
Optimal Asset Allocation
• uSIng

Adaptive Dynamic Programming

Ralph Neuneier*

Siemens AG, Corporate Research and Development

Otto-Hahn-Ring 6, D-81730 Munchen, Germany

Abstract

In recent years, the interest of investors has shifted to computer­

ized asset allocation (portfolio management) to exploit the growing

dynamics of the capital markets. In this paper, asset allocation is

formalized as a Markovian Decision Problem which can be opti­

mized by applying dynamic programming or reinforcement learning

based algorithms. Using an artificial exchange rate, the asset allo­

cation strategy optimized with reinforcement learning (Q-Learning)

is shown to be equivalent to a policy computed by dynamic pro­
gramming. The approach is then tested on the task to invest liquid

capital in the German stock market. Here, neural networks are

used as value function approximators. The resulting asset alloca­

tion strategy is superior to a heuristic benchmark policy. This is

a further example which demonstrates the applicability of neural

network based reinforcement learning to a problem setting with a

high dimensional state space.

1 Introduction

Billions of dollars are daily pushed through the international capital markets while

brokers shift their investments to more promising assets. Therefore, there is a great

interest in achieving a deeper understanding of the capital markets and in developing

efficient tools for exploiting the dynamics of the markets.

* Ralph.Neuneier@zfe.siemens.de, http://www.siemens.de/zfe.Jlll/homepage.html

Optimal Asset Allocation Using Adaptive Dynamic Programming 953

Asset allocation (portfolio management) is the investment of liquid capital to various

trading opportunities like stocks, futures, foreign exchanges and others. A portfolio

is constructed with the aim of achieving a maximal expected return for a given

risk level and time horizon. To compose an optimal portfolio, the investor has

to solve a difficult optimization problem consisting of two phases (Brealy, 1991).

First, the expected yields are estimated simultaneously with a certainty measure.

Second, based on these estimates, a portfolio is constructed obeying the risk level

the investor is willing to accept (mean-variance techniques). The problem is further

complicated if transaction costs must be considered and if the investor wants to

revise the decision at every time step. In recent years, neural networks (NN) have

been successfully used for the first task. Typically, a NN delivers the expected

future values of a time series based on data of the past. Furthermore, a confidence

measure which expresses the certainty of the prediction is provided.

In the following, the modeling phase and the search for an optimal portfolio are

combined and embedded in the framework of Markovian Decision Problems, MDP.

That theory formalizes control problems within stochastic environments (Bertsekas,
1987, Elton, 1971). If the discrete state space is small and if an accurate model of

the system is available, MDP can be solved by conventional Dynamic Programming,

DP. On the other extreme, reinforcement learning methods, e.g. Q-Learning, QL,

can be applied to problems with large state spaces and with no appropriate model

available (Singh, 1994).

2 Portfolio Managelnent is a Markovian Decision Problem

The following simplifications do not restrict the generalization of the proposed meth­

ods with respect to real applications but will help to clarify the relationship between

MDP and portfolio optimization.

• There is only one possible asset for a Deutsch-Mark based investor, say a

foreign currency called Dollar, US-$.

• The investor is small and does not influence the market by her/his trading.

• The investor has no risk aversion and always invests the total amount.

• The investor may trade at each time step for an infinite time horizon.

MDP provide a model for multi-stage decision making problems in stochastic en­

vironments. MDP can be described by a finite state set S = 1, ... , n, a finite set

U (i) of admissible control actions for every state i E S, a set of transition prob­

abilities P0' which describe the dynamics of the system, and a return function 1

r(i,j,u(i)),with i,j E S,u(i) E U(i). Furthermore, there is a stationary policy

rr(i), which delivers for every state an admissible action u(i). One can compute the

value-function l;j11" of a given state and policy,

00

Vi: = E[I:'"-/R(it,rr(i t))), (1)
t=o

1 In the MDP-literature, the return often depends only on the current state i , but the
theory extends to the case of r = r(i,j,u(i)) (see Singh, 1994).

