Optimal Arrangements of Cartridges in Carousel

Type Mass Storage Systems

Sridhar Seshadri*, Doron Rotem \dagger and Arie Sbgev \ddagger *Department of Statistics and Operations Research, Leonard N. Stern School of Business, New York University, New York, NY 10012
\dagger Information \& Computing Sciences Division, Lawrence Berkeley Laboratory, Berkeley
CA 94720 and San Jose State University, Department of MIS. San Jose, CA, USA and
\ddagger Haas School of Business Administration, University of California, and Information \&
Computing Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

Optimal arrangements of cartridges and file partitioning schemes are exammed in carousel type mass under different storage configurations for both the anticipatory as well as the non-anticipatory versions of the problem. When requests arrive as per an arbitrary renewal process this arrangement is also shown to

Received September 18, 1993, revised December 11, 1994

1. INTRODUCTION

A large number of applications such as multimedia databases, document retrieval and scientific databases, require high-capacity mass storage systems that can hold contain a hierarchy of storage devices typically consisting of large robotic tape libraries, optical disks and magnetic disks. In such systems, files are automatically migrated across the storage hierarchy such that the more
frequently used files reside on the faster and more frequently used files reside on the faster and more
expensive (in terms of dollars per byte) storage media. In expensive (in terms of doliars per byte) storage media. In
this paper we analyse data placement strategies on a carousel type robotic tape library. Such devices are quite commonly found in mass storage systems, for example Magnus Jukebox Library and Lago Systems LS/300L with a total capacity of 270 GB (Ranade, 1992). The, carousel type mass storage system is a configuration found in systems catering for low to medium tertiary
storage requirements. The system usually has a number storage requirements. The system usually has a number
of storage locations for cartridges arranged on the inner periphery of a carousel (see Figure 1). The system responds to a request for loading a cartridge by the movement of the carousel to align the required cartridge in front of a read/write head, and a robot does the actual
loading or unloading. The problem addressed in this loading or unloading. The problem addressed in this
paper is the optimal allocation of cartridges to the

A similar problem has been solved recently in the context of determining warehouse storage by Fujimoto (1991). Using a Markovian model, Fujimoto proves the one cartridge is stored per location. An Organ-Pipe Arrangement (OPA) is one in which cartridges, or more generally items, are first sorted in the descending order of
requested next is independent of the past requests. Thus the request pattern forms a Markov chain with cartridge requested will be i and $\Sigma_{1}^{n} p_{i}=1$. If the number of cartridges is less than n then the remaining probabilities are set to zero. Unless specified, in al
cases the number of read/write heads is one. A simila model will be used for the file allocation problem. The Markovian assumption is reasonable considering tha the mass storage system does not actively participate in user processing and is more like a library or repository in
its functions. In the non-anticipatory case, called case I the carousel cannot be moved to a specific location in anticipation of a request-whereas in the anticipatory
case, termed case II, the carousel can be repositioned

realized. The objective throughout is to minimize the

7 , it is always assumed that requests do not interfere with one another. The last assumption is reasonable for m requests is physically possible but not found in curre
Number the locations on the carousel as 1 through $\stackrel{7}{8}$
 I, as we have a finite state space for the Markov chain, तो
follows that there exists a unique stationary distribution
 carousel (see Wolff, 1990 for example). Direct verifica request will find the read head at location i is equal to the probability, $p_{\pi(i)}$, that the cartridge stored at locatio
i will be requested.
In dealing, with the file allocation model in case $\frac{\stackrel{P}{\omega}}{\vec{\omega}}$,
there are two levels of decision. First the files must

 SMOIIOJ 7 I -a8punies aчt of penlolie saly loj sisanbai

 I ases uI
pənnduo名

$$
E D(\pi)=\sum p_{\pi(i)} \sum p_{\pi(j)} d(i, j)
$$

where $d(i, j)$ is the shortest rotational distance between ocations i and j. By substituting any function f of the distances $d(i, j)$ in the above formula we also obtain

