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ABSTRACT
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set. This is done by analyzing the optimal worst-case asymptotic error achievable by performing
experiments using any bounded inputs and estimating the plant using any identification algorithm.
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analyzed to find optimal inputs for minimizing the worst-case error. Using the 11 norm as the error
criterion, an interesting dichotomy of the class of all balanced and convex model sets is obtained:
either inputs can be chosen to identify the plant with very small asymptotic error, or no finite set
of inputs can yield finite error. Applying the general results on specific model sets, it is shown
that the class of all stable plants and the class of all finite-dimensional plants belong to the first
category of the dichotomy. Explicit characterization of the optimal inputs for these model sets are
also obtained.
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1 Introduction

This paper addresses some fundamental issues that arise in the field of system identification. These

issues are expected to have important ramifications for robust and adaptive control.

Our work is motivated by the following questions: Given some a priori knowledge about an

unknown plant and the measurement noise, together with some constraints on the experiments that

can be performed, is it possible to identify the plant accurately enough so that the resulting model

can be used for a prescribed objective? More generally, how much a priori knowledge is necessary

for accurate identification, where accuracy is judged in relation to a specific purpose? And how is

the achievable accuracy improved with additional a priori information?

Although these questions are fundamental, they have received little attention in the literature.

While much of the previous work has been concerned with construction of efficient identification

algorithms for different problems, our intention here is to study whether there exists an algorithm

at all which yields the desired amount of identification, given the a priori knowledge available. The

answer to this question depends only on the nature of the a priori knowledge and the experiments

that one is allowed to perform, but is completely independent of any identification algorithm.

The questions we have raised are very general and, for the purpose of this paper, it is necessary

to restrict the scope. We will deal exclusively with discrete-time, single-input-single-output linear

time-invariant systems. The a priori information about the unknown plant is the knowledge that

it belongs to a certain subset of the space of all LTI systems; this subset will be called a model set.

The plant will be identified using input-output experiments. The inputs can be chosen freely but

subject to a boundedness constraint. The observed output is corrupted by an additive disturbance

(noise) which is assumed to be bounded but otherwise unknown. This is less restrictive than the

usual stochastic noise assumptions, but while a probabilistic model allows an average case analysis

of the identification error, the boundedness assumption forces us to consider worst-case errors since

the disturbances can be arbitrarily adverse to the identification procedure. This situation can be

viewed as a game played between the experimenter and an omnipotent adversary who attempts to

choose a disturbance to ruin the accuracy of the estimate. We seek results on the optimal worst-case

asymptotic error achievable by the experimenter when he is allowed to select the inputs, perform

experiments of arbitrarily long length, and use the output measurements to generate an estimate,

via whatever identification algorithm. Our goal is to investigate the key properties of model sets

which can be identified with a small optimal error, and in particular how large the model set can

be to still yield a finite optimal error. Furthermore, we are interested in robustness issues: does the

optimal error vanish as the bound on the output disturbance decreases to zero? Answers to these
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questions give a characterization of the difficulty of identification using a given model set.

The criterion used to measure the identification error depends on the intended use of the iden-

tified model. In this paper, we shall use the 11 norm to measure the distance of the true impulse

response from the identified one. Because the 11 norm is an induced operator norm, it measures the

quality of input/output predictions that can be made on the basis of the identified model. More-

over, this error measure is particularly suitable for applying certain robust control methodolgies on

the identified plant [2, 3, 8].

We will now briefly review the revelant literature. Some of the questions raised here are dealt

with in a more general context by a theory of optimal algorithms [14, 22, 23], also known as

information-based complexity. This theory provides a general mathematical framework for analyzing

the optimal error achievable in solving a problem using a given amount of possibly inaccurate and

partial information. Information plays the central role in this theory: the results depend only

on the information used by an algorithm but are independent of its structure. Some of the basic

ideas of this theory have influenced our work. Our research is also motivated by the "theory of

the learnable" developed in the computer science field, following the pioneering work of Valiant

[24]. Although the problems we consider are different, there is a similar emphasis on the intrinsic

(algorithm-independent) difficulty of learning or identification problems. The problem of choosing

good inputs for identification, or experiment design, has been subjected to wide attention in the

literature. However, most of the work is done in a stochastic and parametric setting [5, 13, 27], and

input optimization is performed by minimizing a scalar functional of the Cramer-Rao bound on the

covariance of the parameter estimates. Outside mainstream stochastic identification research, there

is a line of work which deals with identification under bounded disturbances [4, 10, 15, 16, 17, 19, 21].

All of this work deals with models of known order and the emphasis is on deriving efficient recursive

algorithms for estimating the parameters, not on analyzing the optimal worst-case error achievable

in the limit. Although Fogel and Huang [4] obtained some conditions for the convergence of the

estimates, these conditions imposed certain requirements on the disturbances and hence their work

is not in the worst-case spirit. Very recently, there has been some work which proposes that system

identification should be done with the requirements of robust controller design in mind. From this

viewpoint, a system identification method should not only produce an identified model but also a

measure of its inaccuracy in a metric which is consistent with robust controller design. Helmicki et

al [6, 7] considered this problem and the metric they employed is the H"o norm. However, they only

dealt with one specific model set: a set of stable LTI systems for which a lower bound on the decay

rate and an upper bound on the gain are known. They did not study whether these conditions are

necessary for accurate identification.
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The contributions of this paper are two-fold.

At a more general level, it introduces a framework for the analysis of optimal worst-case asymp-

totic error under bounded disturbances. The central result here is that, under some topological

conditions on the model set, infinite-horizon experiments, where the entire infinite data record is

available to compute estimates, can be viewed as a limit of finite-horizon experiments, where only

finite data records are available. Analysis of optimal asymptotic error is then reduced to finding

optimal inputs to minimize the worst-case error for the infinite-horizon problem. Although the

framework is presented here in terms of the 11 error measure, it is equally suitable for analyzing

problems with different error norms, and many of the results reported here can be generalized for

arbitrary norms. be generalized to arbitrary error norms.

At a more specific level, concrete results are obtained for optimal 11 identification, when both

the inputs and the disturbances are constrained to be magnitude-bounded. It is shown that a lower

bound to the optimal asymptotic error for any non-trival model set is given by 6, the bound on the

disturbance. For the important class of balanced convex model sets, an interesting dichotomy is

proven: that either inputs can be chosen to identify the plant very accurately with an asymptotic

error of less that 26, or no finite set of inputs can yield finite asymptotic error. Moreover, it is shown

that large model sets, such as the class of all stable plants and the class of all finite-dimensional

plants, belong to the first category of the dichotomy. Explicit characterization of the optimal inputs

is also obtained.

The organization of the paper is as follows. In Section 2, the identification problem is formulated

and the optimal worst-case asymptotic error achievable by any identification algorithm is defined.

In Section 3, we present consistency results establishing infinite-horizon experiments as limits of

finite-horizon ones. General results, giving conditions for inputs to be optimal for the infinite-

horizon problem, are given in Section 4. In Section 5, the general results developed are applied

to analyse specific model sets. In Section 6, we explore the question of when the convergence

of the finite-horizon identification errors to the infinite-horizon error is uniform over all unknown

plants in the model set. In Section 7, we show that for balanced convex model, the use of feedback

(using observed outputs to decide future inputs) cannot lead to significant improvement in the

identification error. Section 8 contains our conclusions, and discusses future research direction and

in particular the implications of this work to robust and adaptive control.
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2 Problem Formulation

Let X be the class of all causal, single-input single-output, linear time-invariant, discrete-time

systems. We identify X with the space of all one-sided real-valued sequences, SRW. Let M C X

be the model set which is assumed to contain the unknown plant h to be identified. The set M

captures the experimenter's a priori knowledge about h. Also given is an input set U which contains

all the input sequences that can be used in the identification experiments. In this paper, we will

take U to be B7oO {u: IIullo <_ 1}, where Iullj =_ supi Juil. Indeed, it is reasonable to assume

that unbounded signals should not be inputs to the system, either during the identification or the

operation stage, because of physical limitations, power restrictions, safety, or in order to maintain

the validity of the linear model of the plant.

An experiment is conducted by choosing an input sequence u E Bioo and measuring the output

sequence y, related to u by

y=h*u+d (2.1)

where * denotes the convolution operator and d is the disturbance sequence which corrupts the

measurements. (Note that h, u, y, d are all one-sided real-valued sequences; h = (ho, hi, h2, ..... )

etc.) The disturbance d is assumed to be magnitude bounded with Ildllo < 6 for some known 6,

but can otherwise be arbitrary. The disturbance may arise from actual measurement noise, such

as quantization, or it may reflect non-linearities and time-variation of the plant. In the latter

case, the true plant is actually nonlinear and time varying (as are most plants in reality) but is

assumed to be approximated well at the operating range by an LTI component, which is the object

of identification.