954 R. NEUNEIER

where E indicates the expected value, 'Y is the discount factor with 0 ~ 'Y < 1, and

where R are the expected returns, R = Ej(r(i, j, u(i)). The aim is now to find a

policy 71"* with the optimal value-function Vi* = max?!" Vi?!" for all states.

In the context discussed here, a state vector consists of elements which describe the

financial time series, and of elements which quantify the current value of the invest­

ment. For the simple example above, the state vector is the triple of the exchange

rate, Xt, the wealth of the portfolio, Ct, expressed in the basis currency (here DM),

and a binary variable b, representing the fact that currently the investment is in

DM or US-$.

Note, that out of the variables which form the state vector, the exchange rate is

actually independent of the portfolio decisions, but the wealth and the returns are

not. Therefore, asset allocation is a control problem and may not be reduced to pure

prediction. 2 This problem has the attractive feature that, because the investments

do not influence the exchange rate, we do not need to invest real money during the

training phase of QL until we are convinced that our strategy works.

3 Dynamic Programming: Off-line and Adaptive

The optimal value function V* is the unique solution of the well-known Bellman

equation (Bertsekas, 1987). According to that equation one has to maximize the

expected return for the next step and follow an optimal policy thereafter in order

to achieve global optimal behavior (Bertsekas, 1987). An optimal policy can be

easily derived from V* by choosing a 71"(i) which satisfies the Bellman equation. For

nonlinear systems and non-quadric cost functions, V* is typically found by using an

iterative algorithm, value iteration, which converges asymptotically to V*. Value

iteration applies repeatedly the operator T for all states i,

(2)

Value iteration assumes that the expected return function R(i, u(i)) and the tran­

sition probabilities pij (i. e. the model) are known. Q-Learning, (QL), is a

reinforcement-learning method that does not require a model of the system but

optimizes the policy by sampling state-action pairs and returns while interacting

with the system (Barto, 1989). Let's assume that the investor executes action u(i)

at state i, and that the system moves to a new state j. Let r(i, j, u(i)) denote the

actual return. QL then uses the update equation

Q(i, u(i))

Q(k, v)

(1 - TJ)Q(i, u(i)) + TJ(r(i, j, u(i)) + 'Yma:xQ(j, u(j)))
u(J)

Q(k, v), for all k oF i and voF u(i)
(3)

where TJ is the learning rate and Q(i, u(i)) are the tabulated Q-values. One can

prove, that this relaxation algorithm converges (under some conditions) to the op­

timal Q-values (Singh, 1994).

2To be more precise, the problem only becomes a mUlti-stage decision problem if the
transaction costs are included in the problem.

Optimal Asset Allocation Using Adaptive Dynamic Programming 955

The selection of the action u(i) should be guided by the trade-off between explo­

ration and exploitation. In the beginning, the actions are typically chosen randomly

(exploration) and in the course of training, actions with larger Q-values are cho­

sen with increasingly higher probability (exploitation). The implementation in the

following experiments is based on the Boltzmann-distribution using the actual Q­

values and a slowly decreasing temperature parameter (see Barto, 1989).

4 Experiment I: Artificial Exchange Rate

In this section we use an exchange-rate model to demonstrate how DP and Q­

Learning can be used to optimize asset allocation.

The artificial exchange rate Xt is in the range between 1 and 2 representing the

value of 1 US-$ in DM. The transition probabilities Pij of the exchange rate are

chosen to simulate a situation where the Xt follows an increasing trend, but with

higher values of Xt, a drop to very low values becomes more and more probable.

