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ARTICLE OPEN

Optimal band structure for thermoelectrics with realistic

scattering and bands
Junsoo Park 1✉, Yi Xia 2, Vidvuds Ozoliņš 3,4 and Anubhav Jain 1✉

Understanding how to optimize electronic band structures for thermoelectrics is a topic of long-standing interest in the community.

Prior models have been limited to simplified bands and/or scattering models. In this study, we apply more rigorous scattering

treatments to more realistic model band structures—upward-parabolic bands that inflect to an inverted-parabolic behavior—

including cases of multiple bands. In contrast to common descriptors (e.g., quality factor and complexity factor), the degree to

which multiple pockets improve thermoelectric performance is bounded by interband scattering and the relative shapes of the

bands. We establish that extremely anisotropic “flat-and-dispersive” bands, although best-performing in theory, may not represent

a promising design strategy in practice. Critically, we determine optimum bandwidth, dependent on temperature and lattice

thermal conductivity, from perfect transport cutoffs that can in theory significantly boost zT beyond the values attainable through

intrinsic band structures alone. Our analysis should be widely useful as the thermoelectric research community eyes zT > 3.

npj Computational Materials            (2021) 7:43 ; https://doi.org/10.1038/s41524-021-00512-w

INTRODUCTION

Thermoelectricity enables clean electricity generation and fluid-
free cooling. The ultimate goal of basic thermoelectric materials
research is to design or discover materials with high figure of
merit zT, commonly expressed as:

zT ¼ α2σ

κe þ κlat
T : (1)

Here, the thermoelectric power factor (PF) is the product of
Ohmic charge conductivity (σ) and the Seebeck coefficient (α)
squared. The total thermal conductivity κ is the sum of electronic
thermal conductivity (κe) and lattice thermal conductivity (κlat). A
major challenge in achieving high zT and PF is that the electronic
transport quantities are linked by a set of anti-complementary
correlations1–11: σ and κe are positively correlated whereas σ and α
are negatively correlated. Only κlat, a lattice property, is relatively
independent, though it too exhibits some positive correlation with
σ through structural symmetry. These interrelations make it
difficult to determine the effect of various design strategies to
optimize zT.
Equations based on the single parabolic band (SPB) model often

underpin intuition about thermoelectric behavior. However, they
tacitly assume that there is always enough (infinite) dispersion in
all directions to cover the entire energy range relevant to
thermoelectric phenomena. Instead, in most cases of practical
interest, a band’s dispersion changes in curvature (e.g., from
positive to negative), crosses the Brillouin zone (BZ) boundary
orthogonally, and tops out at some maximum energy. In addition
to band shape considerations, thermoelectric properties can
widely vary depending on what is assumed of the scattering
behavior. Typical models and descriptors assume a behavior that
is dominated by intraband/intravalley, elastic acoustic phonon
scattering, and can be derailed when other scattering mechanisms
and interband/intervalley transitions have large effects12–16.
Several studies have analytically investigated thermoelectricity

using model band structures and scattering15–19, but they had one
or more of the following limitations: (1) the bands were purely
parabolic or parabolic-like with infinite dispersion; (2) only a single
isotropic band was considered; (3) models for scattering and/or
transport were based on constant lifetimes, constant mean free
paths, or at best scattering proportional to the density of
states (DOS).
To more generally addresses the topic of optimal band

structure, we create more realistic model solid-state band
structures and more faithfully model carrier scattering due to
multiple sources. Our band structures are properly confined to a
finite BZ with smooth inversion of upward (downward) para-
bolicity to downward (upward) parabolicity for describing
conduction (valence) states—a key for retaining generality,
physicality, and approximate compatibility with established
scattering formalism. We modify established formulae for various
scattering mechanisms—deformation-potential scattering (DPS),
polar-optical scattering (POS), and ionized-impurity scattering (IIS)
—as to capture the effects of inverted parabolicity, anisotropy,
and band multiplicity on carrier lifetimes. Refer to “Methods” for
further details. We monitor how thermoelectric properties of one
or more bands respond to variations in band shapes (see Fig. 1).
Our study fine-tunes conclusions drawn from simpler models on
design strategies such as anisotropy, band multiplicity, and
resonance levels. Finally, we determine the optimum bandwidths
as a function of temperature and κlat, which improves zT beyond
what is normally accessible.
We start by rewriting Eq. (1) to better reflect fundamental

transport relations

zT ¼ ðζ2=σÞ
κe þ κlat

T : (2)

In Eq. (2), the key role is played by ζ, a quantity for which there
appears to be no conventional name. We refer to it as the
“thermoelectric conductivity”; in the Onsager–Callen formulation
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of coupled charge-and-heat conduction20–22, ζ is the quantity
responsible for the thermal-gradient-to-charge-current conversion
(Jc= σE− ζ∇T). That is, ζ represents the charge conductivity due
to thermal driving force, the essence of thermoelectricity.
Equation (2) lifts the hidden coupling between α and σ (α= ζ/σ)
and correctly identifies ζ as the quantity that must be high but
that σ must be low. That is, we desire high thermoelectric
conductivity, not Ohmic conductivity—a correction to the routine
but ambiguous thermoelectric adage that “electrical conductivity”
must be high.
Insights into maximizing zT are attained by examining Eq. (2)

through Boltzmann transport formalism23–26,

σ ¼ 1

V

Z

ΣðEÞ � ∂f

∂E

� �

dE; (3)

