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Abstract. We propose a data-driven least squares cross-validation method to optimally select smooth-
ing parameters for the nonparametric estimation of conditional cumulative distribution functions and
conditional quantile functions. We allow for general multivariate covariates that can be continuous, cat-
egorical or a mix of either. We provide asymptotic analysis, examine finite-sample properties via Monte
Carlo simulation, and consider an application involving testing for first order stochastic dominance of
children’s health conditional on parental education and income.

1. Introduction

The nonparametric estimation of conditional probability density functions (PDFs) has received a

substantial amount of attention in the literature (see e.g. Fan & Yim (2004), Hall, Racine & Li (2004),

Chung & Dunson (2009), and Efromovich (2010)). In contrast, certain problems such as the estima-

tion of conditional quantiles can require the estimation of conditional cumulative distribution functions

(CDFs). Nonparametric estimation of the latter has proven more formidable but has drawn the at-

tention of a growing number of researchers (see e.g. Bashtannyk & Hyndman (2001), Hyndman &

Yao (2002), among others). Since the seminal work of Koenker & Bassett (1978) appeared, quantile

regression has exploded in popularity and a range of innovative approaches towards the estimation of

conditional quantiles have been proposed including Yu & Jones (1998), Koenker & Xiao (2004), Li,

Liu & Zhu (2007), and Peng & Huang (2008) to name but a few. The distinguishing feature of the

approach considered herein, however, is the direct estimation of the conditional distribution function
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using kernel methods that smooth both continuous and categorical variables in a particular manner –

optimal bandwidth selection for conditional CDFs is therefore central to this approach.

It is widely appreciated that smoothing parameter selection is a key determinant of sound non-

parametric estimation. A range of effective methods have been developed for selecting smoothing

parameters optimally for the estimation of unconditional PDFs, conditional mean functions and con-

ditional PDFs (see Marron, Jones & Sheather (1996), Hall, Li & Racine (2007), and Hall et al. (2004),

among others). However, to the best of our knowledge, there does not exist in the literature an op-

timal data-driven method for choosing bandwidths when estimating conditional CDF and conditional

quantile functions in general multivariate nonparametric settings. Although in principle one can al-

ways compute optimal smoothing parameters using some ‘plug-in’ methods, in a general multivariate

setting, particularly when some of the covariates are independent of the response variables, ‘plug-in’

methods become infeasible (see e.g. Hall et al. (2004)). Recent work on nonparametric estimation of

conditional CDF and quantile functions has pointed out that bandwidth selection for nonparametric

quantile estimators remains an open topic of research (Li & Racine (2008, page 429)). In this paper

we aim to fill this gap in the literature by providing an automatic data-driven method for selecting the

smoothing parameters optimally in the sense that a weighted estimation mean squared error (MSE) of

the conditional CDF and conditional quantile is minimized.

The rest of this paper proceeds as follows. In Section 2 we outline the proposed approach when all

variables are presumed to be relevant. In Section 3 we consider the empirically relevant case where

some of the covariates may in fact be irrelevant but this is not known a priori. Section 4 considers the

estimation of conditional quantile functions which constitutes a popular estimation methodology (see

Koenker (2005)) and may be predicated directly on an estimated conditional CDF. Section 5 assesses

the finite-sample performance of the proposed method and considers an empirical application. All

proofs are relegated to the appendices.

2. Conditional CDF Bandwidth Selection: Relevant Variables

We consider the case for which x is a vector containing mixed categorical/discrete and continuous

variables. Let x = (xc, xd), where xc is a q-dimensional continuous random vector, and where xd

is an r-dimensional discrete random vector. We shall allow for both ordered and unordered discrete

datatypes. Let xdis (xds) denote the sth component of xdi (xd), s = 1, . . . , r; i = 1, . . . , n, where n is the

sample size. We assume that xs takes values in {0, 1, . . . , cs − 1}, where cs ≥ 2 is a positive integer.
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Let λ denote the bandwidth for a discrete variable. For ordered discrete variables we use the kernel

l(Xd
is, x

d
s , λs) = λ

|Xd
is−xds |

s (with λ0
s = 1 and 00 = 1), and for unordered discrete variables we use the

kernel l(Xd
is, x

d
s , λs) = 1(Xd

is = xds) + λs1(Xd
is 6= xds), where 1(A) = 1 if A holds, and 0 otherwise. We

write the product (discrete variable) kernel as Lλ(xdi , x
d, λ) =

∏r
s=1 l(x

d
is, x

d
s , λs). The product kernel

function used for the continuous variables is given by Wh(xci , x
c) =

∏q
s=1 h

−1
s w((xcis − xcs)/hs), where

w(·) is a univariate kernel function for a continuous variable. xcis (xcs) denotes the sth component of xci

(xc) and hs is the bandwidth associated with xcs. The kernel function for the vector of mixed variables

x = (xc, xd) is simply the product of Wh(·) and Lλ(·) given by Kγ(xi, x) = Wh(xci , x
c)× Lλ(xdi , x

d, λ),

where γ = (h, λ).

2.1. The scalar y case. We use F (y|x) to denote the conditional CDF of Y given X = x and let f(x)

denote the marginal density of X. We propose two conditional CDF estimators. The first one (case

(a)) is given by

(1) F̂a(y|x) = n−1
n∑
j=1

I(yj ≤ y)Kγ(xj , x)/f̂(x),

where I(A) denotes an indicator function that assumes the value 1 if A occurs and 0 otherwise, where

f̂(x) = n−1
∑n

j=1Kγ(xj , x) is the kernel estimator of the design density f(x). Note that in F̂ (y|x), yj

can be either a continuous or a discrete variable.

The second estimator (case (b)) smooths the dependent variable yj (assuming that yj is a continuous

variable) and is defined by

F̂b(y|x) = n−1
n∑
j=1

G((y − yj)/h0)Kγ(xj , x)/f̂(x),

where G(·) is a CDF function defined by G(v) =
∫ v
−∞w(u)du (because w(·) is a kernel density function)

and where h0 is the bandwidth associated with y.

We suggest choosing bandwidths by minimizing the following cross-validation function,

(2) CV (γ) = n−1
n∑
i=1

∫ {
I(yi ≤ y)− F̂−i(y|xi)

}2
M(xi)M(y)dy,

where M(·) and M(·) are trimming functions with bounded support. We need to introduce the trim-

ming functions M and M that have bounded support to ensure the CV objective function is finite

even for X and Y that have unbounded support. When X and Y have bounded support, trimming

functions are not needed and one can simply replace M and M by 1. In the simulations reported
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in Section 5, we generated (X,Y ) having a joint normal distribution, which has unbounded support.

But simulated random draws are always bounded, and replacing M and M by 1 does not create any

problems in our simulations.

If y is a discrete variable, then one should replace
∫
dy by

∑
y∈Dy in (2), where Dy is the support of

yi (discrete), and

F̂−i(y|xi) =

 F̂a,−i(y|xi)
def
= n−1

∑n
j 6=i I(yj ≤ y)Kγ(xj , xi)/f̂−i(xi) for case (a),

F̂b,−i(y|xi)
def
= n−1

∑n
j 6=iG((y − yj)/h0)Kγ(xj , xi)/f̂−i(xi) for case (b),

is the leave-one-out estimator of F (y|xi), while f̂−i(xi) = (n−1)−1
∑

j 6=iKγ(xj , xi) is the leave-one-out

estimator of f(xi).

We make the following assumptions.

Condition 1. {Xi, Yi}ni=1 are independent and identically distributed as (X,Y ), f(x) and F (y|x)

have uniformly continuous third-order partial derivative functions with respect to xc and y (if y is a

continuous variable).

Condition 2. w(·) is a non-negative, symmetric and bounded second order kernel function with∫
w(v)|v|4dv being a finite constant.

Condition 3. As n→∞, hs → 0 for s = 0, 1, . . . q, λs → 0 for s = 1, . . . r, n(h1 . . . hq)→∞.

We will first present results on the leading terms of CV (·), and for this we need to obtain leading

bias and variance terms. To describe the leading bias term associated with the discrete variables, we

introduce some notation. When xds is an unordered categorical variable, define an indicator function

Is(·, ·) by

Is(x
d, zd) = I(xds 6= zds )

r∏
t6=s

I(xdt = zdt ).

Is(x
d, zd) equals 1 if and only if xd and zd differ only in their sth component, and is zero otherwise.

For notational simplicity, when xds is an ordered categorical variable, we shall assume that xds assumes

(finitely many) consecutive integer values, and Is(·, ·) is defined by

Is(x
d, zd) = I(|xds − zds | = 1)

r∏
t6=s

I(xdt = zdt ).

Note that Is(x
d, zd) equals 1 if and only if xd and zd differ by one unit only in the sth component, and

is zero otherwise.
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For s = 1, . . . , q, let Fs(y|x) = ∂F (y|x)/∂xs, Fss(y|x) = ∂2F (y|x)/∂x2
s, κ2 =

∫
w(v)v2dv, and

ν0 =
∫
W (v)2dv. The next theorem gives the leading terms for CV (·) (note that when we say that

CVL is the leading term of CV , it means that CV = CVL + (s.o.), where (s.o.) denotes terms having

probability order smaller than CVL and terms unrelated to the bandwidths).

Theorem 2.1. Letting CV (γ) be defined in (2) and also assuming that conditions 1 to 3 hold, then

the leading term of CV (·) is given by CVL(·), which is defined as follows (where
∫
dx =

∑
xd∈Dx

∫
dxc,

Dx is the support of xdi ):

CVL(γ) =

∫∫ 
[

q∑
s=0

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)

]2

+
Σy|x

nh1 · · ·hq

 f(x)M(x)M(y)dxdy,

while if y is discrete,
∫
dy above needs to be replaced by

∑
y∈Dy , where B10(y|x) = 0 for case (a), and

B10(y|x) = κ2
2 F00(y|x) for case (b), B1s(y|x) = κ2

2

[
f(x)Fss(y|x)+2fs(x)Fs(y|x)

]
/f(x), for s = 1, . . . , q,

B2s(y|x) =
∑

zd∈Sd Is(z
d, xd)

[
F (y|xc, zd)− F (y|x)

]
f(xc, zd)/f(x), for s = 1, . . . , r, Σy|x = ν0[F (y|x)−

F (y|x)2]/f(x), Ω1 = ν0CwF0(y|x)/f(x), Ω2 = 2ν0

[
F (y|x)2 − F (y|x)

]
/f(x), Cw = 2

∫
G(v)w(v)vdv.

Theorem 2.1 is proved in Appendix A.

It can be shown that the estimation MSE of F̂ (y|x) has the following leading term,

(3) MSEL[F̂ (y|x)] =
[ q∑
s=0

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
]2

+
Σy|x

nh1 · · ·hq
,

Comparing CVL(·) of Theorem 2.1 with (3), we observe that

CVL =

∫∫
MSEL[F̂ (y|x)]f(x)M(x)M(y)dxdy.

Hence, the CV selected bandwidth is asymptotically optimal because the leading term from the

CV function equals the leading term of the weighted integrated estimation MSE. Therefore, the CV

selected bandwidths lead to an estimator that minimizes a weighted integrated MSE.

Using the results of Theorem 2.1 we obtain the main result of the paper which describes the asymp-

totic behavior of CV selected bandwidths.