This fact will be used in proposition 1

cartridge

 anticipatory case as defined above. Anticipatory policies for disk arm control are offered as a good strategy byKing (1990). A well known example of such a policy is the greedy policy of 'nearest head' shown to be optimal for a disk with two read heads by Hofri (1983). In that work the head which does not serve the current request is
allowed to 'jockey' to an optimal location in anticipation -
In this paper, we use a Markovian model for the carousel problem, and show that for both the anticipa-
tory and non-anticipatory versions of the problem, the ortimal arrangement is the Organ-Pipe Arrangement when there is a single read/write head. The results are then extended to the case when two heads are provided. Finally we extend the results to the case where requests
arrive as per an arbitrary renewal process and show that for the non-anticipatory case the OPA arrangement minimizes both the mean queueing delay as well as the average time spent in the system by the requests.

2. MODEL

 One cartridge can be placed in each of the locations. We will assume that there are at most n cartridges to be loaded (else the problem will need to incorporate
caching). When extending the results to file allocation we will model the cartridge as capable of accommodating at most m files. This is a simplification because file sizes need not be the same and file migration policies could dictate the size distribution of files found in the mass
storage system. However the simplification enables the storage system. However the simplification enables the solution of a problem which otherwise will have to
contend with random and non-stationary sizes of files and bin packing type of limitations. From experience however, it is seen that storing larger files in the tertiary system leads to a better retrieval performance. So the file migration policies may tend to even out the size
distribution. In any case, the operating policies described
 variables representing the items stored and thus are not
necessarily of limited usefulness in practice.
In order to model the demand process, it is assumed
that the probability a particular cartridge will be

FIGURE 2. The pairwise majorization property. Proposition 1. (Bergmans, 1972° and Fujimoto, 1991.
The OPA arrangement is optimal in case I and also in the stochastic sense described above.

Proof. Let there be a line of symmetry over which the pairwise majorization property is violated. We will call the side that has the higher sum of probabilities as the left
ide. Assume that the symmetrical dividing line is vertical. Denote a violating assignment to be one where a cartridge on the left side has a lower request probability than the one in the mirror image location on the right. For example, the fourth cartridge on the left of the
symmetry line has a smaller request probability compared to the fourth one on the right side of the line. We will show that this arrangement can be improved by interchanging all pairs of violating assignments
simultaneously. This helps because (i) the cost with simultaneously. This helps because (i) the cost with themselves is unchanged, (ii) the cost with respect to the interchanged cartridges by themselves is unaffected,

 (iii) can be proved by the following argument. ix an un-interchanged cartridge location. The distance by
which a cartridge has moved away from this location which a cartridge has moved away from this toce which
due to the interchange is exactly the distance by another cartridge has moved closer to this location. The argument can be formalized by denoting the locations on the left of the symmetry line from which the cartridges must be interchanged to be $\{1,12,13, \ldots, l k\}$ and the placed) to be $\{r 1, r 2, r 3, \ldots, r k\}$. Let $l u$ and $r u$ stand for placed) mirror image locations of two uninterchanged cartridges, on the left and right sides of the symmetry
 locations is given by

In case II, we do not need to use the Markov chain at all. This is because in the anticipatory case it is
assumed that the read head can be positioned very quickly to a given position before a request arrives. Given that requests are independent of one another, the

 fact that allows us to search within this class of policies in determining the optimal allocation scheme. Thus, if the location i, then the expected distance traveled per request $E D(\pi)=\sum p_{\pi(i)} d(i, j)$

Note that the expected repositioning distance is also

3. THE OPTIMALITY OF THE ORGAN-PIPE

An Organ-Pipe Arrangement is one in which the cartridges are placed in an alternating arrangement. The cartridges are ranked in descending order as per
their request probability. Let cartridge $\# i$ be the one with the i^{t} largest request probability and let the storage locations be numbered in clockwise fashion. Then cartridge \#1 is placed in location 1 cartridge \#2 in $(n-l)$ etc. This arrangement proves to be optimal under a variety of modeling assumptions as described in this

