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A bidder's strategy in one auction may affect his competitors' behavior 
in subsequent auctions. When this occurs, bidding in a sequence of 
auctions can be modeled fruitfully as a multistage control process. 
This paper presents such a model. In it the control is the bidder's 
strategy, the state characterizes the competitors' behavior and the 
state transition represents the competitors' reaction to the bidder's 
strategy. Dynamic programming is used to derive the infinite horizon 
optimal bidding strategy. We show that in steady state this optimal 
strategy generalizes a previous result for equilibrium bidding strategy 
in 'one-shot' auctions. 

MUCH of the theory of competitive bidding and all of the early develop- 
ments in that theory dealt with 'one-shot' situations, that is, bidding 

situations in which it is appropriate for the bidder to attempt to maximize 
his expected profit from the present auction or simultaneous group of 
auctions. Recently, a number of models for optimum bidding in sequential 
auctions have been developed. 1l3,6-8 ,13-15] All of these deal with the internal 
effects within the bidding firm of winning or losing auctions. With the 
exception of a little-known and specialized paper of Banerjee and Ghosh,t2] 
they all share the assumption that the competition will not react in later 
auctions to what the bidder has done in earlier auctions (see Note 1). At 
times this must be a tenuous assumption in a field that is filled with litera- 
ture suggesting how bidders should use information about the past behavior 
of competitors to determine their bids in present auctions. Therefore, we 
have built a model of bidding in sequential auctions in which we assume a 
bidder's competitors will react to his previous bids. 

One possible approach is to model the bidding process as a dynamic multi- 
player noncooperative game. This, however, seems difficult. Our ap- 
proach is less ambitious. We assume that bidders develop a behavioral 
model of how their competitiors will react. This assumption leads us to 
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model the sequential bidding problem as a multistage control process, in 
which the control is the bidder's strategy and the state characterizes the 
collective behavior of the competitors. In this model tho state transition 
represents the competitors' reaction to the bidder's policy. We use dy- 
namic programming to derive an equation for the optimal infinite horizon 
bidding strategy. When this equation is solved for a generalization of a 
previous model of 'one-shot' auctions,t91 the formula for the optimal one- 
shot policy is modified by the inclusion of a term that depends upon the 
magnitude of competitive reaction, the time between auctions, and the dis- 
count rate. 

1. A DYNAMIC MODEL OF BIDDING IN SEQUENTIAL AUCTIONS 

Consider a bidder who faces an infinite sequence of sealed-bid auctions. 
In each auction his expected profit from that auction depends upon the 
bidding policy of the rest of the industry and upon his own bidding policy. 
He would like to choose his own policy to maximize his expected profit from 
the immediate auction. However, he must keep in mind that his actions 
in the present auction will be observed by his competitors and will influence 
their behavior in future auctions. Therefore, it is in his interest to choose 
a bidding policy that will maximize his expected present value of profits in 
the present auction and all future auctions. It is this process that we pro- 
pose to model. 

Let P (kI) be an n-dimensional vector where n is the total number of bid- 
ders and Pi (k), the ith component of P (k), is a scalar representing the 
bidding policy of the ith bidder in the kth auction. We assume the ex- 
pected reward of the ith bidder in the kth auction, denoted by Ei (kI), to be 
a fixed function of P (kI). Furthermore, this reward function is assumed to 
have the form 

Ei (k ) = Ei[Qi (k ), Pi (k )], ( 

where Qi (k) is a scalar function of all the components of P (k) excluding 
Pi (kI) such that if Pj (kI) = P for all j-i, then Qi (kI) = P. The reward func- 
tion Ei summarizes all of -the internal effects on the bidder of winning or 
losing a particular auction, along with his likelihood of winning. 

Under these assumptions the ith bidder may view Qi(k) as a variable 
representing the aggregate bidding policy of the rest of the trade. Fur- 
thermore, the effect of his present bidding policy on the future behavior of 
the rest of the trade may be oncoded in terms of the change in Qi (kI). In 
particular, we shall assume that at any auction k+1 

Qi(k+1)=fi[Qi (k), Pic(k)]. (2) 

This assumption implies that the aggregate policy of the trade, as viewed 
by the ith bidder in the (kl+ 1 )th auction depends on this aggregate policy 
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and the policy of the ith bidder in the kth auction. Equation (2) may be 
viewed as a behavioral assumption on how the ith bidder views the dynamics 
of the trade. However, it may also be regarded as an approximation to the 
update of Qi (k) that could result from a game-theoretic approach. 

