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Abstract— A virtual private network (VPN) provides private
network connections over a publicly accessible shared network.
Bandwidth provisioning for VPNs leads to challenging optimiza-
tion problems. In the hose model proposed by Duffield et al., each
VPN endpoint specifies bounds on the total amount of traffic that
it will send or receive at any time. The network provider must
provision the VPN so that there is sufficient bandwidth for any
traffic matrix that is consistent with these bounds. While previous
work has considered tree routing and single-path routing between
the VPN endpoints, we demonstrate that the use of multi-
path routing offers significant advantages. On the one hand, we
present an optimal polynomial-time algorithm that computes a
bandwidth reservation of minimum cost using multi-path routing.
This is in contrast to tree routing and single-path routing, where
the problem is computationally hard. On the other hand, we
present experimental results showing that the reservation cost
using multi-path routing can indeed be significantly smaller than
with tree or single-path routing.

I. INTRODUCTION

A Virtual Private Network (VPN) is a logical network that
is established on top of a physical network in order to provide
the behavior of a dedicated network with private lines to the
users of the VPN. Two important requirements for a VPN
are security and bandwidth guarantees. Security is usually
achieved by cryptographic methods and will not be considered
further in this paper. Bandwidth guarantees mean that the
network provider guarantees to the VPN users that a certain
amount of bandwidth will be available to them at any time,
unaffected by the traffic sent through the physical network
by other users (who are not part of the VPN). Bandwidth
guarantees are only possible if a certain amount of bandwidth
is explicitly reserved for the VPN on the links of the physical
network. From the perspective of the network provider, it is
an important optimization problem to satisfy the bandwidth
guarantees required by a VPN while minimizing the amount
of network resources (link bandwidth) that are reserved for
it. In the following, we will be investigating this problem for
a specific model of bandwidth reservation, the so-called hose
model.

The hose model was proposed by Duffield et al. [1] as a
flexible and user-friendly model for specifying the bandwidth
requirements of a VPN. The idea is to specify for each VPN
endpoint v the maximum total bandwidth b+(v) of traffic that
v will send into the network at any time and the maximum

total bandwidth b−(v) of traffic that v will ever receive from
the network at any time. It is not necessary to specify the
exact demands between all pairs of VPN endpoints. Instead,
the network capacity reserved for the VPN must be sufficient
for every possible traffic pattern that is consistent with the b+

and b− values. The hose model provides a convenient way
for customers to specify their bandwidth requirements, but
makes the problem of efficient bandwidth reservation harder
than in the traditional model where the customer has to specify
pairwise demands for all VPN endpoints.

It is important to distinguish several routing paradigms that
can be used to transport VPN traffic through the physical
network. With tree routing, the VPN endpoints are connected
by a Steiner tree and all VPN traffic is sent along the unique
path in this tree from sender to receiver. With single-path
routing, every pair (u, v) of VPN endpoints is assigned a single
path πu,v for routing the traffic from u to v, but the union of
all such paths need not be a tree. With multi-path routing,
every pair (u, v) is assigned a collection of paths from u to
v together with a specification of which fraction of the traffic
from u to v should be sent along each of these paths.

The minimum amount of bandwidth that must be reserved
for the VPN on each of the links of the physical network
is uniquely determined once the routing is specified (see [2]
and also Section III). Therefore, the difficult problem is to
compute a good routing that minimizes the total amount of
necessary bandwidth reservations. Previous work has mainly
focussed on the case of tree routing and single-path routing.
For the special case of symmetric b values (i.e., b+(v) = b−(v)
for all VPN endpoints v) it was shown that an optimal tree
routing can be computed in polynomial time [3]. For arbitrary
b values, however, it is already NP -complete to compute an
optimal tree routing [3]. Therefore, approximation algorithms
have been proposed for the computation of good tree routings
or single-path routings.

