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Abstract: To use 3D models on the Internet or in other bandwidth-limited applications, it is often
necessary to compress their triangle mesh representations.  We consider the problem of balancing two
forms of lossy mesh compression: reduction of the number of vertices by simplification, and reduction of
the number of bits of resolution used per vertex coordinate via quantization.  Let A be a triangle mesh
approximation for an original model O.  Suppose that A has V vertices, each represented using B bits per
coordinate.  Given a file size F  for A, what are the optimal values of B and V? Given a desired error
level E, what are estimates of B and V, and how many total bits are needed?  We develop answers to these
questions by using a shape complexity measure K that allows us to express the optimal value of B for a
general model in terms of V and K alone.  We give formulas linking B,V,F,E, and K, and we provide a
simple algorithm for estimating the optimal B and V for an existing triangle mesh with a given file size F.

1. Introduction

1.1 Motivation
Triangle meshes are commonly used for interactive graphic and network applications which involve
computer models of 3D objects, manufacturing assemblies, construction sites, geographical or geological
datasets, or virtual environments for commercial or entertainment applications. Although other
representations exist, triangle meshes are popular because they are supported by many data exchange
standards and rendering systems.

A triangle mesh in 3D may be represented by a table or list of its V vertices and a table or list of  its T
triangles.  Each vertex may be represented by its three coordinates.  Each triangle may be represented by
three vertex-references and is the convex hull of these three vertices. A simple data structure that stores
the vertices and the triangles independently would require 3VB bits for the vertices, where B is the
number of bits used for each vertex coordinate, and 3Tlog2(V) bits for the triangles.

Many applications require that 3D models be accessed over network or telephone connections.  In such
cases, the naive representation significantly limits the complexity of 3D models that can be downloaded
during interactive sessions. A large number of 3D compression techniques have been developed recently
[23] to address this problem.

Numerous techniques have been proposed to compress the entire triangle table, instead of representing the
triangles independently of each other. Many of these techniques encode the triangles in a specific order to
exploit triangle-triangle adjacency. For example, several techniques [14,30,34,8,22] construct a spiraling
triangle spanning tree and simply encode the irregularities of that tree.

The vertices are labeled using the order in which they are first encountered in the triangle tree and
encoded in the order of increasing label. Predictive techniques, which encode the corrective vector
between the actual vertex location and an estimate based on previously decoded neighboring vertices, yield
short corrective vectors, if the estimates are good [30,34].  The coordinates of these corrective vectors are
compressed using variable length encoding techniques [17].  To further compress the representation of a
shape, one can reduce the number B of bits used to represent each vertex coordinate or replace the mesh
by a simpler one, which has fewer vertices and triangles.
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B may be reduced by quantization [3] as follows. Compute the smallest axis-aligned box that contains the
model and define a new coordinate system with a vertex of that box for origin. Chose the units of the new
coordinate system, so that each vertex coordinate lies between 0 and 2B-1, where B is the desired number
of bits. Then express each vertex in the new coordinate system and round off their coordinates to the
nearest integer. This process amounts to subdividing the box into a regular grid of 2Bx2Bx2B cells and
snapping each vertex to the center of the nearest corner of its cell.

The simplest way of constructing a simplified version of a triangle mesh O is to perform the quantization
described above and to remove degenerate triangles, which have at least two coincident vertices [20].
Variations on this approach and more complex, yet more effective, simplification techniques are reviewed
in [23]. Many of these techniques [12,18,5,6] simplify the model incrementally by collapsing one edge at a
time and by discarding the triangles that become degenerate.

1.2 Problem
Let O be a 3D model whose use requires a compressed representation and let A be a triangle mesh
approximation for O. A may be compressed both by reducing the number V of its vertices and by
quantizing the vertex coordinates to B bits.  We investigate how to best balance these two forms of lossy
compression and answer the following questions:

1. Given a bound on the file size, F, which values of B and V minimize the error?
2. Given a bound on the geometric error, E, which values of B and V minimize the total number of bits?
3. How does the relationship between B, V, F, and E depend on model shape?

We do not consider the issues involved in choosing the best mesh approximation for a given number of
vertices or in choosing a lossless compression in addition to the lossy reduction of V and B.  Instead, we
wish to understand the relationship between B, V, E, F, and model shape in a way that generalizes to any
simplification and compression schemes.

