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Optimal Bidding in Performance-based Regulation
Markets: An MPEC Analysis with System Dynamics

Ashkan Sadeghi-Mobarakeh, Student Member, IEEE, Hamed Mohsenian-Rad, Senior Member, IEEE

Abstract—In this paper, we address the problem of optimal
bidding in performance-based regulation markets for a large
price-maker regulation resource. Focusing on the case of the
California Independent System Operator (ISO), detailed market
components are considered, such as regulation capacity payment,
regulation mileage payment, performance accuracy adjustment,
automatic generation control (AGC) dispatch, and participation
factor. Our analysis also incorporates system dynamics of the
regulation resource, for different resource types and technolo-
gies. In principle, our problem formulation is a mathematical
program with equilibrium constraints (MPEC). However, our
fundamentally new formulations introduce several new challenges
in solving the MPEC problem in the context of performance-
based regulation markets that are not perviously addressed. In
fact, global optimization techniques fail to solve the original non-
linear program due to its complexity. Therefore, we undergo
several innovative steps to transform the problem into a mixed-
integer linear program which is solved with accuracy, reliability,
and computational efficiency. Insightful case studies are presented
using data from a California ISO regulation market project.

Keywords: Performance-based regulation market, system dy-
namics, price-maker, optimal bidding, MPEC, California ISO.

NOMENCLATURE
i, j Index for generators
k Index for random scenarios
(t) Continuous time
(s) Complex frequency
[τ ] Discrete regulation time slot
C Superscript for regulation capacity
M Superscript for regulation mileage
MCP Market clearing price
r Regulation capacity/mileage allocation
µ, ξ, η, γ Dual variables in market optimization problem
U Resource maximum regulation capacity
O Regulation price offer
y Mechanical output of generator
z Auxiliary binary variables
θ Auxiliary real variables
K Number of random scenarios
R Regulation capacity/mileage requirement
m Resource-specific mileage multiplier
AGC Automatic generation control signal
L, ε Some large and small numbers
T Zero and pole parameters in transfer functions

I. INTRODUCTION

In October 2011, the United States Federal Energy Regula-
tory Commission (FERC) set forth Order 755 to remedy undue
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This work is supported by NSF Grants ECCS 1253516 and ECCS 1307756.

discrimination in the procurement of frequency regulation in
wholesale electricity markets and to ensure that providers of
frequency regulation receive just and reasonable rates [1]. This
ruling requires regional transmission operators (RTOs) and
independent service operators (ISOs) to compensate frequency
regulation resources based on the actual service provided. The
compensation must include a capacity payment that considers
the unit’s opportunity marginal cost and a mileage payment
for the performance that reflects the quality of regulation
service provided by the resource when following the dispatch
signal. Many ISOs, including the California ISO (CAISO),
have already adopted this new market mechanism.

In this paper, we study optimal market participation in the
CAISO performance-based regulation market [2], [3]. We de-
velop a new mathematical foundation to optimize the capacity
and mileage bids. Our design is not limited to a particular
resource type or technology. Instead, we try to understand the
key concepts in this new market paradigm. We seek to answer
the following fundamental questions: Given the specific setup,
rules, and requirements of a practical performance-based
regulation market such as the one that exists in California,
what is the best bidding strategy for a regulation resource?
How should the system dynamics of each regulation resource
technology affect optimal bidding? Given the complexity of the
optimal bidding problem, how can we obtain solutions that are
accurate and computationally efficient?

The analysis in this paper can be compared with three
groups of work in the literature. First, there are studies that
evaluate or improve the existing performance-based regulation
markets, from the viewpoint of ISOs, such as PJM, MISO, or
CAISO [2]–[8]. In contrast, our focus is on optimal bidding
in performance-based regulation markets from the viewpoint
of market participants who seek to maximize their own profit.

The second group seeks profitable operation of regulation
resources in non-performance-based [9], [10] or performance-
based [11]–[13] regulation markets. Our work is different
from the existing studies in this group in at least three key
aspects. First, the prior studies are limited to small price-
taker regulation resources, i.e., those who cannot affect the
regulation market prices. In contrast, our focus here is on
large price-maker regulation resources1. Second, we take into
account various details about the underlying regulation market
rules and dispatch mechanisms. For example, unlike in [12],
where the AGC signal is assumed to be fixed, here, we model
the AGC dispatch mechanism using participation factors,
which are directly linked to how the regulation bids are cleared
for each regulation resource. Finally, none of the prior studies,

1A recent study has shown that as few as six resources provided over 78%
of the total regulation service to CAISO during May and June 2014 [14].
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including those in [11]–[13], investigates optimal bidding
under the CAISO performance-based regulation market model.

Since the focus in this paper is on price-marker operation
of regulation resources, our problem formulation naturally be-
longs to mathematical programs with equilibrium constraints
(MPEC), which are widely studied in the literature on elec-
tricity markets, e.g., see [15], [16]. However, to the best of our
knowledge, this is the first work to study an MPEC problem
in a performance-based regulation market. The analysis in
this paper is fundamentally different from the prior studies,
e.g., due to the need to address system dynamics. The new
formulations in this paper introduce several new challenges
in solving MPEC problems that are not perviously addressed.
The contributions in this paper are summarized as follows:

1) A new analytical framework is proposed to optimize
the bids of a large and price-maker generation firm in
a performance-based regulation market to maximize its
profit. The system dynamics of the regulation resource-
for different resource types and technologies- are taken
into account. Both deterministic and stochastic optimiza-
tion scenarios are considered. The formulated problem
is an MPEC with system dynamics, which to the best of
our knowledge, has not been studied before.

