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Abstract. In this paper, a hybrid Particle Swarm Optimization with Bat Algorithm (PBA) for applying to the 

base-station locations optimization in the heterogeneous wireless sensor networks (WSNs) is proposed. In 

this work, the several worst individuals of particles in Particle Swarm Optimization (PSO) will be replaced 

with the best individuals in Bat Algorithm (BA) after running some fixed iterations, and on the contrary, the 

poorer individuals of BA will be replaced with the finest particles of PSO. The communicating strategy pro-

vides the information flow for the particles in PSO to communicate with the bats in BA. Six benchmark func-

tions are used to test the behavior of the convergence, the accuracy, and the speed of the approached method. 

The results show that the proposed scheme increases more the convergence and the accuracy than BA and 

PSO up to 3% and 47% respectively. In addition, compared with PSO and BA methods, the proposed PBA 

method can provide the longest the network lifetime of the heterogeneous WSNs.  

Keywords: Hybrid Particle Swarm Optimization with Bat Algorithm, Particle Swarm Optimization Algo-

rithm, Bat Algorithm Optimizations, Swarm Intelligence, Wireless Sensor Networks. 

1   Introduction 

Computational intelligence algorithms have been used to solve optimization problems in engineering, financial, 

and management fields. For example, genetic algorithms (GA) have been used successfully in engineering, fi-

nancial, and security [1-3]. Particle swarm optimization (PSO) techniques have been employed to forecast the 

exchange rates, segment images, optimize multiple interference cancellations [4-7], construct the portfolios of 

stock, and segment color images based on human perception [3, 8, 9]. Differential evolution algorithm (DE) 

techniques have been applied to optimize the radio network design and measures networks target coverage in 

three-dimensional heterogeneous sensor [10, 11]. Ant colony optimization (ACO) techniques have been utilized 

to solve the routing problem of networks and secure watermarking [12, 13]. Artificial bee colony (ABC) and 

Interactive Artificial Bee Colony have been used to solve the numerical problems, support the passive continu-

ous authentication systems and optimize the topology control problems [14-16]. Cat swarm optimization (CSO) 

techniques have been used to solve the aircraft schedule[17], the lot-streaming flow shop scheduling problem [18] 

and discover proper positions for information hiding [19], respectively. In addition, bat algorithm (BA) is used 

for engineering design [20] and classifications[21].  

Communication between two algorithms is to take the advantage of the strength points of each type of algo-

rithms. The parallel processing plays an important role for the efficient and effective computations of function 

optimization. The idea of this paper is based on communication strategies in parallel processing for swarm intel-

ligent algorithms. They only exchange information between populations when the communication strategy is 

triggered. The existing methods of these fields had been introduced such as: Ant colony system with communi-

cation strategies [22], Parallel particle swarm optimization algorithm with communication strategies [23], Paral-

lel cat swarm optimization [24], Island-model genetic algorithm [25], and Parallel genetic algorithm [26]. The 
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parallelized structure of artificial agents increases the accuracy and extends the global search capacity than the 

original structure.  

In this paper, the concepts of parallel processing and communication strategy are applied to hybrid Particle 

Swarm Optimization with Bat algorithm (PBA) is proposed. In the new proposed method of PBA, the several 

poorer individuals in PSO will be replaced with the best bats in BA algorithm after running some fixed iterations 

and on the contrary, the poorer bats of BA will be replaced with the best particles of PSO. The selected bench-

mark functions are used to test the behavior of convergence, the accuracy, and the speed of the proposed PBA 

method. The experimental results show that the proposed method increases higher the accuracy in comparing 

with the popular algorithms in literature such as PSO and BA. 

 
 

Fig. 1. Example of heterogeneous architecture of WSNs [27] (a) Physical view, (b) Logical view  

(SN- Sensor Node, AN-Application Node and BS-Base station) 

Moreover, an emerging and promising technology, wireless sensor network (WNS) consists of spatially dis-

tributed sensor nodes to collect important information in the target environment. It has been widely used in va-

riety of fields such as Health care, the Internet of things, Traffic control, Home automation and Battlefield sur-

veillance and etc. [28-32]. However, the sensor nodes are limited in computation capability and storage capacity  

of computing  unit, in communication range and  radio  quality  of  communication   unit,  in sensing  coverage 

and accuracy  of sensing  unit, and in available energy  of power units. Efficient utilization of these scarce re-

sources is always the driving factor of every provided solution for WSN [31, 33]. A fundamental problem in 

WSNs is to maximize the system lifetime under some given constraints.  

