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A b s t r a c t .  Given an arbitrary k-bit to /c-bit trapdoor permutation f 
and a hash function, we exhibit an encryption scheme for which (i) any 

string z of length slightly less than k bits can be encrypted as f ( r , ) ,  
where rffi is a simple probabilistic encoding of z depending on the hash 
function; and (ii) the scheme can be proven semantically secure assuming 
the hash function is "ideal." Moreover, a slightly enhanced scheme is 
shown to have the property that the adversary can create ciphertexts 
only of strings for which she "knows" the corresponding plaintexts-- 
such a scheme is not only semantically secure but also non-malleable 
and secure against chosen-ciphertext attack. 

1 I n t r o d u c t i o n  

Asymmetr ic  (i.e. public key) encryption is a goal for which there is a large and 

widely-recognized gap between practical schemes and provably-secure ones: the 

practical methods  are efficient but  not well-founded, while the provably-secure 

schemes have more satisfying security properties but  are not nearly as efficient? 

The goal of this paper  is to (nearly) have it all: to do asymmetr ic  encryption in 

a way as efficient as any mechanism yet suggested, yet to achieve an assurance 

benefit a lmost  as good as tha t  obtained by provable security. 

In the setup we consider a sender who holds a k-bit to k~bit t rapdoor  permu- 

ta t ion f and wants to t ransmit  a message z to a receiver who holds the inverse 

pe rmuta t ion  f - l .  We concentrate on the case which arises mos t  often in cryp- 

tographic practice, where n = Iz[ is at least a little smaller than  k. 

W h a t  practioners want is the following: encryption should require jus t  one 

computa t ion  of f ;  decryption should require just  one computa t ion  of f - l ;  the 

length of the enciphered text  should be precisely k; and the length n of the 

text  z tha t  can be encrypted is close to k. Since heuristic schemes achieving 

these conditions exist [22, 15], if provable security is provided at the cost of 

violating any of these conditions (e.g., two applications of f to encrypt,  message 

length n + k rather  than  k) practioners will prefer the heuristic constructions. 

3 B y  a provably-secure scheme we mean here one shown, under some standard 
complexity-theoretic assumption, to achieve a notion of security at least as strong 

as semantic security [II]. 
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Thus to successfully impact practice one must provide provably-secure schemes 

which meet the above constraints. 

The heuristic schemes invariably take the following form: one (probabilisti- 

cally, invertibly) embeds z into s string rz and then takes the encryption of z 

to be f ( r~) .  4 Let's call such a process a simple-embedding scheme. We will take 

as our goal to construct provably-good simple-embedding schemes which allow 

n to be close to k. 

Assuming an ideal hash function and an arbi t rary t rapdoor permutat ion,  we 

describe and prove secure two simple-embedding schemes that  are bit-optimal 

(i.e., the length of the string z that  can be encrypted by f(r~) is almost k). Our 

first scheme achieves semantic security [11], while our second scheme achieves a 

notion of  plaintext-aware encryption, which we introduce here. This new notion 

is very strong, and in particular implies "ambitious" goals like chosen-ciphertext 

security and non-malleability [7] in the ideal-hash model which we assume. 

The methods of this paper are simple and completely practical. They provide 

a good starting point for an asymmetric encryption/key distribution standard. 

Next we describe our schemes and their properties. We refer the reader to 

Section 1.7 for discussion of previous work on encryption and comparisons with 

ours. 

1.1 The basic scheme 

Recall k is the security parameter, f mapping k-bits to k-bits is the trapdoor 

permutation. Let k0 be chosen such that the adversary's running time is signif- 

icantly smaller than 2 k~ steps. We fix the length of the message to encrypt as 

n = k - k0 bits (shorter messages can be suitably padded to this length). The 

scheme makes use of a "generator" G: {0, 1} ~~ --, {0, 1} '~ and a "hash function" 

H: {0, 1~ '~ --, {0, 1~ ~~ To encrypt z E {0, 1) '~ choose a random ko-bit r and set 

e G(r) ff r e e 

Here "H" denotes concatenation. The decryption function ~)G,H is defined in the 

obvious way, and the pair (E, ~7) constitutes what we call the "basic" scheme. 

We prove security under the assumption that  G, H are "ideal." This means 

G is a random function of {0, 1~ t~ to {0, 1} n and H is a random function of 

{0, 1~ '~ ---, {0, 1) ~~ The formal statement of our result is in Theorem 3. It says 

that  if f is a t rapdoor  permutat ion and G, H are ideal then the basic scheme 

achieves the notion of semantic security [11] appropriately adjusted to take ac- 

count of the presence of G, H.  

In practice, G and H are best derived from some standard cryptographic 

hash function. (For example, they can he derived from the compression function 

of the Secure Hash Algorithm [18] following the methods described in [2]). 

4 It  is well-known that a naive embedding like r~ = z is no good: besides the usued 
deficiencies of any deterministic encryption, f being a trapdoor permutation does 
not mean that f ( z )  conceals all the interesting properties of z. Indeed it was exactly 
such considerations that helped inspire ideas like semantic security [11] and hardcore 

bits [5, 26]. 
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1.2 T h e  p l a l n t e x t  aware  s c h e m e  

A variety of goals for encryption have come to be known which are actually 

stronger than the notion of [11]. These include non-malleability [7] and chosen 

ciphertext security. We introduce a new notion of an encryption scheme being 

plain~ezt-aware--roughly said, it should be impossible for a party to produce a 

valid ciphertext without "knowing" the corresponding plalntext (see Section 3 

for a precise definition). In the ideal-hash model that  we assume, this notion can 

be shown to imply non-malleability and chosen-ciphertext security. 

We construct a plalntext-aware encryption scheme by slightly modifying the 

basic scheme. Let/c and/Co be as before and let k 1 be another parameter. This 

time let r~ : k -- k0 - kl. Let the generator be G: {O, 1} ~~ --* {0, 1} '~+kl and the 

hash function H: {0, 1} '~+~1 ~ {0, 1} k0. To encrypt, choose a random k0-bit r 
and set 

= f(,0 l e GCr) II r e H ( , 0  e G(r))). 