2) Two different formulations are addressed in this paper.
The first one is a non-linear program (NLP) for the novel
MPEC problem in this new context. By construction, it
has fundamental difficulties, to the extent that when the
standard NLP software tools are applied, the results are
very sensitive to the choice of initial points, and in some
cases no feasible solution can be found. The second
problem is based on making some practical assumptions
so as to tackle the nonlinearities in the original NLP
and transform it into a series of tractable mixed-integer
linear programs (MILPs). Both solution accuracy and
computation time are significantly improved.

3) Insightful case studies are presented and discussed in
details. The impact of high, medium and low market
mileage requirements on the optimal biding of the
generation firm are analyzed. The role of the system
performance accuracy, and its impact on the strategic
behaviour of the generation firm is studied.

It is worth adding that the new optimization-based regulation
market participation approach in this paper is general and not
restricted by the regulation resource technology. For example,
large energy storage units or electric vehicle aggregators may
also benefit from the analysis in this paper.

Compared to its conference version in [17], in this journal
version, Section III on solution method is entirely new, Section
IV on case studies is also entirely new, and the detailed models
on system dynamics in Section II are more comprehensive.

II. PROBLEM FORMULATION

Consider a generation firm that bids in a performance-based
regulation market. In this paper, our focus is on the CAISO
market in California, where each bid has two components: 1)
a regulation capacity offer in MW/interval and its associated
price in $/MW/interval; and 2) a mileage price offer in $/MW.
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Fig. 1. The main components in our analysis and their interactions.

Each market interval takes 15 minutes [2, pp. 4-6]. Here, we
only formulate the regulation market and neglect the markets
for energy and all ancillary services, other than regulation. Our
model is what we think a market participant may use to mimic
the operation of the CAISO regulation market, such that it can
accordingly select its bids. Also, we assume that the resources
bid their maximum regulation capacities to the market. That is,
the regulation capacity offers U are considered as parameters.

In each market interval, the ISO clears the regulation
capacities and regulation mileages of all market participants
by solving an optimization problem that seeks to minimize
the total cost of regulation, and by taking into account its
estimation of the AGC signal during the upcoming market
interval. In the case of CAISO, the resolution of the AGC
signal is four seconds; thus, each regulation market interval
includes 15 × 60/4 = 255 AGC set points [2, p. 11]. Once
each market interval is implemented and the actual AGC signal
and the metered contribution of each regulation resource is
realized, CAISO calculates the payment to each resource based
on its performance in following the AGC signal.

The main components in our analysis and the interactions
among those components are shown in Fig. 1. Next, we will
explain each component and its related mathematical models.

A. Profit Model

Suppose the generation firm of interest has i = 1, . . . , I
generators. Randomness is modeled by k = 1, . . . ,K scenar-
ios [18]. Let AGCi,k[τ ] denote the realization of the AGC set
point that is sent to generator i at time slot τ of length four
seconds under random scenario k. The total expected profit for
the generation firm when it offers only regulation up service2

during each 15 minutes market interval is obtained as∑
i

MCPCrCi +
1

K
MCPM×

∑
i,k

[ (∑
τ

AGCi,k[τ ]− | AGCi,k[τ ]− yi,k[τ ] |

)/
2The problem formulation under regulation down service is very similar.

Therefore, we only focus on regulation up service in order to avoid having
long equations that do not add to the technical value of the discussion.
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Fig. 2. An example on calculating accuracy and instructed mileage.(∑
τ

AGCi,k[τ ]

)]
×[∑

τ

| AGCi,k[τ ]−AGCi,k[τ − 1] |

]
,

(1)

where the first term is the regulation capacity payment and the
second term is the regulation mileage payment. The former
is obtained by multiplying the cleared regulation up capacity
price MCPC to the awarded regulation capacity rCi for each
generator i. As for the second term, different ISOs may
calculate it in different ways. CAISO calculates this term by
multiplying the cleared regulation up mileage price MCPM

by a summation over the product of two terms, namely the
performance accuracy adjustment, i.e., the first bracket, and
the instructed mileage up, i.e., the second bracket [3]. These
two terms are shown in Fig. 2. Next, we explain each term.

The performance accuracy adjustment is associated with the
level of accuracy in following the AGC signal. It is calculated
as the sum of all AGC set points minus the sum of deviations
from each AGC set point. The result is then divided by the
sum of all AGC set points. Note that, CAISO treats positive
and negative deviations equally [19, p. 14]. Here, yi,k[τ ] is
the mechanical output of generator i in response to set point
AGCi,k[τ ], at time slot τ and under scenario k. If generator
i follows the AGC signal exactly, i.e., if yi,k[τ ] = AGCi,k[τ ]
at all time slots, then the performance accuracy adjustment
is one. Otherwise, it can be as low as zero. A mathematical
expression for yi,k[τ ] will be derived in Section II-B.

The instructed mileage up is associated with the shape of the
AGC signal. It is the absolute change in the AGC regulation up
set points that take new values every four seconds, represented
by | AGCi,k[τ ]−AGCi,k[τ − 1] | in (1). This term indicates
what mileage the ISO would ideally expect from generator i
in each four second set point interval [19, pp. 8].

B. System Dynamics

The ability of a generator in following the AGC signal
depends on its technology and physical characteristics. With-
out loss of generality, we consider a governor-turbine control
model for each generator, where a speed governor senses
the changes in its power command set points, i.e., the AGC

TABLE I
TRANSFER FUNCTIONS OF GENERATORS [20], [21]

Generation Technology Transfer Function

1

(1 + T1s)
Non-Reheat Steam Unit

1 + T2s

(1 + T3s)(1 + T4s)(1 + T5s)
Reheat Steam Unit

(1− T6s)(1 + T7s)

(1 + 0.5T6s)(1 + T8s)
Hydraulic Unit

set points, and converts them into valve actions. A turbine
then converts the changes in valve positions into changes in
mechanical power output, i.e., generation signal yi,k(t).

