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Abstract

The two-dimensional block transform coding scheme based on the discrete cosine
transform has been studied extensively for image coding applications. While this
scheme has proven to be efficient in the absence of channel errors, its performance
degrades rapidly over noisy channels. In this paper we present a method for the
joint source-channel coding optimization of a scheme based on the 2-D block cosine
transform when the output of the encoder is to be transmitted via a memoryless
binary symmetric channel. Our approach involves an iterative algorithm for the
design of the quantizers (in the presence of channel errors) used for encoding the
transform coefficients. This algorithm produces a set of locally optimum ( in the
mean squared-error sense) quantizers and the corresponding binary code assign-
ment for the assumed transform coefficient statistics. To determine the optimum
bit assignment among the transform coefficients, we have used an algorithm based
on the steepest descent method, which under certain convexity conditions on the
performance of the channel-optimized quantizers, yields the optsmal bit allocation.
Comprehensive simulation results for the performance of this locally optimum sys-
tem over noisy channels have been obtained and appropriate comparisons against
a reference system designed for no channel errors have been rendered. It is shown
that substantial performance improvements can be obtained by using this scheme.
Furthermore, theoretically predicted results for an assumed 2-D image model are
provided.

*This work was supported in part by a grant from NASA, Langley Research Center under grant
NAG-1-582, in part by Martin Marietta Laboratories and in part by the National Science Foundation
under grant NSFD CDR-85-00108.




I Introduction

The two-dimensional (2-D) block cosine transform coding scheme has been well
studied in image coding situations from a rate distortion-theoretic perspective.
Apart from providing good performance it is image independent and can be ef-
ficiently implemented using fast algorithms [5].

It is known that the performance of the above system degrades rapidly in the
presence of channel errors. In particular work done in [1] has shown that a careful
selection of the parameters of the block cosine transform, as well as the channel
coding and modulation methods, are essential for maintaining a good performance
when data is to be transmitted over a noisy channel.

In this paper we optimize the mean squared-error of a block cosine transform
coding scheme over a noisy channel, with a constraint on the average transmission
rate, when the transform coefficients are encoded using zero-memory encoders. We
show that the optimization problem can be reduced to:

1. optimal allocation of bits for encoding the transform coefficients in such a way
that both the source and the channel characteristics are taken into consider-
ation.

2. designing optimal zero-memory encoder/decoder pairs for the transmission of
each of the transform coefficients over a noisy channel.

It has been shown (2] that even when a noisy channel is present, the optimal
structure of a zero-memory encoder for a stationary one-dimensional random pro-
cess, under the mean squared-error criterion consists of a quantizer followed by a
codeword assignment to each of the quantization intervals. For a given bit alloca-
tion vector, we apply the results of a new algorithm [4] that designs an optimal
quantizer, its associated codeword assignment and decoder (referred to as the en-
coder/decoder pair) so as to minimize the total average reconstruction error across
a noisy channel. We then optimize the allocation of bits among the transform co-
efficients by formulating it as an integer programming problem and then use an
incremental bit allocation procedure based on the method of steepest descent [3].
Under certain convexity conditions, it is possible to show that this algorithm yields
the optimal bit allocation, in a number of steps equal to the total number of bits
to be allocated per block.

We compare the performance of the optimal system, as applied to images,
against a reference system, where each of the transform coefficients are encoded
using Lloyd-Max quantizers followed by the natural binary code assignment. The
performance gains of the optimal system over the reference system are extremely
encouraging. Simulation studies have revealed improvements in the signal-to-noise
ratio (SNR) of around 8 dB, at a transmission rate of 1 bit/pixel, and for a binary
symmetric channel with a crossover probability of 0.05. The results are just as en-
couraging from a subjective viewpoint. The quality of the reconstructed image for
the optimal system is seen to be far superior to the reference system, especially as
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Figure 1: Block Transform Coding Scheme.

the channel gets noisier. The important point is that these performance improve-
ments are not obtained at the expense of transmission bandwidth. Furthermore, we
have obtained theoretically predicted performance results based on a 2-D separable
Gauss-Markov model for the source.