The basic condition for optimality of an arrangement is obtained by imagining that a line of symmetry (of any orientation) is drawn across the carousel, see Figure 2 .
Let the sum of request probabilities for cartridges on the Let the sum of request probabilities for cartridges on the lignoring the location(s) bisected]. Let i and j be the cartridges stored in mirror image location on the left and right sides of the line respectively. Then intuitively speaking we expect that the request probability for
cartridge i should be larger than for cartridge j in the optimal arrangement. This property is called the pairwise optimal arrangement. This property is called the pairwise
Majorization Property (PMP) by Fujimoto. In case I, in fact a necessary and sufficient condition for an arrangement to be optimal is that PMP holds over all symmetry lines. And not very coincidentally the OPA possesses this property. A sketch of the proof (partly provided by Fujimoto) follows but with a strengthening of the result. The strengthening is in the sense that if we start out initially with the stationary distribution of the Markov
chain, then OPA minimizes the distance traveled at each chain, then OPA minimizes the distance traveled at each f X and Y are random variables, then X is larger or if X and Y are random variables, then X is larger or $X \geqslant_{s} Y$, if $\operatorname{Prob}(X>t) \leqslant \operatorname{Prob}(Y>t)$ for all t. In Wolff (1990) it is shown that $X \geqslant_{n} Y$ is equivalent to the
condition that for any non-decreasing function, f, condition that for
$E[f(X)] \geqslant E[f(Y)]$.
Proof. In the anticipatory case, by the independence
Proof. In the anticipatory case, by the independence
property we will always position the head at the same
location between requests (ignoring ties). So each cartridge is essentially assigned a travel distance on a permanent basis. By the inequality of Hardy t al. (1991) given two sequences w_{l}, \ldots, w_{n} and p_{l}, \ldots, p_{n} of all
permutations π of the p_{i}, the one that minimizes the permutations π of the p_{i} s, the one that minimizes the
sum: $\Sigma_{i=1}^{n} w_{i} p_{\left.p_{r(i)}\right)}$ is the one that forms each term in the above sum by multiplying the $j^{\text {th }}$ largest value of the p i's
with the $j^{j \text { b }}$ smallest value of w_{i} s. If we fix the position of whe head at a particular location, exactly one cartridge will be at distance 0 (distance measured in units of $2 \pi / n$),

 anticipatory position of the head should be at location with the maximum $P_{x(i)}$.

QED

 In the next proposition we consider the In the next proposition we consider the case that eacth
cartridge can hold m equi-sized fles and requese

 Wong83 uses Schur functions. non-anticipato.
per cartridge.
Proposition 3. The OPA policy is optimal for thè
non-anticipatory case and when there are m files storedg
 by sorting m files in descending order of request
probabilities and grouping the first m in bunde $\# 1$, the

 property not hold for the optimal arrangement. But by

 say across a given symmetry line. Also let the sum of before) be larger. Call these mirror image locations on the left side i and that on the right j. What the violation implies is that the probability that a cartridge in location
i will be requested can be made larger by interchanging i will be requested can be made larger by interchanging
files between locations i and j. Without loss of generality,

4.1. A Markov chain model for requests probabilities Successive requests for cassettes will not be independent

 the probability that the next cassette requested will be
will be given by $p_{i j}$, where $\sum_{j=1}^{n} p_{i j}=1$. We assume tha the transition matrix $P=\left(p_{i j}\right)$ is irreducible and that the Markov chain is given by solving the equation $\boldsymbol{p}=\boldsymbol{p} \boldsymbol{P}$. It
 the optimal arrangement of cassettes is still OPA based
on p, and therefore all the previous results for the non-anticipatory case will carry over. But the anticipatoryo
 dependent anticipation, i.e. depending on what the lasto request was we can reposition the reading head optimall (he next
for the ne mereover given the arrangement (0 .

 example if the cassette i were placed in the position π_{i}, $i=1,2, \ldots, n$, and if the last request was for casse
then the optimal repositioning should be done at

$\min _{k} \sum_{i=1}^{n} p_{j i} d\left(\pi_{k}, \pi_{t}\right)$

 which cassette k is placed and the location where cassette i is placed. Unfortunately, determining the optimal be shown to be in the class of NP-Complete problems). Therefore we tackled the optimal arrangement problem through simulation. Proof. The nearest head policy is the optimal
rotational strategy. Therefore the problem can be reduced to the case when there are $n / 2$ locations to be
 3 provides the result.

