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Abstract

We present a new Lagrangian-based iterative technique for rate—distortion
optimization under multiple rate constraints. We show how for sets of “lin-
ear” constraints this technique can be proven to be optimal up to a convex
hull approximation. As an application we consider the problem of optimal
buffer-constrained bit allocation. Our technique can be used to find an excel-
lent approximation to the solutions achieved using dynamic programming. In
cases where the buffer size is relatively large our approach shows a significant
reduction in complexity as compared to dynamic programming.

1 Introduction

The problem of bit allocation for known inputs and a discrete set of available quan-
tizers has been studied in the literature [1]. This problem arises in many practical
situations where the goal is to minimize the total distortion by properly allocating
quantizers to the various blocks or frames in a source, without exceeding a prespecified
rate budget (see [2] for an image compression example)!.

In this work we consider a more general case where a source is subject to addi-
tional constraints on the available rate. That is, rather than just limiting the total
rate available to code the source, we assume that there exist constraints on the rate
available to code subsets of the source blocks. Under simple and realistic conditions
on the subsets we will show how to find the optimal solution.

A problem of particular practical interest which fits into this more general formula-
tion is that of bit allocation in a buffer constrained environment [3]. This corresponds
to the common situations where a source is to be encoded using some variable bit
rate algorithm (i.e. one that assigns a different number of bits to different source
blocks) to be transmitted through a constant bit rate channel. The source bits are

!While this method could also be used to allocate different quantizers to individual samples the
overhead required to transmit the quantizer choice would make this approach impractical.



then buffered prior to transmission. The size of the buffer will determine the end-to-
end delay in the system and we will assume it to be given. Our goal will then be to
obtain the best performance given the constraint that the buffer should not overflow.

We will prove that optimality can be achieved for the particular case of a simplified
buffer constrained optimization where underflow is allowed to occur. We formalize
this problem in Section 2 and provide the algorithm in Section 3. We also outline
how the algorithm can be used for more general optimization under multiple rate
constraints. In Section 4 we will show how the algorithm can be used in the search
for the optimal solution of the buffer constrained allocation where no underflow is
allowed and will provide experimental results comparing our new approach with the
one presented in [3].

2 Problem Definition: Buffer-constrained Bit Al-
location

Assume that our goal is to encode N known input blocks?, 1,2,..., N, using a given
set @ of M admissible quantizers, such that, for each choice of quantizer j for a
given block i, we incur a distortion cost d;; while requiring a certain rate r;;. Our
objective is to find the allocation x € X = Q" which assigns a quantizer x(z) to each
block ¢, such that we minimize the total distortion for the given rate constraints. The
applicable rate constraints are that a finite buffer, which is used to store the encoder
output before transmission over the constant rate channel, should never overflow.
More formally, we can define the optimal buffer allocation problem as (see [3] for
details):

Problem 1 Optimal buffer-constrained bit allocation:
For a given buffer size Bpq: and channel rate per block R, find X*(Bpaz) such that

N
X*(Bmax) = arg II%(IHZ dm‘(z) (1)
=1
subject to
B(Tm(z)) S Bmaz; Vi = 17...]\[7 (2)
and
N

i=1
where B(rizs)) is the buffer occupancy corresponding to block @ when solution x is
being used. Assuming that the initial buffer occupancy is By we have that B(ry)) =
max(0,r,1)+Bo—R) and in general B(riyiy) = max(0, riy)+B(ri—1z-1)) —R). The
condition on the total rate of (3) is just used to ensure that the final buffer occupancy
is less than or equal to By.

2The blocks can be image blocks, video frames, etc.