The rest of this paper is organized as follows: In Section II we develop notation
and describe the system under consideration. In Section III we present an analy-
sis of the system and describe the algorithm used to design the encoder/decoder
pairs optimally and the algorithm that does the optimal bit allocation. Section IV
contains a description of the system as implemented, theoretically predicted perfor-
mance results and simulation results on two test images. Finally a summary and
conclusions is provided in Section V.

II Preliminaries

In what follows we assume that the source is an L-dimensional vector source rep-
resented by a zero mean, stationary, discrete-parameter stochastic process {X,}
whose moment matrix is denoted by ®,,. In a typical block transform coding
scheme the source output vector ! X = (Xo, X;,...,X-1)T is transformed to a
vector Y = (Yo,Y1,...,Y2-1)T by a nonsingular (L x L) transformation matrix 4
according to

Y=AX. (1)

Each of the L components of Y (also referred to as the transform coefficients)
is separately quantized and encoded using fixed-length binary codewords. The
resulting vector of binary codewords U = (Up, Us,...,Ur-;)T is transmitted across
the communication channel. We call the set of L encoders the “block encoder.”
Here we assume that the communication channel is modeled as a memoryless binary
symmetric channel (BSC) with crossover probability e.

The received vector V. = (V,, V4,...,Vi-1)7, each component of which is a binary
sequence, is decoded component-wise by a decoder, and the resulting vector Yis
then transformed by A™! to yield a representation vector X, of the source vector
X, in the receiver, i.e.,

X=4"Y7 (2)

1The parameter index has been dropped since the source is stationary.
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Figure 2: A Typical Zero-Memory Encoder/Decoder Pair.

The block diagram of this coding scheme is illustrated in Fig. 1. The i** compo-
nent, U;, of U is an r;-bit codeword and the vector r = (ro,r1,...,72-1)7 is called
the bit allocation vector. For a given bit allocation vector r, the average number of
bits used to represent a source symbol is given by r,, described by

A 1 L-1
Tov=— ) ;. (3)
L =0
The squared-error distortion measure is used exclusively in what follows. The
average per-symbol distortion D is described by

D=1 E{x|(X - D)X - B)]}. (4)

Each of the L encoder/decoder pairs has a similar structure and so we shall
describe one of them as illustrated in Fig. 2. As shown, Y represents a generic
transform coefficient. In our scheme, the encoder ~(-) is essentially a quantizer
followed by a code assignment, which maps every quantization level to a specific r-bit
codeword. The encoder mapping is specified by a vector of quantization thresholds
T = (To,T1,...,Tn)7, and a set of binary codewords of length r, described by
Au = {u3,u3,...,uy} where u; is defined as the codeword to which all source
outputs in the interval (T;_,,T;] are mapped, i. e.,

Yy) =w, fye(Tio,T),i=1,2,...,N, (5)

and where N is the number of quantization levels. Let 4, = {v,,v2,...,var} denote
the set of all possible received r-bit sequences, and let B = (R, R;,...,Rum)T be
the set of reconstruction levels. The decoder mapping g(-) is defined in terms of the
received sequences and the reconstruction levels by

glv)=R;, fv=v, 1=1,2,...,M. (6)

Note that the number of quantization levels satisfies N < 2", whereas the number
of possible received sequences is given by M = 2'.