QED

Remark. The optimality in propositions 3 and 6 can

In many practical multiuser applications, the requests to the mass storage system are queued and serviced on a first
come first served basis (FCFS). In the next proposition we utilize two powerful theorems from Stoyan (1983) to show that OPA is optimal in this case as well.
 of the three models of proposition 1,3 , and 6 , when
requests arrive as per a general renewal process and they 'siseq (SADH) panas isiy әmos 7 sig e uo papuəne are OPA minimizes the average queueing delay as well as the time spent in the system.

Proof. The proof follows from the fact that by propositions 1,3 , and 6 , when starting out with the stationary distribution, the time to serve a request is the
smallest in the stochastic sense under the OPA order. The rest of the proof can be found in theorems 5.2.1 and 6.2.1 (Stoyan, 1983).

QED

4. SIMULATION RESULTS

In this section we use simulation to (i) investigate the case
 and (ii) determine how a repositioning (anticipatory) policy performs when there is interference between
requests. As a by product of the analysis, we also requests. As a by product of the analysis, we answers to the questions of how much improve-
Optimal Arrangements of Cartridges $\quad 879$
We generated random transition matrices of size $n x n$, This heuristic is called HICOST. We investigate the case where there is only one read head
Tables la-d summarize our Tables la-d summarize our simulations. We conducted 20 trials for $n=5,6$ and only 10 trials for the rest. It is seen that the lower bound gets progressively worse as n increases. The GREEDY heuristic performed well in these experiments. In Table le we summarize these
findings. We see that the GREEDY heuristic performed the best, and that the degree of sub-optimality is on the average $<3.2 \%$. The worst case performance was also below 5.5%. The other interesting finding from these experiments was that an anticipatory policy can save on the average $13-17 \%$ of travel time. These findings are also summarized in Figure 5 showing the average sub-
optimality of the heuristics and the savings from using optimality of the heuristics and the savings from using
the best heuristic arrangement and an anticipatory policy the best heuristic arrangement and an anticipatory policy
over OPA without anticipation. over OPA without anticipation.
4.2. Effect of interference of requ

2. Effect of interference of requests on anticipatory

In proposition 7, we restricted our attention to nonanticipatory policies. In practical situations it is of requests arrive as per some random process. Repositionјо әsneэәq реәчіәло әшоs ppe II!м реәч ви!реәл әч! 8и! the travel time for moving the head to an anticipatory
position, but repositioning saves on subsequent travel position, but repositioning saves on subsequent travel
time-so when does the trade-off between these two effects favor repositioning? In the commercial systems available today, it is not possible to change the command or moving to a position while the command is being executed. This creates a situation where we cannot
change our mind once having given a command to change our mind once having given a command to is executed. There are several options available for
mitigating this effect. One method would be to reposition mitigating this effect. One method would be to reposition
one location at a time, for example if we are currently at a