1.3 Our Contribution
The research contribution reported here may be articulated as follows.

Consider the error E(V,B) between some original shape O an its  triangle mesh approximation with V
vertices, whose coordinates are represented  using B vertices each. We assume that the approximation was
computed so that the error is roughly uniform over the entire surface (i.e., there are no portions where the
approximation is significantly more accurate than at others) and that the vertex quantization to B bits is
done using a normalized coordinate system derived from the minimum axis-aligned box.

The error function E(V,B) may be viewed as an elevation over a V-B domain: to each pair of (V,B)
coordinates in a given domain corresponds one elevation, E(V,B). The storage cost F is a linear function
of VB. It may be viewed as a function F(V,B) over the same domain. We are interested in all points on
that surface for which E is minimized for a given F. These points lie along the ridges of the E surface,
which follow the steepest descent path. If we are able to identify these ridges and compute their
intersections with constant F curves, we can compute optimal V and B values for a given file size or for a
given error.

We first solve this problem for a sphere. We identify the ridges B(V) and provide formulae for predicting
how they intersect iso-error and iso-size curves. We formulate the error as a Hausdorff distance between a
sphere and its triangle-mesh approximation and study how it varies with V and B.
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Then we generalize it to arbitrary surfaces through a mapping K, which specifies the number K(VS) of
vertices that would be required to approximate the surface with an error equal to the Hausdorff distance
between a sphere of radius one and its triangular approximation with VS vertices.

We approximate K(VS) with KVS and use a simple algorithm to compute K as an integral of the local
curvature over the entire surface. When the original surface is a fine tessellation, we estimate its curvature
at the mid-point of each edge by fitting a sphere through the four vertices of the incident triangles. We
multiply the curvature of the sphere by one third of the area of both triangles and sum up the result for all
the edges.

This approximation may be refined by using more accurate curvature estimators, which for example
distinguish between the maximal and minimal curvatures at each point. Furthermore, the linear behavior
of K(VS) is only valid when the error is smaller than the surface features or undulations.

We present formulas for B and V in terms of K, F, and E, answering the questions above.  We validate
these formulas empirically by presenting numerical computations of the error of a tessellation of the
sphere, and by exploring quantized versions of standard 3D models.

1.4. Organization
The paper is organized as follows. We compare our analysis to prior work on vertex quantization and
mesh error in the next section.  In section 3, we outline our definition of error and present the general
form of the equations for error and file size that we will use in our subsequent optimization.  Section 4
discusses shape complexity and introduces the parameter K.  Section 5 presents the analysis of the sphere,
and Section 6 gives the actual formulas for computing B, V, E, and F.  Section 7 outlines the algorithm
used to estimate K, and Section 8 presents our empirical results.

2. Prior Art

2.1. Optimal bit allocation
Bit quantization was used for mesh simplification  [20] and for compression   [3,12,30,8,34], but the
number of bits used for compression was selected by the operator, through visual criteria and trial-and-
error.  Chow [2] provides an algorithm for selecting the quantization level, based on testing each triangle
in a model against the size of the coordinate grid.

Li and Li [15] have focused on a progressive transmission of triangle meshes and have suggested that
vertices be represented with fewer bits in the initial stages of the model than in the final stages. They
provide a formula for deciding whether the next batch of bits should be used to refine the triangulation or
to further constrain the vertex locations. Their formula ,derived for their specific progressive transmission
model, depends on information from the vertex reduction stage.  We have generalized this principle to
arbitrary compression techniques and to non-progressive compression techniques and have provided
analytic relations between B, V, E that depend only on the shape factor K instead of on data generated
during the simplification.

2.2. Shape Complexity
Several other authors have considered the relationship between V, E, and model shape.  [35] identifies the
local curvature as a main factor in influencing the distribution of vertices in an optimized mesh; and   [1]
uses the distance to the medial axis as a local measure that incorporates both curvature and the thinness of
model sections, although they do not analyze how V and E relate to these shape measures.  Garland, in his
PhD thesis [6], relates a quadric error estimate to the local curvature.  Our shape factor K incorporates the
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effects of curvature and other shape characteristics in a way that can be quantified, estimated, and
analyzed both locally and globally.  Garland and Heckbert study how curvature influences the shape of the
approximating triangles [9].