Theorem 2.2. Under conditions 1 - 3, we have

(i) n1/(4+q)ĥs
p→ a0

s, s = 1, . . . , q for case (a), and s = 0, 1, . . . , q for case (b);

(ii) n2/(4+q)λ̂s
p→ b0s, s = 1, . . . , r,

where a0
s (s = 0, 1, . . . , q) are positive constants, and b0s (s = 1, . . . , r) are non-negative constants.
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The results of Theorem 2.2 can be interpreted as follows. If one defines some optimal non-stochastic

bandwidths, say h0
s = a0

sn
−1/(4+q) and λ0

s = b0sn
−2/(4+q), that minimize the leading terms of the

weighted integrated estimation MSE (with weight function given by M(x)M(y)), and we write ĥs =

âsn
−1/(4+q) and λ̂s = b̂sn

−2/(4+q), then we have âs
p→ a0

s and b̂s
p→ b0s. Thus, the CV selected bandwidths

are asymptotically equivalent to the optimal non-stochastic bandwidths.

We can obtain the rate of convergence of the CV selected bandwidths if we strengthen Condition 1

to the following condition:

Condition 4. {Xi, Yi}ni=1 are independent and identically distributed as (X,Y ), f(x) and F (y|x)

have uniformly continuous fourth-order partial derivative functions with respect to xc and y (if y is a

continuous variable).

Condition 4 requires that f(x) and F (y|x) have uniformly continuous fourth-order partial derivative

functions. The next theorem gives the rate of convergence for the CV selected smoothing parameters.

Theorem 2.3. Let h0,s = a0
sn
−1/(4+q) for s = 1, . . . , q for case (a), and s = 0, 1, . . . , q for case (b),

and λ0,s = b0sn
−2/(4+q) for s = 1, . . . , r. Then under conditions 2 - 4, we have

(i) If q ≤ 3, (ĥs − h0,s)/h0,s = Op(n
−q/[2(4+q)]) for s = 0, 1, . . . , q, and λ̂s − λs,0 = Op(n

−1/2) for

s = 1, . . . , r;

(ii) If q ≤ 3, (ĥs − h0,s)/h0,s = Op(h
2
s,0) = Op(n

−2/(4+q)) for s = 0, 1, . . . , q, and λ̂s − λs,0 =

Op(h
4
s,0) = Op(n

−4/(4+q)) for s = 1, . . . , r.

Using the results of Theorem 2.2, we obtain the following asymptotic normality result for F̂ (y|x).

Theorem 2.4. Under conditions 1 - 3, we have√
nĥ1 · · · ĥq

[
F̂ (y|x)− F (y|x)−

q∑
s=0

ĥ2
sB1s(y|x)−

r∑
s=1

λ̂sB2s(y|x)
]

d→ N(0,Σy|x).

One problem with the CV (·) function defined in (2) is that it involves numerical integration, which

can be computationally costly. Below we propose an alternative cross-validation function which replaces

the integration over y by a sample average over the yjs. Therefore, one can also choose the bandwidths

by minimizing the following alternative cross-validation objective function:

(4)

CVΣ(γ) =
1

n

n∑
i=1

1

n− 1

n∑
j 6=i

[
I (yi ≤ yj)− F̂−i(yj |xi)

]2
Mi =

1

n(n− 1)

n∑
i=1

n∑
j 6=i

[
I (yi ≤ yj)− F̂−i(yj |xi)

]2
Mi,

6



where Mi =M(Xi) is the same weight function used in (2). The advantage of using (4) is that it is

less computationally onerous as it does not involve (numerical) integration.

It can be shown that the asymptotic behavior of the bandwidths selected by minimizing (4) is similar

to those described by Theorem 2.2, while the resulting estimator has the same asymptotic distribution

as described in Theorem 2.4. We direct the interested reader to an implementation of (4) that is

available in the R (R Core Team (2012)) package ‘np’ (see the function ‘npcdistbw’, version 0.40-14

and higher, Hayfield & Racine (2008)).

Theorem 2.5. Let M(y) = g(y), where g(y) is the marginal density (probability function) of y (y

can be either continuous or discrete), then under conditions 1 to 3, CV (γ) defined in (2) and CVΣ(γ)

defined in (4) are asymptotically equivalent in the sense that they have the same leading term, i.e.,

CVΣ,L(γ) = CVL(γ),

where CVΣ,L is the leading term of CVΣ(γ), CVL is the leading term of CV (γ).

A sketch of the proof of Theorem 2.5 is given in Appendix A.

From Theorem 2.5 we immediately obtain the following useful results.

Theorem 2.6. If one chooses the bandwidths by minimizing CVΣ(·), then Theorem 2.2 and Theorem

2.4 remain valid with the only modification being that one replaces M(·) by g(·).

Theorem 2.6 follows directly from theorems 2.2, 2.4 and 2.5. Therefore, its proof is omitted.

2.2. The Multivariate y Case. When y is multivariate we write y = (y1, . . . , yp) = (yc1, . . . , y
c
qy , y

d
1 , . . . , y

d
ry)

which is of dimension p = qy+ry, where the first qy are continuous variables and the last ry are discrete

ones. Our method outlined earlier can be generalized to cover the multivariate y case in a straight-

forward manner. For expositional simplicity, we will only discuss the non-smooth Y case (a) in the

multivariate y setting (the subscript m below is taken to mean ‘multivariate’ y),

F̂m(y|x) = n−1
n∑
j=1

I(yj ≤ y)Kγ(xj , x)/f̂(x),

where I(yj ≤ y) =
∏p
s=1 I(yjs ≤ ys) is the product of indicator functions.
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We again propose selecting bandwidths via leave-one-out cross-validation by minimizing (where∫
dy =

∑
yd∈Dy

∫
dyc)

CVm = n−1
n∑
i=1

∫ {
I(yi ≤ y)− F̂−i(y|xi)

}2
M(xi)M(y)dy, or

CVm,Σ = n−2
n∑
i=1

n∑
j=1

{
I(yi ≤ yj)− F̂m,−i(yj |xi)

}2
Mi,

where F̂−i(y|xi) is the leave-one-out estimator of F (y|xi) given by F̂m,−i = (n − 1)−1
∑

j 6=i I(yj ≤

y)Kγ(xj , xi)/f̂−i(xi), and F̂−i(yj |xi) is obtained from F̂−i(y|xi) with y replaced by yj .

It is easy to show that theorems 2.2 to 2.6 remain valid except that now F (y|x) is understood to be

F (y1, . . . , yp|x).

3. Conditional CDF Bandwidth Selection in the Presence of Irrelevant Covariates

Next, we consider the case for which one or more of the covariates may be irrelevant, which can occur

surprisingly often in practice. Without loss of generality, we assume that only the first q1 (1 ≤ q1 ≤ q)

components of xc and the first r1 (0 ≤ r1 ≤ r) components of xd are ‘relevant’ covariates in the

sense defined below. Let x̄ consist of the first q1 relevant components of xc and the first r1 relevant

components of xd, and let x̃ = x\ x̄ denote the remaining irrelevant components of x. We assume there

exists at least one relevant continuous variable (i.e. q1 ≥ 1).

Similar to the definition given in Hall et al. (2004) we shall assume that

(5) x̄, y is independent of x̃.

Assumption (5) is quite strong as it requires independence not only between x̃ and y but also between

x̃ and x̄. A weaker assumption would be to require that

(6) Conditional on x̄, the variables x̃ and y are independent.

However, using (6) will cause some technical difficulties in the proof of our main result. Therefore,

in this paper we will only consider unconditional independence given in (5) though we point out that

extensive simulations carried out (not reported here for space considerations) indicate that all results

indeed follow under (6).

Note that the conditional CDF of F (y|x) is F (y|x̄). This is because under Assumption (5), we get

F (y|x) = E[I(yi ≤ y)|xi = x] = E[I(yi ≤ y)|x̄i = x̄] = F (y|x̄). We shall consider the case for which the
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exact number of relevant variables is unknown, and where one estimates the conditional CDF based

upon (possibly) a larger set of covariates x = (x̄, x̃), still using Equation (1). We use f(x) to denote

the joint density function of x = (xc, xd), and we use f̄(x̄) and f̃(x̃) to denote the marginal densities

of x̄i and x̃i, respectively.

We impose similar conditions on the bandwidth and kernel functions as Hall et al. (2004). Define

H =

(
q1∏
s=1

hs

)
q∏

s=q1+1

min(hs, 1).

Letting 0 < ε < 1/(p+ 4) and for some constant c > 0, we further assume that

nε−1 ≤ H ≤ n−ε, 0 < h0 ≤ n−c, n−c < hs < nc for all s = 1, . . . , q; the kernel w(·) is a

symmetric, compactly supported, Hölder-continuous probability density; and w(0) > w(δ)

for all δ > 0.

The above conditions basically ask that each hs, s = 1, . . . , q, does not converge to zero, or to infinity,

too fast, and that nh1 . . . hq1 →∞ as n→∞.

We useH to denote the permissible set for (h0, h1, . . . , hq) that satisfies (3). The range for (λ1, . . . , λr)

is [0, 1]r, and we use Γ = H×[0, 1]r to denote the range for the bandwidth vector γ ≡ (h1, . . . , hq, λ1, . . . , λr).

We expect that, as n→∞, the bandwidths associated with the relevant covariates will converge to

zero, while those associated with the irrelevant covariates will not. It would be convenient to further

assume that hs → 0 for s = 1, . . . , q1, and that λs → 0 for s = 1, . . . , r1. However, for practical reasons

we choose not to assume that the relevant components are known a priori, but rather assume that

assumption (9) given below holds. We write Kγ,ij = K̄γ̄,ijK̃γ̃,ij , where γ̄ = (h1, . . . , hq1 , λ1, . . . , λr1),

and γ̃ = (hq1+1, . . . , hq, λr1+1, . . . , λr) so that K̄ and K̃ are the product kernels associated with the

relevant and the irrelevant covariates, respectively. We define

(7) η(y, x̄) = f̄(x̄)−1E
[
(F (y|x̄j)− F (y|x̄i))K̄γ̄,ji|x̄i = x̄

]
.

Note that η(y, x̄) defined above only depends on the bandwidths associated with the relevant covari-

ates, that is, it is unrelated to (h̃, λ̃), the bandwidths associated with the irrelevant covariates.

Define

(8) M̄(x̄) =

∫
f̃(x̃)M(x)dx̃.

9



We assume that

∫∫
[η(y, x̄)]2f̄(x̄)M̄(x̄)M(y)dx̄dy, as a function of h1, . . . , hq1 and λ1, . . . , λr1 ,

vanishes if and only if all of the bandwidths vanish.(9)

In Lemma B.4 in Appendix B we show that (3) and (9) imply that as n→∞, hs → 0 for s = 1, . . . , q1

and λs → 0 for s = 1, . . . , r1. Therefore, the bandwidths associated with the relevant covariates all

vanish asymptotically. In Appendix B, we also show that hs →∞ for all s = q1 + 1, . . . , q and λs → 1

for all s = r1 + 1, . . . , r. This means that all irrelevant variables will be smoothed out asymptotically.

Therefore, the leading term of CV is the same as the result in Theorem 2.1 except that one has q1 and

r1 replacing q and r in Theorem 2.1. This leads to the following main result of this section.

Theorem 3.1. In addition to conditions 1 to 4, assume that conditions (3), (9) and (B.10) also hold,

and let ĥ1, . . . , ĥq, λ̂1, . . . , λ̂r denote the bandwidths that minimize CV (γ). Then

n1/(q1+4)ĥs → a0
s in probability, 1 ≤ s ≤ q1 for case (a), and 0 ≤ s ≤ q1 for case (b),

P (ĥs > C)→ 1 for q1 + 1 ≤ s ≤ q and for all C > 0,

n2/(q1+4)λ̂s → b0s in probability for 1 ≤ s ≤ r1,

λ̂s → 1 in probability for r1 + 1 ≤ s ≤ r.