The governor-turbine control is often modeled as a two-
state dynamic system: one state corresponds to the speed
governor and one state corresponds to the turbine valve
position [20]. Other states may also be considered depending
on the generator technology. System dynamics in frequency
domain are then modeled using appropriate transfer functions:

Yi,k(s) = Gi(s)AGCi,k(s), ∀i, k, s. (2)

Here, s is the complex frequency variable and Gi(s) is the
transfer function of generator i. Also, Yi,k(s) and AGCi,k(s)
denote the Laplace transformations of time-domain continuous
signals yi,k(t) and AGCi,k(t), respectively. Several examples
of generator transfer functions are listed in Table I for different
technologies, where T1, T2, . . . , T8 are known parameters.

The time-domain continuous signal AGCi,k(t) can be rep-
resented in form of a weighted summation of several unit step
functions: u(t) = 0 for t < 0 and u(t) = 1 for t ≥ 0 [22, p.
22]. The weights are the AGC set points AGCi,k[τ ] at each
time slot τ , see Fig. 2 for an example. Therefore, we can write

AGCi,k(t) =

225∑
τ=1

[
(AGCi,k[τ ]−AGCi,k[τ − 1])

u(t− 4(τ − 1))

]
.

(3)

By taking Laplace transform from (3), we obtain

AGCi,k(s) =
1

s

225∑
τ=1

e−4(τ−1)s (AGCi,k[τ ]−AGCi,k[τ−1]) .

(4)
Next, suppose the system dynamics of generator i is mod-

eled by the first transfer function in Table I. This transfer
function has one pole and no zero. From (2) and (4), we have:

Yi,k(s) =
yi,k(0

−)

s+ 1/T1
+∑225

τ=1 e
−4(τ−1)s

(
AGCi,k[τ ]−AGCi,k[τ − 1]

)
s(1 + T1s)

,

(5)

where the first term is the zero input condition response and
the second term is the zero initial condition response [22,
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pp. 767-774]. By applying the inverse Laplace transform, the
mechanical output of generator i in time domain becomes

yi,k(t) = yi,k(0
−)e−t/T1+

225∑
κ=1

[(
AGCi,k[κ]−AGCi,k[κ− 1]

)
×

(
1− e−(t−4(κ−1))/T1

)
u(t− 4(κ− 1))

]
.

(6)

The above expression is a continuous signal. The mechanical
output of generator i at time slot τ is obtained as:

yi,k[τ ] = yi,k(t = 4τ). (7)

Once we replace (7) in (1), we can express regulation mileage
payment, i.e., the second term in (1), based on the AGC set
points and the transfer function parameters of generator i.

The other transfer functions in Table I can be analyzed sim-
ilarly. Specifically, we can apply partial fraction expansion to
these other transfer functions and calculate the corresponding
yi,k(t) and yi,k[τ ] accordingly, see [22, pp. 767-774].

C. Regulation Market Model

1) Market Optimization Problem: Once CAISO collects all
regulation bids, it solves the following optimization problem:

min
∑
j

OCj r
C
j +

∑
j

rMj O
M
j (8)

s.t.
∑
j

rCj ≥ RC : MCPC , (9)∑
j

rMj ≥ RM : MCPM , (10)

rCj ≥ 0 : µj , ∀j, (11)

rCj ≤ Uj : ξj , ∀j, (12)

rMj ≥ rCj : ηj , ∀j, (13)

rMj ≤ mjr
C
j : γj , ∀j, (14)

where j is the index for all regulation market participants. For
each constraint, the dual variable is shown on the right side
of the colon symbol. The resource-specific mileage multiplier
mj for each generator j is a parameter that is determined by
CAISO using the historical data of generator j.

The objective function in (8) is the total bid-in cost of
regulation up capacity and mileage. Constraints (9) and (10)
indicate the market regulation up capacity requirement and the
market regulation up mileage requirement, respectively. The
dual variables corresponding to these two constraints indicate
the regulation up capacity price and the regulation up mileage
price, respectively. Constraints (11) and (12) assure operating
all regulation resources within their operational limits. Note
that, the multiplication Uj is in MW / interval and it is limited
by the ramp rate of generator j. Constraints (13) and (14)
are intended to link the rewarded regulation capacity and the
rewarded regulation mileage for each resource. Specifically,
from (13), the mileage reward of a resource cannot be less
than its capacity reward. From (14), it also cannot be greater
than the product of its regulation up capacity reward and

resource-specific mileage multiplier. This is consistent with the
principle of establishing a uniform clearing price for mileage
that considers the expected resource performance [23].

Note that, the mileage payments that are obtained as the
solutions of problem (8)-(14) are not financially binding
because the actual mileage payments are calculated once the
AGC signals are realized and the accuracy of each resource
in following its corresponding AGC signal is measured.

2) AGC Dispatch Method: Let AGCk[τ ] denote the overall
regulation set point at time slot τ and under scenario k that is
calculated by the ISO based on the overall imbalance between
supply and demand in the power system. In this section,
we discuss how AGCk[τ ] is divided into several resource-
specific AGC set points. Note that, for the generation firm of
interest, the resource-specific AGC set points are denoted by
AGCi,k[τ ] for i = 1, . . . , I , see Section II-A. AGC dispatch is
done using the concept of participation factor, which indicates
the portion of AGCi,k[τ ] out of AGCk[τ ] [20, p. 617].

The choice of participation factor may differ among ISOs.
However, it is often in some way related to the regulation
market outcome. That is, it depends on certain solutions of
the market optimization problem in (8)-(14). In this paper, we
use a variation of the method in [23, p. 12] and assume that

AGCi,k[τ ] = min

{
rCi ,

rMi∑
i r
M
i +

∑
j 6=i r

M
j

AGCk[τ ]

}
,

(15)
where the participation factor of generator i is a fraction
of its mileage over the total cleared mileage. As regulation
mileage and regulation capacity are determined separately in
the CAISO market optimization procedure, the min function
is needed in (15) to make sure that AGC set points do not
exceed the cleared regulation mileage capacity rCi .