A. Our Results

In this paper, we study the bandwidth reservation problem
for hose model VPNs under multi-path routing. Our results
are as follows. We show that an optimal bandwidth reservation
can be computed in polynomial time for multi-path routing.
Our algorithm works also for the case where the links of
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the physical network have bounded capacities, while previous
algorithms usually assumed that the available capacity is
infinite. The case with finite capacities is known to be NP -
hard for tree routing and single-path routing. We also give an
example demonstrating that multi-path routing can reduce the
bandwidth that needs to be reserved for a VPN. Therefore,
multi-path routing has the advantage of reducing the cost
of an optimal bandwidth reservation while at the same time
admitting efficient algorithms for the computation of optimal
reservations. This implies that it may pay off for network
providers to implement multi-path routing in order to use their
network resources more efficiently for the allocation of hose
model VPNs.

Furthermore, we have implemented our algorithm for op-
timal VPN reservations under multi-path routing. By en-
forcing integrality constraints for some of the variables in
the linear program used by the algorithm, we are able to
compute optimal reservations under single-path routing as well
(however, with exponential running-time in the worst case).
We also implemented known algorithms computing optimal
reservations for tree routing. We use these implementations
to compare the running-times and reservation costs for the
different algorithms and routing models.

B. Previous Work

The hose model was introduced by Duffield et al. in [1].
This triggered a substantial amount of subsequent work on
this topic. Kumar et al. [3] studied tree routing in the case
where the links of the physical network have infinite capacity.
They presented a polynomial algorithm computing the optimal
tree routing in the case of symmetric b values and proved that
it is NP -hard to compute the optimal tree routing for general b
values. For the latter problem, they gave a 10-approximation
algorithm. Gupta et al. [4] extend this work and show that
the cost of an optimal tree routing is at most twice as large
as the cost of an optimal multi-path routing in the case of
symmetric b values and infinite link capacities. For the case
of symmetric b values and finite link capacities, they show
that it is already NP -hard to find any feasible tree routing or
single-path routing. For the computation of tree routings in
the case of general b values and infinite link capacities, they
improve the approximation ratio to 9.002. Swamy and Kumar
[5] reduce the ratio further and obtain a 5-approximation
algorithm. Gupta et al. [6] consider the problem of computing
an optimal single-path routing for general b values and infinite
link capacities. They present an algorithm that computes a
tree routing of cost at most 5.55 times the cost of an optimal
single-path routing. Italiano et al. [7] show that for general b
values and infinite link capacities, an optimal tree routing can
be computed in polynomial time provided that the sum of all
b+ values equals the sum of all b− values.

Jüttner et al. [2] study the bandwidth efficiency of the hose
model compared to other models such as the pipe model
(with explicit reservations for all pairwise demands between
VPN endpoints). They define the overprovisioning factor,
which represents the additional capacity required for a VPN

reservation in the hose model compared to a reservation where
the exact traffic matrix is known in advance, and study its
dependence on the size and density of the network topology.
Italiano et al. [8] consider the problem of making a VPN fault-
tolerant for single-edge failures.

C. Paper Outline

The remainder of the paper is structured as follows. Sec-
tion II provides formal problem definitions and discusses some
preliminaries. In Section III, we explain how the amount
of bandwidth that needs to be reserved on an edge can be
computed efficiently once the routing is determined. This is
an important ingredient for our optimal algorithm computing
multi-path routings that minimize the required bandwidth
reservations, which is presented in Section IV. In Section V,
we report our experimental results. Finally, in Section VI, we
give our conclusions and discuss future work.

II. PRELIMINARIES

The communication network is modeled as a bidirected
graph G = (V,E). A bidirected graph is a graph in which
(u, v) ∈ E implies (v, u) ∈ E. Each edge e ∈ E might have
a per-unit reservation cost ce and a capacity limit Ce. Often
the capacity limit Ce is considered to be infinite. The VPN
endpoints are given as a subset Q ⊆ V . For each v ∈ Q, two
bounds b+(v) and b−(v) are given. We assume that all values
b+(v) and b−(v) are non-negative integers.

A traffic matrix D = (du,v)u,v∈Q is valid if it maps each
pair (u, v) of distinct nodes in Q to a non-negative demand
duv such that, for every v ∈ Q, we have

∑

u∈Q

duv ≤ b−(v) and
∑

u∈Q

dvu ≤ b+(v) .