Nadler [17] provides a theoretical analysis of the asymptotic behavior of piecewise linear function
approximations. His work  leads to an integral similar to the one from which we derive our shape
characteristic.  He expresses the asymptotic limit of the product of the approximation error and the
number of vertices as an integral of the Hessian determinant of the function, although he does not
comment on the integral’s potential applications.  Apart from the mathematical differences between
functional approximation and 3D modeling, the main difference between our results and Nadler’s is that
our formulation of K allows it to be computed in practice from a mesh even if the original model is
unknown.  K also allows us to consider how the relationships among V, E, and K behave for meshes with
small V and for meshes generated by practical optimization algorithms.

3. Error and Filesize Equations
In our analysis of the B-V tradeoff, we assume the existence of an original model, O, that we wish to
compress and of a family of approximating meshes for O, each with different numbers of vertices and
each generated by a process minimizing the tessellation error before quantization.  Such a family of
triangle meshes at different levels of detail may be called a uniform multi-resolution model.

3.1 Total Storage Cost of a Compressed Model
The total size in bits of a compressed mesh may be written as a function of:
• V, the number of vertices
• B, the number of bits per vertex coordinate
• T, the number of bits per vertex needed to encode the triangle connectivity
• andα , a compression factor for vertex coordinates
We write:

Equation 1 F B T V= +( )3α

To assign specific values to these parameters, we assume for simplicity that T=≈2V, which holds for
meshes that are the boundary of a manifold solid with relatively few handles and holes. The triangle table
may be compressed [22] to less than 2 bits per triangle, or equivalently to 4 bits per vertex. For typical
applications, B is an integer between 6 and 14. For complex but regular models, α  varies from 1 for
small meshes and 1/3 for large meshes. The total storage cost is: 3α BV+4V bits and hence varies
between 10V bits and 46V bits, depending on the desired vertex accuracy and compression ratio.

3.2 Approximation error due to surface tessellation
Consider a surface O that may be smooth or finely tessellated. Let A be a triangle mesh of V vertices that
approximates O. The discrepancy between O and A is called the tessellation error and will be denoted ET.
It may be measured in several ways.

For example, one may be interested in the volume of the symmetric difference between the solid bounded
by A and the solid bounded by O [6,16].  Because a small volume in the symmetric difference does not
guarantee a small deviation between one surface and the other, we prefer to formulate the deviation as the
Hausdorff distance H(O,A), which is usually defined as the maximum of the distance between a point on
one of these two surfaces and the other surface.

Note that, in general, H(O,A) may not be computed by only considering distances between vertices and
edges of one set and the other set. To illustrate this point, consider the equivalent definition of H(O,A) as
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the minimum r for which O ⊂ A↑r and A ⊂ O↑r, where X↑r is the offset of the set X by a distance r [20]
or equivalently is the Minkowski sum of X with a ball of radius r centered at the origin 25. The maximum
deviation may happen at a point c in the interior of a face of O, such that the open ball of center c and
radius r does not intersect A. Thus, it is necessary to consider quadruples of faces when computing
H(O,A).

Because the exact Hausdorff distance is expensive to compute, upper error bounds or least-square
estimators have been used.  Hoppe [13] used a set of sampling points on each face, Ronfard and Rossignac
[18] used deviations from supporting planes, Gueziec [6] used bounding spheres, Klein and Strasser [28]
used a geometric bound, Heckbert and Garland [5] estimate the error using a least square distance to the
supporting planes of Ronfard and Rossignac.

Typically, the approximating mesh, A, is generated through a mesh simplification or curved surface
tessellation process, which attempts to remove all those vertices that can be removed without exceeding
the prescribed bound on the tessellation error. Note that some simplification algorithms remove vertices
by collapsing them onto other vertices, while other approaches [13] optimize the final location of the
retained vertices.

We will not assume that these meshes are optimal, but only that they are ‘optimized’ well enough that
their overall error will be increased by rounding off the vertex coordinates and by removing any vertices
through an additional simplification.

Clearly, increasing the maximum error reduces the number of vertices in A. The precise nature of this
relation depends on the shape of O and has been studied empirically on several examples  [16]. Such
experimental results could be used to compare different simplification techniques [16,3]. E-V plots
produced by optimized simplification techniques [13] for a set of benchmark objects could provide an
absolute reference against which new simplification techniques could be measured.