IIl Problem Statement and Analysis

For the system described in the previous section, we wish to minimize the mean-
squared error

D=3 E{rr[X-R)(X-B]), (7)

subject to a constraint on the average number of bits per-symbol required to trans-

mit the source, i. e.,
L-1

1
7av=‘L’Z'i.<_‘;a (8)

=0
and subject to a constraint on the minimum and the maximum number of bits that
can be allocated to a single coefficient, i. e.,

0<7<fma $=0,1,...,L—1, (9)

where the r;’s and L¥ are assumed to be integer-valued and ry,; is a prescribed
integer. If A is chosen to be an orthonormal matrix, the distortion may be simplified
to

1 o~ o~
D= E{trlY - D)X - 7))}, (10)
which can then be expressed as a sum of the component distortions by
1 L-1 ~
D=1Y E(¥-T). (12)
=0

The it* component distortion, E(Y; — ¥:)?, is a function of the number of bits
r;, allocated for transmitting the #*» component and will be denoted hereafter by
di(r;). For a given bit allocation vector r, in order to minimize D, it suffices to
minimize each of the component distortions. Let d}(r;) denote the minimum value
of the #*» component distortion when r; bits are used to to transmit the ¢** trans-
form coefficient. Then the minimum average distortion for a given bit allocation r,
denoted by D*(r) is given by

1 L1
D)= T (). (12)
1=0

Let us assume that the values of d;(r), ¢ =0,1,...,L—1,and r =0,1,..., maz,
are known. In order to solve the optimization problem, it remains to determine the
optimal bit allocation, say r*, that satisfies the constraints in (8) and(9) and such
that D*(r*) < D*(r) for all r which satisfy the same constraints.

In the rest of this section we will first briefly describe an algorithm that optimizes
the performance of the zero-memory encoder/decoder pair across a noisy channel,
thus providing us with the (locally) optimal distortion figures for the component
distortions. We will then describe an optimal bit allocation algorithm, that, under
some mild conditions, yields the optimal r* in L¥ steps. Together, these algorithms
are then used to solve the constrained optimization problem as formulated at the
beginning of this section.




A Optimal Zero-Memory Encoder/Decoder Design

In this subsection we describe an algorithm to minimize the component distortions
d;(r;) for a given r;. Since the optimization procedure is the same for each of the L
transform coefficients, we shall consider a generic term and denote it by d(r).

We refer to an earlier paper [4] in which we described an iterative algorithm
that converges to a locally optimal encoder/decoder design for the system shown
in Fig. 2. This procedure results in the optimal value of the component distortion
d(r) for a given value of r.

The encoder essentially consists of an N-level quantizer followed by a code as-
signment map. As shown in [4], the average squared-error distortion is a function
of the following parameters:

1. The set of threshold levels T = (Tp, Ty,...,Tn)T;
2. The value of N, the number of quantization intervals;

3. The code assignment, i.e., the codewords to which the quantizer intervals
should be mapped, and,

4. The set of reconstruction levels in the decoder.

The distortion? d(r) can be expressed as

dr) = [ p B~ P)Y = v}ay, (13)

in which p,(-) denotes the probability density function (p.d.f.) of the source to
be encoded (in our application, a generic transform coefficient), and E{-} is the
expectation operator. The necessary conditions for optimality are developed by
deriving:

a. The necessary and sufficient conditions for optimizing the decoder mapping g
for a fixed encoder mapping 4.

b. The necessary and sufficient conditions for optimizing the encoder mapping ~
for a fixed decoder mapping g.

The system that satisfies the above two conditions simultaneously is a locally
optimal system. The optimal decoder mapping for a fixed encoder mapping follows
directly from a well-known result in estimation theory and is given by

R=E{Y[V=yv},1,2 ... M. (14)

On the other hand, for a fixed decoder mapping, it is straightforward to show that
the optimal encoder mapping is such that it maps a value of Y = y to a codeword
u;, if and only if

E{(y-P)IU =w} <E{(y-¥)’|U = u;}, Vi #5. (15)

3The distortion also depends on y and g but, for the sake of brevity, this is not explicitly reflected
in our notation.