A realization of the time series is plotted in the upper part of fig. 2. The random

state variable Ct depends on the investor's decisions Ut, and is further influenced by

Xt, Xt+b and Ct-l. A complete state vector consists of the current exchange rate Xt

and the capital Ct, which is always calculated in the basis currency (DM). Its sign

represents the actual currency, i. e., Ct = -1.2 stands for an investment in US-$

worth of 1.2 DM, and Ct = 1.2 for a capital of 1.2 DM. Ct and Xt are discretized in 10

bins each. The transaction costs ~ = 0.1 + Ic/IOOI are a combination of fixed (0.1)

and variable costs (Ic/IOOI). Transactions only apply, if the currency is changed

from DM to US-$. The immediate return rt(Xt,ct, Xt+1, ut) is computed as in table

1. If the decision has been made to change the portfolio into DM or to keep the

actual portfolio in DM, Ut = DM, then the return is always zero. If the decision

has been made to change the portfolio into US-$ or to keep the actual portfolio in

US-$, Ut = US-$, then the return is equal to the relative change of the exchange

rate weighted with Ct. That return is reduced by the transaction costs e, if the

investor has to change into US-$.

Table 1: The immediate return function.

Ut =DM Ut = US-$

Ct E DM o
Ct E US-$ o

The success of the strategies was tested on a realization (2000 data points) of the

exchange rate. The initial investment is 1 DM, at each time step the algorithm has

to decide to either change the currency or remain in the present currency.

As a reinforcement learning method, QL has to interact with the environment to

learn optimal behavior. Thus, a second set of 2000 data was used to learn the Q­

values. The training phase is divided into epochs. Each epoch consists of as many

trials as data exist in the training set. At every trial the algorithm looks at Xt,

chooses randomly a portfolio value Ct and selects a decision. Then the immediate

return and the new state is evaluated to apply eq. 3. The Q-values were initialized

with zero, the learning rate T} was 0.1. Convergence was achieved after 4 epochs.

956

a':

$

DM
2

2

04

~03
.s
~02

1t'
o 1

o
2

R. NEUNEIER

2

-2 1

Figure 1: The optimal decisions (left) and value function (right).

. - _. . . _. .
... . . _. .
. . ' .

1 0 10 20" 30' 40 50 60 70 80 90 100

~::[: : : : ~
o 10 20 30 40 50 60 70 80 90 100

~] :ONJD:V, U: :IT]
o 10 20 30 40 50 60 70 80 90 100

Time

Figure 2: The exchange rate (top), the capital and the decisions (bottom).

To evaluate the solution QL has found, the DP-algorithm from eq. 2 was imple­

mented using the given transition probabilities. The convergence of DP was very

fast. Only 5 iterations were needed until the average difference between successive

value functions was lower than 0.01. That means 500 updates in comparison to

8000 updates with QL.

The solutions were identical with respect to the resulting policy which is plotted in

fig. 1, left. It can clearly be seen, that there is a difference between the policy of

a DM-based and a US-$-based portfolio. If one has already changed the capital to

US-$, then it is advisable to keep the portfolio in US-$ until the risk gets too high,

i. e. Xt E {1.8, 1.9}. On the other hand, if Ct is still in DM, the risk barrier moves

to lower values depending on the volume of the portfolio. The reason is that the

potential gain by an increasing exchange rate has to cover the fixed and variable

transaction costs. For very low values of Ct, it is forbidden to change even at low Xt

because the fixed transaction costs will be higher than any gain. Figure 2 plots the

Optimal Asset Allocation Using Adaptive Dynamic Programming 957

exchange rate Xt, the accumulated capital Ct for 100 days, and the decisions Ut.

Let us look at a few interesting decisions. At the beginning, t = 0, the portfolio was

changed immediately to US-$ and kept there for 13 steps until a drop to low rates

Xt became very probable. During the time steps 35-45, the 'O'xchange rate oscillated

at higher exchange rates. The policy insisted on the DM portfolio, because the

risk was too high. In contrary, looking at the time steps 24 to 28, the policy first

switched back to DM, then there was a small decrease of Xt which was sufficient to

let the investor change again. The following increase justified that decision. The

success of the resulting strategy can be easily recognized by the continuous increase

of the portfolio. Note, that the ups and downs of the portfolio curve get higher

in magnitude at the end because the investor has no risk aversion and always the

whole capital is traded.