Instead, we use analytical relations for E and V.  An equation for E and V may be written explicitly for a
uniform tessellation of a sphere.  For more complex shapes, we use the shape factor K.  This
simplification allows us to use analytic optimization methods to derive equations for B and V.

3.3 Quantization error
As discussed above, popular compression techniques rely on vertex quantization. We define the
quantization error, Eq, to be the increase in error due to the truncation of the vertex coordinates to B bits
each, after they have been mapped into the normalized coordinate system.  For an optimized mesh as
defined above, Eq will never be negative, since quantization does not in general decrease the error.

Equation 2 E SQ

B

≤
−2 3

2
, where S is the size of the coordinate grid in units of length

As noted above, computing the Hausdorff error is not trivial and quantization may change both the errors
at each point and which point in the mesh is closest to which point in the model.  At each point, however,
the maximum possible increase in error may be bounded by the distance by which quantization displaces
the point. The total error E, that we define as H(O,A), is therefore bounded by EQ+ET.

Equation 3 E E EQ T≤ +
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3.4 Keeping the quantization and tessellation errors in synch
One could naively set EQ=ET and use the formulae mentioned above to establish V and B for A, given O
and E.  Such a choice may be motivated by the desire to balance both errors: there is no point over-
specifying the vertex coordinates when the tessellation error dominates and a simplification is sub-optimal
when the quantization error dominates. Knowing B and V suffices to estimate the total number of bits
needed for A.

Often, the overall objective of compression is to minimize the total error E, without exceeding a total bit-
count chosen based on the network capacity or storage space available.  The solution to this optimization
problem often differs from the above naive guess, and it is easier to apply to arbitrary shapes. We derive
an analytic expression for computing optimal B and V, given K and F.

In other situations, it may be important to bound the allowed error and to find the values for B and V that
minimize the file size F. Again, we provide analytical formulae for extracting such values.

Figure 1 Plot of Isoerror and Isofilesize contours

The two optimization questions described above are equivalent to a simple two-dimensional optimization
procedure based on the gradient of error.  This approach may be understood by considering an error
surface for E as a two-dimensional function of B and V.  In the three-dimensional space defined by B, V,
and E, each value of F defines an isosurface that intersects the error surface in a curve of (B,V) pairs.  The
locally optimal (B,V) values for each F occur where the gradient of E is orthogonal to the constant-F
curve.  At any point where the gradient of E is not orthogonal to the iso-F curve, one may find a lower
error for the same filesize and a different (B,V) pair by moving in the direction of the projection of the
gradient onto the isocurve. To find an algebraic relation for the optimal (B,V) pairs where the gradient is
orthogonal to the isosurface, one may simply set the slope of the gradient vector to equal the negative
inverse of the slope of the tangent to the constant-F curve:

∂
∂
∂
∂

∂
∂
∂
∂

E

B
E

V
slope

F

V
F

B

daV

daB T
= − = − =

+
1

Equation 4
∂
∂

∂
∂

E

V
V

E

B
B

T

da
= +





This is equivalent to solving for B and V such that the marginal contribution of a bit of additional B or a
bit of additional V is equal; this is the criterion [14] suggests.  Note that it does not mean that the
tessellation and quantization errors are equal, but that the increases in error are equal. Depending on the
shape of E, this equation may be satisfied at more than one locally optimal (B,V) pair for a given value of
F.  In such a  case, the pair with the lowest value of E is the global optimum.

4 Shape Complexity
∂
∂
E

V
V , the marginal effect of a vertex addition, depends on the details of the model’s shape.  Consider a

3D model of a Russian doll, with several shells of increasingly smaller, inner offset surfaces.  Clearly, its
representation will require more vertices for the same error and for the same bits of coordinate resolution
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than a model of the outer shell alone.  Also, the error function may not be differentiable in a strict
mathematical sense, since the addition of only a single new vertex to one of a model’s connected
components may not decrease the error of the model as a whole.  These same considerations apply to
multiple regions of a connected surface, on which different curvature may affect the requirements for V.

4.1 The Shape Factor K
Our approach is to investigate the error on small regions of the original model O, and then to apply a
shape function K(VS) which measures the global shape complexity.  K(VS) relates the number of vertices
V=K(V S) used to approximate O to the number of vertices VS  needed to represent a sphere with the same
error as the approximation of O.  We derive an expression for K(VS)  by stating a uniformity condition
relating the error in each local region of O to the total error, and by approximating each such region as a
portion of a sphere.