For a fixed decoder g(-), upon defining A;(g) as the set of values of y that should be
mapped to the codeword u; in preference to any other codeword, and A;;(g) as the
set of values of y that should be mapped to u; in preference to u;, we may express

Ai(g) as, N
Aig)= [ Asile)- (16)

J=1lJ#i
Analysis of (13) shows that A;;(g) may be expressed as

Aii(9) = {v:2y [E{P|U = u;} - B{P|U = u;}]

< E{Y?U = u;} — E{V?|U = w;}}. (17)
We now define
aij £ E{P*|U = u;} - E{P*|U = w}, (18)
B.j & E{Y|U = u;} - E{P|U = w}, (19)
and A
ti; = «i/2Pi5, Bij # 0, (20)

from which it follows that

(—oo,t5], if Bi; > 0,

[t,',', 00) s if ﬂ.’,‘ <0,

(—w, w) [ if ﬂl‘j = 0: 277 Z 01 (21)
é, if Bi; =0, <O0.

Aii(g) =

Therefore, A;;(g) is an interval, and hence, so is A;(g). We may now define the
upper and lower endpoints of A;(g) by

u _ 1 I
t = min {t;;}, (22)
and
‘ —— .o
t.‘ = ,_l:?‘?fo{tu}’ (23)

respectively, and use (22) and (23) to characterize A;(g) by

é, if B;; = 0 and a4; < O for some j,
A.(g) = R, if ﬂi)' = 0, aij Z 0: ij (24)
[t’- t'-‘] , otherwise,

[ 20 }

provided that t. < t¢ for all ¢ = 1,2,...,N. In order to resol!e the ambiguity on
the endpoints of the quantization intervals, we define the set A;(g) to be identical

to Ai(g), except when A;(g) = [t},2], in which case A;(g) £ (£,¢!]. Then, the
optimum encoder mapping 4 for a fized decoder mapping ¢ is given by

1(y) = wi, y€Alg), i=1,2,....M. (25)
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It is important to note that when the channel is noisy, we do encounter situations
in which ¢! > t¥, even though §;; # 0 for all j # ¢. The correct interpretation of
the situation when ¢! > t¥ for some i, is that no value of the source output is to
be encoded by the ** codeword and hence this codeword is not to be transmitted.
Equation (24) thus provides us with a method of sdentifying a subset of codewords
which should be used to encode the output of the zero-memory encoder/decoder
pair. If the number of codewords in thissubset is N, N < M then (24), in effect, tells
us that an N-level quantizer is optimum for minimizing the mean squared-error.
Note that if ¢! > t? for some 1, then (24) cannot be used to obtain the optimal
encoder. In [4], we describe a method for obtaining the optimal encoder even when
t! > t¥ for some i. By successive application of this method and (14), an iterative
design algorithm is developed that converges to a locally optimal encoder/decoder
pair. In order to be brief we shall not describe this algorithm here but shall refer
the interested reader to [4].

It is interesting to mention, however, that for a Gaussian source and a BSC with
a crossover probability of 0.01 and a rate of 8 bits/sample, our results indicate a
(locally) optimal quantizer that possesses only 29 of the possible 256 levels.

We used this algorithm to generate the (locally) optimal, distortion vs. rate
performance, d*(r), needed for the bit allocation algorithm described next. We
mention at this point that the distortion vs. rate performance of the optimal en-
coder /decoder pair, was observed to be convex for rates up to 8 bits/sample, and for
a Gaussian source density. This observation is important since convexity is required
in the development of the optimal bit allocation algorithm.

B Optimal Bit Allocation Algorithm

In the absence of an analytical expression for the distortion vs. rate performance of
the optimal encoder/decoder pairs described above, we resort to an integer program-
ming algorithm to determine the optimal bit allocation vector r*. The algorithm
described in the previous section yields the following distortion values:

d;(r;), =0,1,...,L—-1; r,=0,1,...,FL. (26)

We shall assume that the functions d;(-) are convex and decreasing for all ¢ =
0,1,...,L—1. Here, by convexity, we mean that &;(r —1) —d;(r) > di(r) —di(r +1),
for all integers r > 1. Let us consider the problem of minimizing