The decryption ~)u,s is defined in the obvious way and the pair constitutes the 

scheme we call "plalntext-aware." 

The formal statement of our results are in Theorems 5 and 6. They say that  if 

f is a trapdoor permutation and G, H are ideal then the plalntext-aware scheme 
is a semantically secure, plalntext-aware encryption. In practice, again, G and 

H are derived from some standard cryptographic hash function. 

1.3 Ef f ic iency  

The function f can be set to any candidate trapdoor permutation such as RSA 

[21] or modular squaring [19, 3]. In such a case the time for computing G and 

H is negligible compared to the time for computing f ,  f - 1 .  Thus complexity is 

discussed only in terms of f ,  f -  1 computations. In this light our basic encryption 

scheme requires just a single application of f to encrypt, a single application 

of f - 1  to decrypt, and the length of the ciphertext is k (as long as k _~ n Jr k0). 

Our p]alntext-aware scheme requires a single application of f to encrypt, a single 

application of f - 1  to decrypt, and the length of the ciphertext is still k (as long 

as k >_ n +  k 0 + k l ) .  
A concrete instantiation of our plaintext aware scheme (using RSA for f and 

getting G, H from the Secure Hash Algorithm [18]) is given in Section 7. 

1.4 T h e  idea l  h a s h  f u n c t i o n  p a r a d i g m  

As we indicated above, when proving security we take G, f f  to be random, and 
when we want a concrete scheme, G, H are instantiated by primitives derived 

from a cryptographic hash function. In this regard we are following the paradigm 

of [2] who argue that  even though results which assume an ideal hash function do 

not provide provable security with respect to the standard model of computation, 

assuming an ideal hash function and doing proofs with respect to it provides 
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much greater assurance benefit than  purely ad. hoc. protocol design. We refer 

the reader to tha t  paper  for further discussion of the meaningfulness, mot ivat ion 

and history of this ideal hash approach. 

1.5 E x a c t  s e c u r i t y  

We want our results to be meaningful for practice. In particular, this means we 

should be able to say meaningful things about the security of our schemes for 

specific values of the security parameter (eg. k = 512). This demands not only 

that we avoid asymptotics and address security "exactly," but also that we strive 

for security reductions which are as efficient as possible, s 

Thus the theorem proving the security of our basic scheme quantifies the 

resources and success probability of a potential adversary: let her run for time 

t, make qsen queries of G and qhash queries of H, and suppose she could "break" 

the encryption with probability ~. It then provides an algorithm M and numbers 

t ~, d such that M inverts the underlying trapdoor permutation f in time t' with 

probability C. The strength of the result is in the values of t I, d which are 

specified as functions of t, qgen, qhash, e and the underlying scheme parameters  

h, k0, n (h --- k0 + n). Now a user with some idea of the (assumed) strength of a 

part icular  f (eg. RSA on 512 bits) can get an idea of the resources necessary to 

break our encryption scheme. 

1.6 E x t e n s i o n s  

The  assumption that  n = {z{ _< k - h0 - hi can be removed while retaining the 

bit opt imal i ty  of the scheme: the ideas presented here can be extended to design 

an authenticated encryption scheme (provably secure in the ideal-hash model 

assuming an arbi t rary  t rapdoor  permutat ion)  where encryption still requires one 

application of f on a k-bit  input; decryption still requires one application of f -  1 

on a h-bit input; and now the length of the encrypted text  will be max{h,  {z t + 

ho + hl].. 

1.7 P r i o r  w o r k  in  e n c r y p t i o n  

We briefly survey relevant prior ar t  in encryption. In the following, f mapping  

k-bits to k-bits is the t rapdoor  permutat ion.  As above, the following assumes 

the length n of the message to be encrypted is at  most  k. We begin by discussing 

work on at ta ining semantic security, and then move on to stronger goals. 

b Exact security is not new: previous works which address it explicitly include [10, 
14, 23, 16, 8, 1]. Moreover, although it is true that most theoretical works only 
provide asymptotic security guarantees of the form Uthe success probability of a 
polynomially bounded adversary is negligible" (everything measured as a function 
of the security parameter), the exact security can be derived from examination of 
the proof. (However, a lack of concern with the exactness means that in many cases 
the reductions are very inefficient, and the results are not useful for practice). 
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Goldwasser and Micali [11] first suggested encrypting a message by prob- 

abilistically encrypting each of its bits: if By denotes a hard core predicate 

[5, 26, 10] for the t rapdoor permutat ion f ,  then the encryption of z = z l . . . z , ,  

is EGM(Z) : f ( r x ) I I ' ' '  H f ( rn ) ,  where each ri is randomly chosen from the do- 

main of f subject to B!  (r~) = z~. This yields an encryption of length O(nk) 

which requires n evaluations of f to encrypt and n evaluation of f - 1  to decrypt, 

which is not practical. 

The  more efficient construction of Blum and Goldwasser [4] is based on the 

particular choice of f as the modular squaring function [19]. They achieve en- 

cryption size n + h. They require O(r~hz/log h) steps to encrypt and O(h s) steps 

to decrypt. The encryption is longer than ours by n bits. To compare the t ime 

complexities, take the function f in our scheme to also be squaring. Then their 

encryption t ime is a factor O(n/log k) more than ours. Their  decryption t ime is 

a constant factor more than ours. 

Of course the above two schemes have the advantage of being based only on 

standard assumptions, not the use of an ideal hash function. 

The discrete log function simultaneously hides a constant fraction of the bits 

of its pre-image [24]. But it is not known to have a t rapdoor  and hence is not 

usable for the problem we are considering. 

What  we have called simple-embedding schemes are prevalent in computing 

practice. One example is the RSA Public Key Cryptography Standard ~ 1  [22], 

where r= in the embedding z ~ rffi is essentially z in the low-order bit positions 

and a string of random non-zero bytes in the remaining bit positions. A more 

refined scheme is described in [15]; a simplified version of it is 

= f(( o e O(,.)) II ,'). 