Suppose that O is a piecewise spherical surface composed of spherical patches Si. Let Ai be the surface
area of patch Si and let  ri  be its radius. Let Vs(E) be the number of vertices needed to approximate a
sphere of radius 1 by a triangulation with a uniformly distributed tesselation error E. The number of
vertices needed to approximate a sphere of radius ri is Vs(E/Ri). The number of vertices, Vi, needed to

approximate a portion of such a sphere that has area Ai is ( )A r V E ri i s i4 2π ( ) .  Let A be a triangular

mesh approximating O such that the tessellation error is uniform throughout the surface and significantly
lower than all ri. Assume that patch Si is associated with Vi vertices of A. The total number of vertices of
A is the sum of Vi. Using the above formula for Vi yields:

Equation 5V
A

r
V

E

r
i

i
S

iO

=
















∑

4 2π

Nadler [18] proves that in the limit as V approaches infinity, VE converges to an integral over the surface
of O.  For a sphere, a taylor series expansion of the formula for tessellation error on a sphere (Equation
10) gives a formula which may be approximated as Vs=X*ri/E for ri>>E.   Using this result, we may
factor ri out of the above equation to get:

Equation 6V
A X

r E
i

iO

= ∑
4π

We factor X/E out and define K to be sum(Ai/Ri)   The following formulas may be used to modify
equations derived on the sphere into equations applicable to arbitrary shapes, where S is a scale factor in
units of length.

Equation 7V
K

V
S

r
dSA

VS

iO

= =
∫∫

4 4
1

π π

Equation 8 K
S r

dSA
iO

= ∫∫
1 1

Our piecewise spherical approximation of the original shape may be easily derived by fitting spheres to all
pairs of adjacent triangles and by considering that the associated patch has an area equal to a third of the
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total area of both triangles.  This approximation of the model as a collection of spherical patches is not
intended to give an accurate prediction of the true model’s surface, but to give a first-order estimate of the
behavior of the many possible true surfaces of O.  Indeed, more accurate methods are available for
predicting a surfaces from a triangle mesh [31].  For the purposes of analyzing quantization, spheres are
the simplest structures that allow an analysis of local curvature.  Since they are a first-order
approximation to the error, they are likely to capture the effects of the largest factors affecting local error.
However, this approximation does not capture the precise relation between V and E in areas where the
surface has uneven principal curvatures and in areas where ri does not significantly exceed the error.

4.2 Computing K
The shape complexity of a mesh A may be estimated by considering each edge e of A. In a manifold mesh,
e has exactly two incident triangles. The four vertices that bound these triangles define a possibly infinite
sphere. When finite, the radius of this sphere may be computed from the following determinant equation,
where A, B, C, D are the four points, and b, c and d are vectors defined as (B-A), (C-A), and (D-A)
respectively, with bx, by, etc. the components of the vectors [25]:

    Equation9
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

r
d d b c c c d b b b c d

bx by bzz

cx cy cz

dx cy dz

=
• × + • × + • ×

2

We associate with e the radius r(e) of that sphere and an area p(e) that is a third of the sum of the areas of
its two incident triangles.  K may therefore by computed by summing p(e)/r(e) for all edges e of O.

Quantization on the Sphere

5.1 Tessellation Error on a Sphere
The Hausdorff error, ET, for a uniform triangulation of a sphere of radius r using an optimal mesh of VS

vertices interpolating the surface of the sphere may be written as:

Equation 10E r
C

VV = − +














1

1

3
1 2

2
cos

where C =
π
3

 and
2C

VS

= θ  is the angle between a pair of lines from the center of the sphere to two

of the triangle’s vertices.