The location of the base-station (BS) is an impacting effective factor to contribute the saving and balancing 

power consumption of the application nodes (ANs) in heterogeneous WSNs. Figure 1 is the example of Example 

of heterogeneous architecture of WSNs [27]. The ANs near the base station die out earlier, because they will be 

subject to heavier relay traffic load than those ANs farther away from the base station [34]. The optimal BS 

location is how to determine relative position of BS with ANs for distributing balanced energy consumption 

among ANs while remain the quality of service network. 

The new proposed PBA [35] method would be applied to maximize the heterogeneous WSNs lifetime through 

the BS location optimization. The lifetime of networks is defined as categories: First, the lifetime is minimiza-

tion of any alive of individual AN. Second, the lifetime is the radio of the covered area over the originally cov-

ered area is smaller than percentage beta. A fitness function based on energy consumption per unit time is also 

applied in PBA to obtain an approximation of true Pareto front. 

The rest of this paper is organized as follows: the brief review of PSO and BA are given in session 2 and 3 re-

spectively; the statement problem of BS locations in WSNs is reviewed in session 4; the analysis and design for 

the PBA is presented in session 5; a series of experimental results and the comparison between primary PSO, 

original BA and PBA are discussed in session 6; the application of PBA for solving the topology control scheme 

is presented in session 7; finally, the conclusion is summarized in session 8. 

2   Heterogeneous Application Node Model for WSNs 

A fundamental problem in wireless sensor networks is to maximize the system lifetime under some given con-

straint [34]. Heterogeneous WSNs was found in two-tiered wireless sensor networks [27]. A two-tiered wireless 

sensor network (WSN) consists of a set of small sensor nodes (SN), a set of application nodes (AN) and at least 
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one base station (BS). The ANs and SNs form clusters, and in each cluster there are many SNs and one AN. A 

small sensor, once triggered by the internal timer or some external signals, starts to capture and encode the envi-

ronmental phenomena (such as temperature, moisture, motion measure, etc) and broadcast the data directly to all 

ANs within its transmission range and to certain ANs via the relay of some other neighboring sensors. When 

receiving the raw data from SNs from its cluster, an AN might create an application specific local-view for the 

whole cluster by exploring some correlations among the data sent by different SNs. In the meanwhile, some data 

fusion can be conducted by ANs to alleviate the redundancy in the raw data sent by SNs. After an AN creates a 

local-view of the data, it then forwards the information to a BS that generates a comprehensive global view for 

the entire WSN. Notice that here an AN can communicate directly with a BS, or optionally, ANs can be involved 

in inter-AN relaying if such activities are needed and applicable. 

The heterogeneous ANs might have different data transmission rates. If a single SN ran out of energy, its corre-

sponding AN might still have the capability to collect enough information. However, if an AN ran out of energy, 

the information in its coverage range would be completely lost, which was dangerous to the whole system. Let d 

be the Euclidean distance from an AN to a BS, and r be the data transmission rate. The energy consumption per 

unit time can be calculated as following: 

,ݎ)݌  ݀) = ଵߙ)ݎ +  ଶ݀௡)                                                          (1)ߙ

 

where ߙଵ is a distance-independent parameter and ߙଶ is a distance-dependent parameter. The energy consump-

tion thus relates to Euclidean distances and data transmission rates.  It is assumed each AN has the same	ߙଵ,  .ଶߙ

The lifetime of AN can be calculated as following: ݈ = ௘௣(௥,ௗ)                                                                              (2) 

 

where l is lifetime of application node,  e is initial energy of application node. For homogenous ANs, the data 

transmission rate is constant so the center of the minimal circle covering all the ANs is the optimal BS location 

(with the maximum lifetime). For heterogeneous ANs, the data transmission rates are different. The average rate 

over a period of time is given as: 

ݎ  = 	 ׬ ௥೔(௧)೅శ೅బ೅బ ்                                                                       (3) 

 

where ݎ௜(ݐ) is a function over the time t, T is a period of time, e.g., one hour or one day or one week, most often 

it is a constant. The optimal BS location is actually determined by a few critical ANs that run out of energy first. 

The network lifetime is equivalent to maximize ( min{li}). 