If N such experiments are performed, we have:

y(i) = u(i)* h + d( ), i=1, 2,....N (2.2)

where y(i) and d(i) are the output and disturbance sequences in the ith experiment. This can be

written in a more compact notation:

y = u * h + d IldllKo _ max Ild()lloo <6 (2.3)

where y = [y(1),..., y(N)], u = [u(1),..., U(N)], and d = [d(1),..., d(N)] are vectors of sequences;

convolution of h with a vector of inputs is just element-wise convolution with every input. Also

note that the vector of inputs u is in Blo,.

An identification algorithm is a mapping b which generates, at each time instant n, an estimate

h(n) = (Pnu, Pny) E X of the unknown plant h, given the input and output sequences in the
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experiments . Here, P, is the truncation operator, defined by Px = (20, l,..., I, ) for each

infinite sequence x. Its use signifies that the algorithm ¢b generates at each time instant an estimate

based only on the input-output data it has seen so far. In computing the estimates, the algorithm

has access to what the model set M is and also the value of 6, the bound on the disturbance.

However, the estimates h(") are not required to belong to M. This added generality may be of

benefit in some circumstances.

To evaluate the accuracy of h(") as an estimate of h, the 11 norm will be used, as defined by

119111 -- Ek=l 9kIg for any plant g. The important property of the 11 norm which makes it an

appropriate error measure to use here is that it is an induced operator norm on the space of all

magnitude-bounded signals:

1ghl = sup lu * g9ll (2.4)

Thus, the error of an estimate measured in the 11 norm can be intepreted as the worst-case prediction

error when using the estimate to predict the output of the plant to any input in the input set

U= B:00.

Given an identification algorithm and a chosen set of input sequences for the experiments, we

would like to consider the limiting situation when more and more data are observed. To this end,

the worst case asymptotic error is defined as follows.

Definition 2.1 Fix the inputs u. The worst-case asymptotic 11 error, el (b, M, u, 6), of an algo-

rithm 0q is the smallest number r such that for all plants h E M and for all disturbances d with

ldlloo < a

lim sup JIl (Pnu, Pn(u * h + d)) - hll1 < r

Equivalently,

et(,, M,u, 6) sup sup limsup |ll(Pnu, P(u* h +d))- hll,
hEM IIdlL.<6 n--bo

According to this definition, no matter what the true plant and the disturbances are, the plant

can be eventually approximated to within el (b, M, u, 6), using the estimates generated by the

identification algorithm. This is quite analogous to the notion of convergence of estimates to the

true plant in the classical probabilistic framework of identification. However, since the disturbances

here are assumed to be arbitrary and not necessarily stationary, such convergence is not possible

in general. Instead, we only require the estimates to enter and stay within a ball around the true

plant rather than to converge to the exact plant.
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The optimal worst-case asymptotic 11 error El (u, M, 6) is defined as the smallest error achiev-

able by any algorithm:

E1 (u, M, 6) inf el (0, M, u, 6)

Any algorithm for which the infimum is attained is said to be asymptotically optimal. Furthermore,

the optimal asymptotic error achievable by any input and any identification algorithm is defined as

E1 (M,6) _ inf El (u, M,6)
uEBIl

The quantity El (M, 6) can be viewed as the value of a game played between the experimenter and

an adversary, with the experimenter selecting the best inputs and the best algorithm to minimize

the asymptotic error of the estimates, and the adversary choosing the worst plant and the worst

disturbance to maximize it. Thus, El (M,6) can be regarded as an intrinsic limitation to the

identification accuracy, given the a priori knowledge about the plant (model set M).

While the above definition of asymptotic error in the 11 norm makes sense for stable plants, it

is unsuitable for unstable ones. For example, the locations of the unstable poles of a plant will

have to be identified exactly in order to have finite error in the 11 norm, and this is an unrealistic

requirement. The problem is that the 11 norm measures error on the entire impulse response, which

grows exponentially in the case of unstable plants. A more reasonable error measure in this case

is to consider the 11 norm only on truncated portions of the impulse response, i.e. IIPmglll. That

is, we will compare the truncated estimate Pmq$(Pnu, Pn(u * h + d)) with the truncated impulse

response. This leads to the definition of the following weaker notion of asymptotic error.

Definition 2.2 The worst-case asymptotic truncated 11 error, et (, M, u, 6), of an algorithm q

on inputs u is the smallest number r such that for all plants h E M and for all disturbances d with

IIdllIIo < 6,

lim sup IIPm{q( Pnu, Pn(u * h + d)) - h}{l < r Vm
n--+oo

or equivalently,

e4t(q, M,u,6)- sup sup suplimsup P,,m{q(Pnu, Pn(u * h + d))- h}llI
hEM Ildllo<6 m n-+oo

Whereas in the 11 norm case we require that the estimates will eventually approximate the entire

impulse response of the true plant, here we only require that the estimates eventually approximate

any truncated portion of the true impulse response, although it may take longer to generate good

estimates of a larger portion. The truncated 11 norm, like the 11 norm, measures the worst-case
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error of using the estimate to predict the output of the true plant, but only for a finite duration.

We can also define similar notions of optimal asymptotic truncated 11 errors:

Et (u,M, 6) _ inf et (,M,u,6) and Et (M,6)= inf Et(u, M, 6)
UEBI,,

The following relationship between the two asympototic errors is clear.

Proposition 2.3 For all model set M, inputs u, algorithms 0q and 6 > 0,

et (, M, u, 6) < el (M,u, u,6)

We will now give a basic result about the worst-case asymptotic errors which will be useful for

our later analysis.

-N
Proposition 2.4 For any model set M, inputs u E BI, , algorithms 0q and 6 > 0,

el ( u, A6) < lim el (, IM, Z)
0 16

and

et (, u,b, 6) < limet(.5, u, M,)

where Wf is the closure of M with respect to the 11-topology on X

Proof. We shall only prove the result for the case of the asymptotic 11 error. The proof for the

truncated 11 error follows similarly.

By definition, for all z > 0, and Vh E M and d with ld1[lo •< z, we have

lim sup |II(Pnu, Pn(u * h + d)) - hIll < el (q, u, M, ) (2.5)
n-- boo

Let E > 0. Take any h E j and Ildllo _< 6. There exists a h' E M such that Ilh - h'l I< e.

Therefore

lim sup I[q(Pnu, Pn(u * h + d)) - hill (2.6)
n-- oo

< lim sup |I[~(Pnu, Pn(u * h' + u * (h - h') + d)) - h'Ill + E (2.7)
n-- oo

Now, IIu * (h - h') + dlloo < 6 + E, so applying inequality (2.5) with z = 6 + E,

limsup Iq(Pnu, Pn(u * h' + u * (h - h') + d)) - h'I < el ,.( M, u,6 + E) (2.8)
n--7oo



It follows that

lim sup IIO(Pu, Pn(u * h + d)) - hll < el (i, M, u, 6 + E) + E (2.9)
n---oo

Letting e go to 0 gives the desired result. o]

The objective of this paper is to analyze the optimal asymptotic errors for general model sets

and then apply the results to specific ones. We will proceed in two stages:

1) Characterize the asympotically optimal algorithms and characterize the resulting optimal

worst-case asymptotic errors, in terms of the chosen inputs u.

2) Given the characterization of the optimal asymptotic errors, determine the optimal selection

of inputs u which will make the asymptotic errors small.

3 Asymptotically Optimal Identification

The characterization of asymptotically optimal algorithms and optimal worst-case asymptotic errors

is in terms of the important notion of the uncertainty set.

Deflnition 3.1 Let u and y be the input and measured output sequences, and 6 be the bound on

the disturbances. The finite-horizon uncertainty set at time n is defined to be

S,(M, u, y, 6) = {g E M : liP,(u *g - Y)llo < 6}

and the infinite-horizon uncertainty set is

S.(M, u, y, 6) = {g E M: IIu * g - Yllo < 6}

The set Sn contains all the plants in the model set consistent with the output data seen until time

n. It characterizes the uncertainty at time n: any plant in S, can be the actual plant from the

experimenter's point of view. Similarly, SOO contains all the plants that are consistent with the

entire output sequences. It measures the uncertainty that the experimenter would still have even

if he could perform infinitely long experiments and could see the entire output record. It is easy to

see that the finite-horizon uncertainty sets become smaller with increasing n and shrink to SO, in

the limit:

So(M, u, y, 6) = n=0oSn(M, u, y, 6)

For any set A C X, define the diameter of the set A as

diam(A) = sup lg - hill
g,hEA

(The diameter of a set can be infinite.) We shall now define an important quantity.
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Definition 3.2 Given a choice of the inputs u, define the worst-case infinite-horizon diameter

D(u, M, 6) to be the diameter of the largest possible uncertainty set:

D(u, M, 6) sup sup diam(So(M, u, u * h+d,6))
hEM Ildllo<6

The quantity D(u, M,6) is a measure of the worst uncertainty over all the possible output

sequences that can be generated by any plant in the model set and any permissible disturbance.