We assume dvv = 0 for all v ∈ Q.
The problem that we are interested in is reserving bandwidth

in the network and routing the traffic between VPN endpoints
such that the reserved bandwidth supports every valid traffic
matrix. The bandwidth reserved for the VPN on edge e ∈ E
is denoted by xe. The cost of the reservation is

∑
e∈E cexe.

The goal is to find a valid reservation of minimum cost. The
validity of a reservation depends on the routing. We distinguish
the following routing models:

• Tree routing: The edges on which bandwidth is reserved
(xe > 0) form a tree. The traffic from u ∈ Q to v ∈ Q
is routed along the unique path from u to v in the tree.

• Single-path routing: For every pair (u, v) of distinct nodes
in Q, the traffic from u to v is routed along a single path
πu,v . The path does not depend on the current traffic
matrix.

• Multi-path routing: For every pair (u, v) of distinct nodes
in Q, the traffic from u to v can be split arbitrarily among
several paths. The routing does not depend on the traffic
matrix.

In each of the three routing models, we define fe
u,v as the

fraction of traffic from u ∈ Q to v ∈ Q that is routed through
edge e ∈ E. For tree routing and single-path routing, the fe

u,v
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are either zero or one, but for multi-path routing, they can
be arbitrary values in the interval [0, 1]. Now a bandwidth
reservation x is valid if and only if it holds for every valid
traffic matrix D and for every edge e ∈ E that

∑

u,v∈Q

du,v · fe
u,v ≤ xe .

The term
∑

u,v∈Q du,v · fe
u,v expresses the amount of traffic

that is routed through e when the current traffic matrix is D.

III. CHECKING THE VALIDITY OF A RESERVATION

In this section, we assume that we are given the b+ and
b− values as well as a routing for the traffic between VPN
endpoints. The routing could be a tree routing, a single-path
routing, or a multi-path routing. It is simply specified by
the values fe

u,v for all u, v ∈ Q and e ∈ E. We want to
compute the maximum amount of VPN traffic that is sent
through an edge e for any valid traffic matrix. Call this value
m(e). Knowing the values m(e) for all e ∈ E is useful for
several reasons. First, we can use them to check the validity
of a given bandwidth reservation vector (xe)e∈E , because the
vector is valid if and only if xe ≥ m(e) holds for all e ∈ E.
Second, if we want to compute the optimal xe values for a
given routing, we only have to set xe := m(e). Finally, the
computation of the values m(e) will be needed as a subroutine
in our algorithm computing an optimal multi-path routing in
Section IV.

As already observed in [2], the value m(e) can be computed
for a given edge e ∈ E by solving a linear program or a min-
cost network flow problem. We briefly outline the method in
order to make the paper self-contained and because we need
to establish that the largest traffic through e can always be
achieved with an integral valid traffic matrix.

The value m(e) is the maximum VPN traffic through
edge e, taken over all valid traffic matrices D. Therefore, the
computation of m(e) can be formulated as the following linear
program:

max
∑

u,v∈Q

fe
u,v · du,v

s.t.
∑

v∈Q

du,v ≤ b+(u), u ∈ Q

∑

v∈Q

dv,u ≤ b−(u), u ∈ Q

duu = 0, u ∈ Q

duv ≥ 0, u, v ∈ Q,u �= v

The constraints of this linear program characterize all valid
traffic matrices. The objective function maximizes the traffic
through e. The value of the optimal solution is therefore just
the value m(e) that we are looking for.

This linear program can be solved as a min-cost flow
problem in the graph H = (VH , EH) constructed as follows:
VH contains a node s, a node t, and two copies u1 and u2

of every node u ∈ Q. EH contains directed edges from s
to every node u1 (with capacity b+(u) and cost 0), from u1

to v2 for every u, v ∈ Q (with capacity ∞ and cost −fe
u,v),

and from every node u2 to t (with capacity b−(u) and cost
0). It is easy to see that the set of all valid traffic matrices
corresponds to the set of all possible flows from s to t in
H: du,v simply corresponds to the flow on edge (u1, v2). The
cost of the flow corresponding to traffic matrix D is just the
negative of the traffic through e created by D. Consequently, a
min-cost flow computation in H yields an optimal solution to
the above linear program and therefore also the desired value
m(e). Furthermore, the capacities of the edges in H are all
integral, therefore there exists also an integral min-cost flow
(i.e., with integral flow values on all edges) [9]. This means
that there is an integral traffic matrix that creates the maximum
possible amount of traffic on edge e. Therefore, we obtain that
a bandwidth reservation is valid for all valid traffic matrices
if and only if it is valid for all integral traffic matrices.