ܮ  = minሼ݈௜)ݔܽܯ = ݁௜ ଵߙ)௜ݎ) + ⁄(ଶ݀௜௡ߙ ሽ)                                                    (4) 

 ݀௜ = ඥ(ݔ௜ − ଴)ଶݔ + ௜ݕ) −                                                                    (5)	଴)ଶݕ

where b= (x0,y0 ) is the BS station. 

3   Particle Swarm Optimization 

Particle swarm optimization (PSO) is a heuristic global optimization algorithm, based on the research of bird and 

fish flock in movement behavior [6, 7, 36]. The particles are randomly initialized and freely fly across the multi-

dimensional search space.  While they are flying, its velocity and position are updated based on its own best 

experience. The updating policy will cause the particle swarm to move toward a region with a higher object 

value. The position of each particle is equivalent to a candidate solution of a problem. The particle moves ac-

cording to an adjusted velocity, which is based on that particle’s experience and the experience of its compan-

ions. The original particle swarm optimization algorithm can be expressed as follows: 

௜ܸ௧ାଵ = ௜ܸ௧ + ଵܥ × )ଵݎ ௜ܲ௧ − ௜ܺ௧) + ଶܥ × ௧ܩ)ଶݎ − ௜ܺ௧)                                         (6) 

where  ௜ܸ௧	is the velocity of the i-th particle at the t-th iteration, C1 and C2 are factors of  the speed control, r1 and 

r2 are random variables such that 0 ≤ r1, r2 ≤ 1,  ௜ܲ௧ is the best previous position of the i-th particle at the t-th 

iteration,  Gt is the best position amongst all the particles, from the first iteration to the t-th iteration, and ௜ܺ௧ is 

the i-th particle for the t-th iteration. 

௜ܺ௧ାଵ = ௜ܺ௧ + ௜ܸ௧ାଵ,			݅ = 0,1, . . ܰ − 1                                                     (7) 

where N is the particle size, − Vmax ≤ V t +1
i  ≤ Vmax (Vmax is the maximum velocity).  
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A modified version of the particle swarm optimizer [7] and an adaption using the inertia weight which is a pa-

rameter for controlling the dynamics of flying of the modified particle swarm [37], have also been presented. 

The latter version of the modified particle swarm optimizer can be expressed as equation (8). 

௜ܸ௧ାଵ = ܹ௧ × ௜ܸ௧ + ଵܥ × )ଵݎ ௜ܲ௧ − ௜ܺ௧) + ଶܥ × ௧ܩ)ଶݎ − ௜ܺ௧)                                         (8) 

௜ܺ௧ାଵ = ௜ܺ௧ + ௜ܸ௧ାଵ,					݅ = 0,1, . . ܰ − 1                                                          (9) 

where ܹ௧ is the inertia weight at the t-th iteration.  

4   Bat Algorithm 

Bat Algorithm (BA) was proposed based on swarm intelligence and the inspiration from observing the bats [38]. 

BA simulated parts of the echolocation characteristics of the micro-bat in the simplicity way. Three major char-

acteristics of the micro-bat are employed to construct the basic structure of BA. The idealized rules in this meth-

od are listed as follows: The echolocation to detect the prey is utilized for all bats, but not all species of the bat 

do the same thing. However, the micro-bat, one of species of the bat is a famous example of extensively using 

the echolocation.  Hence, the first characteristic is the echolocation behavior. The second characteristic is the 

frequency. The frequency is sent by the micro-bat with frequency f and with a variable wavelength λ. The loud-

ness A0 is used to search for prey. The other characteristic of them are listed as follows: 

1. Bats fly randomly with velocity vi at position xi. They can adjust the wavelength (or frequency) of their 

emitted pulses and adjust the rate of pulse emission r from 0 to1, depending on the proximity of their target; 

2. There are many ways to adjust the loudness.  For simplicity, the loudness is assumed to be varied from a 

positive large A0 to a minimum constant value, which is denoted by Amin.  

The movement of the virtual bat is simulated by equation (9) – equation (11): 

 ௜݂ = ௠݂௜௡ + ( ௠݂௔௫ − ௠݂௜௡) ∗  (9)                                                 				ߚ

௜௧ݒ			  = ௜௧ିଵݒ + ௜௧ିଵݔ) − (௕௘௦௧ݔ ∗ ௜݂		                                              (10) 

௜௧ݔ  = ௜௧ିଵݔ + v୧୲				                                                          (11) 

where f is the frequency used by the bat seeking for its prey, fmin and fmax,  represent  the minimum  and maxi-

mum value, respectively,  xi denotes the location of the i-th bat in the solution space, vi represents the velocity of 

the bat, t indicates the current iteration, β is a random vector, which is drawn from a uniform distribution, and β ∈[0, 1], and xbest  indicates the global near best solution found so far over the whole population. 