The above assumptions enable the ith bidder to view the process of 
bidding in sequential auction as a multistage control process (see Bryson 
and Ho[41 ), where Pi (k) is the control, Qi (k) is a state variable, and equa- 
tion (2) is the state transition function. Bidder i's objective is to determine 
a control sequence that will miaximize his present value of the rewards over 
an infinite horizon. Let Di be the discount factor of the ith bidder; i.e., 
Di= exp (- rit), where t is the time between auctions and ri is the continuous 
discount rate of the ith bidder. Then bidder i's problem is to maximize 
Ek=O DiEi (k), where Ei (k) is given by (1). 

We can solve this problem usinig dynamic programming. Let 

Vi (Qi, j) = max{pi(k).)'} Ek=j D i jEi[Qi (k), Pi (k)], (3) 

subject to Qi(k+1)=fJLQi(k), Pi(k)], Qi (j )=Qi. 
One can easily show that for Di <1, 

Vi (Qi, j) = V (Qi, 1+ I Vi (Qi). (4) 

Thus the argument j can be suppressed, and by the 'principle of optimality' 
we have 

Vi (Qi) = maxp { Ei (Qi, P) +DiVi[fi (Qi, P)]1. (5) 

For notational convenience we shall temporarily omit the subscripts i. 
Let P (Q) be the value of P that maximizes the right-hand side of (5) for a 
given value of Q. Then 

V(Q)=E[Q, P(Q)]+DV[f(Q) P(Q))]. (6) 

If we assume E (Q, P) and f(Q, P) are differentiable with respect to P, 
P (Q) is a stationary point satisfying the necessary condition 

{[E (Q, P)/aP]+D[dV (t)/dS]t_f(Q,p)af(Q, P)/aP} |P=P(Q) =0 (7) 
for any given Q. 

Substituting t for Q in (6) and differentiating with respect to t yield 

d V Qt)ldt-={ [aE %t 0 )/at] 
+D[dV (,A )/d,>]IM=fq(,)af(t, r9 )/O% } + { [dE (t, v )/av] (8) 

+[d V (A> ) Id,l I ,f (t, clf 49q rt 1/d7 }{=Pd A )/dp S 

The second part of (8) is zero by (7). Solving (7) for D[dV(Q)/di] at 
=f[Q, P (Q)] and substituting it into the remainder of (8) give 

d V ( [)/dE [aE (, r)/a7] [ // 
-[aE (% )aB [af %t q/)161t11[af (Q, 71)qX 17P 
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Substituting back into (7) and restoring the subscript i yield 

[[aEi(Qi, -)1aq1+Di[afj(Qi, /n 

* I [aEi %t v )latl - [Ei %t / (10 ) 

*[af (, vj 7)1at/&f (, v q)l&] I ]1,7==A(i),=f Q, A,P (Q,) ] = 

Equation (10) is a necessary condition for the optimal strategy Pi (Qi). 
According to this strategy, bidder i's optimal policy in any auction will be 

Pi*(k) =Pi[Q(k)] (11) 

Note that PF[Qi (k)] is bidder i's optimal policy given his assumption that 
the trade's behavior is represented by Qi (k) and (2). This result is true 
independently of whether bidder i's previous policies were optimal and of 
whether the trade has followed the assumed reaction function in the past. 

2. OPTIMAL EQUILIBRIUM POLICY FOR IDENTICAL BIDDERS 

To obtain more specific results, we now consider the special case of 
identical bidders, i.e., when fi, Ei, and Di are the same for all i. Conceiva- 
bly there exists in this case an optimal equilibrium policy P* such that, if 
all the bidders use this policy, it is optimal for each of them to keep using 
it. If so, then P, (P* ) = P* for all i. Furthermore, for the reaction func- 
tion fi to be consistent dynamically with such behavior, it has to satisfy 

f.(P* P*)=P*. (12) 

Substituting these two conditions in (10) and eliminating the subscript i 
result in the following equation for P*: 

{[aE(E, 7)/9]?+D[( E(9 , )/at) , ( 7)/a,7) (13) 
- (aE (, v)/an)[df(t, v )/all ]. 