Summing up this section, we know that for a given routing,
we can compute efficiently what the maximum bandwidth
requirement of any valid traffic matrix on an edge e is, and
an integral traffic matrix that maximizes this requirement can
be found with a min-cost flow algorithm. (In the special case
of tree routing, it is of course easy to compute the bandwidth
requirements directly, without resorting to linear programming
or min-cost flow computations [3].)

IV. OPTIMAL VPN RESERVATION WITH MULTI-PATH

ROUTING

Now we are ready to present our polynomial algorithm
for computing an optimal bandwidth reservation for multi-
path routing. The main idea is to formulate the problem as a
linear program. Unfortunately, the linear program will contain
an exponential number of inequalities. Nevertheless, we can
show that the separation problem (deciding whether any of the
inequalities is violated) can be solved efficiently. This implies,
using Khachiyan’s ellipsoid algorithm (see, e.g., [10]), that an
optimal solution to the linear program can be computed in
polynomial time.

The variables of the linear program are xe for e ∈ E and
fe

u,v for u, v ∈ Q, u �= v and e ∈ E. Let D be the set of
all integral traffic matrices D that are valid for the given b+

and b− values. Note that the cardinality of D is finite, but can
be extremely large. Let Γ+(v) and Γ−(v) denote the set of
outgoing and incoming edges of vertex v in G, respectively.
The linear program can then be stated as follows:

min
∑

e∈E

cexe (1)

s.t. xe ≤ Ce, e ∈ E (2)∑

u,v∈Q

du,vfe
u,v ≤ xe, D ∈ D, e ∈ E (3)

∑

e∈Γ+(u)

fe
u,v = 1, u, v ∈ Q,u �= v (4)

∑

e∈Γ−(u)

fe
u,v = 0, u, v ∈ Q,u �= v (5)
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∑

e∈Γ+(v)

fe
u,v = 0, u, v ∈ Q,u �= v (6)

∑

e∈Γ−(v)

fe
u,v = 1, u, v ∈ Q,u �= v (7)

∑

e∈Γ+(w)

fe
u,v −

∑

e∈Γ−(w)

fe
u,v = 0,

u, v ∈ Q,u �= v, w ∈ V \ {u, v} (8)

0 ≤ fe
u,v ≤ 1, u, v ∈ Q,u �= v, e ∈ E (9)

xe ≥ 0, e ∈ E (10)

The objective function (1) minimizes the cost of the reserva-
tion. Inequalities (2) ensure that the bandwidth reserved on
edge e does not exceed its capacity Ce. The exponentially
many inequalities (3), one for each valid integral traffic matrix,
ensure that the bandwidth reservation given by the variables
xe is feasible. Equations (4) to (8) are flow conservation
constraints that ensure that the variables fe

u,v represent a flow
of value 1 from u to v in G. Inequalities (9) and (10) give the
bounds for the variables.

As the linear program has too many constraints (3), we can-
not afford to construct the whole linear program explicitly. In-
stead, we show how to check efficiently whether all constraints
are satisfied and, if not, how to identify a violated constraint.
Constraints (2) and (4)–(10) can be checked directly. To see
whether any constraint (3) is violated, we compute the value
m(e) for every e ∈ E with respect to the current values fe

u,v as
explained in Section III. If m(e) ≤ xe for all e ∈ E, we know
that the solution is feasible. If m(e) > xe for some e ∈ E,
we know that constraint (3) is violated for the traffic matrix
creating traffic m(e) on edge e. This traffic matrix is obtained
as a result of the min-cost flow computation (see Section III).
Therefore, we can solve the separation problem efficiently, and
this implies that there is a polynomial algorithm to compute
the optimal solution to the above linear program (see [11]
for further details about such applications of the ellipsoid
method). The variables xe in the optimal solution represent
the bandwidth that has to be reserved on edges e, and the
variables fe

u,v represent the fraction of traffic from u to v that
is routed through edge e. In order to determine the routing for
each pair of VPN endpoints in terms of paths instead of flows,
one can then apply a standard flow decomposition method (cf.
[9]).