∞	\％1066	\％890	0	I	0	672881	－10	$\angle t+28.1$	62L88 1	20620＇z	sssta 1	$809 \downarrow$ Zて	5
	\％ 56.1	\％96＇	0	I	0	192861	89200 Z	661261	19786 ${ }^{\text {I }}$	62980%	187L＇I	て66E17	t
	\％18ヶて	\％Its	0	1	0	28E68 1	\＄9806 1	E1L64．	28E68 1	26110\％	166LS＇I	LE9Eて	ε
	\％Et「II	$\% \forall L て$	0	1	1	6 6S10\％	1E580 ${ }^{\circ}$	カ10961	6¢S10 ${ }^{\circ}$	ยてL10＇z	L8164＇1	¢9ヶヶでて	τ
	\％60 81	\％96E	0	I	0	296061	82500%	Etsclsil	29666．1	9EE0＇Z	SE99\％	6¢Z0Eて	1
													10J sfeul 01
	\％20．91	\％91＇${ }^{\text {c }}$	1	6	1	\＄1ㅂol							
	\％LSEI	$\% 897$	0	1	0	2168L＇1	16LE8＇1	IZITC．I	2168L＇	I1998＇	EESI9＊1	¢8180\％	01
	\％19てI	\％しが	0	0	1	ELLDL	LE86 ${ }^{\prime}$ I	6¢699＊I	－SESC．I	ELLbL＇I	t20es＇I	908961	6
	$\%$ こと81	\％0s 1	0	I	0	98 LILT	LOS6L．	\＄1769 ${ }^{1}$	98LIL＇I	L1964＇I	LLSES＇I	6ヵ2E0＇Z	8
	\％でゆロ	\％sil	0	I	0	SSL28 I	－［858＇1	95908＇1	¢SLZ8＇I	Es916．1	tS699－	－ $180{ }^{\circ} \mathrm{Z}$	ι
	\％L981	\％ 20%	0	1	0	29891	$28669^{\circ} 1$	$16819^{\circ} 1$	2989＇1	Lsz9L＇I	EStorl	$80100{ }^{\circ}$	9
	$\% 10<1$	\％LSE	1	1	0	9LISLI	9LISLI	82689 ${ }^{\text {I }}$	9LISLI	29¢18＇I	29s951	S96t0 $冖$	\bigcirc
	\％ 2 Lli	\％68＇	I	I	0	$9 \mathrm{CLBL}{ }^{\circ}$	91L18＇I	2z0EL＇I	9LI8L＇	ESE68＇I	ESO19＊I	LヵL60＇Z	t
	\％LI61	\％ 66.	0	1	0	92 ts9 ${ }^{\text {a }}$	190\％$L^{\prime} 1$	t168s＇1	92t59．1	SIFOLI	Stestil	tIL6I	ε
	\％9でゅI	\％It゙も	0	1	0	S¢9Cl	92806.1	59189＊	SS9LI	$96 L^{\circ} 1$	9EISS：I	LZLIOZ	τ
O	\％¢9 ¢ I	\％ 10.8	0	I	0	IE92LI	tosLLI	2£tL9．1	IE92LI	$828 L^{\circ} \mathrm{L}$	$6690{ }^{\circ} \mathrm{I}$	\＄88L6 ${ }^{\text {I }}$	1
$\frac{1}{\alpha}$													10J Stell 01
«	\％8L＇もl	\％062	0	01	0	sfetol							
U	\％8でか1	\％6L1	0	1	0	ISESS＇1	L6L69＇1	cests 1	ISESS＇I	2Tt6s＇I	£160t＇l	－ESLLI	01
$\stackrel{4}{\circ}$	\％6E．8	\％E C	0	1	0	92LS＇1	10L19 ${ }^{\circ}$	2¢ESS＇I	97LS＇1	S66LS＇I	E8ZSt＇1	£St0L＇I	6
a	\％ 2191	\％6t＇t	0	1	0	LLIES 1	86ILS＇I	－629\％1	LLIES＇I	E6L19＊I	616EE＇I	88L8 ${ }^{\circ} \mathrm{I}$	8