It turns out that it is precisely this quantity that characterizes the optimal worst-case asymptotic

errors. First we show that half the worst-case infinite-horizon diameter is a lower bound to both

optimal asymptotic errors.

Proposition 3.3 Let M be any model set, u be any vector of inputs and 6 > 0. Then

(1) et (q, M, u, 6) > D(u, M,6)/2 for any algorithm c; and

(2) el (, M, u,6) > D(u, M,6)/2 for any algorithm 4;

Proof. Part (2) follows from part (1) in view of Proposition 2.3, so we only need to prove part

(1). We shall assume D(u, M, ) < oo. The case where D(u, M, 6) is infinite follows similarly.

For any E > 0, there exist two plants g and g' and an infinite-horizon uncertainty set SO (M, u, y, 6)

such that g, g' E SO,(M, u, y, 6) and 11g - g'll > D(u, M, 6) - E. We can pick integer M > 0 such

that

IIPM(g - g')II1 > D(u,M,6) - 2e (3.10)

Also since both g and g' are in the same uncertainty set, there exist disturbances d and d' such

that u * g + d = u * g' + d' = y.

Let b be any identification algorithm. Based on the output observation, q cannot distinguish

between g and g'. Hence, for every m > M and for every n,

IIP.m(Q(P.u, P.(u * g + d)) - g)|l1 + IIP,(O(Pnu, P,(u * g' + d')) - g')Ill

= IIPm(k(PnU, P.y)- g)lll + IIP,(q(P.u, Py)- g')ll (3.11)

> IIPm(g - g')l, (3.12)

> D(u, M, 6) - 2E by (3.10) (3.13)

Fix any m > M and taking limits over n, we obtain

limsup IIP,..((Pnu, Pn(u * g + d)) - g)lli + limsup lIPm(4(Pnu, P,(u * g' + d')) -g')ll
n--.oo n--oo

> D(u, M,6)- 2E (3.14)
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Hence either

lim sup llPm.(q(Pnu, P(u * g + d)) - g)lll > D(u, M, 6)-E (3.15)

or

lim sup IIPm(q(Pnu, P,(u * g' + d')) - g')1l > D(u, M, 5) - (3.16)

Since this is true for every E > 0, we can conclude that et (, M, u, 6) > ½D(u, M, 6). EO

The key question now is whether there exists an optimal algorithm which can always generate

estimates with error converging to this lower bound. By the definition of the infinite-horizon

uncertainty set, there exist two plants at a seperation of D(u, M, 6) which can give rise to exactly

the same output measurements. Thus in the worst case, there is no way for any finite-duration

experiments to distinguish between them, and this gives rise to the lower bound proved above.

Conversely, any two plants with a seperation greater than D(u, M, 6) can be distinguished if we

perform experiments of sufficiently long length. That is, if h is the true plant, and h' is another

plant which is far away from h (seperation greater that D(u, M, 6)), there exists a time T(h') for

which one needs to observe the output to eliminate h' from consideration as a possible candidate.

However, to guarantee that an accurate estimate at time n can be obtained, one needs T(h') < n

for all plants h' that are far away from h. Otherwise, although the identification algorithm always

picks estimates which are consistent with the output seen so far, the estimates may nevertheless

diverge from the true plant.

The issue discussed above is really one of consistency between finite-horizon experiments, where

only finite data record is available for computing estimates, and infinite-horizon experiments, where

the entire infinite data record is available. The question is when the latter can be viewed as a limit

of the former. In [11], such a consistency result is established by placing a stationarity assumption

on the noise and then appealing to the law of large numbers. As far as we know, this issue has

not been considered in a unknown-but-bounded noise setting; in fact, it has been taken for granted

that consistency always holds [9]. Instead, it will now be shown that some compactness condition

on the model set is needed to guarantee consistency.

Definition 3.4 A set Y is said to be a-compact in a given topology if Y = UiYi where Y1 C Y 2 C

Y3 ... are nested compact subsets of Y.

The following theorem shows that, under a a-compactness assumption on M, D(u, M, 6) is an

upper bound for the optimal asymptotic 11 error. Combining with Proposition 3.3, we have upper

and lower bounds that agree, within a factor of 2. Thus, the study of the optimal asymptotic 1l

error is reduced to the study of D(u, M, 6).
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Theorem 3.5 If the model set M is o-compact in the 11 topology, then there is an identification

algorithm 4+ such that el (+*,M, u,6) < D(u,M,6) for all u and 6 O0.

Before proving Theorem 3.5, we need one more definition and a few lemmas.

Definition 3.6 For given inputs u and bound 6 on disturbances, and g E X, define Tu,b(g) to be

the smallest integer k such that I Pk(u * g)lloo > 26. If no such k exists, then Tu,s(g) is infinite.

Lemma 3.7 For any two plants g, h E M, Tu,6(g - h) is the smallest k such that there is no output

y with g and h in the same uncertainty set Sk(M, u, y, 6).

Proof. If n = Tu,s(g - h), then ItPn(u * (g - h)}loo > 26, so for every output sequence y, either

IIPn{u * g - Y)}oo > 6 or IIPn(u * h - Y)}loo > 6, by the triangle inequality. Hence, g and h

cannot be in the same uncertainty set Sn(M, u, y, 6) for any y. Conversely, if n < Tu,6(g - h),

then IIPn{u * (g - h)}lloo < 26, so picking y = u * (g + h)/2 yields IIP{,u * g - Y)llo < 6 and

iPn{u * h - Y)l}O < 6. Hence g,h E Sn(M, u,y,6). o

Thus, given two plants g and h, Tu,s(g - h) is the minimum duration for which one has to observe

the output to ensure that at least one of the two plants can be eliminated from consideration as

the true plant.

Lemma 3.8 Let g, h E M. If Jig - hill > D(u, M, 6), then Tu,6 (g - h) < oo.

Proof. Suppose Tu,6(g-h) = oo. Then IIPku* (9g-h)}ljoo , 26 for every k, so iu* (g- h)II[o <

26. Now consider the disturbance d = u * (h - 9)/2, and the infinite-horizon uncertainty set

Soo(M, u, u * g + d, 6), arising when g is the true plant. (Note that Ildloo < 6.) But Ilu * h - (u *

g + d)l1oo = Ilu * (h - g)/211,. < 6, so the plant h is also in the set Soo(M, u, u * g + d, 6) Hence,

by definition of the worst-case infinite-horizon diameter, llg - hill < D(u, M, 6). O

Lemma 3.9 Fiz the inputs u E BIN and 6 > 0. Let A C X be compact in the 11 topology, and

suppose Tu,s(g) is finite for every g E A. Then supgEA Tu,6(g) is also finite.

Proof. Suppose supgEA Tu,b(g) = oo. Then there exists a sequence of plants g(i) in A such that

limi-,o Tu,6(g(i)) = oo; furthermore, the sequence can be assumed to converge (in the 11 topology)

to a plant g* E A since A is compact. Let n* - Tu,b(g*) < oo. By definition, JIP,.(u * g*)llo > 26.



But IIP,.(u * g)lloO is a continuous function of g in the 11-topology, since IiulII < 1. Hence there

exists a 11 ball B around g* such that for every g' E B, IIP,.(u * g')ll, > 26, i.e. Tu,b(g') < n* for

every g' E B. But this contradicts the fact that limi,,_, Tu,b(g(i)) = oo since g(i) -. g*. Hence it

can be concluded that SUPGEA Tu,6(g) is in fact finite. o

Now we are in a position to prove Theorem 3.5.

Proof. Write M as a nested union of compact subsets Mi. Define the identification algorithm q*

as follows: at each time n, the algorithm generates as an estimate by picking any arbitrary plant

h(n) in the set Sn n Mk, where Sn is the uncertainty set after observing the output data until time

n, and k is the least integer i such that S, n Mi is non-empty. We claim that this algorithm will

have an asymptotic error of at most D(u, M, 6) for all inputs u and 6 > 0.

Fix the unknown plant h E M and let E > O. Also let Mh be the smallest of the compact

subsets Mi's which contains h. Define the set

A(h, E) _ (g E Mh: 119- hill > D(u, M, 6) + E} (3.17)

and the number

T(h,E) sup Tu,6(g- h) (3.18)
gEA(h,e)

Since A(h, E) is a closed subset of Mh (with respect to the 11-topology), it is also compact. By

Lemma 3.8, Tu,6(g - h) is finite for all g E A(h, e). Hence, by Lemma 3.9, T(h, E) is also finite.