To simplify things we start by ignoring the effects of underflow so that we have
B(rizi)) = Tiei) + B(ri—1s(i-1)) — R. Therefore, the constraints defined by (2) are all
linear. We will propose an algorithm that achieves the optimal solution when only
linear constraints are present. We will later show how this algorithm can be adapted
to achieve nearly optimal performance in the case when underflow does not occur
(i.e. as in the above formulation). Note that even though the problems for different
Bz all include the same condition on the total rate of (3), the optimal solutions
X*(Bmaz) need not be the same. The optimal solution to Problem 1 can be found
in [3] where the problem is formulated as a search for a minimal cost path in a tree
representing all the allowable (i.e. non overflowing) solutions. It was shown that the
Viterbi algorithm (VA) [4], a form of forward deterministic dynamic programming,
can be used to find the optimal solution.

A simple approach that may sometimes provide a good solution consists in assum-
ing that the buffer will be sufficiently large so as not to be a “hard” constraint. In
that case one can use the solution of a simpler problem, namely that of minimizing
the distortion for a single rate budget constraint, adjusting it as appropriate to avoid
overflow situations [5]. This simpler problem can be formulated as follows.

Problem 2 Optimal budget-constrained bit allocation:
Find x% such that

N
X, = arg chlﬂz dix(i) (4)
=1
subject to
N

Zrzw(z) <R-N= Rbudget (5)

=1
The simpler budget constrained allocation can then be solved using a Lagrangian
optimization approach [1]. Details will be given in Section 3. Obviously, we will
always have X! = X*(Bj.: = +00). Moreover, there exists a finite B, such that

x5 = x*(B,). B, is the minimum buffer size required for the solution of Problem 2

not to overflow.

While the simpler Lagrangian approach has the advantage of being fast it may
not be applicable to situations where the buffer size is relatively small (as is the
case in most practical scenarios since the buffer size determines the end to end delay
in the system), because the Lagrangian solution could violate the buffer constraint.
Conversely, the VA approach will yield the optimal solution at the cost of a com-
plexity that increases linearly with the buffer size. In [3] several heuristic methods
were proposed as alternatives to the VA method. In this work we present a novel
iterative Lagrangian formulation which guarantees optimality (up to a convex hull
approximation) while including the linear buffer constraints. Note that we introduce
this algorithm in the context of buffer-constrained bit allocation but it would be
applicable in other more general scenarios.



3 Lagrangian optimization for multiple rate con-
straints

In this section we introduce a new iterative technique to solve problems with multiple
constraints. We first review the Lagrangian optimization technique which can provide
the optimal (up to a convex hull approximation solution) for a given bit budget. We
then show the multiple constraint case can be solved by iteratively solving several
budget-constrained problems.

3.1 Lagrangian optimization

We first summarize the Lagrangian optimization approach of [1] (see also [6]). Consid-
ering Problem 2 above, introduce a Lagrange multiplier A, a real, nonnegative number,
and for each block 7 introduce the Lagrangian cost associated with a solution x:

Ji(A,X) = diz(i) + ATiz(i) (6)

Then the main result states that for a given value of A the solution x3 such that

N
X} = arg rr%(inzji()\,x) (7)

=1

is also the solution to Problem 2 when the budget constraint is given by
N
Ryudger = R*(X) = Zﬁz;(i)- (8)
=1

Since choices can be made independently for each block, the optimal choice x3 can
be easily found by selecting x3(¢) such that z3(¢) = argmin,(d;, + Ariy), where ¢
spans the set of all possible quantizers for block 7. Then the problem is to find the
appropriate A to meet the original budget R - N. This can be efficiently done using
fast convex search techniques (see [2] for example).

The important point to note is that an optimal solution for a given budget is
such that each block uses a quantizer which corresponds to the same rate-distortion
trade-off, as determined by A. This minimization intuitively corresponds to finding
the operating point that is “first hit” by a line of absolute slope A. See the example
in Figure 1(a). We will call this optimal solution, a “constant slope” solution®.