We shall point out that even though the above mechanism
closely matches the regulation market optimization problem
that is used by CAISO, it may not guarantee that the aggrega-
tion of the regulation services that are allocated to all market
participants always matches the total AGC signal. Therefore,
CAISO, and other ISOs, usually use a post-optimization cor-
rective action to make sure that the intended AGC level is met.
This is done iteratively and by first exploiting the low-price
regulation resources, whose bids are below the market clearing
price and therefore act as price-taker [24, p. 128]. Accordingly,
the impact of such post-optimization heuristic corrective action
is likely to be minimal on the AGC signal that is allocated
to the large and price-maker regulation resources. Therefore,
for the rest of this paper, we do not consider any such post-
optimization heuristic corrective action in our analysis.

D. Optimal Bidding Problem

In summary, if a generation firm tends to maximize its own
profit in (1), it must solve the following optimization problem:

maximize (1)

subject to (6), (7), (8)− (14), (15).
(16)

The above problem incorporates all the components in Fig. 1.
This problem is a bi-level program, where the market opti-
mization problem in (8)-(14) forms the lower-level problem.
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III. SOLUTION METHOD

A. Non-linear Programming Formulation

As a standard procedure in bi-level programming, one can
replace the lower-level problem (8)-(14) with its equivalent set
of Karush-Kuhn-Tucker (KKT) conditions [25, p. 224]:

(9)− (14) (17)

OCj −MCPC − µj + ξj + γj −mjηj = 0 ∀j, (18)

OMj −MCPM − γj + ηj = 0 ∀j, (19)RC −∑
j

rCj

MCPC = 0, (20)

RM −∑
j

rMj

MCPM = 0, (21)

(
Uj − rCj

)
ξj = 0 ∀j, (22)

rCj µj = 0 ∀j, (23)(
mjr

C
j − rMj

)
ηj = 0 ∀j, (24)(

rMj − rCj
)
γj = 0 ∀j, (25)

MCPC ,MCPM ≥ 0, µj , ξj , γj , ηj≥ 0 ∀j, (26)

where (18) and (19) are the gradient equilibrium conditions
and (20)-(25) enforce complementarity slackness. By replacing
the lower-level linear program in (8)-(14) with the constraints
in (17)-(26), problem (16) takes the standard form mathemat-
ical program with equilibrium constraint (MPEC) as follows:

maximize (1)

subject to (6), (7), (15), (17)− (26).
(27)

The above optimization problem is non-linear and non-smooth
and hard to solve. The difficulty is not only due to its MPEC
structure, but more importantly also due to the intricate formu-
lations of the objective function and the AGC dispatch mech-
anism. One may attempt solving problem (27) using global
optimization techniques [16, pp. 415-430], [26]. However, as
we will see in Section IV-B, these techniques either fail to find
any solution, or their solutions are not accurate. Therefore,
next, we seek to convert problem (27) into an equivalent,
or slightly different, but more tractable optimization problem.
Our goal is to solve problem (27) by solving a series of mixed
integer linear programs (MILP). Note that, MILPs can be
solved accurately using commercial software, such as CPLEX
(www.ibm.com) and MOSEK (www.mosek.com).

B. Mixed-Integer Linear Program Formulation

1) Reformulation of the AGC Dispatch Model: The AGC
dispatch model in (15) is difficult to handle due to the frac-
tional multiplier and the minimization function. First, consider
the fractional multiplier, which can be tackled as follows.

Theorem 1. We can replace constraint (15) in problem (27)
with the following constraint without affecting the solution:

AGCi,k[τ ] = min
{
rCi , r

M
i AGCk[τ ]/R

M
}
. (28)

The proof of Theorem 1 is given in the Appendix.
Next, we need to find a way to tackle the nonlinearity in

the minimization function in (28). One option is to introduce
some auxiliary binary variables so as to replace the nonlinear
minimization function in (28) with a set of MILP constraints.
This approach is explained in details, e.g., in Section III-A
in [27]. However, such approach has curse of dimensionality
because it requires adding 225×I×K new binary variables to
the optimization problem. Therefore, alternatively, we assume
that the AGC set points are always upper-bounded by the
cleared regulation capacity. Hence, we replace (28) with

AGCi,k[τ ] = rMi AGCk[τ ]/R
M ∀i, k, τ, (29)

AGCi,k[τ ] ≤ rCi ∀i, k, τ. (30)

Of course, the above constraints may not always be equivalent
to (28); but they provide a practical approximation for the
AGC dispatch model. The approximation becomes exact if
the following inequality holds across the system parameters:

mi AGCk[τ ] ≤ RM , ∀k. (31)

To see why, we note that, from (31), we have

rMi AGCk[τ ]/R
M ≤ rMi /mi ≤ rCi , (32)

where the second inequality is due to (14). Thus, if (31) holds,
then (28) reduces to (29), making it an accurate model. Inter-
estingly, this condition often holds in practice. For example,
for the six major CAISO regulation resources in Footnote 1,
the average resource-specific mileage multipliers for regulation
up service are 2.7, 2.24, 4.55, 2.3, 2.5, and 3.6 [14], which
are small enough to often satisfy the inequality in (31).

2) Reformulation of the Profit Model: To tackle the nonlin-
earities in the objective function in (16), we start by replacing
the AGC signal by its model in (29). After reordering the
terms, the objective function becomes:

∑
i

MCPCrCi +
1

KRM
MCPM ×

∑
i,k

[
rMi −(∑

τ

| rMi AGCk[τ ]−RMyi,k[τ ] |

)/
(∑

τ

AGCk[τ ]

)]
×[∑

τ

| AGCk[τ ]−AGCk[τ − 1] |

]
.