For the policy P* to be a meaningful equilibrium policy, it should be a 
stable equilibrium in the sense that small deviations from this policy will 
create incentives that will drive the trade back to equilibrium. This sta- 
bility condition imposes an additional restriction on the reaction function. 
In particular, f has to be such that for sufficiently small AP 

If[P*+ AP, P (P*+ AP)>-P* I 
? 

01 AP I for some 0< 1. (14) 

For AP-*0, equation (14) becomes 

I[[9f (%, v)/a91+ [af (Q, Xn)/an][dP( )/df]| I < 1. (15) 

In view of the above discussion, it is clearly desirable from a game-theoretic 
point of view to choose a reaction function f satisfying (12), (13), and (15). 
Using such a response function leads to an equilibrium policy that is con- 
sistent with the game-theoretic approach, in which all bidders are assumed 
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to optimize their policy while considering that their competitors do the 
same. 

3. REACTION FUNCTIONS 

In this section we discuss two specific forms for the reaction function f in 
our model and their implications. 

The functional form we have chosen to consider initially is 

f(QMY Pi) = Qi - a[ (I/n) - p j (Pi -Qi). (16) 

In (16) Qi and Pi are the respective policies of the trade and bidder i, n 
is the total number of bidders, a is a scalar parameter, and pi is the prob- 
ability of bidder i winning. The probability pi is, in general, a function 
of the number of bidders n and the policies Qi and Pi. 

The reaction function defined by (16) corresponds to an assumption 
that the trade reaction to a deviation from trade policy by bidder i will be 
proportional to the product of the extent of the deviation and the extent by 
which bidder i deviates from his 'fair' share, 1/n, of the market. The 
constant a is, of course, the constant of proportionality. We assume it to 
be positive. With this definition, in the case of identical bidders, an equi- 
librium policy implies Qi = P = P* and pi-= 1/n. Thus (16) satisfies con- 
dition (12). 

Figure 1 illustrates f(Qi, Pi) as a function of Pi for a given Qi. If we 
assume that Pi= 0 implies pi - 1, the function begins at Pi= 0 with the 
value f(Qi, 0)=Qi[1-a(n-I)/n]. Then it rises to a maximum of Qi at 
Pi= Qi and declines. 

This choice of reaction function has several important consequences. 
One can easily verify that for this function, 

af(t, )/ ( I (17) 
and 

'Of Qt )/8 ==* 1. (18) 
Thus, if we substitute (17) and (18) in (13) and assume D<1, we obtain 
the equilibrium condition 

aE(P*, 0)/. I = (19) 

This is the same condition as for the 'one-shot' situation. Substituting 
(17) and (18) in the left-hand side of (15) indicates, however, that P* 
satisfying (19) is an unstable equilibrium. This instability has discon- 
certing implications with respect to the dynamics of the trade policy. As 
illustrated by Fig. 1, f (Qi, Pi) < Qi for all Pi; i.e., bidder i's policy can never 
cause an increase in the trade's policy. If the initial trade policy, Qi, is 
above the static equilibrium value, P*, that satisfies (19), then there is no 
problem. However, if Qi is below P*, then the equilibrium can never be 
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reached. Any deviation by an optimizing bidder from the trade policy 
will only lead the members of the trade to lower their bids and will thus 
move them further from the "equilibrium." In this range, the model is 
analogous to the 'kinked demand curve' model of oligopoly theory, in which 
competitors match price decreases but not price increases. 