Of course the problem with both of these schemes is tha t  there is no compelling 

reason to believe that  z is as hard to compute from f(rffi) as r= is hard to com- 

pute from f(rffi)--let alone that  all interesting properties of z are well-hidden by 

f(r~). Indeed whether or not [22, 15] "work" depends on aspects of f beyond 

its being one-way. In particular, it is easy to show that  if there exists a t rapdoor  

permutat ion then there exists one for which encryption as above is completely 

insecure, e 

In [2] we suggested the scheme 

E~R(=) = f ( " )  II C(, ' )  �9 = .  

and proved it semantically secure in the same ideal-hash model used here. In 

comparison with the schemes given here, the drawback is that  the encryption 

size is n + k rather than h. 
Now we turn to stronger goals. Chosen-ciphertext security was provably 

achieved by [17], but  the scheme is extremely inefficient. More practical encryp- 

tion schemes which aimed at achieving chosen ciphertext security were proposed 

by Damg&rd [6] and Zheng and Seberry [27]. The latter scheme is 

~H(z) = f ( r )  II (c(,,) �9 (= II H(=)), 

s But  f is mandated to be B.SA in both of [22, 15]. 
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matching our plaintext aware scheme in computation but having bit complex- 

ity n + k + kl. Non-malleability is provably achieved by [7], but the scheme 
is extremely inefficient. An efficient scheme proven in [2] to achieve both non- 

malleability and chosen-ciphertext security under the ideal-hash model is 

Again the drawback is a bit complexity of n + k + kx. 

2 P r e l i m i n a r i e s  

2.1 P r o b a b i l i s t i c  a l g o r i t h m s  

We shall use notation of [13]. If A is a probabilistic algorithm then A(z, 9 , ' "  ") 

refers to to the probability space which to the string a assigns the probability that  

A on inputs z, 9 , ' "  outputs or. If S is a probability space we denote its support 

(the set of elements of positive probability) by [S]. When S is a probability 
space, z *- S denotes selecting a random sample from S. We use x, y ~-- S 

as shorthand for z ~-- S; 9 ~-- S. For probability spaces S, T , . . . ,  the notation 

Pr[z ~-- S; Y ~-- T; . . .  : p ( z , 9 , - " ) ]  denotes the probability that  the predicate 

p(z, 9 , "  ") is true after the (ordered) execution of the algorithms z ~-- S, 9 *-- T, 

etc.. P P T  is short for "probabilistic, polynomial time." 

In evaluating the complexity of oracle machines we adopt the usual conven- 
tion that  all oracle queries receive their answer in unit time. 

2.2 R a n d o m  orac les  

We will be discussing schemes which use functions G, H chosen at random from 

appropriate spaces (the input and output lengths for G and H depend on para- 

meters of the scheme). When stating definitions it is convenient to not have to 

worry about exactly what these spaces may be and just write G, H ~-- f~, the lat- 

ter being defined as the set of all maps from the set {0, 1)* of finite strings to the 

set ~0, 1} c~ of infinite strings. The notation should be interpreted as appropriate 

to the context--for example, if the scheme says G maps ~0, 1~ a to ~0, 1} ~ then 

we can interpret G ~-- f~ as meaning we choose G from f~ at random, restrict the 

domain to {0, 1~ ~, and drop all but the first b bits of output.  

2.3 T r a p d o o r  p e r m u t a t i o n s  a n d  t h e i r  s e c u r i t y  

Our encryption schemes require a trapdoor permutation generator. This is a PPT  

algorithm ~ such that  ~r(lk) outputs a pair of deterministic algorithms (f,  f - l )  

specifying a permutation and its inverse on ~0, 1~ k. 

We associate to Y" an evaluation time Ty(-): for all k, all (f ,  f - x )  E [Y(I~)] 

and all w E {0, 1} ~, the time to compute f(w) (given f and w) is Ty(k). Note 

the evaluation time depends on the setting: for example on whether or not there 

is hardware available to compute f .  



98 

We will be interested in two attributes of a (possibly non-uniform) algori thm 

M trying to invert Y(l~)-distr ibuted permutations; namely its running t ime and 

its success probability. 

D e f i n i t i o n  1. Let Y be a t rapdoor permutat ion generator. We say that  algo- 

r i thm M (~, e)-inverts Jr( lk)  if 

Pr[ (f, F 1) {0,1)4; 

y~-- f(w): M(f ,y )=w]~_e,  

and, moreover, in the experiment above, M runs in at most t steps. 

RSA [21] is a good candidate function as a secure t rapdoor permutat ion.  7 

3 S e m a n t i c a l l y  s e c u r e  e n c r y p t i o n  

We extend the definition of semantic security [11] to the random oracle model 

in a way which enables us to discuss exact security. 

3.1 E n c r y p t i o n  s c h e m e s  

An asymmetric  (i.e. public key) encryption scheme is specified by a probabilistic 

generator, ~, and an associated plaintezt-length function, n(.). On input 1 k, the 

generator G outputs s pair of algorithms (s :D), the first of which is probabilistic. 

Each of these algorithms has oracle-access to two functions, one called G and 

one called H.  A user i runs G to get (s T~) and makes the former public while 

keeping the latter secret. To encrypt message z E {0, 1} '~(~) using functions G, H,  

anyone can compute y ~ g o ' H ( z )  and send it to i. To decrypt ciphertext y 

user i computes z ~-- ~ u , ~ ( y ) .  We require ~ G , H ( y )  __ Z for all y G [s 

We further demand that  D~ : * if there is no z such that  y E [ca 'H(z)] .  

An adversary is a (possibly nonuniform) algorithm A with access to oracles 

G, H.  We assume without loss of generality that  an adversary makes no partic- 

ular G-query more than once and no particular H-query more than once. For 

simplicity we assume that  the number of G-queries and H-queries tha t  an ad- 

versary makes don ' t  depend on its coin tosses but  only, say, on the length of its 

input. 