(33)

We can see that the denominator in the fractional multiplier,
i.e.,

∑
τ AGCk[τ ], is now a constant. The summation over

absolute values, i.e.,
∑
τ | AGCk[τ ]−AGCk[τ−1] |, is also a

constant. These constant terms no longer add to the complexity
of the problem, resolving some of the initial nonlinearities.

Next, we combine (29) with (6) and (7), and rewrite the
subtraction inside the first absolute value term in (33) as

rMi AGCk[τ ]−RMyi,k[τ ] = φi,k[τ ] + rMi ψi,k[τ ], (34)
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where

φi,k[τ ] , −RMyi,k(0−)e−4τ/T1 ,

ψi,k[τ ] ,
τ∑
l=1

[(
AGCk[l]−AGCk[l − 1]

)
e−4(τ−1+l)/T1)

]
.

Here, φi,k[τ ] and ψi,k[τ ] are constant, i.e., they do not depend
on optimization variables. The term φi,k[τ ] includes a dimin-
ishing exponential term which approaches zero as τ increases.
Hence, for any small ε > 0, there exists a threshold

τth , d−T1 log(ε)/4e (35)

such that for any time slot τ ≥ τth, we have exp(−4τ/T1) ≤ ε.
Therefore, if ε is sufficiently small, then we can approximate
φi,k[τ ] ≈ 0 for any τ ≥ τth and any i and k.

To tackle the nonlinearity in | φi,k[τ ]+ rMi ψi,k[τ ] |, we can
replace it with a new auxiliary variable θi,k[τ ] for any τ < τth.
Accordingly, we can rewrite the absolute-value summation as∑

τ<τth

θi,k[τ ] +
∑
τ≥τth

rMi | ψi,k[τ ] |. (36)

The following linear constraints are also needed:

− θi,k[τ ] ≤ φi,k[τ ] + rMi ψi,k[τ ] ≤ θi,k[τ ], ∀τ < τth. (37)

Since we intend to maximize the profit expression in (36), and
because of the negative sign before the second term inside the
brackets, exactly one of the two inequalities in (37) holds as
equality once the optimization problem is solved.

Next, consider the optimization problem in (8)-(14), i.e.,
the so-called lower-level problem. This problem is a linear
program and accordingly carries zero duality gap, i.e., strong
duality holds for this optimization problem [25, pp. 215-236].
Therefore, by setting the primal objective function equal to
the dual objective function in problem (8)-(14), and after
reordering the terms, we can write the objective function as

RCMCPC +RMMCPM −
∑
i

rMi MCPM−

∑
j 6=i

ξjUj −
∑
j 6=i

(
OCj r

C
j +OMj r

M
j

)
+

1

KRM
MCPM ×

∑
i,k

[
rMi −

 ∑
τ<τth

θi,k[τ ] +
∑
τ≥τth

rMi | ψi,k[τ ] |

/
(∑

τ

AGCk[τ ]

)]
×[∑

τ

| AGCk[τ ]−AGCk[τ − 1] |

]
.

(38)
The key property of the above objective function is that if
MCPM is taken as a constant, then the expression in (38) is
linear with respect to the rest of optimization variables.

3) Reformulation of the Market Optimization Problem:
The complimentary-slackness constraints in (20)-(25) are non-
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Fig. 3. The AGC signals for the illustrative example in Section IV-A-1.

linear [25, p.18]; however, one can use the techniques in [15],
[26] and rewrite them in form of equivalent MILP constraints:∑

j

rCj −RC ≤ LzC (39)

MCPC ≤ L
(
1− zC

)
(40)∑

j

rMj −RM ≤ LzM (41)

MCPM ≤ L
(
1− zM

)
(42)

rCj ≤ Lz
µ
j ∀j, (43)

µj ≤ L
(
1− zµj

)
∀j, (44)

Uj − rCj ≤ Lz
ξ
j ∀j, (45)

ξj ≤ L
(
1− zξj

)
∀j, (46)

rMj − rCj ≤ Lz
γ
j ∀j, (47)

γj ≤ L
(
1− zγj

)
∀j, (48)

− rMj +mjr
C
j ≤ Lz

η
j ∀j, (49)

ηj ≤ L
(
1− zηj

)
∀j, (50)

where zC , zM , zµj , z
ξ
j , z

γ
j , and zηj are auxiliary binary variables

corresponding to the complimentary-slackness constraints. For
example, from (9), (39), (40), and (26), if zC = 0, then∑
j r

C
j = RC ; and if zC = 1, then MCPC = 0. Please refer

to [15], [26] for more details about the above reformulation.
Note that, solving the system of MILP equalities and inequal-
ities in (17)-(19), (26) and (39)-(50) is equivalent to solving
the regulation market optimization problem in (8)-(14).

4) Resulted Mixed-Integer Linear Program: From the re-
sults in Sections III-B-1, III-B-2, and III-B-3, we now propose
to reformulate problem (27) as follows:

maximize (38)

subject to (17)− (19), (26), (29), (30), (37), (39)− (50),
(51)

where the optimization variables comprise of three different
groups: first, the cleared market prices MCPC and MCPM ;
second, rCj , rMj , µj , ξj , ηj , γj , zCj , zMj , zµj , zξj , zηj and zγj
where j is the index for all regulation resources; third, θi,k[τ ],
OCi , OMi , where i is the index for all regulation resources that
belong to the generation firm of interest. In contrast, OCj and
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OMj for any j 6= i, i.e., the price bids of the other regulation
resources, serve as parameters.

The optimization problem in (51) is an MILP as long as
MCPM is taken as a constant. Therefore, one can solve
problem (51) by combining an one dimensional exhaustive
search over single variable MCPM with standard MILP
solution techniques. Solving problem (51) using this hybrid
approach has several advantages over solving problem (27)
using global optimization techniques, see Section IV-B-1.