The second reaction function we consider is 

f (Qi) Pi)=Qi+api(Pi-Qi), (20) 

f (Qi, Pi)j = Pi 

Qi Pi 

Qi Pi 
Fig. 1. f(Q2, Pi) =Q -a[(1/n)-pj(Pi-Qi) 

where Qi, Pi, a, and pi, are as in (16). This definition corresponds to an 
assumption that the trade reaction to a deviation from trade policy is pro- 
portional to the deviation and to the likelihood of the deviating bidder's 
winning the auction. It clearly satisfies (12). This reaction function 
considered as a function of Pi for given Qi is illustrated in Fig. 2. If we 
again assume Pi= 0 implies pi= 1, the function starts with f(Qi, 0) = 

(1-a)Qi. It then rises (falls for a<O) with a slope that starts at a and 
decreases to a//n by the time Pi has been increased to Qi. At this point, 
f(Qt, Qi) = Qi. It continues to increase (decrease if a<0) until it reaches 
an extremum and then approaches Qi asymptotically for large Pi. To 
ensure that f is positive for every positive Pi, we must restrict a to be less 
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than unity. Furthermore, since in the identical bidders case negative 
values of a can be shown to result in an unstable equilibrium, we shall re- 
strict a to be positive. 

Again in the case of identical bidders, an equilibrium policy implies 
Qi= P = P* and Pi= 1/n. Thus for the reaction function (20) 

af (t, n)/3ln I a/n (21) 
and 

af (Q, )/at I 1- a/n. (22) 

f(Qi, P) I f =P 

Qi(Q,1 

/~~~~~~~~Q p 
Qj ~~~~~~~~Pi 

Fig. 2. f(Qi, Pi) = Qi +api(Pi-Q ) 

Substituting (21) and (22) in (13) yields the equilibrium condition 

J[OE%(, -q)/nI[[1-D(1-a1/n)I+[OEQ(, -q)/a6]Da/n} I t=,=P=0. (23) 

In this case the sequential auction equilibrium satisfying (23) is generally 
different from the one-shot equilibrium mentioned earlier. Two excep- 
tional situations, in which (23) reduces to (19) and hence the two equilib- 
riums are the same, occur when D =0 or a/n =0. In the first case the 
bidders disregard future payoffs and thus behave as in a one-shot situation. 
In the second case the trade is insensitive to individual policies, either be- 
cause a =0 or because the number of bidders, n, is large. Thus, an indi- 
vidual bidder should not worry about his impact on the trade and can 
behave as in a one-shot auction. 



Optimal Bidding in Sequential Auctions 1087 

Substituting (21) and (22) in (15) yields the stability condition for the 
equilibrium policy satisfying (23). This condition is 

dP- ( )/ ld It=p < 1. (24) 

Since P (P*) = P*, (24) implies that P* is a stable policy if near P* the 
optimal policy of each bidder deviates from P* less than his estimate of the 
trade policy. A rigorous proof that this condition is satisfied involves the 
specific form of the reward function. However, in general, one can expect 
that if the trade bids very aggressively, bidder i cannot make money in this 
auction. Thus his optimal strategy will be to lose the bid by bidding very 
unaggressively. On the other hand, if the trade bids unaggressively, he 
should do his best to win the bid by bidding more aggressively than the 
trade. If we assume P is a continuous function, the above implies that as 
Q increases, P (Q) crosses the line f=Pi from above. Thus its slope at 
P (P*) = P* is less than unity, as required by condition (24). 

4. A PARTICULAR MODEL 

In this section we generalize to the case of sequential auctions some of the 
results obtained by Rothkopft9' for a one-shot model. Reference 9 de- 
scribes a model of a competitive auction in which there are n bidders, each 
with the same cost c of doing a job. It is assumed that each bidder inde- 
pendently makes an unbiased estimate of his cost and then multiplies his 
estimate by a factor Pi in order to arrive at his bid. The bidders' inde- 
pendent cost estimates are each assumed to come from a two-parameter 
Weibull distribution with spread parameter m. Under these circumstances, 
the expected profit from this auction for bidder i is given by 

Ei (Qi, Pi) = cpi (Pipi-plm- 1), (25) 
where 

pi = 1/[1 + (n-1) (Pi/Qi)m] (26) 
and 

Qi= [(n-1 )A _1nj,, (1/Pjm )]-1/m (27) 

The quantity pi in (25) is the probability that bidder i wins the auction, 
while the term in the parentheses times c represents his expected profit if 
he wins. 