3.2 S e m a n t i c  s e c u r i t y  

The following definition will be used to discuss (exact) security. It captures the 

notion of semantic security [11] appropriately lifted to take into account the 

presence of G, H.  

7 Candidates like RSA [21] don't quite fit our definition, in that the domain of RSA 
is some Z~, a proper subset of of {0, 1~ h. Things can be patched in standard ways. 
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We consider an adversary who runs in two stages. In the find-stage it is given 

an encryption algorithm s and outputs a pair z0, z t  of messages. It also outputs 

a string c which could record, for example, its history and its inputs. Now we pick 

at random either z0 or Zl (the choice made according to a bit b) and encrypt 

it (under ~) to get y. In the guess-stage we provide A the output  z0, Zx, c of 

the previous stage, and y, and we ask it to guess b. (We assume wlog that  s is 

included in c so that  we don' t  need to explicitly provide it again). Its success 

probability is its advantage in guessing b. 

D e f l n l t l o n 2 .  Let G be a generator for an encryption scheme having plaintext- 

length function n(.). An adversary A is said to (t, qgen, qha,h, e)-break G(1 ~) if 

b ~ (0, 1}; U +-- ea'*z(*b) : A a ' H c y ,  z o ,  x t ,  c)  - -  b]  - ~, 

and, moreover, in the experiment above, A runs for at most t steps, makes at 

most  qsen queries to G, and makes at most qhash queries to H.  

Note that  t is the total running time; ie. the sum of the times in the two stages. 

Similarly qgen, qhash are the total  number of G and H queries, respectively. 

4 T h e  B a s i c  E n c r y p t i o n  S c h e m e  

Let $" be a t rapdoor permutat ion generator and k0(.) a positive integer valued 

function such that  ko(k) < k for all k > 1. The basic scheme G wi~h parameters 
Y and k0(') has an associated plaintext-length function of n(k) = k - ko(k). On 

input 1 ~, the generator G runs .7"(1 ~) to obtain (f ,  f - x ) .  Then it outputs  the 

pair of algorithms (s •) determined as follows: 

(1) On input z of length n = n(k), algorithm s selects a random r of length 

k0 = ko(k).  It s e t s ,  = ~ e ~ ( r )  and t = r ~ C , ) .  It sets ~ = s II t and 
returns y = f(w). 

(2) On input y of length k, algorithm l)  computes w = f - t ( y ) .  Then it sets s 

to the first n bits of w and t to the last ko bits of w. It  sets r = t@H(s), 
and returns the string z = s a G ( r ) .  

The oracles G and H which s and ~P reference above have inpu t /ou tpu t  lengths 

of G :  {0, 1} ~~ ---, {0, 1) n and H :  {0, 1)'* ~ {0, 1) ~~ We use the encoding of f 

as the encoding of E and the encoding of f - x  as the encoding of 7). 

The intuition behind the (semantic) security of this scheme is as follows. We 

wish to guarantee that  the adversary, given a point y in the range of f ,  must 

recover the complete preimage w = rffi of y if she is to say anything meaningful 

about  z itself. Well, if the adversary does not recover all of the first n bits 

of the preimage, s, then she will have no idea about  the value H(s) which 

is its hash; a failure to know anything about  H(s) implies a failure to know 

anything about  r = H(s)@t (where t is the last ko bits of w), and therefore G(r), 
and therefore z = G(r)@s itself. Now, assuming the adversary does recover s, 
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a failure to completely recover t will again mean that  the adversary fails to 

completely recover r,  and, in the lack of complete knowledge about  r,  z@G(r)  

is uniformly distributed and so again the adversary can know nothing about  z. 

Yet the above discussion masks some subtleties and a formal proof of security 

is more complex than it might appear. This is particularly the case when one is 

interested, as we are here, in achieving the best possible exact security. 

The following theorem says that  if there is an adversary A who is able to 

break the encryption scheme with some success probability, then there is an algo- 

r i thm M which can invert the underlying t rapdoor  permutat ion with comparable 

success probabili ty and in comparable time. This implies tha t  if the t rapdoor  

permutat ions can ' t  be inverted in reasonable t ime (which is the implicit assump- 

tion) then our scheme is secure. But the theorem says more: it specifies exactly 

how the resources and success of M relate to those of A and to the underlying 

scheme parameters k, n, ko (k = n + k0). 

The inverting algorithm M can by obtained from A in a "uniform" way; 

the theorem says there is a "universal" oracle machine U such that  M can be 

implemented by U with oracle access to A. It is important  for practice that  the 

"description" of U is "small;" this is not made explicit in the theorem but  is clear 

from the proof. The constant ~ depends only on details of the underlying model 

of computation.  We write ~, k0 for n(k), ko(k), respectively, when, as below, k is 

understood. 

T h e o r e r n 3 .  Let 0 be the basic encryption scheme with parameters ~ ,  k0 and let 

n be the associated plaintext length. Then there exists an oracle machine U and a 

constant .~ such that for each integer k the following is true. SuppoSe A succeeds in 
(t, qgen, qh.h, e)-breaking O(l t ) .  Then M = U A succeeds in (g', e')-inverting Jr( lk), 
where 

g' : g "~- qgen"  qha~h " ( Y y ( ] e )  q- ~ k )  

e t = e- (1 - qsen2 -~~ - qhash2  -*~) - -  2 q s e n 2  -/r  �9 

The proof of Theorem 3 is in Appendix A. 

For reasonable values of k (eg. k ~_ 512) it will be the case that  k > n > >  k0. 

Thus for reasonable values of qs~a, qhalh we'll have e' ~. e-(1-qgen2-k~ Thus the 

success probability d achieved here is good in the sense that  it is only slightly 

less than e and close to optimal. Note also that  the expression for d indicates 

tha t  A will do best by favoring G-oracle queries over H-oracle queries. 