It is worth noting that, the practicality of an exhaustive
search depends on the dimension and size of the search space.
In particular, the one-dimensional exhaustive search that we
proposed above has a very low computational complexity.
Another issue that plays to our advantage is the fact that the
range of regulation mileage prices in the CAISO regulation
market is relatively small [14]; therefore, the one-dimensional
exhaustive search is over a relatively small set. That being
said, we believe that there might exist even better solution
approaches to solve the original NLP problem in (27) that
could be explored as an extension of this paper in the future.

IV. CASE STUDIES

A. Case I: Small Illustrative Example

Consider a small performance-based regulation market with
three generators. Generator 1 is of interest to submit optimal
bids. The dynamics of this generator are modeled by the first
transfer function in Table I, where T1 = 7.5 sec and y1(0−) =
AGC1,k[1]. We have U1 = 40 MW and m1 = 4. For other
generators, U2 = 40 MW, U3 = 50 MW, m2 = 3, m3 = 3,
OC2 = 8 $/MW, OC3 = 10 $/MW, OM2 = 3 $/MW, and OM3 =
2 $/MW. Other parameters are L = 1000, K = 1, and ε→ 0.

1) High, Medium and Low Mileage Scenarios: The real-
ization of the AGC signal under these three mileage scenarios
are shown in Fig. 3. They are derived from the data in [28],
[29]. The corresponding total mileage, i.e., the summation of
the absolute value differences between every two consecutive
AGC set points, are obtained as 197.41 MW, 118.47 MW,
and 72.41 MW, respectively. The market regulation capacity
requirement is 80 MW for all three scenarios. The market
mileage requirements are 200 MW, 120 MW, and 80 MW,
respectively. The market outcome under the proposed optimal
bidding mechanism is shown in Table II. When the mileage
requirement is high, Generator 1 seeks to maximize its profits
by obtaining mileage revenue, where rM1 is high. As the
market mileage requirement decreases, Generator 1 may earn
less revenue from mileage. Hence, it seeks to increase the
regulation capacity revenue. Accordingly, it uses its price-
making ability to increase MCPC while decreasing MCPM .
In contrast, when the mileage requirement is low, Generator 1
has very low incentive to earn mileage revenue. Therefore, it
offers a very high regulation capacity price bid OCi and a very
low regulation mileage price bid OMi . Nevertheless, the ISO
still clears Generator 1’s bids because the cleared mileage and
the cleared capacity are linked together, through the market
optimization problem in (8)-(14). To elaborate, from (13)-(14),
we have rCi ≤ rMi ≤ mir

C
i , which means that for the low

mileage bid price OMi , the ISO is willing to clear resource

i in the amount of rMi . However, rMi should be at least
equal to rCi , meaning that the ISO will clear the regulation
capacity rCi , even for a high price bid regulation capacity
OCi . Therefore, in this case, Generator 1 can obtain profit
without having concerns about its regulation performance in
the market. Unfortunately, the fact that such higher profit
comes at the expense of decreasing the clearing mileage prices
suggests that Generator 1s market power in this example
results in discouraging the other regulation resources from
offering high performance regulation service in a performance-
based regulation market, which is clearly not desirable.

Another point to highlight here is that the cleared regulation
mileage, i.e., rM , is not financially binding, and a regulation
resource will be compensated for the regulation capacity
service it provides, i.e., rC , as well as its actual performance.
Calculating the actual performance constitutes the product of
the instructed mileage and the accuracy, see Fig. 1.

TABLE II
MARKET OUTCOMES FOR ILLUSTRATIVE EXAMPLE

Mileage

Generator 1 Generators
2, 3 Market

r
C 1

r
M 1

In
st

ru
ct

ed
M

ile
ag

e

A
cc

ur
ac

y

R
ev

en
ue

r
C 2
,r

C 3

r
M 2

,r
M 3

M
C
P

C

M
C
P

M

High 40 160 157.87 96.03 719 40 40 8.5 2.5
0 0

Medium 40 80 78.11 96.66 551 40 40 10 2
0 0

Low 40 40 36.21 98.16 480 40 40 12 0
0 0

2) Fast and Slow System Dynamics: Consider the high
mileage scenario and suppose the system dynamics of Gen-
erator 1 is modeled based on the second transfer function in
Table I with three poles and one zero. All other parameters are
the same as in Section IV-A-1, except that Generator 1 starts
from zero condition. The parameters of the transfer function
are T2 = 1, T3 = .5, T4 = 10α, and T5 = 25α, where α is a
number between 0.1 and 25. As we increase α, we move two
poles to the left, creating a generator with slower dynamics.
Two examples are shown in Fig. 4, where α = 1 for the
Fast generator and α = 5 for the slow dynamic. The market
outcomes when we change α from 0.1 to 25 are shown in Fig.
5. Here, the impact of increasing α is represented in terms of
reducing the performance accuracy form 100% to 10%.

As expected, faster responding generators can collect more
mileage revenue due to high accuracy in following the AGC
signal. When accuracy is almost perfect, Generator 1 offers a
relatively high price for mileage and a relatively low price
for capacity. As the generator’s ability to follow the AGC
signal degrades, it tries to use its price-making capability to
decrease MCPM and rather increase MCPC to continue
making profit, but of course at an inevitability lower rate. The
thresholds to switch to new offers are at 76.1% and 25.2%
performance accuracies, as marked in Figs. 5 (a) and (b).