ζ ¼ 1

VT

Z

ðEF � EÞΣðEÞ � ∂f

∂E

� �

dE; (4)

κe ¼
1

VT

Z

ðEF � EÞ2ΣðEÞ � ∂f

∂E

� �

dE � ζ2

σ
T ; (5)

where V is the cell volume, EF is the Fermi level, f(E) is the
Fermi–Dirac distribution, and Σ(E)= v2(E)τ(E)D(E) is the spectral
conductivity, composed of group velocity (v), lifetime (τ), and DOS
(D). The three integrands share in common the term ΣðEÞ � ∂f

∂E

� �

,
the source of the positive correlations between σ, ζ, and κe. The
integrands differ only in the power relation ðEF � EÞp as p= 0, 1, 2.
This juxtaposition states that, in relative terms, low-energy carriers
contribute most to σ, high-energy carriers contribute most to κe,
while it is the medium-energy carriers that are most responsible
for ζ. That is to say, if one wished to increase ζ relative to σ and κe,
then Σ(E) should be high in some medium-energy range and low
elsewhere. The results that follow are interpreted with this picture
in mind.

RESULTS

Optimal performance—single band

Here we investigate how a single band may yield the highest zT
with EF optimized for it. The performance is evaluated for different
band structure shapes as depicted in the three “zones” of Fig. 2: (1)
isotropic increase in m, (2) anisotropic increase in m in one
direction (“unidirectional anisotropy”), and (3) anisotropic increase
in m in two directions (“bidirectional anisotropy”). The Seebeck
coefficient predicted at a fixed EF is provided in Supplementary
Discussion, which pinpoints how and why our model predictions
deviate from the SPB model. The fluctuations in optimal EF,
displayed in Fig. 2a, is also analyzed there.
We first consider the case where m varies isotropically (Zone 1

in Fig. 2b–d). As expected, a light band is definitely preferred: the
PF and zT both decrease with increase in m, as numerous studies
agree upon27–29. A lighter band has higher mobility (μ) and thus is
less needy of carrier concentration (n) in providing a given value
of σ (σ= nμ), which helps retain high α.
We observe that anisotropy is immensely beneficial (see Zones

2 and 3 in Fig. 2). Because DPS is almost exactly proportional to
DOS, the performance under DPS is a clear indicator of the
important role played by the energy-dependence of group
velocity, 〈v2(E)〉, which steepens with band anisotropy to enhance
performance. See Supplementary Fig. 6 for the schematic.
Steepening 〈v2(E)〉 increases ζ over σ, simultaneously lowering
optimal EF. We make three major observations. First, in terms of zT,
bidirectional anisotropy (one light, two heavy directions) outper-
forms unidirectional anisotropy (two light, one heavy direction).
This is because 〈v2(E)〉 in the former evolves to a one-dimensional-
like profile, which is steeper than the two-dimensional-like profile
that 〈v2(E)〉 evolves to in the latter. Second, toward the extreme
limit, both types of anisotropy plateau in performance. This occurs
for two reasons: for one, 〈v2(E)〉 converges to the respective low-
dimensional linear limits, and for two, extreme anisotropy
exhausts “low-energy voids”. Refer to Supplementary Discussion
for details. Third, because IIS and POS are less dependent on D(E)
than DPS, anisotropy is even more beneficial when they are the
dominant mechanisms. Eventually though, because DPS increases

Fig. 1 The evolution of band structure models used in this study. a A single-band changes in effective mass. b One band (orange) changes
in effective mass while another band (blue) is fixed. c The valence band (orange) changes in effective mass while the conduction band (blue) is
fixed. Note that two-dimensional (2D) band structures are shown for graphical purposes. In the study where three-dimensional (3D) bands are
used, two types of anisotropic evolution are considered: one where a band grows heavy in one direction and another where the band grows
heavy in two directions. Each band is an upward paraboloid smoothly inflecting to an inverted paraboloid halfway to the BZ boundary.
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most rapidly with DOS, it becomes dominant as anisotropy grows
large. Overall, we observe that anisotropy improves zT by as much
as a factor of 3 above the isotropic value.
Values in Fig. 2 would be lower if mx were larger and κlat were

higher. In Supplementary Fig. 7, we show under mx= 0.1 and
κlat= 1Wm−1 K−1, zT is limited to 5 rather than 9, in a closer
neighborhood of the state-of-the-art, but draw the same relative
benefit from anisotropy.