Now consider the estimates h(n) generated by the algorithm 0b* . Since h(n) is picked from the

least k such that Sn n Mk is non-empty, h(n) is guaranteed to be in Mh for all n. (This is because

S,n n Mh is non-empty: it contains the true plant h.) Also h(n) is in the uncertainty set Sn and by

Lemma 3.7, Tu,6 (h(n) - h) > n. If we now take any n > T(h, E), we have Tu,6(h(n) - h) > T(h, E)

so h(n) is not in A(h, E). But h(n) is in Mh, so it follows that Ilh(n) - hill < D(u, M, 6)+ E.

Since e is arbitrary, it can now be concluded that

lim sup [lh(n) - hill < D(u, M, 6)
n-- oo

completing the proof. O

The above construction of the asympotically near-optimal algorithm b* can be viewed as an

application of Occam's Razor - that one should always use the "simplest" theory to explain the

given data. Here, as is true in general, there is no absolute measure of simplicity. Rather it is defined

by the choice of the nested partitioning of the model set, M = UiMi. Given this nested structure,
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plants in the smaller Mi's are considered to be simpler than those in larger Mi. Convergence of

the estimates is guaranteed by always choosing the simplest plant that is consistent with the data

seen so far. This avoids overfitting of data, a problem which crops up all the time in statistics and

pattern recognition. It is interesting to note that this same principle of Occam's Razor has also

been applied to guarantee convergence in distribution-free probabilistic learning problems [1, 20].

A similar condition on the model set for convergence in the truncated 11 seminorm can be

derived. It turns out that a a- compactness condition is also sufficient, but in a different topology

on X _ RI, the so called product topology [18]. (Here, w is the set of all natural numbers.)

Definition 3.10 The product topology on RI has as its basis all sets of the form fl o0 U, where

each Un is an open interval in ~R and Un = R ezcept for finitely many n.

This topology is strictly weaker than the 11- topology on SW. The product topology is rele-

vant because convergence in this topology is the same as component-wise convergence, which is

essentially the notion of convergence captured by using the truncated l seminorm.

We will need the following lemma, which is analogous to Lemma 3.9.

Lemma 3.11 Fix the inputs u E BlN and 6 > 0. Let A C X be compact in the product topology,

and suppose Tu,b(g) is finite for every g E A. Then supgEA Tu,b(g) is also finite.

Proof. By examining the proof of Lemma 3.11, one sees that the lemma holds for the 11 topology

because IIP,(u * g)loo is a continuous function of g in that topology. However, IIP,(u * g)* 1 is also

continuous in the product topology, since it depends only on the first n components of g. Hence

the same lemma holds for the product topology. o

The sufficient condition on M for asymptotic convergence, in the truncated 11 seminorm, to the

worst-case infinite-horizon diameter can now be stated and proved.

Theorem 3.12 If the model set M is o-compact in the product topology, then there is an identi-

fication algorithm b* such that el ((*, M, u, 6) < D(u, M, 6) for all u and 6 > O.

Proof. Write M as a nested union of subsets Mi compact in the product topology. We claim

that the algorithm O* introduced in the proof of Theorem 3.5 will also do here.

Fix the unknown plant h E M and define Mh to be the smallest of the compact subsets Mi

which contains h. Take any integer m > 0 and let e > 0. Define

Am(h, E) = (9 E Mh: jIPm(g - h)li > D(u, M,6) + E) (3.19)
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Tm(h,E)- sup Tu,(g - h) (3.20)
gEAm(h,e)

Now the truncated 11 ball {g E SW: IIP,(g - h)l1 < D(u, M, 6) + e} is an open set in the product

topology. Therefore Am(h, e) is a closed subset of Mh and is also compact in the product topology.

Moreover, by Lemma 3.8, Tu,s(g - h) is finite for all g E Am(h, e). Hence, it follows from Lemma

3.11 that Tm(h, e) is finite. Now, using exactly the same argument as in the proof of Theorem 3.5,

it can be shown that, for every n > Tm(h, e), the estimates h(n) satisfy

IPm(h(n)- h)lJ1 < D(u, M, 6) + E (3.21)

Since e is arbitrary, it can be concluded that

limsup lPm,(h(l) - h)jll < D(u, M, 6) (3.22)
n--oo

and since this is true for all m, e, (0* M, u, 6) < D(u, M,6). [

It is interesting to compare the topological conditions on the model set M for convergence in

the 11 norm and for convergence in the truncated 11 seminorm. By Proposition 2.3, the asymptotic

truncated 11 error is always less than the asymptotic 11 error. It therefore follows that the ra-

compactness of M in the 11- topology, which is sufficient for convergence in the 11 norm, is also a

sufficient condition for convergence in the truncated 11 norm. However, most model sets containing

unstable plants are not a-compact in the 11-topology and therefore the condition is too strong to

be useful. On the other hand, it is much easier to satisfy the condition of or-compactness in the

product topology, and hence it is more useful for analysing model sets containing unstable plants.

This fact will become evident when we later apply these general results on specific model sets.

The main results of this section are summarized in the following theorem.

Theorem 3.13 If the model set M is a-compact in the 11 topology, then the optimal asymptotic

truncated 11 error and the worst-case infinite-horizon diameter are related by

-D(u, M,6) < El (u, M,6) < D(u, M,6)

for all inputs u and 6 > 0. If the model set M is o-compact in the product topology, then the

optimal asymptotic truncated 11 error and the worst-case infinite-horizon diameter are related by

1D(u, M, 6) < Et(u, M, ) < D(u, M, 6)
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4 Analysis of Infinite-Horizon Uncertainty

Theorem 3.13 states that the optimal worst-case asymptotic error achievable by any identification

algorithm is characterized by the function D(u, M, 6), measuring the worst-case uncertainty from

infinite-horizon experiments. It describes the intrinsic difficulty of identifying plants in a given

model set, independent of the specific identification algorithm used. This result enables us to move

from the analysis of the error of specific algorithms to the analysis of the function D(u, M, 6). In

particular, we would like to determine conditions on the model set M for the existence of inputs u

such that D(u, M, 6) is finite, or even better, D(u, M, 6) vary continuously with the noise bound

6 at 6 = 0. This would imply that identification accuracy is robust to measurement noise.

We shall first prove a general lower bound for D(u, M, 6) which holds for all inputs u and for

any non-trivial model set.

Proposition 4.1 Assume that there exist g, h E M such that IIg - hill = 26. Then

D(u, M, 6) > 26 VN > O, Vu E BIN

Proof. Let g, h E M satisfy IIg-hIll = 26. Suppose that u are the inputs used in the identification

experiments and h is the actual plant. Let the disturbance be d = u * (g - h)/2. Note that

ldlloo < Ilulloll-hill = a.

The observed output is y = u * h + d = u *(g + h)/2. Now, Ilu * g - Yll = Ieu * (g - h)lljo <

IIull llg - hill < 6. Therefore, g E So,(M,u,y,6). Since h is also in S,(M,u,y,6), it follows

that

diam(S(,(M, u, y, 6)) > Ilg- hill = 26

Since D(u, M, 6) is the diameter of the largest possible uncertainty set, the desired lower bound

follows. D

The value of the worst-case diameter D(u, M, 6) is in general difficult to evaluate because it is

the supremum over the diameter of all possible infinite-horizon uncertainty sets. However, it turns

out that for an important class of model sets, D(u, M, 6) has a simple characterization. These are

the model sets which are convex and balanced. (A set A is said to be balanced if for every h in A,

-h is also in A.) The following proposition gives the characterization, and is a variation of a basic

result in information-based complexity theory [14].
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Proposition 4.2 If M is a balanced convex subset of X, then the worst-case diameter is attained

when the true plant and the disturbance are both 0. That is,

D(u, M, 6) -- sup sup diam(Soo(M, u, u * h + d, 6)) = diam(Soo(M, u, O,6))
hEM Id1I,<6

Proof. Consider an arbitrary uncertainty set SoO(M, u, y, 6). Suppose g', g" E SoO(M, u, y, 6).

Then y = u * g' + d' = u * g" + d" for some disturbances d', d" satisfying Ild'110o < 6, Ild"lloo < 6.

Hence, Ilu * (g'- g")l11, < 26. Therefore, the diameter of the uncertainty set satisfies

diam(S,(M, u, y, 6)) _ sup 11g' - g"111
1',9"ES .(MA,u,y6)

< sup 11g' - g"1l1 (4.23)
Ilu*(g-g")lloo.<26

Because M is convex and balanced, (g' - g")/2 E M. Noting that

SO(M, u, 0,6) = {g E M: ju * g91oo < 6} (4.24)

and writing g = (g' - g")/2, it follows from above that

diam(S,(M, u, d, 6)) < sup 112gll = diam(S,(M, u, O, 6))
gE soo(M,u,O,6)

where the last equality follows because Soo(M, u, 0, 6) is a balanced set. The desired result follows.