$\stackrel{r}{z}$	\％と0で	\％ 26 ¢	0	1	0	592LS 1	L0819＇I	E6015＇I	t92LS！	£16¢9＊I	$99+9$ ¢ I	$1819 L^{\circ} 1$	\llcorner
$\stackrel{\mu}{2}$	\％EL＇81	\％00て	0	I	0	ZIIIS＇	88Ets＇I	L608t＇I	2IIIS＇1	6ES85＇I	895EI	27t6 ${ }^{\circ}$	9
令	$\% 89 \mathrm{LI}$	\％χ^{\prime} I	0	I	0	－1t09 ${ }^{\text {I }}$	101691	ZE9LS＇I	カ1t09 1	EZ989 ${ }^{\text {I }}$	9E88t＇	9LL88 ${ }^{\text {I }}$	S
2	\％95＇ゅI	\％86£	0	I	0	82LIti	92tstil	6809E＇I	8でした！	L009t＇I	$60912 \cdot 1$	Lsez9＇1	\dagger
¢	\％996	\％S5＇て	0	1	0	Etio9 1	Eてtss I	L909S＇I	Et109＇1	10St9\％1	6r8st	sossli	ξ
$\stackrel{\sim}{2}$	\％05＇62	\％561	0	I	0	Z68stil	LLEES「I	Itoctil	2685t 1	188L5＇I	2180¢＇I	E688＇I	τ
4	\％¢て＇9	\％9¢＇S	0	1	0	I29LS＇1	9EIz9＇I	ELI6t＇l	I2915＇1	L016 \％ 1	8ELLE＇	LOt L9 ${ }^{\text {I }}$	1
$\underset{E}{E}$	VdOSAVS	\％NASG	LSODIH	スagay	¿NXGVdO	$\mathcal{E f o} \mathrm{Lf} \boldsymbol{H}$	LSOOIH	TVWILdO	A 63.389	NXGVdO	O8MO7	LVLSVdO	$10 \mu L$
\bigcirc						$8=$	Oj Stul 01	atavi					
	$\%$ ¢9＇Ll	\％8て＇z	1	01	0	9 striol							
	\％SE81	\％9EE	0	I	0	SLLIでI	Soltril	789L11	SLLİ゙1	£¢98\％＇1	SE080．1	9 91tril	01
	\％1912	\％00\％	0	I	0	1169で1	2800t I	11697＇I	1169\％！	s9てEtil	stsozil	seets＇l	6
	\％86＇EL	\％ 597	0		0	－L8SEI	1968E＇I	£8てZE＇1	－L8SE＇T	Sticeri	200tて＇I	698ts＇I	8
	\％8でしI	$\% 800$	0	I	0	18IEE！	96SLEI	ヤLOEE1	181EEI	＊S90til	87692＇1	$66195^{\prime} 1$	ι
	\％91で1	\％000	0	，	0	とで1	58blbil	£Z＇I	£で1	I290\％：1	tL881＇	656LE＇I	9
	$\% 56 \mathrm{EL}$	\％E8＇9	0	I	0	6681 l	905011	10290．1	66EI＇I	tE891＇I	SE8S660	£6ZIt•	5
	\％SILI	\％sて＇I	0	I	0	LEE9E1	90000 I	£E9tを＇I	LEE9E＇	c9setil	LCI8E＇	STL6S＇I	\dagger
	\％8661	\％で「	0	1	0	6LbEEI	IEt6e＇I	S8162＇I	6Lちをど1	9E08EI	¢8861 ${ }^{\text {I }}$	St109 I	ε
	\％0581	\％カ「を	0	1	0	1008＇1	6I9SEI	886E2＇I	$1108{ }^{\circ} 1$	IL8tE＇	6StEl．	E6915＇I	τ
	$\% 0 ¢ \mathrm{E}$ I	\％IEて	1	1	0	98LIE1	98LIE＇I	£ャL8て＇I	98LIE＇I	90E6E：	zLOZ I	IIE6ti	1
	VdOGAVS	\％NABG	LSOOIH	103780	LNAGVdO	Efo un	LSOSIH	TVFILSO	xa3gys	NXAVdO	68A107	LVLSEdO	$1014 L$