Note that so far we have not taken into account the buffering constraint. If the
solution obtained using the above method does not produce buffer overflow then it is
also the optimal solution to the buffer-constrained optimization problem. However if
it does produce overflow then we need some other method to find the optimal buffer-
constrained solution. The VA introduced in [3] provides such a solution but has the

3We emphasize that even in the budget constrained problem this solution is optimal only up to
a convex hull approximation. That is the Lagrangian approach can only find solutions which lie on
the convex hull of the combined R-D characteristic. Other optimal, but non convex hull, solutions
can be achieved using dynamic programming or with hybrid DP/Lagrangian techniques as in [7].
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Figure 1: Examples of Lagrangian based bit allocation. (a) In the budget constrained
case a constant quality slope Ag gives the optimal rate-distortion performance for the given
blocks. (b) Assume that overflow occurs at block ¢ when slope Ag is used. In order to
just avoid overflow the initial ¢ blocks have to operate at slope equal to A,,;, > Ag. This
is equivalent to removing those operating points that have been circled. A global optimal
solution can then be found using Lagrange multipliers with the reduced set of operating
points.

shortcoming of a complexity that increases linearly with the buffer size. Here our
goal is to generalize the Lagrangian formulation to solve problems with multiple rate
constraints such as in Problem 1.

3.2 The multiple constraint case

A first Lagrangian approach which can be used in the multiple constraint case is to
introduce a vector Lagrange multiplier, such that a different multiplier corresponds
to each of the constraints. A general description of this approach can be found
in [8]. Applications to rate allocation problems were first introduced in [9]. Also,
in [10] an iterative procedure with multiple Lagrange multipliers has been introduced
for Problem 1. The approach we present here is simpler and more intuitive than
that in [10]. We also prove here that our approach is optimal within a convex hull
approximation.

The key observation for our approach is to note that even though the Lagrangian
formulation does not provide the optimal solution for the buffer-constrained case, it
does provide an operating point where rate and distortion are traded off optimally for
the given budget. If the solution is not admissible because it produces overflow it can
nonetheless be used as the starting point to achieve an optimal a buffer-constrained
solution.

We propose to use an iterative approach. We first solve the problem without
the buffer constraint using the Lagrangian method. This will result in a Lagrange



multiplier Ao such that the corresponding solution x3  will meet the budget N - R.
Then we check if overflow occurs when using x3  under a finite buffer. Clearly, if the
solution x3 does not overflow it is the solution to both Problem 1 and Problem 2
and we are done.

Now assume that overflow does occur at least once and that the first block for
which overflow occurs is block 7. This means that the first 7; blocks use too many bits
at the current quality slope A\g. The best way to reallocate the available bits among
those blocks to prevent overflow is to perform another Lagrangian optimization among
only those first 7; blocks, with a budget such that overflow is just avoided. Since the
solution will give fewer bits to those initial blocks it will require a new Lagrangian
slope Apmin(71) such that A, (21) > Ag. As outlined in Section 3.1 this new allocation
will be optimal for the first 7; blocks. The next question is then: is this approach
globally optimal as well?

Let R(1,71) be the rate used for the initial segment of blocks 1 through 7; at slope
Ao, and let R,(1,71) be the maximum rate that can be used by the initial segment in
order to avoid overflow. At this point we do not know if the optimal solution will use
R,(1,71) or fewer bits in the initial segment but we know that no more than R,(1,7;)
bits can be used. We can thus define an effective quality slope A.sf(A,4) for every
block 7 in the sequence, such that

)\eff()\,‘i) = max()\,)\low(i)), (9)
where Ay, 1s the lower bound on the quality slope to be used for each block. We let
Mow (1) = Amin(t1), Vi=1,...,1 (10)

and we use the effective slope A.fs(A, 1) instead of the quality slope A in the opti-
mization. This means that when we are globally operating at a constant slope we
cannot decrease the slope, i.e. increase the quality, below A.,;,(71) in the initial seg-
ment and therefore overflow can be avoided on that segment. In this manner we
iteratively introduce lower bounds on the quality factors for each block every time
an overflow is detected and then run again the usual Lagragian based optimization.
This approach is equivalent to elimininating from the set of operating points those
quantization choices which, for the initial segment, would result in total rates which
violate the overflow constraints (see Figure 1(b)).