We shall now obtain necessary and sufficient conditions on balanced convex model sets for the

existence of inputs u such that D(u, M, 6) is finite. These conditions are given in terms of the

notion of stability testing, which we will now define.

Recall that a plant h is BIBO stable if for every input u in Io., the output y is also in lo,; or,

equivalently, if h is in 11. Note that stability is defined in terms of the behaviour of a plant on an

infinite class of inputs. It is of interest to inquire whether for some model sets M C X, the stability

of plants in M can be determined in terms of their behaviour on only a finite set of inputs. This

motivates the following definition.

Definition 4.3 A model set M is said to be finitely testable for stability if there exists some

N > 0 and inputs U(1),U(2),...,U(N) E Blo such that h E M is BIBO stable if and only if

u(i) * h E loo for all i = 1, 2, ... , N. Equivalently, in terms of the vectorial notation, there exist

N > O and u E BlT, such that h E M is stable if and only if u * h E Bl.
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Theorem 4.4 Assume M is balanced and convex. Then there exist inputs u such that D(u, M, 6)

is finite if and only if it is finitely testable for stability. Moreover, if N inputs are sufficient for

testing stability, then there ezist N + 1 inputs u such that

D(u, M, 6) < 26

Proof. By Proposition 4.2,

D(u, M, 6) = diam(S 0(M, u, 0, 6)) _ sup 211glli
gEM,lu*llgo,_<6

Suppose that M is not finitely testable for stability. Then, given any N > 0 and any u E Bloo,

there exists g E M such that g is unstable but u * g E lN . Define

g' = min{1, }g (4.25)
lIu * gll.

We have g E M since M is balanced and convex. Furthermore,

llu * g'11o < I * jl u * glloo = 6. (4.26)

Hence g' E SOO(M, u, 0, 6). But g' is unstable, so 119g'11 = oo. Therefore, diam(S0 0(M, u, 0, 6)) = oo

and D(u, M, 6) = oo for all inputs u and 6 > 0.

Conversely, suppose that M is finitely testable for stability. Then, by definition, there exist

N > O and u = [u(l),..., u(N)] E Bl.0 such that

u* g E lo ~ 9 g E 11 g9 E M (4.27)

Hence, S(O(M, u, 0, 6) C 1 for every 6 > 0.

Now, let A be the set of all finite sequences of 1's and -l's:

A -= (al, a 2 , ., ak): k > ai E {1, -1}, Vi} (4.28)

Let v E Bloo be an input sequence such that for every finite sequence a E A, there exist m, n such

that

(Vm, Vm+l,..., Vm+n) = a (4.29)

The sequence v is said to contain all finite sequences of 1's and -l's. Clearly, since A is only

countable, there exists a v with such a property. (For example, one can construct such a v by

simply concatenating the elements of A.)
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It will now be shown that performing N + 1 experiments using the inputs u (which can test

stability) and the additional input v, the worst case diameter can be made finite.

Let u' = [u(1), . . ., u(N), v] be the augmented input sequence vector. Performing an additional

experiment with input v has the effect of reducing the zero-ouput uncertainty set:

S,(M, u', o, ) = S,(M, u, 0,) n S.(M, v, 0, 6) (4.30)

Consider any g E SO.(M, u', 0, 6). We see that g is also in Sinfty(M, u, 0, 6) and so hlglll < oo.

Hence for any e > 0 there exists M such that

00oo

E g9kl < E (4.31)
k=M+l

Now consider the finite sequence

(sgn(gM), sgn(gMl), .. , sgn(go)) E A

where sgn is the signum function such that sgn(x) = 1 if z > 0 and sgn(x) = -1 if xr < 0.

By definition of the sequence v, there exists m such that

Vm = sgn(gM), Vm+l = sgn(gMl),..., Vm+M = sgn(go)

We then have

m+M

I(v * g)m+MI = I Ei Vm+M-kgkl
k=O

M m+M

= I V+M-kgk + E Vm+M-kgkl
k=O k=M+l

M m+M

= I| sgn(gk)gk + E Vm+M-kgkl
k=O k=M+l

M m+M

_> E gkl- E Igkl
k=O k=M+l

> Ilgll - 2E, (4.32)

But g E So,(M,v,0,6), so I(v * 9)m+MI < 6. Hence it follows from inequality (4.32) that

lghlll < 6+ 2E. Since this is true for every E > 0, it follows that ligllI < 6 for any g E SO(M ', u', 0,6).

Thus,

D(u,M,6) = diam(So((M,u', 0, 6))= sup 211g 1, < 26
ESo (M,u',O,6)
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Theorem 4.4 gives an interesting dichotomy of the class of all balanced, convex model sets. It

shows that for a balanced convex model set M, either D(u, M, 6) = oo for every u and for every

6 > O, or D(u,M,6) < 26 for some u. In view of the general lower bound of 26 on D(u, M,6)

for most model sets (Proposition 4.1), this implies that balanced convex model sets can either be

identified very accurately or with infinite error regardless of how much experimentation one does.

It is also of interest to note that the random binary sequence, a commonly used identification

input generated by randomly and independently picking each value to be 1 or -1, has the desired

property of containing all finite sequences of 1's and -l's, with probability 1.

5 Analysis of Specific Model Sets

We shall now apply the general results obtained in the previous two sections to analyse the optimal

asymptotic errors for specific model sets. First, we present a general lower bound on the optimal

asymptotic errors that follows directly from Theorem 3.13 and Proposition 4.1.

Proposition 5.1 Let 6 > O. Assume that there exists g, h E M such that jIg - hll = 26. Then

E(u,M,6) > and Et(u, M,S6)6 VN > O,uE Bl

Thus 6 is an intrinsic lower bound to the identification accuracy for most model sets. Identifi-

cation can be considered successful if the optimal worst-case asymptotic error turns out to be close

to 6.

Next we will look at three specific model sets: the set of all stable plants, the set of all finite-

dimensional (stable and unstable) plants, and the set X of all LTI systems.

A. Stable Plants

Let Mstab be the set of all BIBO stable plants. (The set Mstab can be identified with the

space 11). To obtain tight bounds on the optimal asymptotic error, we begin by investigating its

topological properties.

Lemma 5.2 Let g be a stable plant. The set of uniformly stable plants:

M,(g) (h: lhkl < Igkl Vk}

is compact in the 11 topology.
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Proof. Since M,(g) is a closed subset of 11, it is complete. Therefore, to prove compactness, it

suffices to prove that the set is totally bounded, that is, M,(g) can be covered by a finite number

of 11 balls of radius e for every e > 0.

Let e > 0. Pick N such that k=JN+l IgkI < E/2. For each k between 0 and N, partition the

interval [- Igk, IgkI] by choosing points Xko < kl < ... < XkM such that xko = -[Igk and ZkM = IgkI

and so that adjacent points differ by no more than e/N. (Here, M is some appropriately chosen

number). Consider the finite set of plants in M defined by

F = {h: hk E {XkOXkl1,..., kM} for k < N and hk = 0 for k > N} (5.33)

Given any h E M,(g), there exists some h' E F such that Ih' - hkl < e/2N for all k < N. Hence

N o00

Ilh'-hIll = lIh'-hkl + E Ih,-h l
k=O k=N+l

N

< EE/2N + e/2 = E
k=O

Hence the finite number of balls of radius e centred at elements of F cover M,(g). [O

The following is the main result about the set of all stable systems.

Proposition 5.3 There is a single experiment, using an input u* E Bloo, such that for every 6 > 0,

the optimal asymptotic l1 error satisfies

El (U*, Mtab, 6) < 26

Proof. For each i > 1, define a plant g(i) such that gk = i(l- 1/i)k for every k. Let Mi =- M,(g())

and Moo - UiMi. It is easy to see that the Mi's are nested and that Metab is the 11 closure of

Moo. Since each of the Mi's is compact by the previous lemma, M0oo is a-compact and by Theorem

3.5, there is an algorithm O* such that for every 6 > 0 and inputs u,

e (+*, Moo, u, 6) < D(u, M,,oo, 6) (5.34)

Now,

el W(*,Ms,~ab,u,6) < limel (0q*,Moo, u,x) by Prop. 2.4

< limD(u, M a,, ) (5.35)
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Now, M.,tb is balanced and convex. Since it contains only stable plants, clearly no input is

required to test stability. By Theorem 4.4, then, any single input u* which contains all possible

finite sequences of 1's and -l's will yield D(u*, MMtab, z) < 2x for all z > 0. Thus

e (q*, Mstab, u*, 6) < 26

Hence, to identify a plant accurately in the limit, it is enough to know a priori that it is stable;

no additional information, such as bounds on decay rate and gain, is necessary. The achievable ac-

curacy varies continuously with the noise bound 6 for small 6; thus, identification can be performed

robust to measurement noise.