Figure 2

This formula is derived by computing the distance from the surface of the sphere to the center of an
average-sized equilateral triangle in the interpolating mesh.  As shown in Figure 2, we may compute this
distance as:
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d L r r r r r= − = −




 = − −cos(arcsin sin( ) ) sin ( )

2

3 2
1

4

3 2
2θ θ

θ  may be found by assuming  the model has 2VS triangles, assuming that each triangle has equal area,
and then setting equal the area of a spherical triangle as a function of θ  and the area of the same triangle
as a function of V:

Equation 11 A
r r

V V

C

Vpatch
S S S

= = ⇔ = =
2 2 23

4

4

2
2

3

2θ π
θ

π

Note that the above formulas describe the behavior of an ‘average’ equilateral triangle on the sphere.  In
practice, uniform triangulations of the sphere into 2 VS equilateral triangles exist only for a handful of
values of VS, corresponding to Platonic and other special solids.  Even distributing vertices uniformly on
the sphere is a complex mathematical problem, discussed in depth in [9].  This discrepancy, however, is
small relative to other simplifications involved in using spheres as a first-order approximation of a
surface.

5.2 Derivation of the marginal error term

To solve for the optimal values of B and V, we assume the error equals its bound of ET + EQ. We substitute
the formulas for ET and EQ  given in Equation 2 and Equation 10 to obtain an equation for E, and we take
partial derivatives with respect to B and V as follows:

E E E S S
C

VB V

B

S

= + = + − +












−2

2 3
1

1

3
1 2

2
cos( )

∂
∂
E

B

S B= − −

2 3
2 2

/
ln( )

( )∂
∂
E

V

r C

V

C

V
CV

S S

S= − +




















−

−

3
1 2

2 2
1
2

3
2cos( ) sin( )

6.1 Formulas for Optimal Values of B and V

We use the relation V
K

VS =
4π

 to modify the above equations for a sphere represented with VS vertices

to apply to a more complex shape O approximated with V vertices.  We derive relations between B, V,
and K by substituting the derivative equations above into Equation 4, manipulating the terms
algebraically, and taking the logarithm to the base 2.
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Equation12: the full equation

B B
T V

K

K

V

K

V
− + = −









 + +









 + +log( ) log( ) log sin( ) log cos( ) log( ) log(ln( ))

3

1

2 3

1

2
1 2

3

3

4
3 2

α

The sum of the -log(sin) and ½ log(cos) terms converges rapidly to ½ log(V/K)+1.189, with 1% error for

V/K=1.  Replacing the constant terms
3

4
3 2 1189log( ) log(ln( )) .+ +  with a constant B0 =1.838, we

get:

Equation 13: simplified equation

B B
T

a

V

K
B− + = +log( ) log( )

3 0

6.2 Formulas Relating B, V, F, E, and K
The equations for B-V above may be used to write equations for B and V in terms of constraints on the
maximum file size or maximum acceptable error for a model.  The following formulas are computed from
the expressions for K, F, and E above, in the asymptotic limit as V increases.  Note that for the
expressions involving error, the error values are based on our spherical model and optimality assumptions.
As a result, the error is likely to differ from the true geometric error of a mesh with V vertices, which
depends on the granularity of the model’s features and on constraints used in mesh generation, such as
whether vertices are approximating or interpolating (see [24]).  These equations are therefore best used to
make decisions about the relative error of different levels of detail.  Using them to estimate absolute error
may require calibration against more detailed information on the original model.

Equation 14: B as a function of filesizeB
F

K
B= +log( )

α 0

Equation 15: V as a function of filesizeV
F

B T

F
F

K
T B

=
+

=
+ +3

3 3 0

α α
α

αlog( )

Equation 16: Filesize as a function of BF K B B= −α2 0

Equation 17 The E-V-K relation
E

S

K

V
K

VT = −

+










≈ −
−

1

1 2
3

3
1

3
3

3

cos

Equation 18: The V-E-K relationV
K

E S

E

S

K

V
T

T≈
+

⇒ = −
6 2 3 6

1

3
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Equation 19: B from tessellation errorB B
T

a
Et S B− + = − + + −log( ) log( / )

3
1 3 10

7. Algorithm for computing B and V
The following simple algorithm may be used to compute B and V for a given mesh:

1. Identify constraints -- either a fixed value of V, a limit on file size F, or a maximum allowed error E
2. Compute K as described above
3. Plug the constraint and the value of K into the formulas above to compute optimal values of B and V
4. Select from the meshes available the one closest to the optimal value of V, or generate a mesh with as

close to V vertices as possible.
5. Represent vertex coordinates with B bits each in the normalized coordinate system
6. If additional application-specific error information is available, find the error of the chosen mesh; if it

does not satisfy the constraint, adjust the value used as a constraint to compensate, and repeat.