Theorem 3.1 states that the bandwidths associated with the irrelevant covariates all converge to their

upper bounds, so that, asymptotically, all irrelevant covariates are smoothed out, while the bandwidths

associated with the relevant covariates all converge to zero at a rate that is optimal for minimizing

asymptotic MSE (i.e. without the presence of the irrelevant covariates).

Similar to the result given in Section 2, one can show that the leading term of the CV function

equals a weighted integrated MSE (with only relevant covariates used in the estimation). Therefore,

the CV method leads to optimal smoothing in the sense of minimizing a weighted integrated MSE

asymptotically.

From Theorem 3.1 one can easily obtain the following result.
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Theorem 3.2. Under the same conditions given in Theorem 3.1, when x is an interior point of

S = Sc × Sd (the support of X), then√
nĥ1 . . . ĥq1

[
F̂ (y|x)− F (y|x̄)−

∑q1
s=0 ĥ

2
sB̄1s(y|x̄)−

∑r1
s=1 λ̂sB̄2s(y|x̄)

]
d→ N(0, Σ̄y|x̄),

where B̄10(y|x̄) = 0 for case (a), and B̄10(y|x̄) = κ2
2 F00(y|x̄) for case (b), B̄1s(y|x̄) and B̄2s(y|x̄) are

defined in (B.3) and (B.4), while Σ̄y|x̄ is defined in (B.5).

Theorem 3.2 shows that the asymptotic normality of the conditional CDF estimator in the presence

of irrelevant covariates is the same as the estimator with only relevant covariates.

Note that our justification for smoothing the discrete covariates relies mainly on the fact that there

may be ‘irrelevant’ discrete covariates in which case smoothing out these irrelevant discrete covariates

will reduce estimation variance without increasing estimation bias. However, for discrete covariates that

are not irrelevant, we have not provided a formal justification for smoothing the discrete covariates.

An anonymous referee suggested that one might be able to justify smoothing to discrete covariates

from a Bayesian perspective if one’s prior has the conditional distributions of Y being dependent

across different (adjacent) values of the regressors. We are certainly sympathetic to this point of view.

The relationship between smoothing discrete covariates and Bayesian priors in a regression setting has

recently been established in Kiefer & Racine (2009), who provide a deeper understanding of kernel

smoothing methods for discrete data by leveraging the unexplored links between hierarchical Bayes

models and kernel methods for discrete processes. As a detailed discussion on this issue in the setting

we consider is beyond the scope of the current paper, we direct the interested reader to in Kiefer &

Racine (2009), and leave this issue as a subject for further study.

4. Estimating Conditional Quantile Functions

With the nonparametric conditional CDF estimator in hand, it is straightforward to obtain a con-

ditional quantile estimator. A conditional αth quantile of y given x is defined by (α ∈ (0, 1))

(10) qα(x) = inf{y : F (y|x) ≥ α} = F−1(α|x).

Since F (y|x) is (weakly) monotone in y, inverting (10) leads to a unique solution for qα(x). In this

section we will focus on using F̂ (y|x) to obtain a quantile estimator for qα(x). Therefore, we propose
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the following estimator for estimating qα(x):

(11) q̂α(x) = inf{y : F̂ (y|x) ≥ α},

where F̂ (y|x) is defined in Section 2 with CV selected bandwidths. The CV objective function can be

either CV (·) defined in (2) or CVΣ(·) defined in (4).

Because F̂ (y|x) is monotone in y, (11) leads to a computationally simple estimator relative to, say,

the check function approach where one needs to minimize a nonlinear function in order to obtain an

estimator for qα(x).

Because F̂ (y|x) lies between zero and one and is monotone in y, q̂α(x) always exists. Therefore,

once one obtains F̂ (y|x), it is trivial to compute q̂α(x), for example, by choosing qα to minimize the

following objective function,

(12) q̂α(x) = arg min
qα
|α− F̂ (qα|x) |.

That is, the value of qα that minimizes (12) gives us q̂α(x). We make the following assumption.

Condition 5. The conditional PDF f(y|x) is continuous in xc, f(qα(x)|x) > 0.

We use f(y|x) ≡ F0(y|x) = ∂
∂yF (y|x) to denote the conditional PDF of y given x. Below we present

the asymptotic distribution of q̂α(x).

Theorem 4.1. Define Bn,α(x) = Bn(qα(x)|x)/f(qα(x)|x), where Bn(y|x) = [
∑q

s=0 h
2
sB1s(y|x) +∑r

s=1 λsB2s(y|x)] is the leading bias term of F̂ (y|x) (with y = qα(x)). Then, under conditions 1

to 5, we have

(nh1 . . . hq)
1/2[q̂α(x)− qα(x)−Bn,α(x)]→ N(0, Vα(x)) in distribution,

where Vα(x) = α(1− α)ν0/[f
2(qα(x)|x)f(x)] ≡ V (qα(x)|x)/f2(qα(x)|x) (since α = F (qα(x)|x)).

The proof of Theorem 4.1 follows similar arguments as the proof of Theorem 3 of Cai (2002) given

the results of Theorem 3.2 above. Thus, the proof of Theorem 4.1 is omitted.

An associate editor has noted that one of the fundamental problems with quantile estimation in

practice is the problem of quantile crossing, resulting in bizarre conclusions like a 70th percentile

exceeding, say, a 75th percentile conditional on covariates. This arises due to the use of quantile

models that are predicated on a regression-type model where the least squares objective function has
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been replaced with the so-called check function. The approach we propose, however, is immune to

this drawback provided that the user uses a second order nonnegative kernel function, for example the

second order Epanechnikov or Gaussian weight functions (i.e. Condition 2 holds). This is because we

are estimating a conditional CDF directly, and the estimator F̂ (y|x) is guaranteed to be monotone in

y when the kernel functions are nonnegative, which in turn implies that our quantile estimator q̂α(x)

is monotone in α.

In certain semiparametric settings, when one wishes to establish a parametric
√
n rate of convergence

for some finite dimensional parameters, typically one has to use higher order kernels to reduce the bias so

that the estimation error is of smaller order than O(n−1/2). Since we only consider fully nonparametric

quantile estimators, hence do not have finite dimensional parameters in our setup, there is no need to

use higher order kernel functions here. However, if one were tempted to use a higher order kernel for

Y to reduce bias in our framework, quantile crossing could occur, i.e., the estimated quantile function

q̂α(x) may not be monotone in α, hence, for different α, estimated quantile curves could well cross each

other. In such cases, in order to avoid the quantile crossing problem one could use the ‘rearrangement’

method to generate a new quantile estimator, say, q̂∗α(x) (obtained based on rearrangement of q̂α(x)),

and that q̂∗α(x) is monotone in α (see Chernozhukov, Fernndez-Val & Galichon (2010, Page 1097) for a

detailed description as how to generate q̂∗α(x)). Our recommendation, however, is to restrict attention

to second order kernel functions only thereby guaranteeing that quantiles cannot cross and sidestepping

this issue completely, which we believe is one of the strengths of our approach.

5. Monte Carlo Simulations and Empirical Application

In this section we examine the finite-sample performance of the proposed method of cross-validated

conditional CDF bandwidth selection. We numerically minimize the objective functions CV (hx) =

n−1
∑n

i=1

∫∞
−∞

{
I(yi ≤ y)− F̂−i(y|xi)

}2
dy and CV (hx) = n−2

∑n
i=1

∑n
j=1

{
I(yi ≤ yj)− F̂−i(yj |xi)

}2
.

Having computed the bandwidths we then compute the sample MSE of the estimators of F (y|x) for

both the conditional CDF and PDF-based (Hall et al. (2004)) bandwidths via

MSE = n−1
n∑
i=1

(F (yi|xi)− F̂ (yi|xi))2.

In the tables that follow we report the ratio of the median MSE of the proposed method versus that

of Hall et al. (2004) where the median of each approach over all Monte Carlo replications is compared

(i.e. we compare the location of the distribution of MSEs for each approach). Alternatively one could
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compute the median of the set of ratios for each draw, though this does not appear to qualitatively

alter our findings. A second order Gaussian kernel was used throughout.

5.1. Comparison of Integral Versus Summation Approach. We first assess how the integration-

based approach compares with the summation-based one in finite-sample settings. We draw 1,000

Monte Carlo replications from a joint normal distribution with correlation ρ for a range of sample

sizes. That is, (y, x)′ ∼ N(µ,Σ) with µ = (0, 0)′ and Σ =

1 ρ

ρ 1

. For each replication we conduct

cross-validation using the proposed method and that appropriate for conditional PDF estimation (Hall

et al. (2004)) that has been used in the literature given the lack of a method tailored to the estimation

of the conditional CDF.

Table 1. Relative median efficiency of kernel estimators of conditional CDFs using the
proposed bandwidth method versus that appropriate for conditional PDFs. Numbers
less than 1 indicate superior MSE performance.

Nonsmooth Y summation variant, leftmost table, smooth Y summation variant, rightmost table

n = 50 n = 100 n = 200
ρ = 0.95 0.97 0.97 0.98
ρ = 0.85 0.97 0.98 1.00
ρ = 0.75 0.99 0.97 1.01
ρ = 0.50 0.99 0.99 0.97
ρ = 0.25 1.04 0.95 0.93

n = 50 n = 100 n = 200
ρ = 0.95 0.87 0.88 0.89
ρ = 0.85 0.88 0.87 0.92
ρ = 0.75 0.92 0.91 0.92
ρ = 0.50 0.90 0.91 0.89
ρ = 0.25 0.97 0.91 0.87

Nonsmooth Y integration variant, leftmost table, smooth Y integration variant, rightmost table

n = 50 n = 100 n = 200
ρ = 0.95 0.97 0.99 0.97
ρ = 0.85 0.97 0.96 1.00
ρ = 0.75 0.99 0.97 1.05
ρ = 0.50 0.99 0.92 0.97
ρ = 0.25 1.02 0.98 0.95

n = 50 n = 100 n = 200
ρ = 0.95 0.87 0.88 0.89
ρ = 0.85 0.88 0.87 0.91
ρ = 0.75 0.91 0.89 0.93
ρ = 0.50 0.87 0.89 0.88
ρ = 0.25 0.92 0.86 0.85

Table 1 reveals that the proposed method delivers bandwidths that dominate those based on con-

ditional PDF bandwidth selection in finite-sample settings, while smoothing Y improves finite-sample

MSE relative to the nonsmooth Y variant. This is an expected result as conditional PDF bandwidth

selection will not be optimal for conditional CDFs. Furthermore, the computational burden associated

with numerical integration does not appear to be necessary in order to achieve the MSE improvement

(e.g. the median search time for n = 50, smooth Y approach, K = 1 increases by a factor of 30 when

using numerical integration). Note also that numerical integration for the nonsmooth Y approach

degrades computation time even further.
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5.2. Irrelevant Categorical Covariates. Next, we take the data generating process used above but

now add an additional categorical covariate z ∈ {0, 1}, Pr(z = 1) = 0.5, that is independent of y,

i.e., satisfying (5), but this is not presumed to be known a-priori hence is included in the covariate

set. Results are presented in Table 2 below for the summation-based approach only in light of the

performance of the summation versus integration approach reported in Table 1 above (similar results

are obtained when the additional covariate is continuous and are not reported for space considerations).

Table 2. Irrelevant z summation-based relative median efficiency of kernel estimators
of conditional CDFs using the proposed method versus that appropriate for conditional
PDFs. Numbers less than 1 indicate superior MSE performance.