B. Finite-Dimensional Plants

We will now consider the model set M fd, the set of all stable and unstable plants with rational

z-transform. Since it contains unstable systems, it is unreasonable to discuss convergence of error

in the 11 norm. Instead, we will concentrate on analysing the asymptotic truncated 11 error.

First we show that Mfd is o-compact in the product topology.

Proposition 5.4 Let p, q, K > 0 and Mfd(p, q, K) be the class of all finite-dimensional systems

having z-transforms4

bpZP + bp_lzP-1 + ... + bo

zq + aq_lzq l + - . * + ao

with bounded parameters: lail < K and Ib I C K for all i. Mfd(p, q, K) is compact in the product

topology.

Proof. If we define 0 = [bp, ... , bo, aql, .. , ao]t and sn = [Un-p,.. , Un Yn-q+l,..., Yn-1], then

the input u and output y of an arbitrary plant in Mfd(p, q, K) are related via the difference equation

Yn = Otzn (5.36)

Since the parameters are bounded, 0 lies in a compact subset A C S3p+q+l. Let f : A -

Mfd(p,q,K) be the parameterization of plants in Mfd(p,q,K) via Equation (5.36), and fi(O)

be the i th component of the impulse response of the plant f(8). It can be deduced from Equation

(5.36) that each fi is a polynomial in 0 and hence is continuous. Therefore the parameterization

4In this paper, the z-transform of a system with impulse response h is E'O 
h i z '
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f is continuous with respect to the product topology on Mfd(p, q, K). Since the domain of f is

compact, its image Mfd(p, q, K) is compact in the product topology. o

Proposition 5.5 Mfd is a-compact in the product topology.

Proof. For each i > 1, define Mi = Up+q<iMfd(p, q,i). Each Mi is compact in the product

topology since it is a finite union of compact sets. Also, it is clear that Mfd = UiMi, and hence it

is a-compact. [

It follows that Theorem 3.13 can be applied on Mfd and the worst-case infinite-horizon diameter

D(u, Mfd, 6) characterizes the optimal asymptotic error El (u, Mfd, 6). Moreover, since M.fd is

balanced and convex, it suffices, by virtue of Theorem 4.4, to verify if Mfd is finitely testable for

stability. We begin with two definitions.

Definition 5.6 For a sequence u E Ioo, let Z(u) denote the set of all zeros of its z-transform U(z)

inside the open unit disk. (Note that U(z) is analytic inside the open unit disk.)

Definition 5.7 A sequence u is said to ezcite at frequency w E [0, 27r] if

n

lim sup I E uke - j kw =00
n--4 oo k=O

i.e. the Fourier series of u at w is unbounded. Let fl(u) denote the set of all frequences at which u

ezcites.

We shall now give the following key result

Theorem 5.8 Mfd is testable for stability by bounded inputs U(1),..., u(N) if and only if the inputs

have the following properties:

N

1) U 0(u(')) = [0, 2.]

N

i=12) nZ(uw)) = 
Hence the inputs can test the stability of finite-dimensional plants if they excite at all frequences

and have no common zeros in the unit disk.

To prove this result, we need the following lemma, the proof of which is elementary but tedious,

and will be omitted.
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Lemma 5.9 Let u E B0'o and let h be a complez-valued impulse response (i.e. the sequence values

can be complez) with a strictly proper rational transfer function

H(z) - (i=O az
(Z - ew)nM

(It has a single pole repeated M times at eJi). Then:

1) If u excites at frequency w, the output u * h is unbounded.

2) If u does not ezcite at w and M = 1 (the pole is simple), the output u * h is bounded.

Armed with this lemma, we can now prove Theorem 5.8.

Proof. (if part)

Let u(1), (2), . .. , (N) E Bl-' be N inputs satisfying properties (1) and (2). Let h E Mfd with

a rational z-transform H(z), and assume that the outputs u(i) * h, i = 1,..., N, are all bounded.

We shall show that h must be stable.

Suppose that H(z) has a pole z = zl inside the open unit disk. Since the inputs have no

common zeros, then one of the inputs, say u(i), has no zero at z = z1 . Hence the output y(i) must

have a pole at z = zl, and therefore cannot be bounded.

Thus, H can only have poles on or outside of the unit circle. Write

H(z) = H,(z) + H,(z) (5.37)

where H,(z) contains the stable poles (outside the unit circle) and the finite impulse response (FIR)

part of H(z), and HU(z) is strictly proper with all poles on the unit circle. Let h, and ho be the

inverse transforms of H, and H, respectively. Since the output u * h, corresponding to the stable

part must be bounded, one needs only to verify that the boundedness of u(i) * hu for every i implies

hu = 0.

Suppose that Hu is not identically 0 and has L > 0 poles (counting multiplicities) on the unit

circle at distinct frequencies wl, w 2 ,..., WM. Then Hu(z) can be decomposed as

M

Hu(z) = E Hi(z) (5.38)
i=l

where

IHi(z) -~=0' Lawikzk (5.39)
(z - esi, )Li

and Li is the order of the pole at z - ej i.
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Consider a minimal state space realization of the system with transfer function Hu(z), where

the states x consist of the modes corresponding to each pole of the system. The dimension of

the realization is L and some of the states are complex but they occur in conjugate pairs. (These

correspond to conjugate poles.) Since UYi l (u(i)) = [0, 2Xr], the frequency w1 lies in Qf(v) for some

input v E {u(l),..., u(N)}. By Proposition 5.9,

y() = v * h(l) l(5.40)

where h(1) is the impulse response whose z-transform is Hi(z).

If x(l) are the modal states (of dimension L 1 ) corresponding to this pole at w1, the system h(l)

can be realized minimally as

x(l, =- Alx') + Blv., y(l)= ClxM) (5.41)

for some matrices Al, B 1, C 1.

Since y(l) is unbounded but v is bounded, it follows from Equation 5.41 that the modal states

x(1 ) must be unbounded given input v. But the overall state x for the entire system Hu(z) is an

aggregation of the modal states and hence must become unbounded too when input v is applied.

The last step is to show that this implies that the output of the overall system must be unbounded

also.

Let the minimal state space realization of H, be

xn+i = Axn + Bvn, y, = Cxn (5.42)

From Equation 5.42, a sequence of equations is obtained as

Yn = Cxn

Yn+l = CAxn + CBvn

L-2

Yn+L-1 = CAL-lXn + CAiBVn
i=O

Let

Yn [ Y +l ,Qo(A, C) = . , E= .

yn+L-I CAL - 1 iL-2 CAiB

The sequence of output equations can then be written as

Yn = Qo(A, C)xn + Evn (5.43)
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Note that Qo(A, C) is the observability matrix of the system By the minimality of the realization,

Qo(A, C) is invertible. Since xn becomes unbounded and v, is bounded, the output y, must be

also unbounded. This contradicts our original assumption and hence Hu = 0. The original system

h must be stable and the inputs u(1),..., u(N) can test stability in Mfd.

(only-if part)

We now show that the two conditions for the inputs are also necessary to test the stability in

Mfd.

Suppose the first condition is not satisfied; consider an wo E [0,27r] but wo 0 UiNl(u(i)).

Consider the unstable system hn = cos(nwo). Lemma 5.9(b) implies that u(i) * ein"o is bounded

for all i. Since u(i) * h is the real part of u(i) * eino , it is also bounded for all i. Thus, the inputs

cannot test stability in Mfd. This shows that the first condition is necessary.

Now suppose that the second condition is not satisfied, so that there exists some z0 = roejiw

(0 < ro < 1) which is a common zero in the open unit disk of the z-transforms of all the inputs;

that is,
0o

u(i)rkejkwo = 0, Vi (5.44)
k=O

Since the inputs are real, their zeros occur as conjugate pairs, i.e.

Ek u-)roe-j =_ Vi (5.45)
k=O

k=O

I n
- O n u~)rok(ej(n-k)wo + e-j(n)wo)1

k=O

n n n

n lejrnwO ( e E k)rk-j'kwo) + e-jnwo( ° ( i)rkw )I

k=O k=O

f-- lO(2r-nleinco(_ E ukrew(i) + e-,kwo)(_ E U()rkejkwo
k=n+l k=n+l

0o

-n_ r
< o o = 1-

k=n+l

Thus the output for each of the inputs is bounded. Hence the inputs u(i)'s cannot test the stability

in Mafds. 