Optimal performance—multiple bands

Realistic band structures often feature multiple bands near the
Fermi level. One of the best designs known for increasing σ
without paying a penalty on α is multiplicity of band pockets
aligned in energy30–34. Band multiplicity comes in various forms;
however, we therefore examine the effects of (i) multiplicity of
identical bands, (ii) coexistence of inequivalent bands (with
varying the second band shape), and (iii) bipolar transport in the
presence of valence and conduction bands (with varying valence
band shapes). These band structures are illustrated in Fig. 1b, c. As
justified in “Methods”, our modeling of interband/intervalley
scattering (henceforth inter-scattering) expands the phase space
owing to the additional band and uses the factor sint= 0.5 making
it half as strong as intraband/intravalley scattering (henceforth
intra-scattering). For comparison, we also provide results obtained
with sint= 0 (no inter-scattering) in Supplementary Fig. 11.
We start from two identical bands with aligned band minima,

the first of which is isotropic and fixed while the second band then
evolves according to Fig. 1b. EF is again optimized for maximum zT.
The results are plotted in Fig. 3. The left edge of Zone 1 for each
plot, where the two bands are identical, represents symmetry-
degenerate band pockets. This offers higher zT and PF as
compared to the case of a single band (Fig. 2) though less than
by twofold. Two identical bands result in essentially identical α
whereas σ draws benefits from doubled n somewhat negated by
inter-scattering. One question of interest is the effect of increasing
the number of identical carrier pockets. It is generally known that
the more pockets the better, though it is straightforward even from
our simplified analysis that doubling their number does not double
the PF or zT due to inter-scattering. For Nv band pockets, n∝ Nv

while τ / 1þ sintðNv � 1Þð Þ�1
. Then σ / Nv 1þ sintðNv � 1Þð Þ�1

,

which as Nv grows saturates to s�1
int . For example, with sint= 0.5 that

we assume, the maximum PF gain even with an infinite number of
identical pockets is a factor of 2. In fact, if inter-scattering is
somehow stronger than intra-scattering, sint > 1, then Nv is
detrimental. As such, the benefit of Nv is bounded by the degree
of inter-scattering, whose minimization should be a priority of
multiband strategies. Furthermore, if κe >> κlat, then Nv is rather
unimportant for zT because κe increases as much as the PF. If κlat=
0, hypothetically, then Nv would have no effect as it cancels exactly
for the PF and κe.
Next, keeping the principal first band fixed in shape and

maintaining sint= 0.5, we make the second band heavier. As it
turns heavier isotropically (Zone 1 in Fig. 3), zT and the PF
increasingly suffer until they sink well below even the values that
the fixed principal band alone generates (compared to Fig. 2). This
means that non-symmetry-related, accidentally degenerate pock-
ets harm zT if their band masses in the transport direction (mx) are
sufficiently different. Two main reasons account for this. As the
second band grows heavier in the transport direction (x), its direct
contribution to transport diminishes. It also indirectly sabotages
the lighter principal band by triggering heavier inter-scattering
overall. This holds until the second band becomes narrow enough
for it to function as a resonance level and selectively scatter low-
energy carriers, which reduces σ relative to ζ, whereby zT and the
PF rebound. They do not fully recover the values generated by the
original twin degenerate bands unless DPS or POS dominates. The
presence of strong IIS, due to the high impurity concentration
required for doping a very heavy band, could eclipse the
resonance level effect from manifesting.
If the second band evolves anisotropically in the y and/or the z

directions, the thermoelectric response is largely similar to what is
seen for a single-band turning anisotropic. Anisotropy increases α
and the PF as well as zT until they plateau. Also, zT is not
noticeably higher here than in the case of a single anisotropic
band because the anisotropic band dominates transport and
κe >> κlat. This again is a nod to the decreasing importance of the
band multiplicity if κe >> κlat.
Another two-band situation is a semimetallic one in which there

exists a “conduction band” and a “valence band” with no gap in
between, triggering bipolar transport. Bipolar effect is a significant
suppressor of the Seebeck coefficients of metals and small-gap

Fig. 2 Single-band thermoelectric properties in the light direction (x) with mx= 0.05 with respect to its effective-mass profile. a Fermi
level and carrier concentrations at optimum zT, b optimum zT, c the power factor, d and the Seebeck coefficient, in the x-direction. Each zone
(as enclosed by vertical gray lines) indicates certain characteristic evolution: isotropic increase in m from 0.05 to 500 in Zone 1, anisotropic
increase in my from 0.05 to 500 in Zone 2, anisotropic increase in both my and mz in Zone 3 from 0.05 to 500. Four different scattering regimes
are considered: the POS limit (blue), the IIS limit (green), the DPS limit (red), and the overall effect (black). Supplementary results for σ, μ, ζ, κe, L,
zeT are in Supplementary Fig. 8.
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semiconductors. Extrapolating the lessons from above, it is rather
straightforward that for ζ to be large in magnitude (positive or

negative), Σ(E) must be highly asymmetric about the Fermi level,
juxtaposing mobile and anisotropic “conduction” bands against
isotropically heavy “valence” bands or vice-versa. We confirm this

by fixing the conduction band and evolving the valence band as
described in Fig. 1c. The results are in Supplementary Fig. 12 and
“Discussion”. It is therefore no surprise that high-performing
semimetals and narrow-gap semiconductors feature quite drastic

band asymmetries about the Fermi level35–40.