Nonsmooth Y variant, leftmost table, smooth Y variant, rightmost table

n = 50 n = 100 n = 200
ρ = 0.95 0.87 0.94 0.96
ρ = 0.85 0.88 0.94 0.97
ρ = 0.75 0.92 0.95 0.96
ρ = 0.50 0.91 0.93 0.93
ρ = 0.25 0.98 0.92 0.92

n = 50 n = 100 n = 200
ρ = 0.95 0.85 0.87 0.89
ρ = 0.85 0.86 0.90 0.92
ρ = 0.75 0.91 0.90 0.90
ρ = 0.50 0.92 0.94 0.89
ρ = 0.25 0.99 0.92 0.91

Table 2 reveals again that the smooth Y variant has improved finite-sample MSE relative to the

nonsmooth Y variant, which becomes more pronounced as n increases. We also note that the bandwidth

λz for the categorical variable takes its upper bound with high probability as it should given that z is

‘irrelevant’, while the method otherwise continues to perform as expected (bandwidth results are not

reported here for space considerations).

5.3. Testing for Stochastic Dominance – Children’s Health and Parental Education. The

relationship between children’s health and parental endowments such as income and education level

touches a wide number of disciplines. A popular measure of children’s health is based on hemoglobin,

the protein molecule that is present in red blood cells (it carries oxygen from the lungs to the body’s

tissues and returns carbon dioxide from the tissues to the lungs). Anemia (a low hemoglobin level)

is associated with malnourishment and is widely used as a measure of health by the World Health

Organization, among others. Normal results for men range from 13-18 grams per decilitre (g/dl). For

women the normal range is 12-16 g/dl.

We consider a dataset used by Maasoumi & Lugo (2008) that comes from the 2000 Indonesian

Family Life Survey conducted by RAND, UCLA and the Demographic Institute of the University of

Indonesia for a group in Indonesia, the ‘Sunda’ (the Sunda are the largest unreached people group in
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Indonesia, and they reside in the province of West Java). Interest lies in the outcome children’s ‘health’

(hemoglobin, g/dl) conditional on the covariates level of education of the household head (‘education’)

and household income per capita (‘income’ per household member). We consider the following variables

for n = 4254 observations, i) hb.ema: levels of hemoglobin adjusted by gender and age (‘health’), ii)

hdeduc00: level of education of the head of the household (‘education’), and iii) pce00: per capita

expenditures (‘income’) (in December 2000, the exchange rate for the Rupiah was Rp.9,480 / 1 US

dollar).

In what follows we treat the covariate education as an ordered factor (i.e. discrete) and income as

continuous, while health is treated as continuous. We consider testing for dominance relationships of

G = F (health | education=low) versus F = F (health | education=high),

and also we consider testing for dominance relationships of

G = F (health | education=low, income) versus F = F (health | education=high, income),

where we additionally control for the level of income given potential dependence among the covariates

education and income (income is held constant at its median value). For low and high values of

education we use 2 and 12 years corresponding to the 15th and 85th percentiles of the data, respectively.

That is, we first assess whether differences in parental education are associated with different health

outcomes, and then assess whether this difference reflects instead differences in parental resources as

measured by per capita income.

5.3.1. Testing First Order Stochastic Dominance: Definitions and Tests. Let W and V denote a health

variable measured, say, at either two different points in time, or for different regions or countries. Let

W1,W2, . . . ,Wn be n observations on W , and V1, V2, . . . , Vm be similar observations on V . Let U denote

the class of all utility functions s such that s′ ≥ 0, (increasing). Let W(i) and V(i) denote the i-th order

statistics, and assume F (x) and G(x) are continuous and monotonic CDF’s of W and V , respectively.

Definition 5.1. W First Order Stochastic Dominates V , denoted W FSD V , if and only if any one

of the following equivalent conditions holds:

(1) E[u(W )] ≥ E[u(V )] for all u ∈ U , with strict inequality for some u.

(2) F (x) ≤ G(x) for all x ∈ R with strict inequality for some x.
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We consider testing for FSD based upon (2) in Definition 5.1 using the following Kolmogorov-Smirnov

(KS) statistic:

D = min

{
sup
x

(G(x)− F (x)), sup
x

(F (x)−G(x))

}
,

where G(x) and F (x) are CDFs that differ in their covariate values (below G and F are the CDFs

of health holding income and/or education fixed at specific values), and the CDFs are evaluated at a

common grid of x values. D < 0 indicates FSD of F over G (or G over F ), while D ≥ 0 indicates no

such dominance. We therefore consider testing the hypothesis H0 : D ≥ 0 versus H1 : D < 0. Note

that when we reject H0 we conclude that F FSDs G (from the estimated curves we know F FSDs G).

We elect to use a nonparametric bootstrap method whereby we impose the null that G = F (i.e.

D ≥ 0). We do this by first drawing a bootstrap sample pairwise, and then once more bootstrap-

ping (i.e. shuffling in place leaving the remaining variables unchanged) the covariate variable(s) only

thereby removing any systematic relationship between the covariates variable(s) and the outcome for

the bootstrap sample. We can then compute the nonparametric P -value which is given by

P̂ = B−1
B∑
b=1

ID<D∗b ,

where B is the number of bootstrap replications and where ID<D∗b is an indicator function equal to one

when the sample statistic D is less than the bootstrap statistic computed under the null (D∗b ) and zero

otherwise. In other words, it is the proportion of bootstrap statistics more extreme than the sample

statistic (i.e. more negative).

5.3.2. Results and Discussion. Figure 1 presents the conditional CDFs G and F for low/high education

using the proposed bandwidth method (we restrict the plotting range of the X axis to the .005th and

.995th quantiles of the data, while plots that condition on income are similar to those presented and

are not included for space considerations). Bandwidths were (ĥh, ĥe) = (0.328, 0.042) and (ĥh, ĥe, ĥi) =

(0.392, 0.640, 108869) when covariates are education and both education and income, respectively. A

dominance relationship is apparent in both figures indicating that education levels are associated with

divergent health outcomes even after controlling for parental incomes per capita.

For each test conducted, we conduct B = 999 bootstrap replications and evaluate F and G on a

common set of 1000 points. We then report the statistic D along with its P -value. For these types of

tests, comparison of the distributions is performed over the range for which either F̂ or Ĝ is above ε

and below 1− ε (we set ε = 0.025) as tail noise is known to impact power.
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Figure 1. Nonsmooth Y (left figure) and smooth Y (right figure) conditional CDF plots.

The smooth Y D statistics from the nonparametric SD tests are -0.0113 and -0.00589 when covari-

ates are education and both education and income, respectively. The smooth Y P -values from the

nonparametric SD tests are 0.00501 and 0.018 when covariates are education and both education and

income, respectively. On the basis of this test we would conclude that there is statistical evidence that

the distribution of children’s health in households having a high education household head FSDs those

having a low education household head, even after controlling for differences in household per capita

income. The nonsmooth Y D statistics from the nonparametric SD tests are -0.0102 and -0.00506 when

covariates are education and both education and income, respectively. The nonsmooth P -values from

the nonparametric SD tests are 0.001 and 0.00701 when covariates are education and both education

and income, respectively.

These results indicate that high levels of parental education are associated with improved health

outcomes for their children even after controlling for potential differences in household per capita

income.

Stochastic dominance testing is also proving quite useful in the growing literature on inference in

(conditional) moment inequalities, and the approach detailed in this illustrative example could be

directly applied to this and a range of other applications.
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Appendix A. Proofs of Theorems 2.1, 2.2, 2.3, 2.4 and 2.5

Throughout Appendices A and B we will only consider/prove the non-smooth Y case (a) for all the

theorems as the proofs of these theorems for the smooth Y case (b) are similar to that of case (a).

To simplify the derivations that follow, it is necessary to introduce some shorthand notation and

preliminary manipulations.

(1) Let fi = f(xi), f̂−i = f̂−i(xi), Kγ,ji = Kγ(xj , xi). Ii = I(yi ≤ y), Fi = F (y|xi), Mi =M(xi).

(2) Unless otherwise stated, we will use
∑

i =
∑n

i=1,
∑

j 6=i =
∑n

i=1

∑n
j=1,j 6=i,

∑
j 6=i
∑

l 6=i =∑n
i=1

∑n
j=1,j 6=i

∑n
l=1,l 6=i,

∑
l 6=j 6=i =

∑n
i=1

∑n
j=1,j 6=i

∑n
l=1,l 6=i,l 6=j ,

∑
j>i =

∑n−1
i=1

∑n
j>i,

∑
l>j>i =∑n−2

i=1

∑n−1
j>i

∑n
l>j .

(3) We write An = Bn + (s.o.) to denote the fact that Bn is the leading term of An, where (s.o.)

denotes terms that have orders smaller than Bn. Also, we write An ∼ Bn to mean that An and

Bn have the same order of magnitude in probability.

(4) For notational simplicity we often ignore the difference between n−1 and (n−1)−1 (or (n−k)−1

for any fixed finite integer k) simply because this will have no effect on the asymptotic analysis.

(5) Define |h|2 =
∑q

s=1 h
2
s, |λ|2 =

∑r
s=1 λ

2
s, ζ1n = |h|2 + |λ|, ζn = ζ2

1n + ln(n)/(nh1 . . . hq) and

ξn = ζ
3/2
n + (ζ1n + n−1/2)(nh1 . . . hq)

−1.

The only exceptions to the rule (2) above are fi,0 and fi,1s defined below (A.4). From fi,0 =

(n − 1)−1
∑

j 6=iWh(xcj , x
c
i )I(xdj = xdi ), it is obvious that here

∑
j 6=i =

∑n
j=1,j 6=i involves only a single

summation because the left hand side of the equation depends on i.
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Proof of Theorem 2.1. Denote by F̂−i = F̂−i(y|xi). We need to show that CV (·) = CVL(·) + (s.o.),

where (s.o.) contains terms unrelated to bandwidths or terms having smaller order than CVL(·). Also,

the smaller order terms are uniformly small for all γ ∈ Γ (as defined in Section 3). We rewrite (2) as

(by adding/subtracting terms: (F̂−i − Ii)
2 = (F̂−i − Fi + Fi − Ii)

2),

CV (·) =
1

n

∑
i

∫ [
(F̂−i − Fi)2 − 2(F̂−i − Fi)(Ii − Fi) + (Fi − Ii)

2
]
MiM(y)dy.

Since n−1
∑

i

∫
(Fi−Ii)

2MiM(y)dy is unrelated to the bandwidths, it follows that minimizing CV (·)

over (h1, . . . , hq, λ1, . . . , λr) is equivalent to minimizing CV1(·), where CV1(·) is defined as

CV1(·) =
1

n

∑
i

∫ [
(F̂−i − Fi)2 − 2(F̂−i − Fi)(Ii − Fi)

]
MiM(y)dy

=

∫ [ 1

n(n− 1)2

∑
j 6=i

∑
l 6=i

∫
(Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f̂

2
−i

− 2

n(n− 1)

∑
j 6=i

∫
(Ij − Fi)(Ii − Fi)Kγ,ji/f̂−i

]
MiM(y)dy

=

∫
(S1n − 2S2n)M(y)dy(A.1)

where S1n =
1

n(n− 1)2

∑
j 6=i

∑
l 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,liMi/f̂
2
−i, S2n =

1

n(n− 1)

∑
j 6=i

(Ij − Fi)(Ii −

Fi)Kγ,jiMi/f̂−i.