3) Price Taker versus Price Maker Bidding: Since the focus
of this paper is on price-making market participation, where
the regulation firm of interest can change the price to make
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Fig. 4. The AGC signal versus the output of Fast and Slow generators.
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more profit, next we compare the maximum profit of the
firm for the price-taker and the price-maker design cases.
The results are shown in Fig. 6. The high mileage scenario
is considered for the results in this figure. As expected, the
two designs are similar when the resource capacity is small.
However, as the resource capacity increases, the regulation
firm that exploits its price-making capability can increase its
profit. It is interesting to note that, the profit under the price
taker design soon experiences saturation because increasing
the regulation capacity does no longer help in this case. In
contrast, under the price-maker design, the revenue increases
noticeably, making more incentives for the regulation firm.

B. Case II: California ISO Regulation Market Data

Next, we increase the size and complexity of the case
study using the data from the CAISO Regulation Energy
Management Project-Phase 1 [29]. The AGC data of all
participating resources are used at 4 second intervals during
six days in April 2012. These AGC signals are summed up at
10 representative high mileage and low mileage requirement
times, to generate K = 10 scenarios, where the average
mileage is 629.83 MW. In some scenarios, the mileage is
as low as 0 MW and in some other scenarios it is as high
as 1372.9 MW. The peak AGC signal among all scenarios
is 103 MW. We consider 19 participants where I = 7 of
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Fig. 6. Comparing price-taker and price-maker bidding. The need for a price-
maker design is more evident as the capacity of the resource increases.

TABLE III
MARKET REQUIREMENTS AND PRICES RESULTS FOR

THE LARGE MARKET EXAMPLE

Market
Parameters Results
RC RM MCPC MCPM

400 800 13 1.5

them belong to the firm of interest. We assumed all the
regulation resources of the firm of interest have the same
dynamic characteristics as Generator 1 in Section IV-A-1. For
generator i = 7 of the firm of interest, we have m7 = 15 which
is twice RM/maxk,τ{AGCk[τ ]} = 800/103 = 7.8. It means
our assumption in (29) does not hold for this generator. This
assumption does hold for all other generators of the firm of
interest. All other parameters for generator offers, regulation
capacities, resource-specific mileage multipliers, and market
requirements are from [14], [30]. The parameters and the
results are shown in Tables III, IV, and V. The cleared
prices under optimal bidding are MCPC = 13 MW and
MCPM = 1.5 MW, and the total revenue of the firm is $2418.

1) Optimality and Computational Complexity: We examine
two different ways to obtain the optimal bids. First, we
solve the NLP in (27) in GAMS (www.gams.com), using
the following Global Optimization solvers: CONOPT, SNOPT
and IPOPT. Second, we solve the reformulated MILP in (51)
in MATLAB using intlinprog command. No difference was
observed in the results for the illustrative example in Section
IV-A. However, the results were drastically different for the
large test case in this Section. Specifically, two solvers, namely
SNOPT and IPOPT, failed to reach any solution for the NLP
in (27). As for CONOPT, the results were very sensitive to
the choice of initial point, as it is shown in Fig. 7. Here, the
iterations along the x-axis are only for the case of the NLP.
Note that, the MILP final solution is also shown by a constant
line. We can see that the number of iterations as well as the
final results are significantly different for different choices of
the initial point. In one case, the final objective value was
infeasible. In contrast, the solution from MILP is unique and
it outperforms all the solutions from NLP. We can conclude
that our proposed solution method in Section III is necessary
in order to obtain an optimal bidding solution.
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TABLE IV
MARKET PARAMETERS AND RESULTS FOR ALL RESOURCES

j 6= i IN THE LARGE MARKET EXAMPLE

Generators Parameters Results
m U OC OM rC rM

1 3 30 11 3.5 22 22
2 3 40 12 2.6 0 0
3 5 25 9 0.5 25 125
4 12 40 8.78 2.8 40 40
5 5 40 10.5 4.5 0 0
6 3 45 14 4.02 0 0
7 4 50 12 3.8 0 0
8 5 70 11.2 2.9 70 70
9 2 10 10.3 0.9 10 20
10 3 30 9.75 1.5 30 30
11 4 33 9.5 2 33 33
12 4 20 12 2.4 20 20

TABLE V
MARKET PARAMETERS AND RESULTS FOR ALL RESOURCES i OF THE

FIRM OF INTEREST IN THE LARGE MARKET EXAMPLE

Generators
Parameters Results

m U O
C

O
M r
C

r
M

In
st

ru
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ed
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ag

e
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cc
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ac

y

R
ev

en
ue

1 4 15 1.5 13 15 15 11.82 90.1 211
2 3 25 1.5 13 25 25 19.7 90.1 352
3 2 15 1.5 13 15 30 23.64 90.1 227
4 4 15 1.5 13 15 15 11.82 90.1 211
5 2 15 1.5 13 15 30 23.64 90.1 227
6 5 25 1.5 13 25 25 19.7 90.1 352
7 15 40 1.5 13 40 300 236.4 90.1 839

Next, we show the results for solving the NLP in (27) and
MILP in (51), where in both cases we conduct exhaustive
search over MCPM . The results are shown in Figs. 8 (a)
and (b). We can report two results. First, exhaustive search
does help solving the NLP for certain initial points. However,
no feasible solution is found or the solution is not optimal
for some other initial points. In one case, exhaustive search
found the optimal MCPM , yet GAMS was unable to find
the optimal solutions for other variables, causing a major
optimality gap. Second, the computational time for exhaustive
search is 2072 seconds versus only 66 seconds when applied to
NLP formulation versus the MILP formulation. Here, we have
ε = 2×10−6 and τth = 25. Therefore, the solution method in
Section III is accurate, reliable, and computationally tractable.

V. CONCLUSIONS

A new analytical framework was proposed for optimal
bidding of large, price-maker regulation resources in the Cal-
ifornia ISO performance-based regulation market. Regulation
resources in a firm seek to maximize their total profit, while
taking into account the system dynamics of their physical
resources as well as various details in the California ISO
market. Accordingly, a novel MPEC analysis with system
dynamics was conducted which introduced several new chal-
lenges. Specifically, we showed that global optimization tools
fail to find a feasible solution or the solution that they find
is inaccurate. Therefore, the original non-linear programming
problem was carefully transformed into a mixed-integer linear
program which is solved with accuracy, reliability, and with
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computational efficiency. Diverse case studies were discussed
based on data from a California ISO regulation market project.