In addition, the rate of the pulse emission from the bat is also taken to be one of the roles in the process. The 

micro-bat emits the echo and adjusts the wavelength depending on the proximity of their target. The pulse emis-

sion rate is denoted by the symbol ri, and ri ∈[0,1], where the suffix i indicates the i-th bat. In every iteration, a 

random number is generated and is compared with ri. If the random number is greater than ri, a local search 

strategy, namely, random walk, is detonated. A new solution for the bat is generated by equation (12):  

௡௘௪ݔ  = ௢௟ௗݔ +  ௧                                                           (12)ܣߝ

where ε is a random number and  ε ∈[-1,1], and the average loudness of all bats is represented at the current time 

step t. After updating the positions of the bats, the loudness Ai and the pulse emission rate ri are also updated 

only whenever the global near best solution is updated and the random generated number is smaller than Ai. The 

update of Ai and ri are operated by equation (13) and equation (14): 

௜௧ାଵܣ  =  ௜௧                                                                     (13)ܣߙ

௜௧ାଵݎ	  = ௜଴[1ݎ − ݁ିఊ௧]                                                                 (14) 

where α and γ are constants. In Yang’s experiments, α = γ = 0.9 is used for the simplicity. 

The process of BA is depicted as follows: 

Step 1. Initialize the bat population, the pulse rates, the loudness, and define the pulse frequency 

Step 2. Update the velocities to update the location of the bats, and decide whether detonate the random walk 

process. 

Step 3. Rank the bats according to their fitness value, find the current best solution found so far, and then update 

the loudness and the emission rate. 

Step 4. Check the termination condition to decide whether go back to step 2 or end the process and output the 

result. 
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5. The Proposed Hybrid PSO with BA 

Hybrid optimization algorithm is structured by communication strategies between two algorithms in this paper. 

This idea is based on replacing the weaker individuals according to fitness evaluation of one algorithm with 

stronger individuals from other algorithm in parallel processing for swarm intelligent algorithms. Several groups 

in a parallel structure of hybrid algorithm are created by dividing the population into subpopulations. Each of the 

subpopulation evolves independently in regular iterations. They only exchange information between populations 

when the communication strategy is triggered. It results in taking advantage of the individual strengths of each 

type of algorithm. The replacement of weaker individuals in running algorithms will be achieved so on to get the 

benefit of the cooperation. PBA is designed based on original PSO and Bat algorithm. Each algorithm evolves 

by optimization independently, i.e. the PSO has its own individuals and the better solution to replace the worst 

artificial bats of BA. In contrast, the better artificial bats of BA are to replace the poorer individuals of PSO after 

running some fixed iterations. The total iteration contains R times of communication, where R = {R1, 2R1 ,3 

R1 ,...}.  Let N be the number of population of PBA, and N1, N2 be the number of population of PSO and BA 

respectively, where N1 and N2 are set to be N/2.  If t ∩ R ≠ φ, k agents with the top k fitness in N1 will be copied 

to N2 to replace the same number of individuals with the worst fitness, where t denotes the current iteration count, 

R1 and k are the predefined constants.  

The diagram of the PBA with communication strategy is shown in Figure 2. 

 

 

1R

2R

1R

2R

 

Fig. 1. The diagram of PBA with a communication strategy 

1. Initialization: Generate populations for both PSO and BA. Each population is initialized by BA or by PSO 

independently. Defined the iteration set R for executing the communication strategy. The N1, N2 are the number 

of particles and artificial agents in solutions ௜ܵ௝்  and  ௜ܺ௝்  for populations of PSO and BA respectively,  

i = 0, 1, …, N1- 1, j = 0, 1,..D. D is dimension of solutions and t is current iteration number. Set t = 1. 

2. Evaluation: Evaluate the value of f1( ௜ܵ௝்),  f2( ௜ܺ௝்) for both PSO and BA in each population. The evolvement of 

the populations is executed independently by both PSO and BA. 

3. Update: Update the velocity and the positions of PSO using equation (5), and (6). Update the location and 

velocity of Bat in the best fitness value, which are found by the bat using equations (10), (11).  

