets in  [fl, bl  and Borel sets in  Rn x Rn x Rm).   The basic Lagrange problem is

to minimize the integral

f-tj
(4.2) J       Mi, At), x(t), u(t))dt

A
over all measurable control functions  zz: [t., tA —> Rm  and all absolutely con-

tinuous functions  x: [f  , f.J —> R"  satisfying

(4-3) x(tQ)=cQ    and    x(tx)=cy

Here  [f  , f  ]  is a fixed subinterval of [a, bl.   (To avoid trivial technical nui-

sances, we assume that  K(t, -, -, •)  is not identically + oo  for any  / £ [a, bl,

and that it is possible to find at least one absolutely continuous x: [a, bl —* R"

and measurable  u: [fl, hi —» R"   such that  K(t, x(t), x(t), u(t)) is majorized by a

summable function of  t.)

Of course, endpoint conditions more general than (4.3) could be considered

or a term  k(tQ, t y x(tQ), x(tA)  could be added to (4.2).    But this would be
irrelevant for our present purposes.   Our aim is rather to deduce under certain

assumptions the equivalence of the above problem and the problem of minimizing

j 1 L(t, x(t), x(t))dt  subject to the same constraints (4.3), where
'o
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(4.4) L(f, x, v) = inf i K(t, x, v, u)\ u £ Rm\.

Once this is accomplished, the theorems in this paper can be applied to the basic

control problem, and it is a simple matter to extend the coverage to other model

problems.   For example, the compactness theorem in §3 for Bolza functionals, as

well as the device explained in §3 for reformulating the variable interval case,

can be brought to bear.

Before going further, we discuss the relationship between our abstract con-

trol problem and the usual one.   In the usual problem, one seeks to minimize

r'i(4.5) J        f0(t, xit), uit)) dt
A

over all measurable functions  u: [t„, t A  —> Rm  and absolutely continuous func-

tions  x: [fQ, f  ] —> R"   satisfying (4.3) and the constraints

(4.6) x(/)= fit, xit), uit))    a.e.,

(4.7) u(t) £ Uit, At)) a.e.,

(4.8) xit) £ Xit) a.e.

To put this in the above form, we simply define

Kit, x, v, u) = fQ(t, x, u)    ii x £ X(t), u £ U(t, x),

(4-9) and  v= fit, x, u),

- +0« in all other cases.

It is clear that then the integral (4.2) (assuming it is well defined—see below)

has the value  + 00  unless the constraints (4.6), (4.7) and (4.8) are satisfied, so

that minimizing (4.2) subject to (4.3) is identical to the control problem just

stated.

Lemma 6.   Assume in the forgoing that the set

(4.10) G = {it, *, a) e U, b] x R" x Rm\ x £ Xit), u e Uit, x)\

is measurable (in the specified sense) and the junctions f- G —»R1  and f: G —> R"

are likewise measurable.    Assume that for each  t £ [fl,  bl  and a £ R  , the set

(4-U) Gt,a= !(*' A £Rnx Rm\ x eX(t), u £ Uit, x), fQit, x, u)<a\

is closed, and relative to it the mapping fit , •, •)  is continuous.   Then Kit, x, v, u)'

in (4.9) is indeed lower semicontinuous in (x, v, u) and measurable (in the

specified sense) in  it, x, u, v).
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Proof.    Fix  a £ R     and consider the sets

(4.12) {(f, x, v, u)\ it, x, u) £ G, f0(t, x, u) < a, /(/, x, u) - v = Q\,

(4.13) i(x, v, u)\ (x, u) £ Gt a, fit, x, u) - v = OS,       te [a, b].

The question is whether the sets (4.13) are closed and (4.12) is measurable.   The

fact that the sets (4.13) are closed is obvious from the closedness of G       and

continuity of fit, -, •) relative to  G   a.   Our assumptions imply the measurability

of the mapping it, x, v, u) —» fit, x, u) — v, so that the measurability of (4.12) is

also immediate.

The regularity assumptions in Lemma 6 are in several respects weaker than

those made by other authors in treating the existence of solutions to control

problems, most recently Cesari [l] and Olech [7].   The sets   Uit, x) and  Xit)  are

not required to depend "upper semicontinuously" on t, and, as a matter of fact,

they do not even have to be closed.   Furthermore, f At, • , ■) is not required to be

continuous, but only to have a certain lower semicontinuity property.   Thus, for

example, cases are covered where  fAt, x, u) grows to + oo  as  u approaches the

boundary of  U(t, x), or as  x  approaches certain boundary points of X(t).   Such

cases are excluded by the assumptions of Cesari and Olech.

We should mention in connection with Lemma 6 that, if g: [a, bl x W —> R

has the property that g(t, w)  is Lebesgue measurable in /  and continuous in w

(W  being a subset of R   ), then g  is measurable with respect to the  ff-algebra in

[fl, b] x W generated by products of Lebesgue sets in [fl, bl  and Borel sets in  W.