Theorem 1 This approach is globally optimal for Problem 1 (with linear constraints),
that is,

(a) none of the quantizers that are eliminated by using Acsf(A,1) instead of A can
ever be part of the globally optimal solution, and

(b) the Lagrangian method using Ac.sf(X,1) results in an optimal solution once all
the successive overflow points have been taken into account. For each successive
overflow point 1y, 1,,... we generale the A sy lower bounds for the quality slope
of all blocks up to the overflow point.
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Figure 2: Example of utilization of the A.s; parameter. The shaded areas depict the slope
values that cannot be used in order to prevent overflow. ¢ and k are the first and second
observed overflow points, respectively. A; is the overall slope selected after the first overflow
has been removed. Note that each time overflow occurs in the current solution a new lower
bound is given for blocks up to the point where overflow occurred.

Proof:

(a) Assume that arbitrary rates R; and R, are chosen for the segments (1,4;) and
(11 + 1, N), respectively. Once we have selected R; and Rj, the quantizers in each
segment can be allocated independently. Clearly, for a given choice of rates, the
minimum distortion solution comes from reallocating Ry and R; bits to each segment
via the Lagrangian method. The goal of the overall optimization will be then to find
which R; and R, are to be selected?. The additional constraint that Ry < R,(1,14;)
means that the slope for the first segment has to be at least A.i,.(21), for any choice of
Ry < R,(1,11). This is true for any rate Ry < R,(1,7;) and is independent of how bits
are allocated for the second segment. Therefore, the quantizers that are eliminated
by using Acs¢(1,21) instead of A will never be part of the optimal solution.

(b) Given the above, is it still optimal to use Lagrangian optimization to find the
overall solution? Using A.sf(A,7) guarantees that the overflow constraint is not vio-
lated. Thus we have eliminated the operating points that could potentially produce
a problem, i.e. some of the blocks operate now with a reduced set of available quan-
tizers in order to prevent overflow. We now have the same problem as initially (i.e.
budget constrained allocation) with a reduced set of possible operating points. The
Lagrangian optimization technique is thus applicable as usual.

Note that once we have eliminated the conflictive operating points using the
Aesf(A,2) rule we can consider that we are re-starting with a new budget constrained
allocation problem, and therefore the above arguments can be used recursively for
successive overflow points. As soon as a solution is reached where no overflow occurs
we have achieved the optimal buffer-constrained solution. Note that if the constraints
are non-linear, as in Problem 1, part (a) no longer holds® and thus we can only ap-
proximate the optimal solution. O

“Note that the same is true in Problem 2 for any two segments
5Reducing the rate of blocks before an underflow point iy < i1, i.e., where the buffer occupancy
is zero, does not help in reducing the buffer occupancy at the overflow point ;!



3.3 Algorithm

We now describe the iterative algorithm in more detail. We just need to recursively
apply the above explained method, i.e. use the successive overflow points to eliminate
sets operating points from the optimization. We first describe the Lagrangian opti-
mization to be used at each iteration for a given set of lower bounds on the quality
slope Ajou (i), we then explain how to update those lower bounds (refer to Fig. 2.)

Algorithm 1 Lagrangian optimization with given quality slope lower bounds

Given Aoy (1) for all i we use a modified version of the Lagrangian optimization of
[1]. We search for X such that we meet the desired budget N - R with a rate R())

corresponding to a solution X3 such that

N
X\ = arg rr%(mZ JI(A, x) (11)
=1
with
J{(Ax) = diziy + Aeps (A, )iz (12)

We just replace A by A.fs(A,¢) in the Lagrangian formulation of [1].

Algorithm 2 [terative lagrangian optimization with multiple rate constraints:
Initialize Xjpy (1) =0 for alli=1,...,N.