4. Communication Strategy: Migrate the best artificial bats among all the individuals of BA’s population, copy 

k bats with the top k fitness in N1 replace the poorer particles in N2 of PSO’s population and update for each 

population every R1 iterations. 

5. Termination: Repeat step 2 to step 5 until the predefined value of the function is achieved or the maximum 

number of iterations has been reached. Record the best value of the function f(St) and the best particle position 

among all the particles St. Record the best value of the function f(Xt) and the best location among all the bats Xt. 
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6   Experimental Results 

This section presents simulation results and compares the PBA with the  PSO, and the BA, both in terms of solu-

tion quality, convergence capability, the accuracy and the speed running. Six benchmark functions are used to 

test the accuracy and the convergence of PBA. All the benchmark functions for experimenting are averaged over 

different random seeds with 10 runs. Let S = {s1, s2 ,..., sm}, X = {x1, x2 ,..., xm} be the m-dimensional real-value 

vectors for PSO and BA respectively. The benchmark functions are Ackley, Griewank, Quadric, Rastrigin, Ros-

enbrock and Spherical. The equation numbers (15) to (20). The goal of the optimization is to minimize the out-

come for all benchmarks.  The population size of PBA, primary PSO and original BA are set to 20 (N=20) for all 

the algorithms in the experiments. The detail of parameter settings of PSO can be found in [39], and setting of 

BA can be found in [38]. 

 																	 ଵ݂(ݔ) = 20 + ݁ − 20݁ି଴.ଶඨ∑ ೣ೔మ೙೔సభ೙ − ݁∑ ౙ౥౩	(మഏೣ೔)೙ೕసభ ೙                                    (15) 																																						 ଶ݂(ݔ) = 1 + ∑ ௫೔మସ଴଴଴ே௜ୀଵ +∏ ݏ݋ܿ ௫೔√௜		ே௜ୀଵ                                             (16) 																																					 ଷ݂(ݔ) = ∑ ൫∑ ௜௜௞ୀଵݔ ൯ଶ௡௜ୀଵ                 (17) 																																				 ସ݂(ݔ) = ∑ [10 + ௜ଶݔ − ௜]ே௜ୀଵݔߨ2ݏ݋10ܿ                                                (18) 																																				 ହ݂(ݔ) = ∑ ௜ିଵݔ)100) − ௜ଶ)ଶݔ + (1 − ௜)ଶ௡ିଵ௜ୀଵݔ                                     (19) 

 																																			 ଺݂(ݔ) = ∑ ௜ଶே௜ୀଵݔ                                                         (20) 

The initial range and the total iteration number for all test functions are listed  

in Table1. 

Table 1. The initial range and the total iteration of test standard functions. 

Functions  
Initial range 

Total iteration 
[xmin, xmax] 

Ackley ଵ݂(ݔ) [-100,100] 200 

Griewangk ଶ݂(ݔ) [5.12,5.12] 200 

Quadric ଷ݂(ݔ) [-100,100] 200 

Rastrigin ସ݂(ݔ) [  -30,30  ] 200 

Rosenbrock ହ݂(ݔ) [-100,100] 200 

Spherical ଺݂(ݔ) [-100,100] 200 

 

 

The optimization for all of these test functions is to minimize the outcome.  The parameters setting for PBA 

with primary PSO side are the initial inertia weight W= (0.9 − 07 ∗  coefficients of learning factors c1=-2 ,(݀݊ܽݎ

and c2=2 in PSO, the total population size N1 = 10 and the dimension of the solution space M = 10, and with 

original BA side are the initial loudness  ܣ௜଴ = 0.25, pulse rate  ݎ௜଴ = 0.5  the total population size N1 = 10 and 

the dimension of the solution space M = 10, frequency minimum fmin = the lowest of initial range function and 

frequency minimum fmax = the highest of initial range function. The proposed scheme is executed for 10 runs and 

each run contains 200 iterations. The final result is obtained by taking the average of the outcomes from all runs. 

These results also are compared with the primary PSO and original BA respectively.  

Table 2 compares the quality of optimizing performance and time running for numerical problem optimization 

between PBA and PSO. It is clearly seen that, almost these cases of testing benchmark functions for PBA are 

better than PSO in terms of convergence and accuracy. It is special case with test function of Rosenbrock,  ହ݂(ݔ) 
has the mean of value function minimum of total seeds of 10 runs is 1.02E+09 for PBA performance evaluation, 

but, for original PSO is 2.90E+09, reaches at 48% improvement of convergence. The average performance eval-

uation value of six benchmark functions is 1.70E+08 for PBA and 4.83E+08 for original PSO, gets at 47% im-

provement of accuracy. However, all benchmark functions for average time consuming of hybrid BA-BA are 

longer than that in original PSO, for the reasons, the hybrid algorithm must perform mutation and update opera-

tions.  