This is apparent from the representation in the case of  R    = R     that

oo oo

\(t,w)\ g(t, w)<a\=   Q    U   Tax WiV
fml   i ml

where for a dense sequence  \w \  in  W  one defines

r.y= if e[fl, b1\ git, w.)<a+ il/j)\,

W.. = \w£W\ \w- w.\ < l/j\.

In the example where   K  satisfies (4.9), the function  L   (which throughout

this section is given by (4.4)) can be expressed by

(4.14) Lit, x, v) = inf{a e R!| iv, a) £Q(t, x)\,

where

(4.15) Q(t, x) = {(fit, x, u), fQ(t, x, u))\ x £ Kit), u £ U(t, x)\.
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Thus  L   is convex in v  if Qit, x)  is convex, or more generally if the set

(4.16) Q(t, x) = i(/(f, x, zz), /0(f, x, u) + s)\ x £ X(t), u £ Uit, x), s > 0\

is convex.   Both Cesari and Olech deal directly with (4.16), imposing continuity

assumptions on its behavior with respect to both  f  and  x, etc., in addition to

stronger forms of the assumptions in Lemma 6.

We avoid any such direct assumptions below.   This is achieved through a

boundedness condition on

(4.17) Jit, x, p, q) = supip • v + fl • u - Kit, x, v, u)\ iv, u) £ Rn x Rm\,

rather than just on

(4.18) Hit, x, p) = supip • v - Lit, x, v)\ v £ Rn\= jit, x, p, 0).

The function /   is said, of course, to satisfy the boundedness condition if

(4.19) sup    Jit, x, p, q) <cb(t, r, p, q),
\x\<T

where  cb is some real-valued function on [fl, bl x [0, + oo) x R" x Rm  such that

4>it, r, p,  q)  is summable in  t  for fixed  (r, p, fl).

If  K  is given by (4.9), as in Lemma 6, one has

(4.20) Jit, x, p, q) =        sup       \q • u + p • fit, x, u) - fQ(t, x, u)\
ue U(t,x)

ii x £ Xit), whereas  jit, x, p, q) = - oo  if x 4 Xit).   (If  U(t, x)  is empty in (4.20),
the convention is used that the supremum of the empty set of real numbers is

- oo.)   It should be emphasized, however, that we are not limiting ourselves to

this special case.   The following theorem applies equally to the more abstract

control problem formulated above.

Theorem 6.   Asszzzrze that  J  satisfies the boundedness condition.    Then the

integral (4.2) z's well defined (in the sense of Lemma 1) for any absolutely con-

tinuous  x: [t « f ] —> R" and measurable  u: [f0, f.] —► Rm, and if its value is

not + oo  the function  u must be summable.    Furthermore,

(a) L(t, x, v)  is lower semicontinuous in (x, v), measurable (in the sense

described) in (t, x, v), nowhere — oo, and H satisfies the boundedness condition;

(b) for every absolutely continuous x: [f., f  ]  —> Rm, one has (where the

minimum is attained):

(4.21) L(t, x(t), xit)) dt = mini \       Kit, x(t), xit), uit)) dt\ u measurable) .
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Proof.   We can regard  K as a Lagrangian in (f, x, y, v, u)  that happens to

be independent of y, with the  zz variables playing the role of the derivatives of

the y variables.   Then /   is the Hamiltonian corresponding to  K, and Lemma 1

is directly applicable.   This verifies that the integral of  K  is always well

defined.   Next, fix any  r > 0  and s > 0 and choose a finite subset (p., q.)  of

R" x Rm  whose convex hull contains

(4.22) i(p, q) £ R" x R"\ \p\ < 1 and  \q\ < l\.

For the function cb  in the boundedness condition on /, define

(4.23) ibrit) m max (b(t, r, p., q).
i

Then, since  j(t, x, p, q)  is convex in (p, fl), we have

(4.24) j(t, x, p, q) < ibr(t)    if   |x| < r,   \p\ < 1,   \q\ < 1,

where  if/    is summable.   This implies from the definition of /  that
r

(4.25) K(t, x, v, u)>\v\+ \u\ - if/it)    if  |x| < r.

The summability of  zz(f)  in  t, whenever the integral (4.2) is finite, is then

obvious.   It is also obvious from (4.25) that for each  a £ R     and  t £ [fl, bl the

set

(4.26) |(x, v, u)\ Kit, x, v, u) < a, \x\ < ri

is bounded.   This set is also closed, in view of the lower semicontinuity assump-

tion on  K, and hence it is compact (for any real  a and  r > 0).   Therefore the

infimum defining  L(t, x, tj)  in (4.4) is attained (not - oo) by at least one  zz  for

each (f, x, v), and the set

(4.27) i(x, z^)| L(t, x, v) < a,   \x\ < r\,

being the image of (4.26) under the projection (x, v, u) —• (x, v), is compact (for

any real  a and  r > 0).   In particular, L(t, x, v)  is lower semicontinuous in (x, v).