Lemma A.1 and Lemma A.2 show that (recall that ζn = |h|4+|λ|2+(nh1 . . . hq)
−1 and ζ1n = |h|2+|λ|)

S1n =

∫ { q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
}2

f(x)M(x)dx+

∫
Σy|x

nh1 . . . hq
f(x)M(x)dx+Op(ζ1nζn)(A.2)

S2n = Op
(
(n−1/2ζn) + (n(h1 . . . hq)

1/2)−1
)
.(A.3)

Combining (A.1), (A.2) and (A.3), we have shown that

CV1(·) = CVL(·) +Op
(
ζ1nζn + (n−1/2ζn) + (n(h1 . . . hq)

1/2)−1
)
,

where CVL is defined in Theorem 2.1.

This completes the proof of Theorem 2.1. �

20



A technical difficulty in handling (A.1) arises from the presence of the random denominator f̂−i =

f̂−i(Xi). We will use the following identity to handle the random denominator:

(A.4)
1

f̂−i
=

1

fi
+
fi − f̂−i
f2
i

+
(fi − f̂−i)2

f3
i

+
(fi − f̂−i)3

f3
i f̂−i

.

Define fi,0 = (n − 1)−1
∑

j 6=iWh(xcj , x
c
i )I(xdj = xdi ), fi,1s = (n − 1)−1

∑
j 6=iWh(xcj , x

c
i )Is(x

d
j , x

d
i ) and

using I(xdj = xdi ) +
∑r

s=1 λs Is(x
d
j , x

d
i ) +O(|λ|2), we have uniformly in 1 ≤ i ≤ n,

fi − f̂−i = (fi − fi,0)−
r∑
s=1

λsfi,1s +Op(|λ|2).(A.5)

Let S denote the intersection of the support of Xi and the support of the trimming setM(Xi). Then

Equation (A.5) implies that, uniformly in 1 ≤ i ≤ n and in x ∈ S, fi−f̂−i = Op

(
(ln(n))1/2

(nh1...hq)1/2 + |h|2 + |λ|
)

because sup1≤i≤n |fi−f̂−i| ≤ supx∈S |f(x)−n−1
∑

iWh(xcj , x
c
i )I(xdj = xdi )|+O(n−1) = Op

(
(ln(n))1/2

(nh1...hq)1/2 +

|h|2 + |λ|
)

(because S is bounded) and sup1≤i≤n |fi,1s| = Op(1).

Therefore, we have

(A.6) |fi − f̂−i|3 = Op

((
ln(n)

nh1 . . . hq

)3/2

+ |h|6 + |λ|3
)
≡ Op(ζ3/2

n ).

Substituting (A.5) and (A.6) into (A.4), we obtain uniformly in 1 ≤ i ≤ n and x ∈ S

(A.7)
1

f̂−i
=

1

fi
+

(fi − f̂−i)
f2
i

+
(fi − f̂−i)2

f3
i

+Op(ζ
3/2
n ).

From (A.7), we also obtain uniformly in 1 ≤ i ≤ n and x ∈ S

(A.8)
1

f̂2
−i

=
1

f2
i

+
2(fi − f̂−i)

f3
i

+
(fi − f̂−i)2

f4
i

+Op(ζ
3/2
n ).

Both (A.7) and (A.8) will be used to handle the random denominator in the proofs that follow.

Lemma A.1. Equation (A.2) holds true.

Proof. We omit the weight function Mi for notational simplicity. Define S0
1n by replacing f̂−1

−i in S1n

with f−1
i . We will show that (A.2) holds true with S1n being replaced by S0

1n and that S1n − S0
1n =

op(ζn).

S0
1n =

1

n(n− 1)2

∑
j 6=i

(Ij − Fi)2K2
γ,ji/f

2
i +

1

n(n− 1)2

∑
l 6=j 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f
2
i

= S1n,1 + S1n,2,(A.9)
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where the definitions of S1n,1 and S1n,2 should be apparent.

First, we consider S1n,2, which can be written as a third-order U-statistic. S1n,2 = 1/(n(n −

1)2)
∑

l 6=j 6=iQijl, where Qijl is a symmetrized version of (Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f
2
i . Define Qij =

E(Qijl|xi, xj) and Qi = E(Qijl|xi). Then by U-statistic H-decomposition, we have

S1n,2 = EQi +
3

n

∑
i

(Qi − EQi) +
6

n(n− 1)

∑
j>i

(Qij −Qi −Qj + EQi)

+
6

n(n− 1)(n− 2)

∑
l>j>i

(Qijl −Qij −Qjl −Qli +Qi +Qj +Ql − EQi)

= J0 + J1 + J2 + J3(A.10)

where the definition of J0, J1, J2 and J3 should be clear.

J0 = E(Qi) = E(Qijl) = E
[
(Ij − Fi)(Il − Fi)Kγ,jiKγ,li/f

2
i

]
= E

{
E
[
(Ij − Fi)Kγ,ji|xi

]
/fi

}2
= E

{
E
[
(Fj − Fi)Kγ,ji|xi

]
/fi

}2
.(A.11)

We first compute E
[
(Fj − Fi)Kγ,ji|xi

]
.

E
[
(Fj − Fi)Kγ,ji|xi

]
=
∑
zd∈Sd

L(zd, xdi , λ)

∫
[F (y|xci + hv, zd)− F (y|xi)]f(xci + hv, zd)W (v)dv

=
∑
zd∈Sd

[
I(zd = xdi ) +

r∑
s=1

λsIs(z
d, xdi ) +O(|λ|2)

]
×
∫ {[

F (y|xci , zd)− F (y|xi)

+

q∑
s=1

Fs(y|xci , zd)hsvs + (1/2)

q∑
s=1

q∑
t=1

Fst(y|xci , zd)hshtvsvt +O(|h|3)
]

[
f(xci , z

d) +

q∑
s=1

fs(x
c
i , z

d)hsvs +O(|h|2)
]}
W (v)dv

=
κ2

2

q∑
s=1

h2
s

[
f(xi)Fss(y|xi) + 2fs(xi)Fs(y|xi)

]
+

r∑
s=1

λs
∑
zd∈Sd

Is(z
d, xdi )

[
F (y|xci , zd)− F (y|xi)

]
f(xci , z

d) +O(ζ2
1n),(A.12)

where ζ1n = |h|2 + |λ|.
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Plugging (A.12) into (A.11), we have

J0 = E
{κ2

2

q∑
s=1

h2
s

[
f(xi)Fss(y|xi) + 2fs(xi)Fs(y|xi)

]
f−1
i

+
r∑
s=1

λs
∑
zd∈Sd

Is(z
d, xdi )

[
F (y|xci , zd)− F (y|xi)

]
f(xci , z

d)f−1
i

}2
+O(ζ3

1n)

= E
{ q∑
s=1

h2
sB1s(y|xi) +

r∑
s=1

λsB2s(y|xi)
}2

+O(ζ3
1n)

=

∫ { q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
}2
f(x)dx+O(ζ3

1n),(A.13)

where B1s(y|x) and B2s(y|x) are defined in Theorem 2.1.

It is obvious that E(J1) = 0 and it is easy to show that E(J2
1 ) = O(n−1ζ2

1n). Hence, J1 =

Op(n
−1/2ζ1n). Similarly, J2 = Op(n

−1ζ1n), J3 = Op(n
−3/2ζ1n). Therefore, the leading term of S1,2

is J0. Thus, we have shown that

S1n,2 =

∫ { q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
}2
f(x)dx+Op(ζ

3
1n + n−1/2ζ1n).

Next, we consider S1n,1, which can be written as a second-order U-statistic. Define Qij = (1/2)[(Ij−

Fi)
2f−2
i + (Ii − Fj)2f−2

j ]K2
γ,ji, Qi = E[Qij |xi]. Then

S1n,1 =
1

n

(
EQi +

2

n

∑
i

(Qi − EQi) +
2

n(n− 1)

∑
j>i

[Qij −Qi −Qj + EQi]
)

= J0 + J1 + J2,

where the definitions of J0, J1 and J2 should be apparent.
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J0 = n−1E(Qi) = n−1E(Qij) = n−1E
{

(Ij − Fi)2K2
γ,jif

−2
i

}
= n−1E

{
(Ij − 2FiIj + F 2

i )K2
γ,jif

−2
i

}
= n−1E

{
E
[
(Fj − 2FiFj + F 2

i )K2
γ,ji|xi

]
f−2
i

}
= E

[
ν0(nh1 . . . hq)

−1(Fi − F 2
i )f−1

i

]
+O((nh1 . . . hq)

−1ζn)

= E

(
Σy|xi

nh1 . . . hq

)
+O((nh1 . . . hq)

−1ζn)

=

∫
Σy|x

nh1 . . . hq
f(x)dx+O((nh1 . . . hq)

−1ζn)(A.14)

where Σy|x is defined in Theorem 2.1.

Similarly, one can easily show that J1 = Op(n
−1/2(nh1 . . . hq)

−1) and J2 = Op(n
−1(nh1 . . . hq)

−1).

Hence, the leading term of S1n,1 is J0. Thus, we have shown that

S1n,1 =

∫
Σy|x

nh1 . . . hq
f(x)dx+Op((n

−1/2 + ζ1n)(nh1 . . . hq)
−1).

Summarizing the above we have shown that

S0
1n =

∫ { q∑
s=1

h2
sB1s(y|x) +

r∑
s=1

λsB2s(y|x)
}2

f(x)M(x)dx+

∫
Σy|x

nh1 . . . hq
f(x)M(x)dx+Op(ξn),

where ξn = ζ
3/2
n + (ζ1n + n−1/2)(nh1 . . . hq)

−1.

Next we show that S1n − S0
1n = Op(ξn). By Equation (A.8),

S1n − S0
1n =

1

n(n− 1)2

∑
j 6=i

(Ij − Fi)2
γ,ji

( 1

f̂2
i

− 1

f2
i

)
+

1

n(n− 1)2

∑
j 6=l 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,li

( 1

f̂2
i

− 1

f2
i

)

=
1

n(n− 1)2

∑
j 6=l 6=i

(Ij − Fi)(Il − Fi)Kγ,jiKγ,li

[2(fi − f̂−i)
f3
i

+
(fi − f̂−i)2

f4
i

+Op
(
n−1ζ1n + ζ3/2

n

)]
= Op (ξn) ,(A.15)

where ξn = ξn = ζ
3/2
n +(ζ1n+n−1/2)(nh1 . . . hq)

−1. This is because the two terms 2/(n(n−1)2)
∑

j 6=l 6=i(Ij−

Fi)(Il − Fi)Kγ,jiKγ,li(fi − f̂−i)/f3
i and 1/(n(n − 1)2)

∑
j 6=l 6=i(Ij − Fi)(Il − Fi)Kγ,jiKγ,li(fi − f̂−i)2/f4

i
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can be written as fourth-order and fifth-order U-statistics, respectively. Tedious but straightforward

calculations can show that both of these two terms are Op (ξn). Intuitively these results are quite

easy to understand, as these two terms have an extra factor (fi − f̂−i) and (fi − f̂−i)
2 compared

to the leading term. Therefore, both terms have probability orders smaller than the leading order

O(|h|4 + |λ|2 + (nh1 . . . hq)
−1). �

Lemma A.2. Equation (A.3) holds true.

Proof. Define S0
2n by replacing f̂−1

−i in S2n with f−1
i . We will show that (A.3) holds true with S2n being

replaced by S0
2n. Because E

[
F (y|xi) − I(yi ≤ y)|xi

]
= 0 and E

[
F (y|xj) − I(yj ≤ y)|xj

]
= 0, S0

2n can

be written as a second order degenerate U-statistic,

E[(S0
2n)2] =

1

n2(n− 1)2

∑
j 6=i

∑
l 6=i

E
[
(Ij − Fi)(Ii − Fi)2(Il − Fi)Kγ,jiKγ,li/f

2
i

]
=

1

n2(n− 1)2

∑
l 6=j 6=i

E
[
(Ij − Fi)(Ii − Fi)2(Il − Fi)Kγ,jiKγ,li/f

2
i

]
+

1

n2(n− 1)2

∑
j 6=i

E
[
(Ij − Fi)2(Ii − Fi)2K2

γ,ji/f
2
i

]
= O(n−1(ζn) +O((n2h1 . . . hq)

−1).