Note that the linear program has no feasible solution in
case the capacities Ce are not large enough to allow a valid
VPN reservation. In that case, the ellipsoid algorithm will
determine that the problem is infeasible. Therefore, we obtain
the following theorem.

Theorem 1: For hose-model VPNs with multi-path routing,
there is a polynomial algorithm for the problem of checking
whether a valid reservation exists and, if so, computing a
reservation of minimum cost.

Furthermore, it is easy to observe that if the values of
the variables fe

u,v of the linear program are restricted to be
either 0 or 1, then the optimal solution to the resulting mixed
integer linear program actually gives a single-path routing that

minimizes the reservation cost among all possible single-path
routings. Therefore, we can use this formulation to compute
optimal single-path routings on small instances, by employing
a solver for mixed integer linear programs. Of course, we
cannot hope to solve large instances with this approach, since
integer linear programming is an NP -hard problem and the
solver may need excessive running-time to arrive at the optimal
solution.

A. Implementation

Although Theorem 1 asserts the existence of a polyno-
mial algorithm for optimal VPN reservations with multi-path
routing, the algorithm is not very practical due to the use
of the ellipsoid method, which is mainly a theoretical tool
for proving polynomial-time solvability. However, a practical
implementation with reasonable running-times can be obtained
by using a cutting-plane approach. Initially, we construct the
linear program without the constraints (3) and use a standard
LP solver to compute an optimal solution. Then, as explained
above, we check for every edge e of the network whether
there is a valid traffic matrix D such that the constraint (3) is
violated for e and D. If no constraint is violated, an optimal
solution has been obtained. Otherwise, for every edge e for
which a violated constraint was found, we add that constraint
to the linear program and compute a new optimal solution
using the LP solver. This process repeats until either the
linear program becomes infeasible (showing that no valid VPN
reservation exists) or an optimal solution has been obtained.
This implementation might lead to exponential running-times
in the worst case, but such worst-case behavior is unlikely.
In our experiments we were able to obtain optimal VPN
reservations under multi-path routing in reasonable time.

V. EXPERIMENTAL RESULTS

We have implemented the algorithm for computing an
optimal VPN reservation with multi-path routing presented
in Section IV. Our implementation is in C++ and we use
CPLEX 8.1 [12] to solve (integer) linear programs. We also
use some data structures and algorithms provided by the C++
library LEDA 4.2.1 [13], in particular an algorithm for min-
cost flow. As CPLEX can solve mixed integer linear programs
as well, we can simply require integrality of the variables
fe

u,v and thus obtain also an implementation of an algorithm
(with potentially exponential running-time, however) for the
computation of optimal reservations with single-path routing.

In addition, we implemented the polynomial algorithm for
optimal reservations with tree routing in the case of infinite
capacities and symmetric b values from [3]. We also adapted
an implementation from [14] of the integer linear program-
ming approach presented in [3] for the computation of optimal
reservations with tree routing in the case of infinite capacities
and arbitrary b values. However, we should point out that this
implementation is not optimized and explicitly constructs an
integer linear program whose size is exponential in the size of
the given graph.
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With these implementations, we have a suite of programs
that allow us to compute optimal hose-model VPN reservations
for tree routing, single-path routing, and multi-path routing.
Note, however, that the only cases for which algorithms with
polynomial running-time are known are tree routing for infinite
capacities and symmetric b values [3], and multi-path routing
for arbitrary capacities and arbitrary b values (Theorem 1).

The goals of our experiments are as follows. First, we want
to confirm our expectation that multi-path routing can reduce
the cost of a VPN reservation as compared to tree routing
and single-path routing. Second, we would like to demonstrate
that our algorithm for the computation of optimal reservations
with multi-path routing achieves reasonable running-times in
practice. Finally, we hope to gain some insights into a problem
left open by [4], [7]: Is it true that for the case of infinite
capacities and symmetric b values, there is always a tree
routing whose reservation cost is not worse than that of the
best single-path routing?

We discuss each of the three questions in turn.