The dominant  factor in the time t '  taken by the inverting algori thm to com- 

pute f -  1 (y) is the t ime to do qg,n" qhash computations of the underlying f .  An 

interesting open question is to find a scheme under which the number of com- 

puta t ion of f is linear in qg~n + qhash while retaining a value of d similar to 

o u r s .  
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5 P l a i n t e x t  a w a r e  e n c r y p t i o n  

We introduce a new notion of an encryption being "plaintext aware." The idea 

is that  an adversary is "aware" of the decryption of the messages which she 

encrypts in the sense that  she cannot produce a ciphertext y without "knowing" 

the corresponding plaintext. In formalizing this we have relied on definitional 

ideas which begin with [12, 9, 25]. Our notion requires that  some (universal) al- 

gorithm K (the "knowledge extractor") can usually decrypt whatever ciphertext 

an adversary B may output,  just by watching the G, H-queries which B makes. 

Let B be an adversary which given an encryption algorithm $ outputs a 

string y (intuitively, the ciphertext). The notation (y, r )  +- runBC'H(s means 

the following. We run the algorithm BcJ / (C)  which outputs Y. We record in 
the process the transcripts of its interaction with its oracles. Thus there is a list 

rgea which for each G-oracle query g made by B records g and the answer G(g); 

similarly for H: 

rgcn = (gl, G(gl ) ) , . . . ,  (gq,.=, G(gq,.=)) 

Tha,h = ( ~ l , ~ ( ~ l ) ) , ' ' ' , ( ] ' t , h , , , h , H ( ~ g h . . h ) ) "  

The pair (rgen, ~a~h) constitutes ~'. 

D e f l n l t l o n 4 .  Let ~ be a generator for an encryption scheme and let B be an 

adversary that  outputs a string. An algorithm K is said to be a (t, e)-plsintext 

extractor for B, G(1 ~) if 

Pr[ (r 9)  G, H (y, r . . B a ' H ( e )  : 

y, 9a,H(y) ] _< , ,  

and K runs in at most t steps in the experiment above. 

The information we provide K about B is only B's output  y and the transcript 

of her oracle interactions r .  We could more generally also provide B's coin tosses; 

we omit to do this only because the stronger notion we define above is achieved 

by our scheme. 
Note we don't  give K oracle access to G, H: it is required to find the plaintext 

corresponding to y given only B's "view" of the oracle. The rest is random 

anyway so it makes no difference. 
A complexity-theoretic notion for a plaintext aware encryption can be easily 

created out of the exact definition given above. Also, a definition for the standard 

(random oracle devoid) model is easily obtained. But in this case, we would 

definitely allow K access to B's coin tosses. 

As previously mentioned, demanding awareness of a secure encryption scheme 

is asking a lot. In the random oracle model, we can show that  a plaintext aware 

scheme is non-malleable and also secure against chosen-ciphertext attack. We 

omit proofs of this, but the intuition is quite clear. For example, a chosen- 

ciphertext attack will not help because the adversary already "knows" the plain- 

text of any ciphertext y whose decryption she might request from an available 

decryption box. 
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6 T h e  P l a i n t e x t - A w a r e  E n c r y p t i o n  S c h e m e  

Let .7- be a trapdoor permutation generator. Let /co(') and /C1(') be positive 

integer valued functions such that/co(k) +/Cl(/C) < k for all k > 1. The plainCezZ- 
aware scheme G with parameters Y,/co,/Cl has an associated plaintext-length 
function of n(/c) = k - /co(k) -/Cl(/C). On input 1 ~, the generator G runs Y(1 ~) 

to obtain ( f , / -  x). Then it outputs the pair of algorithms (s ~ )  determined as 

fonows: 

(1) On input z of length n = n(/c), algorithm s selects a random r of length 

ko =/co(k). It sets s = zOninG(r) and t = r~H(s) .  It sets w = s II t and 

returns y = f(w).  

(2) On input y of length k, algorithm :D computes w = f-X(y). Then it sets s 
to the first n-6kl bits o fw and t to the last/co bits ofw.  It sets r = t$H(s) .  

It sets z to the first n bits of s~G(r) and z to the last/Cl bits of s@G(r). 

If z = 0 kx then it returns z, else it returns *. 

The oracles G and H which s a n d / )  reference above have input /output  lengths 
of G: {0, 1} ~~ --~ {0, 1} n and H: {0, 1} n --~ {0, 1} ~~ 

The semantic security of this scheme as given by the following theorem is a 

consequence of Theorem 3. 

TheoremS.  Let ~ be the plaintextoaware encryption scheme with parameters ~', 
k0, kl  and let n be the associated plaintext length. Then there exists an oracle 
machine To r and a constant )~ such that for each integer k the following is true. 

Suppose A succeeds in (t, qgen, qha~h, e)-breaking {7(1~). Then M = U A succeeds in 

(t'e')-inverting ~', where 

t '  = t + qgen " q h a s h  �9 (Ty-(/C) - 6  ,~/C) 

f/ ---- f -  (1  - -  qgen 2 - / c ~  - -  qhash 2 - n - / e l )  - -  2 q s e n 2  - ~  . 

Proof. Let ~' be the generator for the basic scheme with parameters ~T and ko--  

the associated plaintext-length function is n'(k) = k - ko(k) = n(k) + kl(k). Let 

A '  be the adversary for ~' who (i) in the find-stage runs A to get (z0, Zl, c) and 

outputs (zoo ~*, z,0 t l ,  c); and (ii) in the guess-stage removes the padded zeroes 

from the messages and runs A. Now apply Theorem 3 to A'. [] 

The intuition for the plaintext awareness of our encryption scheme can be de- 

scribed as follows. Let y be the string output  by B. If she hasn' t  asked G(r), 

then almost certainly the first n -6 kl bits of the preimage of y won't  end with 

the right substring 0~*; and if she hasn't  asked H(s), then she can't  know r; but 

if the adversary does know s, then certainly she knows its first n bits, which is z. 