Step 0 : Find the optimal solution for the budget constrained problem with budget
N - R.

Step 1 : Does the current solution overflow the buffer? If not, then this is the
optimal solution. If it does overflow, let k be the first overflow point. Add k to
a list of overflow points L, there are now [ points in that list.

Step 2 : Find the minimum slope i, (k) which just prevents overflow up to block
k. We now update the lower bound on the slope for all the blocks up to k, i.e.
forallv=1,... k we let Aip(1) ¢ max(Apin(k), Mow(?))-

Step 3 : Find the optimal budget constrained allocation using the slope lower bounds
Aow(2) with Algorithm 1 and go to Step 1.

3.4 Generalization

We have concentrated so far in the case of buffer constrained optimization. Consider
now the case where we have k partial rate constraints each affecting a set of blocks
Cr = {k1, ka2, ...}, where the k; are the indices of the blocks affected by the constraint.
This could be the case if, say, for storage efficiency reasons we need to impose a
restriction on partial rate counts. Each rate constraint has the form

> Ri < B(k), (13)



where B(k) is the corresponding partial rate budget. It can be shown that if the
constraints are embedded, i.e. C C Cyy; for all k£, then we can use the same technique
as in the buffering case. Also it can be easily seen that the same holds if the constraints
are disjoint, i.e. C N Cryy = 0.

The optimization procedure would be the same. We first find the solution to the
problem without the partial constraints. We then consider all the partial constraints
that have been violated by that solution. Considering one constraint at a time we
find the lower bound on the quality slope A which guarantees that the constraint is
not violated. We then update A, and run the global optimization again.

4 Experimental Results

In this section we present our experimental results for Problem 1. Recall that in
our developments we have thus far considered that underflow does not occur. When
underflow occurs as in the exact formulation of Problem 1 we can no longer claim
optimality, however we can achieve a good approximation to the optimal solution
provided by the VA [3].

To achieve this solution we use a modified iterative procedure. Now, we keep track

of both overflow and underflow points (the latter are those points where the buffer
occupancy B(ri)) is equal to zero.) We modify Algorithm 2 so that now we replace
Step 2 by:
Step 2’: Let k' be the last underflow point prior to block k. Find the minimum slope
Amin(k) which just prevents overflow up to block k by reallocating bits among blocks
k' through k. We now update the lower bound on the slope for all the blocks from k'
tok, t.e. foralli =F,... .k we let X\joy(1) ¢ max(Anin(k), Aow(7)).

Note that if there is no underflow point before k& Step 2 remains as before. This
modification of the algorithm is needed to take into account underflow. It is clear
that to prevent overflow one has to reduce the overall rate of the blocks leading up to
the overflow point. However, reducing the rate for those blocks that occur before or
at the underflow point is useless since further reductions in rate will not change the
buffer state (i.e. buffer occupancy will still be zero!).

Our experiments are conducted with a series of JPEG-coded 8 by 8 pixel blocks
from an image. There are 4 admissible quantizers and we show our results when
encoding the image at 100 bits/block with several different buffer sizes. Our results
indicate a very good approximation to the performance of the VA, with differences
in PSNR of less than 0.1dB.

Note that the complexities of the Lagrangian approach and the VA have opposite
behaviors. The VA is faster for small buffer sizes and may become impractical for
large B,,... Conversely the Lagrangian approach requires the least complexity for
large buffers because in that case the initial (budget constrained) solution is more
likely to be close to the buffer-constrained one.

Acknowledgement: The author wishes to thank Kannan Ramchandran from University
of lllinois at Urbana-Champaign for his comments on an earlier version of the manuscript.
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Figure 3: Experimental results. The dashed lines represent the result of our algorithm and
the solid lines that of the VA. Results are given for channel rates of 64 and 100 bits/block
(bottom and top, resp.) and for several values of the buffer size.
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