A. Cost Savings of Multi-Path Routing

For a given instance of the VPN reservation problem
(specified by a graph and the b values of VPN endpoints), we
denote by WT , WS and WM the cost of an optimal reservation
with tree routing, single-path routing and multi-path routing,
respectively. First, we present a concrete instance that shows
that the optimal cost of the three different routing models can
indeed differ, i.e., the instance has WT > WS > WM . The
graph and the three optimal reservations are depicted in Fig. 1.
Each node v is labeled by the pair (b+(v), b−(v)). All four
nodes are VPN endpoints. Each edge e has per-unit reservation
cost ce = 1 and infinite capacity. Each pair of directed edges
(u, v) and (v, u) is drawn as a single undirected edge for the
sake of simplicity. The reservation cost shown next to an edge
between u and v represents the sum of the reservation costs
on (u, v) and (v, u).

The optimal reservations were computed with our imple-
mentations. In the case of tree routing, the direct edges
between q3 and q4 are not used at all. The reservation cost
on the edges between q1 and q2 is 22, because the worst-case
traffic pattern given by d12 = 1, d43 = 10, d21 = 10, d34 = 1
requires 11 units of bandwidth on (q1, q2) and on (q2, q1). The
total cost of the tree routing is 54.

For the optimal single-path routing, all edges are used. To
specify the routing, we give an explicit list of the pairs of VPN
endpoints whose path is not just a single edge: q1 sends to q3

via q4; q2 sends to q1 via q3 and q4; q2 sends to q4 via q3; q3

sends to q1 via q4; and q4 sends to q2 via q3. The total cost
of the reservation is 46.

In the optimal multi-path routing, every pair (qi, qj) of
distinct VPN endpoints sends 50% of the traffic from qi to qj

along one of the two possible paths and the remaining 50%
along the other path. In other words, every VPN endpoint splits
its traffic for each destination equally among the two possible
paths to that destination. The cost of the resulting reservation
is 44.

q1 q2

q3q4

(1/20) (10/1)

(1/20)(10/1)

(a) Graph G

q1 q2

q3q4

(1/20) (10/1)

(1/20)(10/1)

(b) Tree routing

11

22

21

q1 q2

q3q4

(1/20) (10/1)

(1/20)(10/1)

(c) Single-path routing

12

10

11

13

q1 q2

q3q4

(1/20) (10/1)

(1/20)(10/1)

(d) Multi-path routing

11

11

11

11

Fig. 1. For the network G shown in (a), tree routing in (b) has cost 54,
single-path routing in (c) has cost 46, and multi-path routing in (d) has cost
44.

Therefore, we have shown that even a very small instance
with only four nodes can have the property that multi-path
routing reduces the reservation cost as compared to single-
path and tree routing.

Next, we ran a series of experiments with small instances.
We created connected random graphs with n nodes and m
edges, where n ranges from 3 to 5 and m ranges from n − 1
to n(n−1)/2. (The case m = n−1 means that the graph is in
fact a tree; then every VPN reservation must use tree routing,
but we include this case anyway for the sake of completeness.)
The random graphs were created by calling the LEDA routines
random simple undirected graph (with parameters n
and m) and Make Connected. The reason for choosing
small instances was that the running-times of the algorithms
for computing optimal tree routings and optimal single-path
routings quickly become excessive for larger instances, making
it impossible to obtain results for a reasonably sized sample.
The per-unit reservation cost ce was set to 1 for all edges. The
number of VPN endpoints was chosen between 3 and n, and
the b+ and b− values were selected randomly in {1, . . . , 50}.
Altogether, we obtained 6,200 such instances. Interestingly, for
all except two of these instances we had WT = WS . Therefore,
single-path routing improved over tree routing only very rarely.
On the other hand, we observed WM < WT for roughly
20% of the instances with 3 nodes, 25% of the instances
with 4 nodes, and 17% of the instances with 5 nodes. In the
cases where the multi-path routing had reduced reservation
cost compared to tree routing, the cost reduction was 8.6% on
the average.