8. Experimental validation

Figure 3 Error plot for a sphere as a function of triangulation and quantization

We validate our analysis of the sphere by computing equilateral triangles with vertices on a unit sphere,
quantizing their coordinates, and measuring the resulting error as the distance from the midpoint of each
triangle to the sphere’s surface.   The computations were performed in an Excel spreadsheet, with the
quantization implemented by rounding to appropriate powers of 2.  The vertex coordinates were computed
as follows, with the angle θ formed by any two vertices and the center of the sphere computed from V by
Equation 10, φ chosen to make the triangles equilateral, and withθ0  (an arbitrary starting position) and

z0 (a random displacement of the sphere’s center from the origin) chosen differently for each triangle.

Equation20

v z

v z

v z

1

2

3 05 0 5

0 0 0

0 0 0

0 0 0

=
= + +
= + + +

(cos ,sin , ),

(cos( ),sin( ), ),

(cos( . ) cos ,sin( . ) cos , sin ))

θ θ
θ θ θ θ
θ θ φ θ θ ϕ φ

Figure 2 shows the resulting error surface as a function of B and V for a single triangle. Figure 3 plots the
maximum error for a set of three triangles at different positions.

Figure 4 shows the error surface for three triangles as a function of B and a constraint on F.  The
constraint makes the optimal (B,V) curve much more prominent by imposing a severe penalty on excess
B. Figure 5 shows a plot of the optimal values of B selected from the error surface in Figure 4.  It confirms
the relationship between B and log(V) predicted above.

Figure 4 Error plot for a sphere as a function of triangulation and file size

Figure 5 Plot of optimal B and optimal V

To validate the application of our results to more complex shapes, we also tested the predictions of our
algorithm on simplified versions of actual 3D models.  We computed K for the models, rounded their
coordinates to integer values from -2B-1 + 1 to 2B-1, and inspected the results in an Inventor viewer in order
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to check for the visual artifacts.  Note that the point where quantization artifacts appear may not be the
same as the point at which B becomes lower than the optimal value; it is theoretically possible for
quantization artifacts smaller than the tessellation error to be visible, or for the quantization error to
exceed an error bound without producing visual artifacts.  Checking for visual artifacts, however, is
necessary to confirm that the recommended values of B produce acceptable visual results.  Furthermore,
our tests have revealed that although the critical value of B where distortions appear may not be exactly
the same as the predicted optimal B, the critical values follow the log(V/K) relationship that our formula
predicts.

Figure 6 and Figure 7 show this log(V/K) pattern.  In Figure 6 a row of bunny ears from models
simplified to different V shows that the distortions appear at lower B values for models with lower V.
Figure 7 shows that the quantization artifacts appear at the same log(V/K) values for different models
with the same surface area but different values of K.  The hand shown has V~4000 and K~42, while the
horse has V~5000 and K~56.  For both, quantization becomes visible in a view of the whole object at B=6,
while smaller distortions are visible in a zoomed view at B=7.  In the other part of Figure 6, the sphere
shown is chosen to have the same (V/K) as a horse with a much larger number of vertices.  In both cases,
distortions appear at the same value of B.  We note as well that for each model, there is a value of B for
which no distortions are visible at any magnification, since any quantization effects are small relative to
the smallest triangles.  These are the values used for the second row of bunny ears in Figure 6.

Figure 6 Closeup views of bunny ears

Figure 7 Comparisons of different models

Figure 8 Locations of views in Figures 6 and 7 on an Isoerror/Isofilesize plot

The simplified models used in these experiments were produced with an implementation of Hoppe’s mesh
optimization [13], although we have tested the relationship on other simplification methods as well.  To
compare the predicted and the observed values of B more accurately, we computed K for these models and
used it to estimate B according to formulas and algorithm above, with the results presented in Table 1. To
compute K, we used the highest level of detail models available, scaled to give each model the same
surface area.  In general, however, K is reduced slightly as successive simplifications remove small-r
features from an object.  Understanding how K varies with V for different models is an area for future
research, perhaps expressing the relationship in terms of a fractal dimension or a histogram of different
sized features instead of a single parameter.