Hence,

S0
2n = Op

(
(n−1/2ζ1n + (n2h1 . . . hq)

−1/2
)
.

Note that since S0
2n has zero mean, the above results imply that we can write S0

2n as

(A.16) S0
2n = n−1/2ζ1nX̃2 + (n2h1 . . . hq)

−1/2X̃3,

where X̃2 and X̃3 are zero mean Op(1) random variables. Equation (A.16) will be used in the proof of

Theorem 2.3.

Next, using (A.7) we have

S2n − S0
2n =

1

n(n− 1)

∑
j 6=i

(Ij − Fi)(Ii − Fi)Kγ,ji

( 1

fi
− 1

f̂−i

)

=
1

n(n− 1)

∑
j 6=i

(Ij − Fi)(Ii − Fi)Kγ,ji

[(fi − f̂−i)
f2
i

+
(fi − f̂−i)2

f3
i

]
+Op

(
ζ3/2
n

)
= Op

(
ξn
)
,
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where ξn = ζ
3/2
n +(ζ1n+n−1/2)(nh1 . . . hq)

−1. The last equality follows from U-statistic H-decomposition.

Because 1/(n(n − 1))
∑

j 6=i(Ij − Fi)(Ii − Fi)Kγ,ji(fi − f̂−i)/f
2
i and 1/(n(n − 1))

∑
j 6=i(Ij − Fi)(Ii −

Fi)Kγ,ji(fi − f̂−i)2/f3
i can be written as third and fourth order U-statistics, the leading terms are the

mean values of the U-statistics. Given that they have either an extra factor (fi − f̂−i), or (fi − f̂−i)2,

it can be shown that they both have probability orders smaller than the leading order of ζn by a factor

of ζ
1/2
n . �

Proof of Theorem 2.2. Theorem 2.2 is a special case of Theorem 3.1 with q1 = q and r1 = r (when

there are no irrelevant covariates). �

Proof of Theorem 2.3. The proof of Theorem 2.3 follows by combining the proofs for Theorem 2.1 and

the proof method of Theorem 2.2 of Racine & Li (2004).

We provide a sketch of the proof here. To save space, we will make a notational simplification. We

assume that h1 = · · · = hq = h and λ1 = · · · = λr = λ. Then the result of Theorem 2.1 simplifies to

CVL = B1h
4 +B2h

2λ+B3λ
2 +B4(nhq)−1,

where Bjs are some constants, j = 1, 2, 3, 4. In fact by explicitly considering the other non-leading

terms, one can show that

S1n =B1h
4 +B2h

2λ+B3λ
2 +B4(nhq)−1

+B5h
6 +B6h

4λ+B7h
2λ2 +B8λ

3 +B9(h2 + λ)(nhq)−1

n−1/2ζ1nX1n + (s.o.),(A.17)

S2n =n−1/2ζ1nX̃2 + (nhq/2)−1X̃3 + (s.o.),(A.18)

where Bj ’s are some constants for j = 1, . . . , 9, and Xjn, j = 1, 2, 3, are zero mean Op(1) random

variables.

The derivations of (A.17) and (A.18) follow the same method as in the proof of Theorem 2.1. For

example, by using Taylor expansion to higher order terms in the derivation of (A.13), one can easily

show that

J0 =E
{
h2B̃1 + λB̃2 + h4B̃3 + h2λB̃4 + λ2 B̃5

}2
+ (s.o.)

=h4B̄1 + h2λB̄2 + λ2B̄3 + h6B̄4 + h4λB̄5 + h2λ2B̄6 + λ3B̄7 + (s.o),(A.19)
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where B̃j = B̃j(y, xi), the expectation is with respect to xi, and B̄j = B̄j(y).

Similarly, J1 defined in (A.10) has zero mean and its second moment is of the order O(n−1ζ2
1n).

Hence, if we write J1 = n−1/2ζ
1/2
1n X̃1, or equivalently, X̃1

def
= n1/2ζ

−1/2
1n J1, then obviously X̃1 is a zero

mean Op(1) random variable. Also, (A.18) follows from (A.16). Now it should be clear that by explicitly

considering smaller order terms in CV1(·), one can prove (A.17) and (A.18).

The remaining steps are to show that (A.17) and (A.18) together imply the conclusion of Theorem

2.3. The detailed analysis follows exactly the same arguments as in the proof of Theorem 2.2 of Racine

& Li (2004). Therefore, we omit the remaining proofs here. �

Proof of Theorem 2.4. Theorem 2.4 is a special case of Theorem 3.2 with q1 = q and r1 = r (when

there are no irrelevant covariates). �

Proof of Theorem 2.5. Recall that CVΣ = n−2
∑n

j 6=i

[
F̂−i(yj |xi)− I(yi ≤ yj)

]2
Mi. Denote Iji =

I(yi ≤ yj), F̂−i,ji = F̂−i(yj |xi), Fji = F (yj |xi). Then similar to the proof of Theorem 2.1, by

adding/subtracting Fji between Iji and F̂−i,ji in CVΣ, we obtain CVΣ = CVΣ,1 + (s.o.), where

CVΣ,1 =
1

n2

∑
j 6=i

(F̂−i,ji − Fji)2Mi +
2

n2

∑
j 6=i

(F̂−i,ji − Fji)(Fji − Iji)Mi

= SΣ,1n − SΣ,2n,(A.20)

where the definitions of SΣ,1n and SΣ,2n should be apparent. Using F̂−i,ji = n−1
∑

l 6=i IjlKγ,il/f̂−i and

1/f̂−i = 1/fi + (s.o.), we obtain SΣ,1n = S0
Σ,1n + (s.o.), where

S0
Σ,1n =

1

n4

∑
j 6=i

∑
l 6=i

∑
l′ 6=i

(Ijl − Fji)Kγ,il(Ijl′ − Fji)Kγ,il′Mi/f
2
i .(A.21)

We discuss several cases for S0
Σ,1n: (i) all four indices i, j, l, l′ differ from each other; (ii) l = l′ and

i 6= j 6= l; (iii) l = j and i 6= j 6= l′; (iv) l′ = j and i 6= j 6= l; (v) l = l′ = j and j 6= i.

For case (i) we have

S0
Σ,1n,(i) =

1

n4

∑
i6=j 6=l 6=l′

(Ijl − Fji)Kγ,il(Ijl′ − Fji)Kγ,il′Mi/f
2
i .(A.22)

S0
Σ,1n,(i) can be written as a fourth order U-statistic. By the U-statistic H-decomposition we know

that S0
Σ,1n,(i) = E[S0

Σ,1n,(i)] + (s.o.). Denoting Ily = I(yl ≤ y), Fiy = F (y|xi) and noting that yj is

27



independent of (yl, yl′ , xi, xl, xl′), we have (recall that g(·) is the marginal density of yj)

E[S0
Σ,1n,(i)] =

∫
g(y)E[(Ily − Fiy)Kγ,il(Il′y − Fiy)Kγ,il′Mi/f

2
i ]dy =

∫
g(y)S0

1n,1(y)dy,(A.23)

where S0
1n,1(y) = E[(Ily−Fiy)Kγ,il(Il′y−Fiy)Kγ,il′Mi/f

2
i ]. From (A.9) we know that S0

1n,1(y) = E[S1n,2]

if one replaces M(y) by g(y) in the definition of S1n,2, where S1n,2 is defined in (A.9) and is one of the

leading terms of S0
1n (and of CV (·)); see the proof of Theorem 2.1.

For case (ii), by H-decomposition we know S0
Σ,1n,(ii) = E[S0

Σ,1n,(ii)] + (s.o.) and

E[S0
Σ,1n,(ii)] = n−1

∫
g(y)E[(Ily − Fiy)2K2

γ,ilMi/f
2
i ]dy =

∫
g(y)S0

1n,2(y)dy,(A.24)

where S0
1n,2(y) = n−1E[(Ily − Fiy)2K2

γ,ilMi/f
2
i ]. By (A.9) we know that S0

1n,2(y) = E[S1n,1] if one

replaces M(y) by g(y) in the definition of S1n,1, where S1n,1 is defined in (A.9) and is the second

leading term of S0
1n (and of CV (·)).

For case (iii) l′ = j, by H-decomposition we know that S0
Σ,1n,(iii) = E[S0

Σ,1n,(iii)] + (s.o.) and

E[S0
Σ,1n,(iii)] = n−1E[(Ijl − Fji)Kγ,il(1− Fji)Kγ,ijMi/f

2
i ] + (s.o.)

= n−1E[(Flj − Fji)Kγ,il(1− Fji)Kγ,ijMi/f
2
i ] + (s.o.)

= n−1O(|h|2 + |λ|) = O(n−1ζ1n).(A.25)

By symmetry, we know that case (iv) is the same as case (iii) so that we have S0
Σ,1n,(iv) = O(n−1ζ1n).

Finally, it is easy to see that SΣ,1n,(v) = Op(n
−2(h1 . . . hq)

−1).

Summarizing the above we have shown that the leading term of CVΣ is given by

CVΣ,L =

∫
g(y)[S0

1n,1(y) + S0
1n,2(y)]dy,(A.26)

which equals CVL provided that one replaces M(y) by g(y) in CVL(·). Hence, Theorem 2.5 follows

from Theorem 2.1.

So far we have assumed that y is a continuous random variable. For the discrete y case, we just

need to replace the integral with the summation operator, that is, (A.26) will be written as CVΣ,L =∑
j [S

0
1n,1(yj) + S0

1n,2(yj)]g(yj). This completes the proof of Theorem 2.5. �
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Appendix B. Proof of Theorem 3.1 and Theorem 3.2

In Appendix B, we use Fi to denote the true conditional CDF F (y|x̄i). We will use the notation

that ζ̄1n = |h̄|2 + |λ|, |h̄|2 =
∑q1

s=1 h
2
s, |λ̄| =

∑r1
s=1 λs, and ζ̄n = ζ̄2

1n + (nh1 . . . hq1)−1.

Proof of Theorem 3.1: Following the same derivations that lead to (A.1), one can show that CV (·) =

CV1(·)+ a term unrelated to (h, λ), where

CV1(γ) =

∫ [ 1

n(n− 1)2

∑
j 6=i

∑
l 6=i

(
Ij − Fi

)(
Il − Fi

)
Kγ,jiKγ,li/f̂

2
−i

− 2

n(n− 1)

∑
j 6=i

(
Ij − Fi

)(
Ii − Fi

)
Kγ,ji/f̂−i

]
MiM(y)dy

=

∫
(A1n − 2A2n)M(y)dy,

where the definitions of A1n and A2n should be obvious.

In Lemma B.1 and Lemma B.2 below we show, uniformly in (h, λ) ∈ Γ, that

A1n =

∫ ( q1∑
s=1

h2
sB̄1s(y|x̄) +

r1∑
s=1

λsB̄2s(y|x̄)
)2
f̂(x̄)M̄(x̄)dx̄

+

∫
Σ̄y|x̄

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)dx+ (s.o.)(B.1)

A2n = Op(n
−1/2ζ1n + (n2h1 . . . hq1)−1/2) = op(A1n),(B.2)

where M̄(x̄) is defined in (8).