Suppose now that the one-shot situation described above recurs at fixed 
time intervals and that each bidder has to consider the effect of his present 
bid on his future payoffs. In particular, we shall assume as before that 
bidder i's objective is to maximize his present value of future rewards with 
discount factor Di. Clearly, the reward function (25) satisfies condition 
(1). We also assume the reaction function that is given by (20). Thus 
the identical bidders' equilibrium policy can be derived from (23) and (24). 
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This results in 

P* = m(n- 1)nllm/fm (n- 1 )- 1-F], (28 ) 

where F is defined as F = aD/ (1-D). For F = 0, (28) reduces to the one- 
shot equilibrium policy obtained in Rothkopf.i9' This result is consistent 
with the observation made in Section 3, that for D = 0 or a = 0 (23) reduces 
to the one-shot equilibrium condition. 

As P is increased, P* increases until the equilibrium disintegrates at 
F = m (n-1 )-1. Therefore we must restrict a to a < [m (n-1 )-1] 
*(1-D)/D. At equilibrium, theexpectedvalueof thewinningbid will be 

cP*n-/m = c I+ (l+F)/[m (n- 1)1-F] (29) 

and the expected profit in each auction of each of the n bidders will be 

E(P*, P*) = [cP*n-/lIm-c]/n= (c/n) (1+F)/[m(n-1)-1-F]. (30) 

If the competition begins with equilibrium strategies, the present value of 
a bidder's profits in the present and all future auctions is given by V (P*) = 
E (P*, P* )/ (1- D). Obviously, the bidders are better off at equilibrium 
if the trade reacts strongly to price cutting (i.e., if a is large) than if it 
does not. The degree of reaction will probably depend on a number of 
institutional factors not fully represented by the model. These include 
the speed and certainty with which competitors can discern a policy change 
and the extent to which the competitors in one auction are likely to be the 
same as the competitors in the succeeding auctions. 

5. DISCUSSION AND CONCLUSIONS 

This paper accomplishes two things. First of all, we have derived an 
equation for an optimal infinite horizon bidding strategy. This equation 
is quite general. It can be used for a wide variety of assumptions about 
how competitive policy will change in reaction to the bidding policy of one 
bidder and how a bidder's profit in an auction depends upon his policy and 
that of his competitors. 

Secondly, we have applied this model to a particular generalization of a 
symmetric, n-bidder, game-theoretic, one-shot bidding model. In doing 
so, we have changed the nature of the model. It is no longer strictly a 
game-theoretic model. We now assuine each bidder to act on a behavioral 
assumption about how his competitors will react in the future to his present 
bidding policy. This assumption may not be satisfied by the actual be- 
havior of the bidders even if each bidder uses a similar model. By an ap- 
propriate choice of our parameter a, it may be possible to close the gap 
between what each bidder expects his competitors to do and what each 
competitor would do if he followed the advice of the model. This, however, 
has not yet been done. 
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In spite of the possible gap between expected and actual reaction, we 
believe that the riesults given in equations (28), (29), and (30) provide 
insight into the effect of competitive reaction on optimal bidding policy and 
the profit to be paid by bid takers. Observe that the effect of the sequential 
nature of auctions depends only upon a factor that is the product of a pa- 
rameter that measures the strength of competitive reaction and a simple 
function of the discount factor between auctions. Also note that the ex- 
pected profit of the bidders is a nonlinear function of this factor. This 
dependence suggests a number of tactics that bid takers can pursue if they 
suspect that they are paying excessive profits to suppliers because of tacit 
collusion. They may be able to increase m by reducing the uncertainty 
the bidders face; increase n by bringing in additional bidders; decrease the 
discount factor D by increasing the interval between successive auctions; 
and decrease a by changing institutional factors. These steps might in- 
clude making it more difficult for the trade to react by keeping the amount 
of the winning bid secret and by frequently changing the list of invited bid- 
ders so that there is usually at least one new bidder present. 

The model presented in Section 4 also has a tactical message for bidders. 
A bidder should restrain his aggressiveness in repetitive bidding situations 
if he thinks doing so will influence his competitors to behave less aggress- 
sively in the future. Also, a bidder should try to convince his competitors 
that he will react to their policy changes. 

NOTE 

1. In addition, there are two works that deal with the problem of two bidders 
bidding sequentially for two items.[',"' 
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