Optimum bandwidth from perfect transport cutoff

The relative energy ranges from which σ, ζ, and κe draw
contributions imply that the best performance would be obtained
by suppressing both low-energy contributions (to suppress Ohmic
current) and high-energy contributions (to suppress thermal

current) thus limiting transport only to a certain medium-energy
range. Accordingly, we investigate the scenario in which the
contribution to transport abruptly vanishes at some optimum

energy (see the inset in Fig. 4a), which we define as the optimum
bandwidth (Wopt). It essentially represents optimum transport
distribution width. Mathematically, Wopt is obtained by solving for

the following as to maximize zT:

Wopt ¼ argmax
W

ζ2ðWÞ=σðWÞ
κeðWÞ þ κlat

T

� �

(6)

where, for instance, σðWÞ ¼ 1
V

RW

0
ΣðEÞ � ∂f

∂E

� �

dE. Finite bandwidth
of our definition would arise for a band that is abruptly crossed by
numerous perfect energy-filtering states acting as perfect
resonance levels, or a band that sharply and discontinuously
flattens out. Admittedly neither is achievable to perfection in real
life, but that theoretical limit is of our interest. We consider an
isotropic parabolic band under DPS and optimize EF. Unlike
previous studies, we find that there does exist finite, optimum
bandwidth for thermoelectrics that depends on temperature and
κlat, as delineated by Fig. 4.
Achieving Wopt would be a tremendous boost for zT. Assuming

κlat < 0.5 Wm−1 K−1 and m= 0.067, Wopt elevates zT well beyond
10—higher than any value attainable through any plain band
structures of the previous sections. For given κlat, Wopt generally
increases with temperature, as expected from the larger range of
carrier excitation at higher temperatures. This implies that achieving
Wopt is particularly consequential for low temperatures (T ≤ 300 K)
where a difference of 0.1–0.2 eV can force a shift in zT by nearly an
order of magnitude. As κlat vanishes, Wopt also vanishes, and zT

Fig. 3 Two-band thermoelectric properties in the light direction (x) with respect to the evolution the second band’s effective-mass
profile while the first band is fixed at mx=my=mz= 0.05 with sint= 0.5. a Fermi level and carrier concentrations for optimum zT,
b optimum zT, c the power factor, d and the Seebeck coefficient, in the x-direction. Each zone (as enclosed by vertical gray lines) indicates
certain characteristic evolution of the second band: isotropic increase in m from 0.05 to 500 in Zone 1, anisotropic increase in my from 0.05 to
500 in Zone 2, anisotropic increase in both my and mz in Zone 3 from 0.05 to 500. Four different scattering regimes are considered: the POS
limit (blue), the IIS limit (green), the DPS limit (red), and the overall effect (black). Supplementary results σ, μ, ζ, κe, L, zeT are in Supplementary
Fig. 10.

Fig. 4 Optimum bandwidth, Fermi level, and zT. a T- and κlat-dependent optimum bandwidth and zT under DPS for an isotropic 3D parabolic
band of mGaAs= 0.067, and b the optimum Fermi level for each point. The lower the κlat, the lower the optimum EF and Wopt. κlat is given in
Wm−1 K−1.
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diverges. This would be the Mahan–Sofo limit, named after their
seminal work that deduced widthless band to be optimal, if κlat=
041. Our recovery of this limit is also evidenced by Supplementary
Fig. 8f, in which the “electronic-part” zT, labeled zeT, diverges to
infinity as the band completely flattens out. In the other extreme, as
κlat becomes very high, Wopt diverges, i.s., it is virtually irrelevant for
zT. Further analysis is provided in Supplementary Discussion.

DISCUSSION

Commonly used descriptors for thermoelectric performance
include the quality factor (QF), which under DPS is42,43

β ¼ T
2k2B
3π

ρv2sNv

mΔ2κlat
; (7)

and the Fermi surface complexity factor29

C ¼ Nv

2

3

m?
mk

� ��1
3

þ 1

3

m?
mk

� �2
3

 !3=2

: (8)

Both metrics promote small effective mass (m or m∥) and high
band multiplicity (Nv); the latter further promotes band anisotropy
m?
mk

� 	

. This study serves as a general assessment of these well-

known blueprints in thermoelectrics, confirming some while
offering fresh perspectives and more complete physical pictures
to others.

(1) Small m in the transport direction is always better.
(2) Band anisotropy is very beneficial, but the extent depends

on its type. The advantage of anisotropy draws largely from
the fact that 〈v2(E)〉 rises to steeper, low-dimensional slopes.
Bidirectional anisotropy mimicking 1D band structure is
particularly beneficial, capable of increasing maximum zT by
nearly threefold for a given m in the light direction.

(3) Although not captured by Eqs. (7) or (8), the gains from
pocket multiplicity and band convergence depend on the
relative shapes of the bands and what is assumed of
interband scattering. A heavier pocket in the presence of a
lighter pocket can be detrimental. Metrics such as QF or C
always predict better performance in the presence of more
bands because they do not possess any component that
accounts for inter-scattering or differential intrinsic transport
of each bands. The metrics ought take these effects into
account by bounding the gain from Nv, e.g., using a term
such as Nv 1þ sintðNv � 1Þð Þ�1

as was previously described.
(4) Within the limits of our investigation, the type of scattering

mechanism does not play a pivotal role in determining what
band structure is optimal for zT, except in the context of
resonance levels. In other words, the best-performing band
structure is for the most part the same under DPS, POS, or
IIS. The type of scattering decides how much zT improves or
suffers as a band transforms, but no transformation is
decisively beneficial under one scattering regime but
decisively detrimental under another. As one exception,
resonance levels are beneficial if the dominant scattering
mechanism is efficient at energy-filtering—DPS or POS. If an
ineffective filtering mechanism, such as IIS, activates
comparably or dominates, then resonance levels lose merit.