B̄1s(y|x̄) =
κ2

2

[
f̄(x̄)Fss(y|x̄) + 2f̄s(x̄)Fs(y|x̄)

]
/f̄(x̄)(B.3)

B̄2s(y|x̄) =
∑
z̄d∈Sd

Is(z̄
d, x̄d)

[
F (y|x̄c, z̄d)− F (y|x̄c, x̄d)

]
f̄(x̄c, z̄d)/f̄(x̄)(B.4)

Σ̄y|x̄ = κq1 [F (y|x̄)− F (y|x̄)2]/f̄(x̄)(B.5)

Fs(y|x̄) = ∂F (y|x̄)/∂x̄cs, Fss(y|x̄) = ∂2F (y|x̄)/∂(x̄cs)
2, f̄s(x̄) = ∂f̄(x̄)/∂x̄cs. Let

∫
dx̄ =

∑
x̄d
∫
dx̄c,∫

dx =
∑

xd
∫
dxc. R̃(x̃) = R̃(x̃, hq1+1, . . . , hq, λr1+1, . . . , λr) is defined by

(B.6) R̃(x̃) =
ν2(x̃)

[ν1(x̃)]2

where for i = 1, 2, νi(x̃) = E
([∏q

s=q1+1 h
−1
s w(

xcis−xcs
hs

)
∏r
s=r1+1 l(x

d
is, x

d
s , λs)

]i)
.
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Hence, the leading term of CV1(γ) is∫∫ ( q1∑
s=1

h2
sB̄1s(y|x̄) +

r1∑
s=1

λsB̄2s(y|x̄)
)2
f̄(x̄)M̄(x̄)M(y)dx̄dy

+

∫∫
Σ̄y|x̄

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)M(y)dxdy.(B.7)

By Hölder’s inequality, R̃(x̃) ≥ 1 for all choices of x̃, hq1+1, . . . , hq, λr1+1, . . . , λr. Also, R̃(x̃) → 1

as hs → ∞ (q1 + 1 ≤ s ≤ q) and λs → 1 (r1 + 1 ≤ s ≤ r). Therefore, in order to minimize (B.7),

one needs to select hs (s = q1 + 1, . . . , q) and λs (s = r1 + 1, . . . , r) to minimize R̃(x̃). In fact, we

show that the only bandwidth values for which R̃(x̃, hq1+1, . . . , hq, λr1+1, . . . , λr) = 1 are hs → ∞ for

q1 + 1 ≤ s ≤ q, and λs = 1 for r1 + 1 ≤ s ≤ r. To see this, let us define Vn =
∏q
s=q1+1 h

−1
s w((xcis −

xcs)/hs)
∏r
s=r1+1 l(x

d
is, x

d
s , λs). If at least one hs is finite (for q1 + 1 ≤ s ≤ q), or one λs < 1 (for

r1 + 1 ≤ s ≤ r), then by (3) (w(0) > w(δ) for all δ > 0) we know that Var(Vn) = E[V2
n]− [E(Vn)]2 > 0

so that R̃(x̃) = E(V2
n)/[E(Vn)]2 > 1. Only when, in the definition of Vn, all hs =∞ and all λs = 1, do

we have Vn ≡ w(0)q−q1 (a constant) and Var(Vn) = 0 so that R̃(x̃) = 1 only in this case.

Therefore, in order to minimize (B.7), the bandwidths corresponding to the irrelevant covariates

must all converge to their upper bounds so that R̃(x̃)→ 1 as n→∞ for all x̃ ∈ S̃ (S̃ is the support of

x̃ ). Thus irrelevant components are asymptotically smoothed out.

To analyze the behavior of bandwidths associated with the relevant covariates, we replace R̃(x̃) by

1 in (B.7), thus the second term on the right-hand-side of (B.7) becomes

(B.8)

∫∫
Σ̄y|x̄

nh1 . . . hq1
f̄(x̄)f̃(x̃)M(x)M(y)dxdy.

Define as = hsn
1/(q1+4) and bs = λsn

2/(q1+4), then (B.7) (with (B.8) as its first term since R̃(x̃)→ 1)

becomes n−4/(q1+4)X̄ (a1, . . . , aq1 , b1, . . . , br1), where

X̄ (a1, . . . , br1) = (a1 . . . aq1)−1

∫∫
Σ̄y|x̄f̄(x̄)f̃(x̃)M(x)M(y)dxdy

+

∫∫ ( q1∑
s=1

a2
sB̄1s(y|x̄) +

r1∑
s=1

bsB̄2s(y|x̄)
)2
f̄(x̄)M̄(x̄)M(y)dx̄dy.(B.9)

Let (a0
1, . . . , a

0
q1 , b

0
1, . . . , b

0
r1) denote values of (a1, . . . , aq1 , b1, . . . , br1) that minimize X̄ subject to each

of them being non-negative. We require that
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(B.10) Each a0
s is positive and each b0s non-negative, all are finite and uniquely defined.

The result of Theorem 3.1 immediately follows. �

Lemma B.1. Equation (B.1) holds true.

Proof. By Lemma B.3 we know that f̂−i(x) is the kernel estimator of µ(x) = f̄(x̄)ν1(x̃), where ν1(x̃) =

E[K̃γ̃,ij |x̃i = x̃]. Therefore, we know that (see Lemma B.3) the leading term of f̂−i(xi)
−1 is µ(xi)

−1.

Define A0
1 by replacing f̂−i(xi)

−1 in A1 by its leading term µ(xi)
−1. Then using the result of Lemma

B.3, it is easy to show that A1n = A0
1n + (s.o.). Hence, we only need to consider A0

1n which is defined

by

A0
1n =

1

n(n− 1)2

∑
l 6=j 6=i

(
Ij − Fi

)(
Il − Fi

)
Kγ,jiKγ,liµ(xi)

−2Mi +
1

n(n− 1)2

∑
j 6=i

(
Ij − Fi

)2
K2
γ,jiµ(xi)

−2Mi

= G1n +G2n,

where the definitions for G1n and G2n should be apparent.

We first consider G1n, which can be written as a third order U-statistic. By the U-statistic H-

decomposition, one can show that G1n = E(G1n) + (s.o.).

E(G1n) = E
[
(Ij − Fi)(Il − Fi)Kγ,jiKγ,liµ(xi)

−2Mi

]
= E

{(
E[(Ij − Fi)Kγ,ji/µ(xi)|xi]

)2Mi

}
.(B.11)

31



We first compute E[(Ij−Fi)Kγ,jiµ(xi)
−1|xi]. Recalling that µ(x) = f̄(x̄)ν1(x̃), we have (noting that

E[K̃γ̃,ij/ν1(x̃i)|x̃i] = 1)

E[(Ij − Fi)Kγ,jiµ(xi)
−1|xi] = E[(Fj − Fi)Kγ,jiµ(xi)

−1|xi]

= E[(Fj − Fi)K̄γ̄,ij f̄(x̄i)
−1|x̄i]E[K̃γ̃,ij/ν1(x̃i)|x̃i]

= f̄(x̄i)
−1

∑
z̄d∈S̄d

L(z̄d, x̄di , λ)

∫
[F (y|x̄ci + hv, z̄d)− F (y|x̄ci , x̄di )]f̄(x̄ci + hv, z̄d)W (v)dv

=
κ2

2

q1∑
s=1

h2
s

[
f̄(x̄i)Fss(y|x̄i) + 2f̄s(x̄i)Fs(y|x̄i)

]
/f̄(x̄i)

+

r1∑
s=1

λs
∑
z̄d∈S̄d

Is(z̄
d, x̄di )

[
F (y|x̄ci , z̄d)− F (y|x̄ci , x̄di )

]
f̄(x̄ci , z̄

d)/f̄(x̄i) + o(ζn)

=

q1∑
s=1

h2
sB̄1s(y|x̄i) +

r1∑
s=1

λsB̄2s(y|x̄i) + o(ζ̄n),(B.12)

uniformly in (h, λ) ∈ Γ, where B̄1s(y|x̄) and B̄2s(y|x̄) are defined in (B.3) and (B.4).

Substituting (B.12) into (B.11), we immediately obtain (recall M̄(x̄) is defined in (8))

(B.13) E(G1n) =

∫ ( q1∑
s=1

h2
sB̄1s(y|x̄) +

r1∑
s=1

λsB̄2s(y|x̄)
)2
f̄(x̄)M̄(x̄)dx̄+ o(ζ̄n).

Note that in the above we have only shown that for all fixed values of (h, λ) ∈ Γ, (B.13) holds

true. By utilizing Rosenthal’s and Markov’s inequalities, it’s straightforward to show (B.13) holds true

uniformly in (h, λ) ∈ Γ.

Next we consider G2n. G2n can be written as a second order U-statistic. By the U-statistic H-

decomposition it is straightforward to show that G2n = E(G2n) + (s.o.). Recalling µ(x) = f̄(x̄)ν1(x̃),

ν2(x̃) = E[K̃2
γ̃,ji|x̃i = x̃], we have

E(G2n) = n−1E
[(

Ij − Fi
)2
K2
γ,jiµ(xi)

−2Mi

]
= n−1E

{
E
[
(Ij − 2FiIj + F 2

i )K2
γ,jiµ(xi)

−2|xi
]
Mi

}
= n−1E

{
E
[
(Ij − 2FiIj + F 2

i )K̄2
γ̄,if̄(x̄i)

−2|x̄i
]
Miν2(x̃i)ν1(x̃i)

−2
}
.(B.14)
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We first compute E
[
(Ij − 2FiIj + F 2

i )K̄2
γ̄,ji/f̄(x̄i)

2|xi
]
. By Lemma B.4 we know that hs → 0 for

s = 1, . . . , q1 and λs → 0 for s = 1, . . . , r1. Thus

E
[
(Ij − 2FiIj + F 2

i )K̄2
γ̄,jif̄(x̄i)

−2|xi
]

= E
[
(Fj − 2FiFj + F 2

i )K̄2
γ̄,jif̄(x̄i)

−2|xi
]

=
1

h1 . . . hq1

∑
z̄d∈S̄d

L(z̄d, x̄di , λ)2

∫ [
F (y|x̄ci + hv, z̄d)− 2F (y|x̄ci , x̄di )F (y|x̄ci + hv, z̄d)

+ F (y|x̄ci , x̄di )2
]
f̄(x̄i)

−2f̄(x̄ci + hv, z̄d)W (v)2dv

=
Σ̄y|x̄i

h1 . . . hq1
+O(ζ̄

1/2
1n (h1 . . . hq1)−1),(B.15)

where Σ̄y|x̄ is defined in (B.5).

Substituting (B.15) into (B.14), we immediately obtain E(G2n) =
∫ Σ̄y|x̄
nh1...hq1

R̃(x̃)f̄(x̄)f̃(x̃)M(x)dx+

(s.o.), where R̃(x̃) is defined in (B.6). Hence,

G2n = E(G2n) + (s.o.) =

∫
Σ̄y|x̄

nh1 . . . hq1
R̃(x̃)f̄(x̄)f̃(x̃)M(x)dx+ (s.o.).

Moreover, by utilizing Rosenthal’s and Markov’s inequalities, one can show that the above result

holds uniformly in (h, λ) ∈ Γ. �

Lemma B.2. Equation (B.2) holds true.