Figure 2 shows the experimental results of six benchmark functions in running repeatedly same iteration of 

200 in random seeds of 10 runs. It clearly can be seen that the most cases of curves of PBA (solid red line) are 

more convergent than those of PSO (doted blue line). 
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Table 2. The comparison between PBA and origianl PSO in terms  

of quality performance evaluation and speed 

Function 

 

Performance evaluation 
Time running evaluation 

 (seconds) 

PSO 
Hybrid  

PSO-BA(PBA)
PSO 

Hybrid 

PSO-BA(PBA) ଵ݂(ݔ) 1.96E+01 1.85E+01 0.079 0.134 ଶ݂(ݔ) 1.92E+00 1.81E+00 0.086 0.139 ଷ݂(ݔ) 4.46E+03 2.62E+03 0.109 0.230 ସ݂(ݔ) 1.23E+02 1.11E+02 0.080 0.148 ହ݂(ݔ) 2.90E+09 1.02E+09 0.081 0.159 ଺݂(ݔ) 1.62E+04 7.13E+03 0.064 0.121 

Average 

value 
4.83E+08 1.70E+08 0.33 0.49 

 

 
 

 
 

 

Fig. 2. The mean of function minimum curves in comparing PBA and original PSO algorithms for function of Ackley, 

Griewank, Quadric, Rastrigin, Rosenbrock and Spherical 

Table 3 compares the quality of performance and time running for numerical problem optimization between 

PBA and original BA. It is clearly seen that, almost these cases of testing benchmark functions for PBA are more 

convergence than original BA. Average value of all benchmark functions for hybrid BA- PSO is 2.32E+07 in 

performance evaluation, but this figure is 2.30E+07 for original BA, reaches at 3% improvement of accuracy. 
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However, average times consuming of all benchmark functions for PBA is longer taken than original BA. For 

this result, the reason is the hybrid algorithm must perform mutation and update operations. 

Table 3. The comparison between PBAand origianl BA  

in terms of quality performance evaluation and speed 

Function 

 

Performance evaluation Time running evaluation  

(seconds) 

BA 
Hybrid  

BA-PSO(PBA) 
BA 

Hybrid 

BA-PSO(PBA) 

 ଵ݂(ݔ) 1.84E+01 1.65E+01 0.087 0.104 ଶ݂(ݔ) 7.37E-01 7.34E-01 0.094 0.119 ଷ݂(ݔ) 2.59E+03 2.05E+03 0.120 0.180 ସ݂(ݔ) 4.67E+01 4.60E+01 0.087 0.098 ହ݂(ݔ) 1.38E+08 1.38E+08 0.089 0.109 ଺݂(ݔ) 2.65E+03 2.47E+03 0.071 0.071 

Average value 2.35E+07 2.30E+07 0.101 0.124 

 

Figure 3 shows the experimental results of six benchmark functions in running 10 seeds output with the same 

iteration of 200. It clearly can be seen that the most cases of curves of PBA (solid red line) are more convergent 

than those of BA (doted blue line). 
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7. Application of the Proposed PBA Method  

In this section, an application of the proposed PBA method is presented to optimize BS locations in heterogene-

ous WSNs. The objective function for optimal BS locations in WSNs is constructed based on the residual energy 

application nodes, small sensor nodes and contention. The experimental results of the proposed method are com-

pared with the PSO and BA methods.  

7.1 Network Model Description 

As mentioned in section 2, network model could be described as following: the heterogeneous WSN with 	ܵெ	a 

set of SNs, 	 ேܸ	a set of ANs, and at least one BS are randomly distributed in desired areas.  Each node can com-

municate with others by using r data transmission rate. A virtual directed graph is constructed on ANs and itera-

tively moves the sensors from those clusters that have the largest number of small sensors to smaller clusters. In 

the virtual directed graph, there is an edge ݒపݒ௞ሬሬሬሬሬሬሬሬԦ from AN ݒ௜ to ݒ௞ if there is a sensor ݏ௝ that can be moved from 

the cluster of ݒ௜ to the cluster of ݒ௞. The weight of the edge is the number of such small sensors that can be 

moved from the cluster of ݒ௜ to the cluster of ݒ௞.  