While such experiments on small instances do not allow
direct conclusions about what can be expected for larger
instances, we view the results as an indication that multi-path
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Fig. 2. Running-time of optimal algorithms on 50 random networks with 10
nodes, 20 edges, and 5 VPN endpoints.

routing does indeed have the potential of offering significant
bandwidth savings for VPN reservations in the hose model.

B. Running-Time of Optimal Algorithms

We are interested in comparing the running-times required
for computing a bandwidth reservation of minimum cost
for tree routing, single-path routing and multi-path routing.
The algorithm that we employ for computing optimal tree
routings transforms the problem into a connected facility
location problem as in [3] (where the transformation is used
to obtain an approximation algorithm). The latter problem can
be formulated as an integer linear program with exponentially
many constraints. The implementation that we use constructs
this whole integer linear program and then solves it using
CPLEX. Better running-times could probably be achieved
using a cutting-plane approach, but even then it seems unlikely
that the algorithm would be practical on large instances.

All running-times that we report in the following are given
in CPU seconds measured on a SunBlade 1000 workstation
with two 900 MHz UltraSPARC III CPUs (our code uses
only one of the two CPUs) and 2 GB of main memory. As
the running-times of the optimal algorithms for tree routing
and single-path routing grow very quickly with the size of the
network, we present detailed results on the comparison of all
three optimal algorithms only for very small instances. Fig. 2
gives the running-times for 50 randomly generated instances
with 10 nodes and 20 edges. The per-unit edge reservation
costs were set equal to 1 and the edges had infinite capacity.
The number of terminal endpoints was set to 5 and the b
values were chosen randomly between 1 and 5. As one can
see in Fig. 2, the running-time of each of the algorithms
varies significantly for different instances of the same size.
This indicates that the running-time depends on the topology
of the network and on the locations and b values of the VPN
endpoints. It can be seen clearly that the algorithm computing
optimal multi-path routings is significantly faster than the
other two algorithms; note that the y-axis of the plot is in
logarithmic scale. For these 50 instances, the average running-
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Fig. 3. Running-time of optimal algorithms on 7 random networks with 10
nodes, 20 edges, and 6 VPN endpoints.
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Fig. 4. Running-time of optimal algorithms on 7 random networks with 15
nodes, 30 edges, and 5 VPN endpoints.

time of the three algorithms was 5.87 seconds for tree-routing,
200.15 seconds for single-path routing, and 1.99 seconds for
multi-path routing. (As an aside, we note that for 13 of
these 50 instances, the optimal multi-path routing had smaller
reservation cost than the tree and single-path routings, and for
these 13 instances, the maximum cost saving was 28.1% and
the average saving was 6.5%.)

The running-times of the three optimal algorithms for seven
randomly generated instances with 10 nodes, 20 edges, and 6
VPN endpoints (all other parameters are the same as above)
are shown in Fig. 3, and those for seven randomly generated
instances with 15 nodes, 30 edges, and 5 VPN endpoints (all
other parameters unchanged) are shown in Fig. 4. We observe
that the algorithm for optimal single-path routings becomes
impractical even for small networks if just one additional VPN
endpoint is included (Fig. 3), and the algorithm computing
optimal tree routings has excessive running-time already for
very moderate values of n (Fig. 4). In both cases, optimal
multi-path routings can be computed very quickly by our
algorithm.
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Fig. 5. Running-time of optimal multi-path algorithm for networks with 10
to 100 nodes (5 VPN endpoints).

For larger instance sizes, we ran only our algorithm comput-
ing optimal multi-path routings. In Figs. 5 and 6, we present its
running-time for instances with n nodes and m edges, where n
ranges from 10 to 100 in steps of 2 (Fig. 5) and from 10 to 64
in steps of 2 (Fig. 6). The number of edges is set to m = 2n.
Edges have per-unit reservation cost 1 and infinite capacity.
The number of VPN endpoints is 5 in Fig. 5 and 7 in Fig. 6.
The b values are chosen between 1 and 5. The plots show the
average running-time on 10 random instances (generated as
explained above) for each value of n. The error bars represent
the smallest and largest running-time observed in the 10 runs
for each value of n. The extent of the error bars indicates
again that the running-time can vary significantly for different
instances of the same size. However, even the longest running-
times we observed were still acceptable: for the instances with
5 VPN endpoints, the longest computations took between a
few minutes and half an hour; for the instances with 7 VPN
endpoints, all instances except two could be solved in less
than two hours, and the two remaining instances took less
than four hours. The general growth behavior of the running-
time appears to be bounded by a polynomial with moderate
degree. Therefore, we think that the algorithm can be applied
to reasonably sized instances arising in practice. Since VPNs
are usually established for extended time periods, it is worth
to invest a moderate amount of computation time for obtaining
an optimal VPN reservation at the time the VPN is established.