We have the following corollary:
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Corollary 5.10 Mfd is testable for stability by a single input u E B-. if and only if u excites at

all frequencies and its z-transform has no zeros inside the open unit disk.

Neither the existence nor the non-existence of a bounded input having both the properties

required by Corollary 5.10 has been established. However, bounded inputs which excite at all

frequencies do exist. In fact, Lusin [12] has constructed a sequence which excites at all frequencies

despite the fact that the sequence actually tends to 0. It will now be demonstrated that the input

used in the proof of Theorem 4.4, containing all finite sequences of 1's and -l's, also excites at all

frequencies.

Proposition 5.11 Let u be any sequence which contains all finite sequences of 1 's and -1 's. Then

0(u) = [0, 2r].

Proof. Let w0 be an arbitrary frequency in [0, 2Xr]. Take any M > 0. The sum Ek I cos kwo is

divergent, so we can find an integer L such that EL=o [ cos kwol > M. By the definition of the

sequence u, there exists an integer nl such that

(un 1, un,+1l, ... un,1+L) = (1, sgn(cos wo), sgn(cos 2wo), ... , sgn(cos Lwo)) (5.46)

Now,

nl +L ni +L

IE uke-jW"I = I E sgn(cos(k - n l)w)e -kWO
k=nl k=nl

L

= I E sgn(cos kwo)e - jkwo I
k=O

L

> I E sgn(cosko)coskwol > M
k=O

This is true for every M, so lim supn,.OO I = uke-jkWO [ = oo °

Proposition 5.11 leads to the following result:

Proposition 5.12 Two inputs can test stability in Mfd.

Proof. Take u(l) as any input in Blo containing all finite sequences of 1's and -l's, and u(2) as

the unit impulse. Since u(l) excites at all frequencies and the z-transform of u(2) has no zeros, the

result follows from Theorem 5.8. M

This leads to the main result for the optimal asymptotic truncated 11 error of Mfd.
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Theorem 5.13 There are 2 inputs u such that Et (u, Mfd, 6) < 26

Proof. Since Mfd is testable for stability by two inputs, it follows from Theorem 4.4 that at

most one additional input will be needed to achieve a worst-case diameter of 26. Recall from the

proof of Theorem 4.4 that it is sufficient for the additional input to contain all finite sequences of

1's and -l's. But since this input can also be used as one of the inputs for testing stability, a saving

of 1 input is obtained. Hence using the two inputs, we achieve D(u, Mfd, 6) = 26. Since Mfd is

o-compact in the product topology (Proposition 5.5), the desired result now follows from Theorem

3.13. 0

The conclusion is therefore that Mfd can be identified accurately in the limit. In particular, any

model set containing finite-dimensional plants of bounded order can also be identified accurately

in the limit.

C. All LTI Plants

A natural question to ask is whether there are any model sets larger that Mfd that have small

optimal asymptotic errors. In particular, what about X, the set of all LTI plants? The results we

have for this case are not complete.

Proposition 5.14 No single input in Bloo can test the stability of plants in X. Hence, the optimal

asymptotic error is infinite if only a single experiment is performed.

Proof. Let u E loo be any bounded input. We shall find a plant h E X which is unstable but

yields an output satisfying Ilu * hllo < 1.

Given u, the desired h can be constructed recursively as follows:

1) ho = Iu (without loss of generality, u0o can be assumed to be nonzero)

2) Given ho, hl,..., h,, if

n n

- 1 + E hkun+l-kl < I1 + E hkun+l-k1 (5.47)
k=O k=O

then define
1 n

h,+l = -- (1 + E hkun+l-k) (5.48)
UO k=O

otherwise define

h = (-1 + E hkun+l-k) (5.49)
k=O
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Now, for every n > 0,

n1 h 1 I 1n

Ihn+1 = max{|-(1 + E hU.+l-k), I-(-l + E hkUn+l-k)} > I
k=O k=O

so h is unstable. Also, luohol = 1 and

n

(u * h)n+lI = Ihn+l + E hkUn+l-k = 1, Vn > 0
h=O

For the case of multiple experiments, we have the following necessary condition for the inputs

to be able to test the stability of plants in X. However, it is still an open problem where a finite

number of bounded inputs can test the stability. of plants in X.

Proposition 5.15 If the inputs u(1),... ,u(N) can test the stability of plants in X, then at least

one of them must lie outside Ip for every p < oo.

Proof. Suppose that there exists some p, 1 < p < oo, such that for every i, u(i) E Ip. Let q satisfy

l/p+ 1/q = 1. Note that 1 < q < oo.

Consider the plant defined by hn = 1/(n + 1). Since h is not in 11, it is unstable. However,

it is in 1, for any r > 1. In particular, h is in iq. For all i, 1 < i < N, Holder's inequality yields

Ilu(1 ) * hllo <• Ilu(i)llpllhllq. Hence the outputs of h to each of the inputs are bounded, although h

is unstable. Therefore, the inputs cannot test the stability of plants in X. a[

6 Uniform Convergence of Estimates

In Section 3, it was shown that under some assumptions, the finite-horizon identification error will

converge to the value of the infinite-horizon worst-case diameter, for all plants and all possible

disturbances. However, nothing is said as to whether the convergence is uniform. Thus, although

convergence is guaranteed for each plant, the rate of convergence may be arbitrarily slow for some

plants in the model set. In this section, conditions on the model set will be presented that ensure

uniform convergence of the estimates for all plants in the model set. This allows one to a priori

determine the experiment length required to guarantee that any plant in the model set can be

identified to a prescribed accuracy. In contrast to the a-compactness condition that guarantees

convergence, a compactness condition is used to guarantee uniform convergence.
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Proposition 6.1 If the model set M is compact in the 11-topology, then there is an algorithm q

the estimates of which will converge uniformly to within D(u, M,6) of the true plant; i.e. for all

e > 0, there ezists a time T(e) such that for all h E M, lldlle < 6,

jIb(Pnu, Pn(u * h + d)) - hill < D(u, M, 6) + E Vn > T(E)

Moreover, the algorithm does not require the knowledge of 6, the bound on the disturbances, to

compute its estimates.

Proof. An algorithm q5 is defined as follows: for each n,

Oq(Pnu, Pny) = argmingsMlIPn(u * g - y)ll (6.50)

The minimum must exist since M is compact and IIP,(u * g - y)l.I is a continuous function of g

in the 11-topology. Also note that computing this estimate does not require the knowledge of 6.

Now y = u * h + d for some true plant h and disturbance d satisfying Ildllo < 6. By definition,

the estimate at each time n satisfies

IIPn(u * q(Pnu, Pny) - y)ll. < JP.(u * h - y)llo = IlPndll. < 6

and hence q(Pnu, Pny) E Sn(M, u, y, 6) for each n, where Sn is the finite-horizon uncertainty set at

time n. We shall use only this property of the estimates of b to show that they uniformly converge.

Let e > 0. For each plant h E M, define

A(h,e) ={g e M.: Ilg - hill > D(u, M, 6) + } (6.51)

Also consider the number

T(e) sup sup Tu,6(g- h) (6.52)
hEM gEA(h,E)

where the function Tu,6 has been defined in Section 3. T(e) can be rewritten as suPh'EB(e) Tu,6(h'),

where

B(e) = {h' E M - M : IIh'11j > D(u, M, 6) + E}

and M - M = {g - h : g, h E M}. Since M is compact and the subtraction operation is continuous

with respect to the 11- topology, the set M - M is also compact in the 11-topology. It follows that

B(E), a closed subset of M - M, is also compact. Now, Tu,6(h') is finite for all h' in B(e), by

Lemma 3.8. Hence, by Lemma 3.9, T(e) is finite.
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Now if n > T(e), then for any plant h E M and Ildtloo < 6, the estimate h(n) generated

by the algorithm must lie in the uncertainty set Sn(M, u, u * h + d, 8). Hence, by Lemma 3.7,

TU,6(h(n) - h) > n > T(e). This implies

li(")- hill < D(u, M, 6) + e

Since this holds for all h and d, the convergence is indeed uniform. O

One can prove a similar result on the uniform convergence of estimates in the truncated 11 norm.

Proposition 6.2 If the model set M is compact in the product topology, then there is an algo-

rithm q the estimates of which will converge uniformly, in the m-truncated 11 seminorm, to within

D(u, M, 6) of the true plant; i.e. for all m > 0 and e > O, there exists T(m, e) such that for all

h E M, Ildlloo < 6,

IIPm(q(Pnu, Pn(u * h + d))-h)lli < D(u, M,8 6) + E n > T(m, e)

Moreover, the algorithm does not require the knowledge of 6, the bound on the disturbances, to

compute its estimates.

Equipped with these two results, we shall now analyse uniform convergence of estimates for the

model sets M,tab and Mfd.