When all application nodes are homogeneous, i.e., their initial on-board energy are the same; the energy con-

sumption functions are the same; and the data transmission rate is constant. In practical in WSNs, several differ-

ent kinds of sensors cooperate together to fulfill some certain goals. Some sensors may generate data at a higher 

rate than others do, e.g., the visual sensors have a bit-rate that is much higher than the bit-rate generated by a 

temperature sensor. Even in scenarios when all small sensors are of same type, sometimes sensors located at 

different locations may need to sample the data at a different time interval. Thus, it is more reasonable to assume 

that in a WSN different type of sensors produce different bit-rates. By assuming that every small sensor has its 

own data transmission rate rj, the problem of maximizing the lifetime is formalized as follows: ܮ = Max(min௩೔∈௏೙ ௉೔௣೔(∑ ௥ೕ∙௫೔,ೕ)ೞ೔∈ೄಾ  )                                                        (21) 

where ௜ܲ	is the initial onboard energy of application node i,  ݌௜ is energy consumption function. Weight of an AN 

vi for assignment x is defined as: ݓ௜(ݔ) = ௣೔(∑ ௥ೕ∙௫೔,ೕ)ೞೕചೄಾ௉೔                                                                       (22) 

The lifetime of the heterogeneous network is defined as ܮ = Min(max	(ݓ௜(ݔ))                                                                     (23) 

Subject to constraints  ݔ௜,௝ = 0, ௜ݒ∀ , ௝ݏ∀ ∉ ௜,௝ݔ (24)                                                                  ;(௜ݒ)ܰ ∈ ሼ0,1ሽ, ௝ݏ∀ , ∑ ௜;                                                                      (25)ݒ∀ ௜,௝ݔ = 1, ௝;௩೔ݏ∀                                                                        (26) ∑ ௝ݎ ∙௦ೕ∈ௌಾ ௜,௝ݔ ≤ ݇௜ ,  ௜                                                                 (27)ݒ∀

where ݇௜ 	= 	 ௜ି݌ ଵ( ௜ܲ ∙ ܶ) let ݔ௠௜௡ be the solution to (23) and  ܶ௠௜௡ be the minimum weight of the ANs. The 

special case when application nodes are homogeneous; its lifetime is equivalent to minimizing the maximum ∑ ௝ݎ ∙௦ೕ∈ௌಾ   .௜,௝ subject to constraints (24)ݔ

If every AN vi satisfies that ܰ(ݒ௜) = (ܵெ − -௜) then the problem becomes the traditional job scheduling probݒ

lem  [40], which is known to be NP-Hard. Since solving (23) is NP-hard, the optimal solution is presented by an 

algorithm approximating by borrowing some ideas from job scheduling [41]. 

Fitness function is formed by equation (23) as following: 

 Fitness(i) 	= 	∑ ௝ݎ ∙௦ೕ∈ௌಾ ௜,௝ݔ                                                                 (28) 

The pseudo code of the application of PBA for optimal BS location in the heterogeneous WSN is shown in Figure 4. 

7.2  Experimental Results and Comparison 

The environmental setting: the range of deployment of network areas set to 200x 200m; the number of agents 

or sensor nodes set to 2000; the number of vertices set to 20; the fixed iterations for triggered communication  

set to 10; the remain energy starts at energy initial for all sensor nodes set to 2.0J; the energy electronics circuit 

set to 50nJ/bit; the average dissipated energy for each iteration set to 0.05pJ/bit; the initial coverage of the edge 

x(i,j)  randomized from 0 to 1.  The parameters setting for PBA are the initial inertia weight W=(0.9-07*rand),  
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Fig 4. Pseudo code of the application of PBA for optimal BS location in the heterogeneous WSN 

 

coefficients of learning factors c1=2.0 and c2=2.0, the total population size N1 = 10 and N2=10, the dimension of 

the solution space M = 10, and initial loudness  ܣ௜଴ = 0.25, pulse rate  ݎ௜଴ = 0.5 .  The object functions are valu-

ated fully iterations of 1000 repeated by 10 runs in different with random seeds.  The experimental parameters 

are set for PSO as c1 = 2.0, c2 = 2.0, inertia weight W=(0.9-07*rand), population size N = 20 and the maximum 

iteration times is 1000 in each run, for further reference in setting [36, 37]. The experimental parameters are set 

for BA side are the initial loudness  ܣ௜଴ = 0.25, pulse rate  ݎ௜଴ = 0.5  the total population size N= 20 and the 

dimension of the solution space M = 10, frequency minimum fmin = the lowest of initial range function and fre-

quency minimum fmax = the highest of initial range function. The proposed scheme is executed for 10 runs and 

each run contains 1000 iterations, for further reference in setting [38].  