C. Tree Optimality Hypothesis for Symmetric Bandwidth Re-
quirements

In the context of VPN reservations in the hose model, it
is a curious fact that for the case of infinite capacities and
symmetric b values, no problem instance is known where the
cost of the optimal tree reservation is higher than the cost of
an optimal single-path or multi-path reservation. Gupta et al.
[4] proved that the cost of the optimal tree routing is at most
twice the cost of an optimal multi-path routing in this case
(even if the routing is allowed to depend dynamically on the
current traffic matrix), but did not give an example showing
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Fig. 6. Running-time of optimal multi-path algorithm for networks with 10
to 64 nodes (7 VPN endpoints).

that the optimal costs of the two models can indeed differ.
Therefore, it is not clear whether the factor 2 is necessary or
the best possible reservation can in fact be obtained already
with tree routing. This open problem was also pointed out by
Italiano et al. [7].

In order to shed some light on this issue, we computed
optimal tree routings and optimal multi-path routings for more
than 100,000 random graphs with 3 to 20 nodes and b values
between 1 and 150 (setting b+(v) = b−(v) for all VPN
endpoints v). We did not find a single instance of a network
where tree routing led to a more expensive reservation than
multi-path routing. This provides significant empirical support
for the hypothesis that for symmetric b values, the optimal
tree routing is never worse than the optimal single-path or
multi-path routing. Therefore, it seems a promising subject for
further theoretical investigations to prove that this hypothesis is
true. In fact, a proof that the hypothesis is true for the special
case that the given network is a ring network was recently
announced by Hurkens, Keijsper and Stougie [15].

VI. CONCLUSION

In this paper we have studied the problem of bandwidth
reservation for virtual private networks in the setting where the
requirements are specified according to the hose model. Our
main result is a polynomial-time algorithm that computes a
multi-path routing minimizing the total cost of the bandwidth
reservation. The algorithm applies to symmetric and asym-
metric bandwidth requirements and can handle the natural
constraint that the capacities of the network links are finite.
This should be contrasted with previous work showing that
computing optimal reservations under tree routing or single-
path routing is NP -hard in general.

Furthermore, we have demonstrated with a concrete ex-
ample and a set of experiments that bandwidth reservations
for multi-path routing are not only easier to compute, but
can also achieve reduced reservation costs. Network providers
should be aware of these potential benefits and consider
employing multi-path routing in order to realize hose-model
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VPNs efficiently. Note that multi-path routing could be imple-
mented using MPLS (multi-protocol label switching) [16], for
example.

A potential further use of our algorithm for computing
optimal multi-path routings could be to combine it with
randomized rounding [17] in order to derive a fast approxima-
tion algorithm for computing good single-path routings (for
networks that do not support multi-path routing). The idea
would be to first compute an optimal multi-path routing. If
the traffic from u to v is routed along k paths π1, . . . , πk in
this routing, we select one of these k paths randomly, where
the probability of each path is equal to the fraction of traffic
from u to v that is routed through it. One could hope that the
resulting single-path routing achieves a reservation cost that is
close to optimal with high probability, at least in cases where
the optimal reservation cost is large. Analyzing this approach
from a theoretical point of view as well as evaluating it by
experiments are interesting directions for further research.

From a theoretical point of view, interesting open problems
are to prove or disprove the tree optimality hypothesis for
symmetric b values (cf. Section V-C) and to settle the com-
plexity of single-path routing in the case of infinite capacities
and arbitrary b values (we suppose that the problem is NP -
hard, but to our knowledge no proof for this has appeared in
the literature so far). In addition, further considerations about
fault-tolerant VPN reservations, building on the work in [8],
could lead to interesting results.
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