For Mstab, it can at once be seen that although convergence to a small asymptotic error is

possible, such convergence cannot be uniform.

Proposition 6.3 Let q be any algorithm and u be any input. Then for every n and for every M,

there exists an h E Mstab such that

11k(Pnu, Pn(u * h)) - hill > M

Proof. This is clear because making n measurements gives no information on the part of the

impulse response after time n, which can have arbitrarily large uncertainty in the 11 norm. O

To guarantee uniform convergence, we need to look at compact model sets.

Proposition 6.4 Let M C Mstab be a compact set (in the 11-topology) or a subset of a compact

set in Mstab. For the single input u* which contains all finite sequences of 1 's and -1 's, there is

an algorithm the estimates of which converge, uniformly for all h E M and all Ildl , < 6, to an 11

ball of radius 26 around the true plant. Moreover the algorithm does not require the knowledge of

the value of 6 to compute its estimates.
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For example, any uniformly stable model set M,(g) will admit uniform convergence in the 11

norm.

Applying Proposition 6.2 to Mfd, we have the following analogous result.

Proposition 6.5 Let M C Mfd be a compact set (in the product topology) or a subset of a compact

set in Mfd. Using two input, there is an algorithm the estimates of which converge, uniformly for

all h E M and all Ildlloo < 6, to any tuncated 11 ball of radius 26 around the true plant. Moreover

the algorithm does not require the knowledge of the value of 6 to compute its estimates.

Thus, Mfd(p, q, K), the model set containing finite-dimensional plants with bounded parame-

ters and order, will admit uniform convergence in the truncated 11 norm.

7 Can Feedback Help?

The identification experiments in our problem formulation were assumed to be open-loop, i.e. the

inputs are all chosen a priori and are not adapted based on the measured outputs. A natural

question is whether feedback can improve the optimal worst-case asymptotic error. For model sets

which are balanced, convex and or-compact, feedback cannot in fact help much. This fact will be

shown for the 11 norm case; the truncated 11 seminorm case follows similarly.

Suppose N closed-loop experiments are performed using a feedback policy /u, i.e. the inputs u

and the measured outputs y are related by u = /(y). Here, A is assumed to be strictly causal and

satisfies Js(y) E BIN for all measured outputs y . Since u and y are vectors of input sequences, we

take this to mean that the outputs can determine not only the future input sequence values within

a single experiment but also which input sequences to use in future experiments.

Parallel to Definition 2.1, we have

Definition 7.1 The worst-case asymptotic 11 error using a feedback policy p and an identification

algorithm b is

e1 (q¶,M,',6)- sup sup limsupljjl(Pn(y(y)),Pny) - hll
hEM Ildlloo<s n--o

where given each h and d, y is the unique solution to

y = (y) * h+ d

The optimal worst-case asymptotic 11 error is

E (, M, _ inf el (, M, , M 6)
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Parallel to Proposition 3.3, we have the following result

Proposition 7.2 Let D(p,, M, 6) be the diameter of the largest possible infinite horizon uncertainty

set given the feedback policy p:

D(1, M, 6) sup sup diam(S,(M, t(y),y,6))
hEM ljdlj<,6

where y is the unique solution to y = M(y) * h + d. Then:

E (IL, M, 6) > D(I, M, 6)/2

The following is the main result which establishes that feedback is not of much help in improving

the optimal worst-case asymptotic error.

Proposition 7.3 Let M be a balanced, convez model set which is a-compact in the 11 topology.

Suppose N closed-loop experiments are performed using feedback policy p. Then there ezist N inputs

u with which one can perform N open-loop experiments with an optimal worst-case asymptotic l1

error of no more that twice that for the closed-loop experiments, i.e.

El (u,M,6) < 2E(1 (i,M,6) Vs > 0

Proof. Let u ° =_ t(O) be the input given by the feedback policy when there is zero output. (This

can occur when the true plant and the disturbances are all zero.) We have, for every 6 > 0,

2E1 (,M,S6) > D(y,M,6)

> diam(So(M, u°, O 6))

= D(u° ,M,6) by Prop. 4.2

> E (u°,M,6)

where the last inequality follows from Theorem 3.13. E]

This result is related to a general result in information-based complexity theory that "adaptive

linear information" is no more powerful that "non-adaptive linear information" in linear problems,

when the problem space is balanced and convex [22].
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8 Conclusions

In this paper, we have approached the problem of analyzing the intrinsic limitations of identifica-

tion by considering the optimal worst-case asymptotic error achievable using any input and any

identification algorithm. This gives an intrinsic measure of the difficulty of identification, given

the a priori knowledge (model set and disturbance class) and the constraints on the allowable

experiments (input class).

The analysis is performed in two steps. First, for fixed inputs, a lower bound on the error of

any identification algorithm is expressed in terms of the diameter of the worst-case infinite-horizon

uncertainty set, and it was shown that under some compactness conditions on the model set, there

exist algorithms which achieve this bound asymptotically. Second, characterization of inputs which

minimize this worst-case diameter is given. Applying these general results, it was shown that large

model sets, such as the class of all stable systems and the class of all finite-dimensional systems,

can be identified very accurately in the limit.

To obtain concrete results, we have restricted to using the 11 norm as the error (or cost) measure,

and assumed that both the inputs and the disturbances are constrained to lie in loo balls. However,

the framework can also be applied to different choices of error measures and disturbance and input

classes. For example, one can consider using the Hoo metric as an error measure, and impose energy

instead of magnitude bounds on the disturbances and inputs. Another possible generalization

is to use a weighted norm on the disturbance to reflect the prior knowledge that the energy is

concentrated in some frequency bands. It can be shown that, under very mild assumptions on

the norms, the consistency results proven in Sections 3 and 6 in fact holds for arbitrary error and

disturbance norms. In general, if the model set is o-compact in the topology generated by the error

norm, then the infinite-horizon error can be achieved by finite-horizon experiments in the limit;

furthermore, the convergence is guaranteed to be uniform if the model set is compact.

There are three major directions to be pursued in future reserach:

Further Work in Identification

This includes

a) Investigate possible generalizations to MIMO and continuous-time systems.

b) Analyze the problem of having input in addition to output noise.

c) Study model sets that incorporate some qualitative information. For example, if we are told

that the impulse response is unimodal, how should we choose the optimal input for the identification
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experiment? Note that such a model set is not convex.

d) Study the extent to which randomly chosen inputs can improve the potential for accurate

identification. Such improvement would correspond to the fact that mixed strategies can out-

perform pure strategies in game theory.

e) Study the optimal rate of convergence of the finite-horizon estimates. That is, how long does

one have to perform the experiment to guarantee a desired accuracy for the estimate?

f) Explore the relationship of this work with other measures of intrinsic difficulty of identification

problems, such as using metric entropy of model sets [26].

Relationship to Robust Control

The results presented in this paper have implications on robust control. From the point of view

of control, a model is accurate if it can be used to design a controller which will perform well with

the actual plant. Accurate identification in the l1 norm satisfies this criterion, for the following

reason: Given any stabilizing controller, the closed-loop system, viewed as a map on bounded

signals, varies continuously as a function of the open-loop plant, in the 11 topology. Hence if the

identified model is close to the actual plant in the 11 norm, the desired closed-loop performance will

not differ too much from the actual closed-loop performance. Hence, our result indicates that the

set of all stable plants can be identified accurately, in the limit, for the purpose of control.

Accurate identification in the truncated 11 seminorm, on the other hand, does not necessarily

have this property. One has to compare the product topology to the graph topology, which is the

weakest topology in which the closed-loop system varies continuously as a function of the open-loop

system [25]. We expect that although the two topologies are in general different, they could in fact

be equivalent when restricted to certain model sets. For such model sets, accurate identification in

the truncated 11 seminorm is sufficient for the purpose of control.

At a broader level, this work sheds a new light on the robust control problem. Given the prior

information, the outcome of any identification scheme is an uncertainty set in which the actual plant

lies. The challenge is to come up with a control strategy that stabilizes every plant in the set and

at the same time meet specific performance objectives. This requires a complete characterization of

this uncertainty set in a simple fashion and then the development of new robust control techniques

to handle such a set. This will be a future area of research.

Relationship to Adaptive Control

Finally, we believe that the framework and the machinery developed in this paper can be
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extended to study the fundamental limitations and capabilities of adaptive control. Here, given a

model set M (possibly containing unstable plants), we pose the following questions:

a) Is there an adaptive controller which stabilizes all plants in M?

b) Is there an adaptive controller whose asymptotic performance is comparable to the closed-

loop performance that could be attained if the plant were known exactly?

Such questions have been insufficiently studied at this level of generality. We believe a further

development of our methodology will significantly enhance our understanding of these problems.
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