To discuss exact security it is convenient to say that  adversary B(.) is a 

(~,qsen, qha~h)-adversar~J for {7(1 ~) if for all (E,•) E [G(lk)], B(s runs in at 

most t steps, makes qsen G-queries and makes qhash H-queries. 

T h e o r e m 6 .  Let ~ be the plaintext-aware encryption scheme with parameters ~', 

ko, kl  and let n be the associated plaintext length. Then there exists an oracle 
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machine K and a constant ~ such that for each integer 4 the following is true. 

Suppose B is a (t, qgen, qhuh)-adversary for 0(1~). Then K = U B is a (t ' ,e')- 
plaintext extractor for B, ~, where 

t '  = t q2 qgen " qhash " ( T ~ r ( k )  -k ~ 4 )  

e I -- qgen2 -/~o if- 2 -kl . 

As before, one interesting open question is to device a scheme with t ~ linear in 

qgen q- qhash rather than quadratic. Another nice open question is whether one 

can achieve plaintext aware encryption in the standard (random oracle devoid) 

model given a standard complexity theoretic assumption. 

7 S a m p l e  R S A  b a s e d  i n s t a n t i a t i o n  

We provide here a concrete instantiation of our plaintext aware encryption 

scheme (omitting only certain minor details). We use RSA as the trapdoor per- 

mutat ion and construct the functions G, fir out of the (revised) NIST Secure 

Hash Algorithm [18]. (Other hash algorithms such as MD5 [20] would do as 

well). 
Let f be the RSA function [21], so f ( z )  - z e rood N is specified by (e, N) 

where N is the h-bit product of two large primes and (e, ~o(N)) = 1. We de- 

mand 4 > 512 bits (larger values are recommended). Our scheme will allow the 

encryption of any string meg whose length is at most 4 - 320 bits (thus the 

minimal permitted security parameter allows 192 bits (e.g., three 64-bit keys) 

to be encrypted.) Let D = (1 ~ i < N : gcd(i, N) -- 1} C_ {0, 1} t be the set of 

valid domain points for f .  

Our probabilistic encryption scheme depends on the message meg to encrypt, 

an arbitrary-length string rand_coins, the security parameter 4, the function f ,  
and a predicate IND(z) which should return true if and only i f z  E D. Our scheme 

further uses a 32-bit string key_data (whose use we do not specify here), and a 

string desc which provides a complete description of the function f (i.e., it says 
"This is RSA using N and e ' )  encoded according to conventions not specified 

here. 
We denote by SHAd(z) the 160-bit result of SHA (Secure Hash Algorithm) 

applied to z, except that  the 160-bit "starting value" in the algorithm description 

is taken to be A B C D E  = at. Let SHA~(z) denote the first t-bits of SHA#(z). 

Fix the notation (i) for i encoded as a binary 32-bit word. We define the function 

fir~(z) for string z, number t, and 160-bit a~ to be the s prefix of 

SHAS~ I[ SHA~((  1 ).z) II SHAS~~ [[ .-- 

Let K0 be a fixed, randomly-chosen 160-bit string (which we do not specify 

here). 
Our scheme is depicted in Figure 7. Basically, we augment the string nzsg 

which we want to encrypt by tacking on a word to indicate its length; including 

41 = 128 bits of redundancy; incorporating a 32-bit field key_data whose use we 
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ENCRYPT ( msg, rand_coins ) 

o = SHAKo(desc) ;  

0" 1 = SHA~(< 1 )); 

a2 = SHA~((  2 )); 

a3 = SHA.(( 3 )); 

i~-O; 

repeat 

T e-- H12S(t i ) II 
01 %.% 

z *-- key_data II 
, - -  

128 -- . ~ r@Ho, (=), 

i r i + 1 ;  

u n t i l  IND(v , ) ;  

r e t u r n  f ( v , ) ;  

rand_coins); 

<lmsgl)  II 0 *=s II 0 II msg; 

F i g .  1. A sample instantiation of the plsintext-awsre encryption scheme. 

do not specify; and adding enough additional padding to fill out the length of 

the string we have made to k - 128 bits. The resulting string z now plays the 

same role as the z of our basic scheme, and a separate 128-bit r is then used to 

encrypt it. 

We comment that  in the concrete scheme shown in Figure 7 we have elected 

to make our generator and hash function sensitive both to our scheme itself 

(via K0) and to the particular function f (via desc). Such "key separation" is 

a generally-useful heuristic to help ensure that  when the same key is used in 

multiple (separately-secure) algorithms that  the internals of these algorithms do 

not interact in such a way as to jointly compromise security. The use of "key 

variants" o l ,  o's and ~'s is motivated similarly. Our choice to only use half  the 

bits of SHA has to do with a general "deficiency" in the use of SHA-like hash 

functions to instantiate random oracles; see [2] for a discussion. 
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A P r o o f  o f  T h e o r e m  3 

We first define the behavior of inverting algorithm M. M is given (an encoding 

of) a function f : {0, 1} k --* {0, 1} k and a string y E {0, 1} ~. It  is t rying to find 

w = f - l ( y ) .  

(1) M begins by constructing ~ from / as specified by our basic scheme. It  then 

initializes two lists, called its G-list and its H-list, to empty. It  picks a bit 

b +- {0, 1} at random. Then it simulates the two stages of A as indicated 

in the next two steps. 

(2) M simulates the find-stage of A by running A on input (s find). M provides 

A with fair random coins and simulates A's random oracles G and H as 

follows. When A makes an oracle call h of H ,  machine M provides A with 

a random string Hh of length k0, and adds h to the H-list. Similarly when 

A makes an oracle call g of G, machine M provides A with a random string 

Gg of length n and adds g to the G-list. Let (Zo, z l ,  c) be the output  with 

which A halts. 

(3) Now M starts simulating the guess-stage of A. It runs A on input (y, zo,  z l ,  

c). It  responds to oracle queries as follows. 