5 Experiment II: German Stock Index DAX

In this section the approach is tested on a real world task: assume that an investor

wishes to invest her Ihis capital into a block of stocks which behaves like the German

stock index DAX. We based the benchmark strategy (short: MLP) on a NN model

which was build to predict the daily changes of the DAX (for details, see Dichtl,

1995). If the prediction of the next day DAX difference is positive then the capital

is invested into DAX otherwise in DM. The input vector of the NN model was

carefully optimized for optimal prediction. We used these inputs (the DAX itself

and 11 other influencing market variables) as the market description part of the

state vector for QL. In order to store the value functions two NNs, one for each

action, with 8 nonlinear hidden neurons and one linear output are used.

The data is split into a training (from 2. Jan. 1986 to 31. Dec. 1992) and a test set

(from 2. Jan. 1993 to 18. Oct. 1995). The return function is defined in the same

way as in section 4 using 0.4% as proportional costs and 0.001 units as fixed costs,

which are realistic for financial institutions. The training proceeds as outlined in

the previous section with TJ = 0.001 for 1000 epochs.

In fig. 3 the development of a reinvested capital is plotted for the optimized (upper

line) and the MLP strategy (middle line). The DAX itself is also plotted but with

a scaling factor to fit it into the figure (lower line). The resulting policy by QL

clearly beats the benchmark strategy because the extra return amounts to 80% at

the end of the training period and to 25% at the end of the test phase. A closer

look at some statistics can explain the success. The QL policy proposes almost as

often as the MLP policy to invest in DAX, but the number of changes from DM

to DAX and v. v. is much lower (see table 2). Furthermore, it seems that the QL

strategy keeps the capital out of the market if there is no significant trend to follow

and the market shows too much volatility (see fig. 3 with straight horizontal lines

of the capital development curve indicating no investments). An extensive analysis

of the resulting strategy will be the topic of future research.

In a further experiment the NNs which store the Q-values are initialized to imitate

the MLP strategy. In some runs the number of necessary epochs were reduced by

a factor of 10. But often the QL algorithni took longer to converge because the

initialization ignores the input elements which describe the investor's capital and

therefore led to a bad starting point in the weight space.

958 R. NEUNEIER

4S,r--------------------------, , 7.-----------------------------,

, Jan 1993 18 Od H:195

Figure 3: The development of a reinvested capital on the training (left) and test set

(right). The lines from top to bottom: QL-strategy, MLP-strategy, scaled DAX.

Table 2: Some statistics of the policies.

DAX investments position changes

Data MLP Policy QL-Policy MLP Policy QL-Policy

Training set 1825 1020 1005 904 284
Test set 729 434 395 344 115

6 Conclusions and Future Work

In this paper, the task of asset allocation/portfolio management was approached

by reinforcement learning algorithms. QL was successfully utilized in combination

with NNs as value function approximators in a high dimensional state space.

Future work has to address the possibility of several alternative investment oppor­

tunities and to clarify the connection to the classical mean-variance approach of

professional brokers. The benchmark strategy in the real world experiment is in

fact a neuro-fuzzy model which allows the extraction of useful rules after learning.

It will be interesting to use that network architecture to approximate the value
function in order to achieve a deeper insight in the resulting optimized strategy.

References

Barto A. G., Sutton R. S. and Watkins C. J. C. H. (1989) , Learning and Sequential Decision
Making, COINS TR 89-95.
Bertsekas D. P. (1987) , Dynamic Programming, NY: Wiley.
Singh, P. S. (1993) , Learning to Solve Markovian Decision Processes, CMPSCI TR 93-77.
Neuneier R. (1995), Optimal Strategies with Density-Estimating Neural Networks, ICANN
95, Paris.
Brealy, R. A. , Myers, S. C. (1991), Principles of Corporate Finance, McGraw-Hill.
Watkins C. J., Dayan, P. (1992) , Technical Note: Q-Learning, Machine Learning 8, 3/4.
Elton, E. J. , Gruber, M. J. (1971), Dynamic Programming Applications in Finance, The
Journal of Finance, 26/2.
Dichtl, H. (1995), Die Prognose des DAX mit Neuro-Fuzzy, masterthesis, engl. abstract
in preparation.