u09 a60fue3pd
S. SESHADRI et al. FIGURE 8. Performance of OPA static versus REPOSO \& RANDOM, number of locations $=30$. repositioning and the system load is computed with mean service time. Finally, we generated 20 differen reference to this policy. In REPOS we always reposition,
which as seen from the table adds tremendous overhead which as seen from the table adds tremendous overhead
to the mean service time because the carousel always rotates back to the cassette with the highest request probability. In REPOS1, we reposition when there is one request and give the repositioning command when that cassette is taken up for service. That is at the time of taking up for service the (lone) request we add a command for repositioning, which is always executed.
This adds decreasing amount of overhead as the load increases, as seen from Table $2 a$. In REPOS0 we reposition when the system is empty. This adds overheads once in a while, but that overhead is not shown in
the table as it was difficult to adjust the simulator to compute the overhead added to the request that arrived while the carousel was being repositioned. However note because less and less repositioning gets done as the load increases. (If repositioning is not done frequently we are almost back to the STATIC OPA case, and on top of that suffer a penalty whenever repositioning interferes
with the next request.) This demonstrates the trade off between repositioning overhead and the reduction in the

service discipline. When file sizes vary, there is some service discipline.
on a priority basis. one type of robotic device, other architectures include
 Exabyte Corporation) where the robotic arm picks cartridges from the shelves and places them in up to four parallel drives. Optimal arrangements of cartridges in such architectures and efficient mount schedules of the
parallel drives are of interest.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee for his valuable comments which led to the simulations
This work was supported by the Applied Mathematical Sciences Research program of the Office of Energy
Research, US Department of Energy under Contract DE-AC03-76SF00098.
Bergmans, P. P. (1973) Minimizing expected travel time on Bergmans, P. P. patterns by probability rearrangements.
geometrical parmand
Information and Control, 20, 331-350. Fujimoto, A. (1991) Models for determining storage retrieval strategies for carousel storage and retrieval systems. Masters
Thesis in Management Science, University of Waterloo, Waterloo, Ontario, Canada.
Gnedenko, B. V. and Kovalenko, I. N. (1989) Introduction to
Queueing Theory, 2nd edn. Birkhauser, Boston, MA. Grossman, D. D. and Silverman, H. F. (1973) Placement of time. JACM, 20, 429-438.
Hardy, G., Littlewood, J. E. and Polya, G. P. (1991) Inequalities. Cambridge University Press, Cambridge.
Hofri, M. (1983) Should the two-headed disk be greedy?-Yes, it should. Inf. Process. Lett., 16, 645-653.
Karp, R. M., McCellar, A. C. and Wong, C. K. (1975) NearKarp, R. M., McCellar, A. C. and Wong, C. K. (197s) Near King, R. P. (1990) Disk arm movement in anticipation of future requests. ACM Trans. Computer Systems, 8, 214-229.
Lim, W. K., Bartholdi, J. J. and Platzman, L. K. (1985) Storage schemes for carousel conveyors under real time control.
Material Handling Research Center Technical Report, Material Handling Research Center Technical Report
MHRC-TR-85-10, Georgia Institute of Technology,
Atlanta GA Ranade, S. (1992) Jukebox and Robotic Libraries. Meckler, Stoyan, D. (1983) Comparison Methods for Queues and Other
Stochastic Models. John Wiley, New York, NY. Wolff, R. W. (1989) Stochastic Modeling and the Theory of
Queues. Prentice-Hall, Englewood Cliffs, NJ. Yue, P. C. and Wong, C. K. (1973) On the optimality of the probabinty rat dese simulations is that OPA STATIC outperforms RANDOM significantly and as the carousel size
increases, the gain in performance becomes better and
The explanation for the improvement in performance over RANDOM, lies almost entirely in the fact that the

 increases. Another factor that influences the percentage иәәмगə О!
 travel time to move to the cassette location. This
ratio would get progressively small as the size of the
 RANDOM).

5. CONCLUSIONS

In this paper we studied organization schemes of cartridges on a carousel type robotic tape library. The
following Table summarizes the results:

Anticipatory Non-Anticipatory

Onc head/Single File	Proposition 2	Fuijimoto (1991), Two heads/Single Fite
Proposition 5	Proposition 1 Proposition 6	

Proposition $5 \quad \begin{gathered}\text { Proposition } 6 \\ \text { (even number of }\end{gathered}$
$\begin{array}{ll}\text { Onc head/Multipte Files } \\ \text { Two heads/Multiple Files } & \begin{array}{l}\text { Proposition } 4 \\ \text { Proposition } 5\end{array}\end{array}$
In addition, we showed that by using the concept of stochastic ordering, all the above results can also be
cxtended to the queueing environment with FCFS言
Some questions raised by this work are:
(i) Varying file sizes. In the file allocation problem we assumed that the files are of equal size. If the file sizes are
not the same, we will have packing limitation based not the same, we will have packing limitation based
on file size and cartridge capacity. This leads to an
NP-complete problem as shown in W NP-complete problem as shown in Wong83. Based on
the results in this paper a good heuristic can be the results in this paper a good heuristic can be
constructed by first ranking files as per the request probability per unit of size and ordering them in OPA based on these modified probabilities.
(ii) Other queueing disciplines. We have
(ii) Other queueing disciplines. We have ignored schedul-
ing problems in proposition 7 by assuming a FCFS