(3.1) Suppose A makes H-query h. M provides A with a random string Hh 

of length h and adds h to the H-list. Then for each g on the G-list M 

constructs zoh,9 = h tl g~Hh and computes Yh,g = / ( w h , 9 ) .  If there 

is some h, g such that  V~,,g = Y then M sets w* = Wh,g. 
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(3.2) Suppose A makes G-query g. Then for each h on the H-l is t  M con- 

structs the string wh,g = h II g@Hh and computes  Yh,g = f(wh,~). 

(3.2.1) I f  there are h, g such tha t  Yh,g = Y then M sets w* = wn,g. It  

sets Gg = h(~Zb, a d d s  g to the G-list, and returns Gg to A. 

(3.2.2) Else (ie. there are no h, g such tha t  Yh,g = Y) M provides A 

with a random string Gg of length n and adds g to the G-list. 

The output  of M is w* if this string was defined in the above experiment,  and 

fail otherwise. Note tha t  the H-l is t  and G-list include the queries of both  the 

find and guess stages of A's execution. 

I t  is easy to verify tha t  the amount  of t ime ~' to carry out G a m e  1 is as claimed. 

I t  is also easy to verify tha t  there is a universal machine U such tha t  the com- 

puta t ion  of M can be done by U A. 

We note tha t  as soon as M successfully finds a point w* = f - Z ( y ) ,  it could stop 

and output  w*. Not only do we have it go on, but  some variables and actions 

(such as the usage of the bit b in Step (3.2.1) come into play only after w* is 

found. These "unnecessary" actions do not affect the success probabil i ty  of M 

but  we put  them in to simplify our exposition of the analysis of M ' s  success 

probability. The intuition is tha t  A in the above experiment  is t rying to predict 

b and M is trying to make the distribution provided to A look like tha t  which 

A would expect were A running under the experiment which defines A's  success 

in breaking the encryption scheme. Unfortunately, M does not provide A with 

a simulation which is quite perfect. Let us now proceed to the analysis. 

We consider the probabil i ty space given by the above experiment.  The  inputs 

f , y  to M are drawn at  random according to (f ,  f - l )  4-- ~ ' ( lk) ;  y ,-- {0, 1} ~. We 

call this "Game  1" and we let Pr l  ['] denote the corresponding probability. 

Let w = f - l ( y )  and write it as w = s [[ ~ where Is I = n and : k0.  Let r be 

the r andom variable t~H(s). We consider the following events. 

FBAD is true if: 

- G-oracle query r was made in the find-stage, and 

- G, • {sE)zo, sE)zl}. 

GBAD is true if: 

- G-oracle query r was made in the guess stage, and 

- at  the point in t ime tha t  it was made,  the H-oracle query s was not on 

the H-list ,  and 

- G,. r {8~zo, sE)=1}. 

G = ~FBAD A -GBAD. 

W = AskR A AskS. 

We let Pr2 ['] = Pr l  [" [ G] denote the probabil i ty  distribution, in G a m e  1, con- 

ditioned on G being true, and call this "Game  2." 
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Now consider the experiment which defines the advantage of A. Namely, first 

choose ( f . ,  f , z )  ._  j r ( lk  ) and let s be the corresponding encryption function 
under the basic scheme. Then choose 

G., H.  * -  fl; (z~, z;, c*) ~-- Aa"z~" (s find); 

b. C0, z}; y* , -  

and run A (y*, =L c*). Let Pr; [.] be the corresponding distribution and 
Game 1" the game. 

Now consider playing Game 1" a little bit differently. As before, choose ( f . ,  f , z )  

~-- ~ (1  ~) and let E* be the corresponding encryption function. But now choose 

y* *- C 0,1} k uniformly at random first, and then select the rest according to 

the distribution which makes the outcome the same as in Game-l*.  (This is 

possible because the distribution on y*-values in Game 1" is indeed uniform). 

We let Game 2* be this different way of playing Game 1". 

We claim that  Game 2 and Game 2* are identical in the sense that  the view of 

A at any point in these two games is the same. Indeed we have chosen the event 

G so that  the oracle queries we are returning in Game 1 will mimic Game 2* as 

long as G remains true. 

We omit  details to formally justify these claims, but  a good way to get some 

intuition is to assume for simplicity that  the End-stage is trivial and A always 

outputs  the same strings z~, z~, c*. Now if y* is fixed then the conditional dis- 

tr ibution on G. ,  H .  can be described as follows: Pick H .  at random; pick G.(g) 
to be random whenever g ~ t~H.(s). But G.(t~H.(s)) must be constrained to 

be either s~z~ or s@z~, the choice of which being at random. 

To proceed further with our analysis (of Game 1), let us introduce the following 

additional events: 

FAskS is true if H-oracle query s was made in the find stage. 

AskR is true if, at the end of Game 1, r is on the G-list. 

AskS is true if, at the end of Game 2, s is on the H-list. 

The  first step is to show that  the probability tha t  the good event fails is low. 

Lemma 7. The probability that the good event fails is upper bounded by 

Prz [-~G] _~ qgen2 -~~ -t- qh~h2 -'~ �9 

Proof. The intuition is that  as long as H-query s has not been made, each G- 

query has probability only 2 -~~ of being r.  Now, --G = FBADV GBAD. In GBAD 

is already included the fact that  no H-query of s has been made before the G- 

query r.  But in FBAD it could be that  H-query s was made. But the probabili ty 
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of FAskS is small since s II t - f - 1 ( y )  is determined at random after the find- 

stage. The proof that  follows captures all this by conditioning on FAskS. We 

have: 

Pr~ [-~G] = Pr~ [~G I FAskS]. Pr~ [FAskS] 

+ Pr, [-,G I -~FAskS]- Prl [--,FAskS] 

_< Pr~ [FAskS] + Pr: [~G I ~FAskS] 

_< Pr: [FAskS] + Prl [AskR I --,FAskS] . 