Of course, our proposed method also has some limitations.
First, if the uncertainty is considered in the market opti-
mization problem, then the size of the problem may grow
noticeably in order to incorporate several random scenarios.
Second, we assumed linear system dynamics for regulation
resources. In practice, some regulation resources may have
nonlinear dynamics. Third, the AGC dispatch mechanism in
(15) is only one possible option in practice. More sophisticated
AGC dispatch mechanisms can be considered.
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APPENDIX: PROOF OF THEOREM 1

First, we note that, by substituting yi,k[τ ] in (1) with its
mathematical expressions that are given in (6) and (7), we can

rewrite (1), i.e., the objective function, as follows:∑
i

MCPCrCi +
1

K
MCPM×

∑
i,k

[ (∑
τ

AGCi,k[τ ]−
∣∣∣∣AGCi,k[τ ]− yi,k(0−)e−4τ/T1

−
225∑
κ=1

[(
AGCi,k[κ]−AGCi,k[κ− 1]

)
×

(
1− e−4(τ−κ+1)/T1

)
u(4(τ − κ+ 1))

]∣∣∣∣
)/

(∑
τ

AGCi,k[τ ]

)]
×[∑

τ

| AGCi,k[τ ]−AGCi,k[τ − 1] |

]
,

(52)

Accordingly, we can rewrite problem (27) as

maximize (52)

subject to (15), (17)− (26).
(53)

Next, consider the first constraint in (26), i.e., MCPM ≥ 0.
Let us examine two possible cases based on this constraint.

Case I) Suppose MCPM > 0. From (21), we must have:

RM −
∑
i

rMi −
∑
j 6=i

rMj = 0→
∑
i

rMi +
∑
j 6=i

rMj = RM .

Substituting the above in (15), constraint (28) is directly
obtained. In this case, the constraints (15) and (28) are exactly
equivalent; thus, the optimal solution of problem (53) does not
change after replacing constraint (15) with (28) under Case I.

Case II) Suppose MCPM = 0. In this case, the objective
function in optimization problem (53) reduces to:∑

i

MCPCrCi . (54)

Accordingly, we can rewrite problem (53) as

maximize (54)

subject to (15), (17)− (26).
(55)

Next, suppose we replace constraint (15) with constraint (28).
The revised optimization problem becomes:

maximize (54)

subject to (28), (17)− (26).
(56)

Finally, suppose we simply drop constraint (15) from (55) and
drop constraint (28) from (56). In both cases, the following
relaxed optimization problem is resulted:

maximize (54)

subject to (17)− (26).
(57)

Note that, unlike problems (55) and (56), problem (57) does
not include AGCi,k[τ ] as a variable for any i, k and τ . Now,
let us denote the optimal solution of problem (57) as:

MCPM
?

= 0

rC
?

j , rM
?

j , OC
?

i , OM
?

i , µ?j , ξ
?
j , η

?
j , γ

?
j ,MCPC

?

, ∀i, j. (58)
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Since the only constraint in (55) that includes AGCi,k[τ ] is
(15), where AGCi,k[τ ] is defined in terms of variables rCi and
rMi for any i and parameter AGCk[τ ] for any k and τ , the
following is a feasible solution for problem (55):

MCPM
?

= 0

rC
?

j , rM
?

j , OC
?

i , OM
?

i , µ?j , ξ
?
j , η

?
j , γ

?
j ,MCPC

?

, ∀i, j,

AGCi,k[τ ] = min

{
rC

?

i ,
rM

?

i AGCk[τ ]∑
i r
M?

i +
∑
j 6=i r

M?

j

}
∀i, k, τ .

(59)

Similarly, the only constraint in (56) that includes AGCi,k[τ ]
is (28), where AGCi,k[τ ] is defined in terms of variables rCi
and rMi for any i and parameters RM and AGCk[τ ] for any
k, τ , the following is a feasible solution for problem (56):

MCPM
?

= 0

rC
?

j , rM
?

j , OC
?

i , OM
?

i , µ?j , ξ
?
j , η

?
j , γ

?
j ,MCPC

?

, ∀i, j,

AGCi,k[τ ] = min
{
rC

?

i , rM
?

i AGCk[τ ]/R
M
}
, ∀i, k, τ .

(60)

From (58), (59), and (60), the optimal solution of problem
(57) readily forms a feasible solution for problem (55) and
a feasible solution for problem (56). Therefore, since the
objective functions are the same in (55), (56), and (57), and
because AGCi,k[τ ] does not appear anywhere in ths objective
function, we can conclude that the optimal objective value in
(57) is a lower bound for the optimal objective values in (55)
and (56). However, since, by construction, problem (57) is
a relaxation of problems (55) and (56), its optimal objective
value is also an upper bound for the optimal objective values
of problems (55) and (56). Therefore, we can conclude that the
three optimization problems in (55), (56) and (57) have equal
optimal objective values. This means that, under Case II, both
(15) and (28) are irrelevant constraints that can be swapped or
even removed without affecting the optimal bids, also see [31,
p. 305]. It is worth clarifying that AGCi,k[τ ] may still take
different values in (59) and (60); however, any such difference
would not have any impact on the optimal bidding solutions
in (58) or the optimal objective value in (54). That is, under
Case II, AGCi,k[τ ] is nothing but a slack variable.

To summarize, either (15) and (28) are both relevant con-
straints with impact on choosing the bids, which in that case
they are equivalent as shown in Case I, or they are both
irrelevant constraints with no impact on choosing the bids,
which in that case we can swap them, as in Case II. �
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