 Table 1 Simplified and quantized models used in Figures 6 and 7

MODELS
USED IN
FIGURES

VERTICES K VS OBS. B/
NO
JAGGIES

OBS. B --
SOME
JAGGIES

OBS. B --
MANY
JAGGIES

LABEL IN
FIG. 8

Bunny 15157 54.39 985 10 9 8 1a,b,c
Bunny 7384 54.39 480 8 7 6 2 a,b,c
Bunny 3286 54.39 214 8 7 6 3 a,b,c
Bunny 1499 54.39 98 7 6 5 4 a,b,c
Bunny 701 54.39 46 7 6 5 5 a,b,c
Bunny 332 54.39 22 6 5 6 a,b,c
Bunny 174 54.39 11 6 5 7 a,b
Bunny 83 54.39 5 5 4 8 a,b
Horse 10375 56.07 655 7 6 HS
Sphere 632 3.53 632 7 6 HS
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Horse 4997 56.07 315 7 6 5 HH
Hand 4172 42.95 344 7 6 5 HH

One conclusion from these experiments indicates that a mesh with more vertices may produce worse
images than a mesh with less V if the quantization is too strong (i.e., too few bits).  The assumption that
adding vertices never increases error does not hold for a quantized mesh.  To understand this
phenomenon, consider a vertex inserted into a triangle and constrained to lie in the plane of that face, so
that its insertion does not affect the Hausdorff error under high-precision coordinates.  In limited-
precision integer coordinates, it may not be possible to compute a vertex position constrained to lie inside
that face.  Intuitively, the undesirability of adding too many vertices for a given quantization level may be
compared to the Pauli exclusion principle, which restricts the number of electrons in an atomic energy
level according to the number of quantized states available for holding them. Likewise, for a curved
surface represented with a triangle mesh, there may not be enough quantized positions available near the
surface to fit additional vertices without some of them increasing the error.

This suggests an intuitive explanation for why the quantization level must be related to the number of
vertices in the mesh.  Simplification of a mesh to a particular number of vertices can be viewed as a low-
pass filter that eliminates high-frequency components of the mesh, corresponding to features the size of a
single triangle or smaller.  If a quantized mesh has more V relative to B than the equation predicts, the
quantization will distort the smaller/higher-frequency triangles, leading to aliasing.  If, however, we
choose a mesh that has simplified to the appropriate number of vertices and overall uniform error, the
simplification ensures the removal of any high-frequency components that might produce jaggies. Both
figures show the jaggies that appear when we choose too high a V for a given value of B.

9. Conclusions
How many bits do we need to approximate, using a triangle mesh, a given 3D surface, O, with an error
that does not exceed a given tolerance E? We define this number of bits to be the optimal storage cost for
O, given E. We devise a simple and efficient algorithm that estimates the complexity K for objects
bounded by triangle meshes. Then, we formulate the optimal storage size as a function F1(K,E) of K and
E.

The storage cost of a compressed version of a triangle mesh A is also function F (V,B) of the number, V,
of its vertices and of the number, B, of bits used in the uncompressed representation of its vertex
coordinates. We formulate the error E resulting from using A as a substitute for O in terms of the
Hausdorff distance between them. That error is bounded by the sum, Et+Eq, of the tessellation error Et,
resulting from the use of only V optimally placed vertices, and of the quantization error Eq, resulting from
rounding the vertex coordinates to B bits each.

Combining both formulations of the file size leads to expressions of optimal B and V for a given error.

We use these formulation to provide answers to the following two questions. Consider an optimal
approximation A of a surface O.
_ Given a limit F(V,B) imposed by constraints on file size or bandwidth, which choices of B and V

minimize the total error E?
_ Given a relative error bound E imposed by a geometric accuracy requirement, which choices of B and

V minimize F(V,B)?
We hope that these answers will provide a framework for improving, evaluating and comparing
simplification and compression results.
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10. Future Work
Our analysis of vertex quantization may be extended to address progressive refinement and compression
schemes using variable quantization levels. A major issue in adapting it to progressive refinement is to
determine how best to update the quantization levels of the already-received vertices, as well as to
optimize the transmission of the next batch of vertices.

The shape factor K may also be useful for investigating the intrinsic complexity of shapes.  Since it may
be used to estimate the total number of bits needed to represent a shape within a given accuracy, it may be
interpreted as a measure of the information content of a 3D model.  Measures of shape complexity may be
useful in many other applications such as vision, CAD/CAM, and biology, as well as in designing
heuristics for 3D compression and simplification.  We plan to study how K relates to other measures of
shape and curvature.
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