The random choice of y implies that  Pr l  [FAskS] < (]hash 2-n .  On the other hand 

Pr l  [AskR I -,FAskS] _< qgen2 -k~ [] 

We think of A in Game 1 as trying to predict b. With this in mind, let "A = 

b" denote the event that  A is successful in predicting bit b. We analyze this 

probability to show that  in Game 2 either W is true or A has little advantage 

in predicting b. Notice that  if W is true then M successfully finds w = f - 1  (y). 

Following this we will use the equivalence with Game 2* to relate this to ~, and 

finally we will use Lemma 7 to get a conclusion for Game 1. 

Recall tha t  h = k0 + n is the "security parameter"  of the original t rapdoor  

permutat ion.  

L e m m a  8. The winning probability in Game 2 is bounded below by: 

1 Pr2 [W] _> Pr2 [A --- b] 2 
2qgen2- k 

Prl [G] 

Proof. We upper bound Pr2 [A ---- hi: 

Pr2 [A = b] = 

< 

Pr2 [,4 = b I W]. er~ [W] 

+ Pr2 [A -- ~ I -~AskR]- Pr2 [-~AskR] 

§ Pr2 [A = b I AskR A -,AskS]. Pr2 [AskR A --,AskS] 

Pr2 [W] + Pr~ [_4 = b I -,AskR] 

§ Pr2 [AskR A -~AskS] . (1) 

Now we wish to upper bound the last two terms above. If-~AskR then clearly .4 

has no advantage in predicting b: 

Pr2 [.4 -- b l -~AskR] _< 1/2. (2) 

On the other hand let RBS be the event tha t  r is on the G-list and at  the t ime 

it was put  there, s was not on the H-list. Recall that  k = h0 + n. One can check 
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that: 

Prx [AskR A -~AskS A G] = Pr l  [RBS A G, E {8~zo, $ ~ g l } ]  

= Prl [RBS]. Prl [G, E {,E)zo,,(~zx} I RBS] 

~ qgen 2-k~ �9 2 " 2-'* 

: 2qgen 2-k . 

Using (3) we have 

(3 )  

Prl  [AskR A "~AskS A G] 
Pr2 [AskR A -~AskS] = 

Prl [G] 

< 2qge"2-~ (4) 

- -  P r l  [ G ]  

Now put  the bounds provided by (2) and (4) into (1) to get 

2qse,2 -~ 
P r 2 [ A = b ]  _< Pr2[VV] + � 8 9  Prl[G] 

This concludes the proof of the ]emma. [] 

The equivalence of Game 2 and Game 2* implies Pr2 [A = b] = e + 1/2 so that  
from Lemma 8 (making the conditioning on G explicit) we get 

2qgen 2 - ~ 

Prl ~ I G] >_ - Prl [G] (5) 

Using (5) and Lemma 7 we get 

Prl  [W] = Prl  ~ / I  G]. Prl  [G] 

> (e 2qgen2-k 
- _ - PrI[G] ) ' P r l [ G ]  

= e .  P E I  [G] - 2 q g e n 2  - k  

~_ e" (1 -- qsen2 -k~ -- qh~h2-")  -- 2qs,n2 -k �9 

However as we remarked earlier, e I ~_ Prl  ~/] ,  so the proof is concluded. 

B P r o o f  o f  T h e o r e m 6  

We define the plaintext extractor K. Let (f, f - l )  E [~'(1~)] and let u c be the 
corresponding encryption function as constructed by our plaintext-aware scheme. 

Let r : (Tgen , Thash) where 

Tgen = (7"1, G1) , . . . ,  (Pq,on, Gqlto=) 

= ( , 1 , H 1 ) ,  . . . .  
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We call r l , . . . ,  rg,. n the G-list and  s t , . . . ,  sgh.~ the H-list .  The  inputs  to  K are 

C, y, 1". I t  proceeds as follows. 

(1) For i = 1 , . . . ,  qgen and  j = 1 , . . . ,  qh~h machine  K 

(1.1) Sets z id  to the first n bits of  , i (3Gj  and  z~,i to  the remaining  hi bits 

of s~Gj 

(1.2) Sets wi,j = al II and computes  V i j =  f (w, , j ) .  

(2) I f  there is an i , j  such tha t  y i j  = V and  z~j = 0 t t  then K ou tpu t s  z i j ;  else 

it ou tpu t s  *. 

For the analysis  let w = f - x ( V )  and  write it as w = s [[ * where Is[ = n + k l  and  

]*[ = k0. Let r be the r a n d o m  variable *@H(,) .  Let x, z be the r a n d o m  variables 

defined by wri t ing s a G ( r )  = z II z where tzl = n and  ]z] = ix.  We consider the 

following events. 

FAIL is t rue if the ou tpu t  of  K is different f rom Z~G,H(v). 

AskR is t rue if r is on the G-list. 

Asks is t rue if s is on the H-list .  

We now bound  the failure probabil i ty.  

Pr [FAIL] = Pr [FAIL I -~AskR] �9 Pr [-~AskR] 

+ Pr [FAIL I AskR A AskS]. Pr [AskR A AskS] 

+ Pr [FAIL I AskR A -~AskS] �9 Pr [AskR A -~AskS] 

_< Pr [FAIL ( -~AskR] + Pr [FAIL ] AskR A AskS] 

+ Pr  [AskR A --AskS] . 

I f  r is not  on the G-list then the probabi l i ty  t h a t  z = 0 ~1 is at  mos t  2 - h ,  so 

tha t  in this case an ou tpu t  of  * is success. Thus  Pr  [FAIL I -~AskR] _< 2 - t* .  

If  r is on the G-list and s is on the H-l is t  then there are i, j such tha t  w = wl,j. 

So K will decrypt  correctly. T h a t  is, Pr  [FAIL I AskR A AskS] = 0. 

I f  s is not  on the H-l is t  then H(s)  is un i formly  dis t r ibuted and hence so is r. So 

Pr [AskR A --AskS] < Pr [AskR I -~AskS] < qs,n2 -~~ . 

This  concludes the proof.  