(5) There exist optimum bandwidths to a plain parabolic band if
the transport contribution can be, albeit hypothetically,
abruptly curtailed at some energy. Optimum bandwidth
arises because low-energy states are undesired owing to
their large contribution to σ and high-energy states are
undesired owing to their large contribution to κe. Wopt for a
given m depends on temperature and κlat. It is small
(<0.3 eV) so long as κlat < 1Wm−1 K−1, and can push zT
beyond what is normally accessible.

We stress that our investigation of optimum bandwidth
has distinct characteristics from previous investigations in
terms of both approach and conclusion. Mahan and Sofo
deduced that a fully localized, widthless transport distribu-
tion (a completely flat band) would deliver maximal
thermoelectric performance41, but under the assumption
that κlat= 0. Because κlat > 0 in real materials, a widthless
band and transport distribution would yield zT= 0 as v(E)
and the PF vanish alike (see Fig. 2b Zone 1). In later studies
of optimum bandwidth, the “full-width” definition of
bandwidth, Emax− Emin, was adopted

18,19. A major limitation
of this set-up is that the full-width is inherently coupled with
m or the size of the BZ. Because smaller m in the transport
direction is always beneficial, bandwidth optimality must be
probed independently under a fixed m, as done in this
study. Indeed, in ref. 18, it was determined that optimum full-
width does not exist (is infinite) under τ(E)∝ D−1(E) as zT
continues to increase with larger full-width, likely due to
concomitantly decreasing m. In contrast to these studies, we
herein find temperature-dependent, finite optimum band-
width in the presence of finite κlat. Our bandwidth
represents scenarios whereby a band flattens abruptly or
features such as high-energy resonance levels are engi-
neered. Our conclusions are more practically relevant than
vanishing bandwidth under zero κlat or infinite full-width
that is coupled with m or the BZ size.

(6) Though more of a philosophical point, we propose that
analysis of thermoelectrics be more frequently framed in
terms of the “thermoelectric conductivity”, ζ, which offers
more straightforward insights than that framed in terms of
the Seebeck coefficient and Ohmic conductivity. By
juxtaposing ζ against σ and κe, it becomes clear that a
band must develop high Σ(E) in the mid-energy region to be
optimal for thermoelectric application. Our finding of finite
optimum bandwidth resonates with this intuition.

Reflection on real materials is also in order. In spite of the
theoretically remarkable performance of extremely anisotropic,
“flat-and-dispersive band structures”, they in practice would be
subject to a disadvantage due to polycrystallinity of commercial-
scale materials as well as symmetry considerations. Indeed, no
candidate materials thus far not achieved the high zT modeled
here, and we project why in light of our modeling. We distinguish
bands in a cubic cell from those in a non-cubic cell.
In a non-cubic cell, a flat-and-dispersive band limits light

transport to only certain direction(s). Assuming polycrystallinity,
conductivity through a series of differently oriented grains is best
described by the lower Wiener bound for composite media, i.e.,
the harmonic average of directional conductivities44. Due to poor
conductivities along the heavy branch(es), the harmonic average
seriously hampers the overall performance under our model, as
described in Supplementary Fig. 9. An anisotropic band is then
never as good as its isotropic counterpart whose polycrystalline-
averaged conductivities are identical to those in any principal
direction.
Bi2PdO4

45 and BaPdS2
46 are good examples as neither

compound is cubic but exhibit bidirectional-anisotropic flat-and-
dispersive valence bands. The DOS profiles are characterized by
peak-like protrusions near the band edges followed by decays,
confirming the 1D-like band structure. Polycrystalline Bi2PdO4 has
been experimentally synthesized and investigated, but recorded
rather disappointing p-type PF (1 mWm−1 K−2) and zT (0.06)47.
Because electronic transport is mobile only in one direction and
inhibited in the two heavy directions by design, it is unlikely that
their presumably high thermoelectric potential in the light
direction would shine through unless the sample is a single
crystal. BaPdS2 has not yet been tested, but it is reasonable to
hypothesize that it may exhibit a similar behavior.
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Under cubic symmetry, all three principal directions are
guaranteed the same number of light and heavy branches.
Polycrystallinity may then be irrelevant here, but now the concern
is that the coexistence of light and heavy branches in the direction
of transport (as opposed to light in the transport direction, heavy
in other directions) with inter-scattering between them can be
inherently limiting (recall Zone 1 in Fig. 3). Relevant cases are Fe-
based full-Heuslers48 and perovskite SrTiO3