 

Table 4. The comparison the proposed PBA method with the PSO-method, and the BA method  in terms of quality 

performance evaluation and speed 

 

Methods 

Population size
Objec-

tives 

Average 

function 

values 

Consump-

tion 

times(m) 

Comparisons

The PSO –

heterogeneous 

WNS 

20 2 5.7023 11.096 13% 

The BA- hetero-

geneous WNS 
20 2 5.2091 11.106 3% 

The PBA- heter-

ogeneous WNS 
20 2 5.0434 11.105 0% 

 

Table 4 compares the performance for optimal BS locations in heterogeneous WSNs of the proposed PBA 

method with the PSO-method, and BA method in terms of quality performance evaluation and speed. It is clearly 

seen that, the average cases of fitness functions in PBA method is as fast as convergence that original BA meth-

od cases. The method of PBA, the mean of fitness functions evaluation of minimum function 10 runs are more 

accuracy optimization than that in the PSO, and the BA method at 13% and 3% respectively. Moreover, the total 

time consuming of the proposed PBA method in 10 runs is quit fast with only 11.105 minus taken. 

Figure 5 illustrates the comparison of the proposed PBA method with PSO-method and BA-method. 

8. Conclusion 

This paper, a novel proposed optimization scheme was presented, namely PBA (hybrid Particle Swarm Opti-

mization with Bat Algorithm). The implementation of hybrid for optimization algorithms could have important 

significance for taking advantages of the power of each algorithm and achieving cooperation of optimization 

Input: Object function from equation (28). 

Output: The solution to heterogeneous WSN optimization (28), the best location for 

BS.  

1: Find a feasible solution x, e.g., randomly assign every SN to a neighboring AN. 

2: Construct a virtual graph G(x) based on x. 

3: repeat 

4: Choose any one of AN with the largest weight randomly, say vi. 

5: Define  ݓ௜ା(ݔ) = ௣ೖ(∑ ௥ೕ∙௫ೖ,ೕା௥)ೞೕചೄಾஉೖ  

6: Find the AN vj with the smallest ݓ௜ା(ݔ)  in Ri(x). If there are more than one such 

ANs, choose one randomly. 

7: Apply ൞procedure	PBA	൫ݒ௜ , ௝ݒ , ,൯(௫)ܩ௜௧௡௘௦௦൫ܨ ௜ݒ൫	PSO	൯;procedureݔ , ௝ݒ , ,൯(௫)ܩ௜௧௡௘௦௦൫ܨ ௜ݒ൫	BA	൯;procedureݔ , ௝ݒ , ,൯(௫)ܩ௜௧௡௘௦௦൫ܨ ;൯ݔ ൪   if ݓ௜(ݔ) <  (ݔ)௝ାݓ
 

 8: until ݓ௜(ݔ) <  (ݔ)௝ାݓ



Journal of Computers   Vol. 25, No. 4, January 2015 

 

24 

 

Fig. 5. The mean of minimum value of fitness function in of 10 trails in comparisons the proposed PBA method, with PSO-

method and BA- method for optimal heterogeneous WSNs  

 

algorithms. In the new proposed algorithm, the several worse individuals in PSO are replaced with the best arti-

ficial bats in BA algorithm after running some fixed iterations, and on the contrary, the poorer bats of BA are 

replaced with the better particles of PSO. The proposed communication strategy provides the information flow 

for the particles to communicate in PSO with the bats in BA. The performance of PBA algorithm is better than 

both original PSO and BA in terms of convergence and accuracy. The results the proposed algorithm on a set of 

various test problems show that PBA increases the convergence and accuracy more than original PSO and origi-

nal BA is up to 47 % is at 3% on finding the best solution improvement. The proposed method is also applied to 

solve the problem of maximizing the system lifetime under some given constraints in wireless sensor networks 

(WSNs). Compared with, the particle swarm optimization (PSO) method and the Bat algorithm (BA) method, 

the proposed PBA method provides the most robust structure and longest network lifetime. The experimental 

results show the proposed PBA as an effective cooperating algorithm. 
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