Proof. Let A0
2n denote A2n with f̂−i(xi)

−1 being replaced by its leading term µ(xi)
−1. Then it can

be shown that A2n = A0
2n + (s.o.). Hence, we only need to consider A0

2n which is defined by A0
2n =

(n(n − 1))−1
∑

j 6=i
(
Ij − Fi

)
(Ii − Fi)Kγ,jiµ(xi)

−1. Notice that the part in A0
2n that is related to the

irrelevant covariates is K̃γ̃,ji/ν1(x̃), which is bounded. Therefore, when evaluating the order of A0
2n we

can ignore the irrelevant covariates part and need only consider

Ā0
2n =

1

n(n− 1)

∑
j 6=i

(Ij − Fi)(Ii − Fi)K̄γ̄,jif̄(x̄i)
−1Mi.

Note that Ā0
2n only depends on (h1 . . . , hq1 , λ1, . . . , λr1). By Lemma B.4 we know that these band-

widths all converge to zero as n → ∞. Hence, we can use standard change-of-variable and Taylor

expansion arguments to deal with the continuous covariates’ kernel function, and use the polynomial

expansion for the discrete kernel functions. Note that Mi does not influence the order of Ā0
2n, so we
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omit Mi in the following proof of this Lemma.

E[Ā0
2n]2 =

1

n2(n− 1)2

∑
j 6=i

∑
l 6=i

E
[
(Ij − Fi)(Ii − Fi)2(Il − Fi)K̄γ̄,jiK̄γ̄,lif̄(x̄i)

−2
]

=
1

n2(n− 1)2

∑
l 6=j 6=i

E
[
(Ij − Fi)(Ii − Fi)2(Il − Fi)K̄γ̄,jiK̄γ̄,lif̄(x̄i)

−2
]

+
1

n2(n− 1)2

∑
j 6=i

E
[
(Ij − Fi)2(Ii − Fi)2K̄2

γ̄,jif̄(x̄i)
−2
]

= O
(
n−1ζ̄2

1n + (n2h1 . . . hq1)−1
)
.

Hence

(B.16) Ā0
2n = Op(n

−1/2ζ̄1n + (n(h1 . . . hq1)1/2)−1).

Moreover, by utilizing Rosenthal’s and Markov’s inequalities, one can show that (B.16) holds uni-

formly in (h, λ) ∈ Γ. Therefore, (B.2) holds. �

Lemma B.3. Defining ν1(x̃) = E[K̃γ̃,ij |x̃i = x̃] and µ(x) = f̄(x̄)ν1(x̃), then f̂−i(x)−1 = µ(x)−1 +

Op

(
ζ̄1n +

(
ln(n)

)1/2
(nh1 . . . hq1)−1/2

)
uniformly in x ∈ S and (h, λ) ∈ Γ.

Proof. Defining µ̂(x) = E[f̂−i(xi)|xi = x], then by the independence of x̃i and x̄i, yi, we have

µ̂(x) = E[K̄γ̄,ij |x̄i = x̄]E[K̃γ̃,ij |x̃i = x̃] = {f̄(x̄) +O(ζ̄1n)}E[K̃γ̃,ij |x̃i = x̃] = µ(x) +Op(ζ̄1n).(B.17)

Note f̂−i(x) − µ̂(x) has zero mean. Following standard arguments used when deriving uniform

convergence rates for nonparametric kernel estimators (e.g. Masry (1996)), we know that

(B.18) f̂−i(x)− µ̂(x) = Op

((
ln(n)

)1/2
(nh1 . . . hq1)−1/2

)
,

uniformly in x ∈ S and (h, λ) ∈ Γ.

Combining (B.17) and (B.18) we obtain

(B.19) f̂−i(x)− µ(x) = Op

(
ζ̄1n +

(
ln(n)

)1/2
(nh1 . . . hq1)−1/2

)
,

uniformly in x ∈ S and (h, λ) ∈ Γ.
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Using (B.19) and Taylor expansions, we obtain

f̂−i(x)−1 =
[
µ(x) + f̂−i(x)− µ(x)

]−1

= µ(x)−1 − µ(x)−2
[
f̂−i(x)− µ(x)

]
+Op

(
|f̂−i(x)− µ(x)|2

)
= µ(x)−1 +Op

(
ζ1/2
n +

(
ln(n)

)1/2
(nh1 . . . hq1)−1/2

)
. �

Lemma B.4. ĥs = op(1) for s = 1, . . . , q1 and λ̂s = op(1) for s = 1, . . . , r1.

Proof. Without assuming that any of the bandwidths converge to zero, then the only possible non-op(1)

term in CV (γ) is G1n. It is fairly straightforward to see that G1n = 1
n(n−1)2

∑
l 6=j 6=i

(
Ij − Fi

)(
Il − Fi

)
Kγ,jiKγ,liµ(xi)

−2Mi + op(1) ≡ G1,0 + op(1), where µ(xi) = f̄(x̄)E[K̃γ̃,ij |x̃i] is defined in the proof of

Lemma B.3.

Note that G1,0 can be written as a third order U-statistic, hence by the H-decomposition of a U-

statistic it is fairly straightforward to show that G1,0 = E(G1,0) + op(1). Furthermore, by the law of

iterated expectations we have

E(G1,0) = E
{[
µ(xi)

−1E
(
(Ij − Fi)Kγ,ji|xi

)]2M(xi)
}

= E

{[
f̄(x̄i)

−1E
(
(Fj − Fi)K̄γ̄,ji|x̄i

)]2
M(xi)

}
= E

{
[η(y, x̄i)]

2M(xi)
}

=

∫
[η(y, x̄)]2f̄(x̄)M̄(x̄)dx̄,(B.20)

where η(y, x̄) is defined in (7), M̄(x̄) is defined in (8). Note that the right hand side of (B.20) does

not depend on (hq1+1, . . . , hq, λr1+1, . . . , λr) since E[K̃γ̃,ij |x̃i] in the numerator cancels with the same

quantity in the denominator (from µ(xi)
−1 = f̄(x̄)−1E[K̃γ̃,ij |x̃i]−1).

If the bandwidths (h1, . . . , hq1 , λ1, . . . , λr1) that minimize CV (γ) do not all converge in probability

to zero, then by (9), E(G1,0) (or G1n) does not converge to zero, which implies that the probability

that the minimum of G1n (over the bandwidths) exceeds δ, which does not converge to zero as n→∞

(for some δ > 0).

However, choosing h1, . . . , hq1 to be of size n−1/(q1+4), and λ1, . . . , λr1 to be of size n−2/(4+q), letting

hq1+1, . . . , hq diverge to infinity, and letting λr1+1, . . . , λr converge to 1, one can easily show G1n

converges in probability to zero. This contradicts the result obtained in the previous paragraph (the

minimum of G1n exceeds δ), and thus demonstrates that, at the minimum of CV (γ), the bandwidths

(h1, . . . , hq1 , λ1, . . . , λr1), for the relevant components of x, all converge in probability to zero. �
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Proof of Theorem 3.2. By Theorem 3.1 we know that ĥs
p→ +∞ for s = q1 + 1, . . . , q and λ̂s

p→

1 for s = r1 + 1, . . . , r. Therefore, we need only consider the case with all irrelevant covariates

removed, i.e. we consider F̂ (y|x̄) = [
∑

j K̄γ̂,jx]−1[
∑

j IjK̄γ̂,jx], where K̄γ̂,jx =
[∏q1

s=1 ĥ
−1
s w((xcjs −

xcs)/ĥs)
][∏r1

s=1 l(x
d
js, x

d
s , λ̂s)

]
.

We first consider the benchmark case whereby we use non-stochastic bandwidths. Define h0
s =

a0
sn
−1/(4+q1) for s = 1, . . . , q1, and λ0

s = b0sn
−2/(4+q1) for s = 1, . . . , r1, where a0

s and b0s are defined

in (B.10). Also, define F̄ (y|x̄) =
[∑

j K̄γ0,jx

]−1[∑
j IjK̄γ0,jx

]
, where K̄γ0,jx =

[∏q1
s=1(h0

s)
−1w((xcjs −

xcs)/h
0
s)
][∏r1

s=1 l(x
d
js, x

d
s , λ

0
s)
]
. Then,

(B.21) F̄ (y|x̄)− F (y|x̄) =
[∑

j

K̄γ0,j

]−1[∑
j

IjK̄γ0,jx −
∑
j

K̄γ0,jxF (y|x̄)
]
,

where F (y|x̄) is the true conditional CDF. By adding and subtracting terms, we obtain

F̄ (y|x̄)− F (y|x̄) =
[∑

j

K̄γ0,jx

]−1[∑
j

K̄γ0,jx

(
Ij − F̄j + F̄j − F (y|x̄)

)]
=
[
A0(x̄)

]−1[
B0(y|x̄) + C0(y|x̄)

]
,

where A0(x̄) = n−1
∑

j K̄γ0,jx, B0(y|x̄) = n−1
∑

j K̄γ0,jx

[
Ij − F̄j

]
and C0(y|x̄) = n−1

∑
j 6=i K̄γ0,jx[

F̄j − F (y|x̄)
]
.

By the same arguments as we used in the proof of Lemma B.3, one can show that A0(x̄) = f̄(x̄) +

op(1). Following the proof of Lemma B.1, one can show that C0(y|x̄) = f̄(x̄)
[∑q1

s=1(h0
s)

2B̄1s(y|x̄) +∑r1
s=1 λ

0
sB̄2s(y|x̄)

]
+ op(ζ

0
n), where ζ0

n =
∑q1

s=1(h0
s)

2 +
∑r1

s=1 λ
0
s. Obviously, B0(y|x̄) has zero mean and

its asymptotic variance is given by (nh0
1 . . . h

0
q1)−1Σ̄y|x̄f̄(x̄)2, where Σ̄y|x̄ is defined in (B.5). By applying

a triangular-array CLT, we have that

(B.22)
√
nh0

1 . . . h
0
q1

[
F̄ (y|x̄)− F (y|x̄)−

q1∑
s=1

(h0
s)

2B̄1s(y|x̄)−
r1∑
s=1

λ0
sB̄2s(y|x̄)

]
d→ N(0, Σ̄y|x̄).

Next we consider F̂ (y|x) =
[∑

j 6=i K̄γ̂,ji

]−1[∑
j 6=i IjK̄γ̂,ji

]
with cross-validation selected bandwidths,

where K̄γ̂,ji =
[∏q1

s=1 ĥ
−1
s w((xcis − xcs)/ĥs)

][∏r1
s=1 l(x

d
is, x

d
s , λ̂s)

]
. Therefore, the only difference be-

tween F̂ (y|x) and F̄ (y|x̄) is that the former uses the cross-validated bandwidths, while the latter

uses some benchmark non-stochastic bandwidths. By Theorem 3.1 we know that ĥs/h
0
s

p→ 1 for

s = 1, . . . , q1, and λ̂s/λ
0
s

p→ 1 for s = 1, . . . , r1. By using stochastic equicontinuity arguments as in

Hall et al. (2004), one can show that D̂(y|x)− D̄(y|x̄) = op((nh
0
1 . . . h

0
q)
−1/2), where D̂(y|x) = F̂ (y|x̄)−
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F (y|x̄)−
∑q1

s=1(ĥs)
2B̄1s(y|x̄)−

∑r1
s=1 λ̂sB̄2s(y|x̄) and D̄(y|x̄) = F̄ (y|x̄)−F (y|x̄)−

∑q1
s=1(h0

s)
2B̄1s(y|x̄)−∑r1

s=1 λ
0
sB̄2s(y|x̄). Hence, F̂ (y|x) and F̄ (y|x̄) have the same asymptotic distribution, i.e.,

�(B.23)

√
nĥ1 . . . ĥq1

[
F̂ (y|x)− F (y|x̄)−

q1∑
s=1

ĥ2
sB̄1s(y|x̄)−

r1∑
s=1

λ̂sB̄2s(y|x̄)

]
d→ N(0, Σ̄y|x̄).
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