49, which exhibit
unidirectional flat-and-dispersive conduction bands, with the 2D-
like, precipitous DOS at the band edge.
Fe2TiSi, a member of the former family, is particularly intriguing

because its flat-and-dispersive conduction bands are opposed by
triply degenerate, isotropic valence bands, offering a direct
comparison of the n-type and p-type performances of the respective
band structures. According to our DFT50 calculation using the PBE
functional51, the lowermost conduction band is very flat along Γ− X
whose energy width is 0.05 eV (m∥ ≈ 41) and dispersive in other
directions (m⊥ ≈ 0.7). A second isotropic conduction band (m ≈ 0.4)
is degenerate at Γ. Opposing them are three isotropic valence bands
with comparable 0.4 ≤m ≤ 0.75. Theoretical thermoelectric proper-
ties were studied with rigorous first-principles treatment of
electron–phonon scattering52, but the n-type PF (5 mWm−1 K−2 at
300 K) was predicted to be only barely higher than the p-type PF
(4mWm−1 K−2 at 300 K), with no sign of the pronounced
performance promised by the flat-and-dispersiveness.
As for SrTiO3, according to our DFT calculation, the width of the

heavy branch of the lowermost conduction band along Γ− X is
~0.1 eV (m∥ ≈ 7) while in the dispersive directions m⊥ ≈ 0.8. Two
additional relatively isotropic conduction bands (0.4 ≤m ≤ 0.7)
disperse from Γ at the CBM. Multiple experimental reports exist for
SrTiO3 on single crystals, which should be the best-performing and
the most comparable to theory results. Although respectable n-
type PFs of 3.653 and 2.3 mWm−1 K−2 54 have been recorded at
room temperature, neither are these values anywhere near what
Fig. 2 promises.
These observations collectively suggest that cubic symmetry may

cap the full potential of the flat-and-dispersive bands in real materials.
As a separate point, it would certainly help if the band masses in the
light direction of the both compounds were much smaller.
As a final deliberation, we address the question, what then is

the optimal band structure, all things considered? The literature
has convincing cases for both an extremely anisotropic, flat-and-
dispersive band and a band with multiple dispersive pockets at
off-symmetry points. Reflecting on our modeling, we conclude the
following. For a single band, if a bidirectional flat-and-dispersive
band attaining m?

mk
� 1000 with as small a possible m∥ can be

realized in a single crystal, it would constitute the optimal single-
band structure. Otherwise, a band with multitude of dispersive
pockets at off-symmetry points with weak inter-scattering would be
the best targets, as they provide moderate anisotropy and would
be more immune to polycrystallinity. For a given single band,
presence of additional bands with equally light mass in the
transport direction would increases performance, though this
benefit is negligible if κe > κlat and/or if sint ≈ 1. For a given overall
intrinsic band structure, resonance levels and optimum bandwidth
further improve performance, the latter being capable of boosting
zT to the highest values of all band structure designs considered
here and particularly consequential for low-temperature operation.
As efforts to discover and design thermoelectrics with zT > 3

continue, the blueprints for high performance grow increasingly
influential. Common rules regarding beneficial band structures for
bulk thermoelectrics are largely drawn from simple band models
without realistic scattering. Using a straightforward but improved
approach, we herein fine-tune those blueprints while proposing
optimal band structures and design principles along the way. Our
generalized findings from this modeling study are mutually
supportive of and consistent with the findings from recent

targeted studies of high-performing materials with high-fidelity
first-principles computations35,37,52,55,56. We hope that the theore-
tical investigations of the present study help the community
navigate rationally toward next-generation thermoelectrics.

METHODS

The Hartree atomic units (ℏ=me= ao= q= 4πϵ0= 1) are used throughout
“Methods.” All calculations are performed on a set of in-house
Mathematica codes.

Band structure

To generate a realistic solid-state band structure, a band is created by
smoothly connecting an upward paraboloid to an inverted paraboloid at a
selected inflection point. The advantages of such a band structure include:
(1) it remains faithful to solid-state band theory that requires a band to
cross the zone-boundary orthogonally, save for when crystal and orbital
symmetries allow band crossing or degeneracy at the zone boundary (e.g.,
in graphene); (2) it formally maintains the validity of effective-mass-based
description of the band throughout; (3) relatively simple analytic models of
scattering can be directly applied to the upward-parabolic portion, and can
be applied with modification for the inverted-parabolic portion; and (4) it
can be used to explore a wide range of band structure shapes by
modulating the points of inflection. The equation for this band structure is

E ¼ E0 þ Min ðjkx j; ~kx Þ
2mup;x

þ ~kx
2 � ðGx � Maxðjkx j; ~kxÞÞ

2

2mdown;x

� �

þ Min ðjky j; ~ky Þ
2mup;y

þ ~ky
2 � ðGy � Maxðjky j; ~kyÞÞ

2

2mdown;y

� �

þ Min ðjkz j; ~kzÞ
2mup;z

þ ~kz
2 � ðGz � Maxðjkz j; ~kzÞÞ

2

2mdown;z

� �

±
j ~kx

2 � ðGx � ~kx
2Þ

2

j
2mdown;x

þ j ~ky
2 � ðGy � ~ky

2Þ
2

j
2mdown;y

þ j ~kz
2 � ðGz � ~kz

2Þ
2

j
2mdown;z

� �

:

(9)

Here, ~kx denotes the inflection point in the x-direction, and Gx is the
reciprocal lattice vector in the x-direction, i.e., the BZ boundary in the
x-direction. If inflection occurs halfway to the BZ boundary, then
~kx ¼ Gx=2. The last terms are subtracted (−) if ~kx � Gx=2, and added (+)
if ~kx<Gx=2. The same is true in the y and the z directions. Effective masses
of the inverted-parabolic portion (mdown) are obtained by enforcing
derivative continuity at the inflection point in every direction.
Although a broad range of band shapes could be explored by changing the

inflection point ~k in any three Cartesian directions, in this work we limit
ourselves to bands that inflect halfway to the zone boundary in all three
directions. Under this assumption, the effective mass (inverse curvature)
profiles of the upward paraboloid portion and the inverted paraboloid portion
are identical (mup=mdown), rendering the entire band structure describable
with one common set of directional effective masses. We note that this band
could also serve as a first-order approximation of the tight-binding cosine
band. We create these model bands centered at Γ in a simple cubic Brillouin
zone corresponding to an arbitrary lattice parameter of 15 ao (Bohr radius) ~
7.9Å, which is a reasonable lattice parameter for a real thermoelectric. The
DOS is calculated using the tetrahedron method57. Detailed diagrams of the
band structure and DOS are given in Supplementary Figs. 1 and 2.

Carrier scattering and transport

Thermoelectric properties are computed by numerically integrating Eqs.
(3)–(5). The BZ is sampled to convergence with a k-point mesh of 40 ×
40 × 40. We fix the effective mass of the principal band in the transport
direction (mx), unless it evolves isotropically, to enable fair comparison of
performance of various band structures. We also ignore bipolar transport
except in the two-band case with a conduction and a valence band. This is
roughly tantamount to assuming a band gap larger than 0.4 eV—the
maximum energy range of thermal excitation when the Fermi level is
placed at the band minimum.
The ultimate objective is to determine band structures that theoretically

maximize thermoelectric performance, and for that, some settings in place
are those known to be beneficial for thermoelectrics. For instance, we
intentionally fix κlat to a low value of 0.5 Wm−1 K−1 as is the case in many
phonon-glass materials58–62. We fix the principal band mass in the
transport direction (mx) to a small value of 0.05, in the range of GaAs
(0.067) and InSb (0.014). Band anisotropy is also taken to the extreme to
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explore the limits of its benefits. These sometimes lead to prediction of
higher zT (~9) than commonly encountered in the literature. Though these
settings are optimistic and difficult to simultaneously satisfy experimen-
tally, they are far from unrealistic, as materials with lower m or κlat are
known. They constitute the right regime of exploration in the discourse of
high-performance thermoelectrics, and provide some estimate of the
realistic upper limit of bulk thermoelectric performance.
To calculate τ, various scattering mechanisms, namely DPS by (acoustic)

phonons, POS, and IIS, are treated according to well-established formal-
isms24,63–67with appropriate adjustments to account for anisotropy, inverted
parabolicity and the BZ-bounded nature of our band structures, with details
to follow in the next subsections. Once the lifetimes under the three
mechanisms are calculated, the overall τ is estimated by Matthiesen’s rule68.
Supplementary Fig. 3 plots the scattering profiles of the three processes

based on Eqs. (10), (12), and (13). For the isotropic cases, they exhibit
excellent agreement with the corresponding parabolic band formulations.
DPS exhibits the expected τ−1∝ D(E) relation. POS is characterized by the
emission onset near the band edge followed by a gradual decay. IIS
reproduces the Brooks–Herring behavior.

Deformation-potential scattering (DPS)

The theory of deformation potential was originally developed by Bardeen
and Shockley for long-wavelength acoustic phonon scattering with the
assumption of elasticity69. Combining it with the generalized deformation
potential by Kahn and Allen70, we write the DPS lifetimes as follows:

τDPS;k ¼ ρv2s

πkBTðΔþmvk � vkÞ2
D�1ðEkÞ; (10)

where Δ is the Bardeen–Shockley deformation potential at the band edge
(band shift with lattice deformation) and the Kahn–Allen correction term
mvk � vk accounts for the shift in the reciprocal space vectors with
deformation, which grows large near the zone boundary.
When more than one bands/pockets are present, interband/intervalley

scattering must be accounted for. The matrix elements for inter-scattering are
not obtainable without the details of the phonon spectrum and the
Hamiltonian, which we lack because we are not studying a real system.
Nevertheless, it is reasonable to assume that inter-scattering is generally
weaker than intra-scattering because the wavefunction overlap between
distinct bands or pockets is generally weaker than that within a band, and
inter-scattering is often heavily reliant on zone-boundary phonons, which are
less populated than zone-center phonons. To account for the strength of inter-
scattering as such, we introduce a parameter, sint, that acts as the lumped
effect of the above-mentioned considerations. This quantity modulates the
inter-scattering strength relative to intraband scattering. We set sint= 0.5 to
reflect the usually weaker inter-scattering, which allows for trivial extension of
Eq. (10) by accounting for the added phase space due to the second band
proportional to its DOS. The overall DPS lifetime, for band 1, now becomes