The desired measurability property of L   is more difficult to verify, and it

seems most efficient to invoke the theory of measurable, closed-valued multi-

functions, as this will also assist in proving (b).   (By definition, a multifunction

Z: [fl, bl —► R       is measurable if for each closed set  B C R     the set of t £

[a, bl  such that  Z(t) n B /- 0   is Lebesgue measurable in  [fl, bl.)   For each

í e [fl, b], let

(4.28) ZK(t) = |(x, v, u, a) £Rn x Rn x Rm x Rl\ a> Kit, x, v, u)\,

(4.29) ZLit) = \ix, v, u, a) £ Rn x Rn x Rm x Rx\ a> Lit, x, v)\.
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Thus  Z Jt) is the epigraph of  K, while  ZL(t) is the epigraph, not precisely of

L, but of  L  regarded also as a (constant) function of  zz.   The lower semicontinuity

of  K and  L   is equivalent to the closedness of Z   (t)  and  Z   it).   Moreover, the

measurability of K  (with respect to the ct-algebra generated by products of Lebesgue

sets  in   [a, bl   and   Borel  sets   in   R" x  R"  x  Rm)  is equivalent to the measura-

bility of the multifunction

(4.30) ZK -. [a, bl ^RnxRnx Rm

(see [ll]  or [12, Theorem l]).   Similarly for the desired measurability property of

L; thus to obtain this property we need only verify that the multifunction Z.    is

measurable.   To do this, we observe that, since the infimum in (4.4) is always

attained, as already demonstrated, we have

(4.31) ZLit) = ZKit) + Zit)    for all  f,

where

(4.32) Zit) = |(0, 0, u, 0) e R" x R" x Rm x Rl\ u arbitrary).

Trivially, the multifunction  Z: t —> Zit)  is measurable.   It is known that the

(closure of) the sum of two measurable multifunctions is measurable [ll, Corol-

lary 1.2], and hence  Z,    is measurable.   Therefore  L   is measurable in the sense

described.   The fact that  H satisfies the boundedness condition, since  /  does,

is immediate from (4.18).   Thus (a) is proved.

The proof of (b) is relatively easy, using what has already been established.

Let  x: [/_, tA —' R"  be absolutely continuous.   We know that for each  f there

is at least one choice of uit) £ R"  such that

(4.33) Lit, xit), xit)) = Kit, x(t), x(t), u(t)).

The problem is to show that u(t) can be chosen measurably, and we need only be

concerned with the case where the integral on the left of (4.21) is finite.   In this

case  L(t, x(t), x(t))  is summable, hence finite almost everywhere, say for f  in

a certain subset  T  of [a, bl.   Let

(4.34) Zxit) = |(x(f), kit), u, ait))\ u arbitrary!,       t £ T,

where

(4.35) °-(t) = Lit, xit), xit)).

Then Z     is a measurable, closed-valued multifunction from  T to Rn x R" x
X '

Rm x R1, as is  ZK.   The intersection ZK O Z¿. t —* ZK(t) n Zx(t),   t £ T, is
therefore likewise a measurable, closed-valued multifunction [9, Corollary 1.3],

and it is also nonempty-valued.   It follows (from a result proved independently
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by Rokhlin, Castaing, and Kuratowski and Ryll-Nardzewski—see  [ll, Corollary

l.l] or [12, Theorem l]) that  Z    n Z    possesses a measurable selection.   In

other words, there is at least one measurable function on T whose value for each t lies

in ZAt) C\Z (t).   But this means precisely that u(t) can be chosen measurably in (4.33)

for t £ T, and the choice can be made arbitrarily t £ [fl, bl/T. Theorem 6 is thereby proved.

Remarks.   When Theorem 6 is combined with Theorem 4 (Olech [7]) and

Lemma 6, one obtains a result more general than that described in Olech's paper

for the same problem.   (The regularity assumptions are weaker.)   It is interesting

that, when Theorem 6 is combined with Theorems 1, 2, 3 and 5, the assumptions

on Hfí  and  H.   (constructed from  H in (4.18)) suffice—there is no need to intro-

duce the analogous functions J Q and /.   corresponding to /   and depending on

o  as well as p.   The existence of optimal arcs in problems where  [i„, t A  is

allowed to vary (as in the work of Cesari, Olech, and others) is obtained im-

mediately from the lower semicontinuity of the minimum value function

FitQi t., c„, c A in (f0, fj).   Similarly for problems where   cQ  and cx   vary, ex-

cept that there the established growth properties of  FitQ, t., cQ, c A with respect

to (c„, c A enter in.
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