τDPS;1k ¼ ρv2s

πkBTðΔþm1v1k � v1kÞ2
D1ðE1kÞ þ sintD2ðE1kÞ½ ��1; (11)

where the subscripts 1 and 2 indicate each of the two bands. The addition of
inter-scattering phase space is determined by the presence of second band
states at given E1. That is, if D2(E1k)= 0, then there is no inter-scattering.
In spite of its simplicity, the above formulations work well also for zone-

boundary phonon scattering. For instance, Fe2TiSi conduction bands are very
flat-and-dispersive, allowing significant zone-boundary phonon scattering as
well as intervalley/interband scattering. Accurately calculated scattering rates
of Fe2TiSi using DFT band structures and electron–phonon matrix
elements71,72 behave essentially as τ−1(E)∝D(E) (see Supplementary Fig.
4a)52, which is also the behavior predicted by Eqs. (10) and (11). The same
conclusion holds for the flat-and-dispersive valence bands of Li2TlBi

56.
Therefore, the phenomenological treatment by Eqs. (10) and (11) capture the
essence of intra- and inter-scattering even in cases with extreme anisotropy.

Polar-optical scattering (POS)

We modify the established formula for POS63,64 as to reasonably accounts
for band anisotropy and inverted parabolicity

τPOS;k ¼ jvkj
2ωo

1

ϵ1
� 1

ϵ

� ��1

ðbðωoÞ þ 1Þ � sinh�1 DðEk � ωoÞ
DðωoÞ

� �

þ bðωoÞ � sinh�1 DðEkÞ
DðωoÞ

� �� ��1

;

(12)

Modifications come from exchanging
ffiffiffi

E
p

with our tetrahedron-
integrated D(E) and using the k-dependent prior form (instead of the

less general E-dependent form—see Supplementary Discussion). Use of
the group velocity norm (∣vk∣) obviates the dependence on m and E

through the relation jvkj ¼
ffiffiffiffi

2E
m

q

for an isotropic parabolic band. The optical

phonon frequency is represented by ωo, and b(ωo) is the Bose–Einstein
population. The left term in the square brackets accounts for phonon
emission whereas the right term accounts for phonon absorption. For our
band structures, Eq. (12) is exact in the upward-parabolic portions up to
the inflection point, and past it, approximates the true lifetimes. When
more than one band pocket exists at one k-point, nothing prohibits
interband POS from occuring. To account for this, we take the same
approach as we do with DPS and use D(E)= D1(E)+ sintD2(E) to enlarge the
phase space.

Ionized-impurity scattering (IIS)

We use a modified version of the Brooks–Herring formula66,67 that
reasonably account for band anisotropy and inverted parabolicity

τIIS;k ¼ ϵ
2jkj4

2π3NiZ
2
D�1ðEkÞ logð1þ γkÞ �

γk
1þ γk

� ��1

; (13)

where the screening term is

γk ¼ 4jkj2ϵkBT
n

F1
2
ðEFÞ

F�1
2
ðEFÞ

 !

: (14)

Modification comes from using the k-dependent prior form of the
Brooks–Herring formula (instead of its typical energy-dependent form—

see Supplementary Methods) and replacing the terms in it that represent
the parabolic DOS with our tetrahedron-integrated D(E). For our band
structures, this corrected formula is again exact for the upward-parabolic
portions from Γ to the inflection point, and past it, closely approximates
the true lifetimes. When more than one band pocket exists at the same
k-point, interband IIS can take place. To account for this, we again use
D(E)= D1(E1k)+ sintD2(E1k) to modify the phase space. We assume that one
impurity donates or accepts one charge, meaning the effective impurity
charge of Z= 1. This choice forces that the carrier concentration (n)
effectively equals the impurity concentration (n= Ni) at appreciable
doping levels.

Materials parameters

To calculate specific values of scattering, material-dependent quantities
that control the relative strength of the three scattering mechanisms must
be chosen. These include the deformation potential, the dielectric
constants, and the optical phonon frequency among others. We select
plausible values for these quantities that occur prevalently in real materials,
as listed in Table 1. In emphasis, the choice of these values renders the
relative strength of each scattering channel arbitrary. What is not arbitrary
is the characteristic thermoelectric behavior of bands under a given
scattering regime.

Table 1. Arbitrary quantities used in the scattering and transport

models.

Arbitrary quantity Symbol Value

Temperature T 500 K

Density ρ 5000 kg/m3

Sound velocity vs 4000m/s

Deformation potential Δ 0.4 Ha= 10.8 eV

Interband scattering strength sint 0.5

Static dielectric constant ϵ 30

High-freq. dielectric constant ϵ
∞

25

Optical phonon frequency ωo kBT/2

Effective charge of an impurity Z 1

Impurity concentration Ni n/Z

Lattice thermal conductivity κlat 0.5 Wm−1 K−1
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DATA AVAILABILITY

The data can be either reproduced or generated using any user-desired parameters

using publicly available Mathematica notebooks (see below).

CODE AVAILABILITY

The Mathematica notebooks are publicly available on the following link: https://

github.com/jsyony37/bandmodel.
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