1 L-1
D*(r) = = 3_ di(r), (27)
_ L =0
subject to
" 35 (28)
= ri=F, 28
L =0
and
r,>0, ¢=0,1,...,L—1. (29)




After describing a steepest descent algorithm that yields the optimal bit allocation
r* for the above problem, we will show how the same algorithm may be used to
determine the optimal bit allocation, when an additional constraint is placed on
the mazimum number of bits that can be allocated to each component, i.e., when

ri < mas, §=0,1,...,L—1. (30)
The algorithm proceeds as follows [3].
1. Set k=0; Set r; =0, 1=0,1,...,L—1.

2. Set k = k + 1; compute the index 1; which satisfies

di (ri) — di,(riy +1) = max {di(ri) —di(ri +1)}. (31)

0<i<L

3. Set r;, =1y, +1. If Kk <FL, go to step 2; else stop.
We state the following theorem without proof, details of which may be found in [3].

Theorem 1: If the distortion functions in (26) are convex and non-increasing, then
the steepest descent algorithm as described above, yields the bit allocation vector
r* that minimizes (27) subject to the constraints in (28) and (29).

In order to use the steepest descent algorithm to solve the problem under the
additional constraint on individual bit allocations, as stated in (30), we define a
new set of distortion functions d;(r) by

Z,-(r)é{d"(')’ HOSTr<fmer ;_01,... L1 (32)

d}(Tmaz)s if r > rmaz,
The corresponding average distortion 5(;) is given by,

~ 1 L
Bl =7 S dn). (33)

The following theorem establishes that the minimization of D(r) subject to (28)
and (29) is equivalent to the minimization of D*(r) subject to (28)—(30).

Theorem 2: If the functions described in (26) are convex and strictly decreasing,
then the bit allocation vector r*, that minimizes D(r) subject to (28) and (29),
minimizes D*(r) subject to (28) (29) and the additional constraint (30).

Proof. The set of feasible bit allocation vectors that satisfy constraints (28), (29) and
(30) is contained in the set of feasible bit allocation vectors that satisfy constraints
(28) and (29). The functions d;(r), ¢ = 0,1,...,L — 1, are convex and non-
increasing since we assumed that the functions d,? (r), 1t =0,1,...,L — 1, were
convex and decreasing. Hence by applying the steepest descent algorithm, we may
determine the bit allocation vector r* that minimizes D(r) subject to (28), (29).
Further, since ¥ < Lrp,., the steepest descent algorithm will never allocate more
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than 7, bits to any of the L components. To see this, assume, without any loss of
generality, that at the k** step of the bit allocation process, r = (fmaz;T1,---,71-1)7,
where r; < rmaz, t =1,2,...,L — 1. At the (k + 1)* step, an index 1,4, is selected
for which (31) is true. Since (zo(rm,) - %(rm, + 1)) =0, it follows that 1;,, # 0,
which proves the theorem.

IV Numerical and Simulation Results

We have implemented an image coding system using the method outlined in the
previous sections. The 2-D discrete cosine transform has been chosen as the source
transformation and we have assumed that the image could be modeled by a sta-
tionary 2-D Gaussian random field. In order to compute the theoretically predicted
performance, we have made the additional assumption, that the model has a 2-
D separable, first-order, Gauss-Markov structure. These results serve as a useful
benchmark of system performance. The 2-D Gauss-Markov random field is de-
scribed according to

X('s]) = PrX(i - l’j) + PcX(i,j - 1) - PrPcX(i -1,y — 1) + W(”J)a
§j=0,1,....L—1, (34)

where p, and p. are the vertical (row) and horizontal (column) correlation coeffi-
cients, respectively, and W (s, 5) is a 2-D sequence of independent and identically
distributed Gaussian random variables with zero-mean and variance o},. It is also
assumed that values of X(—1, j) are known for j = —1,0,1,...,L—1 and the values
of X(i,—1) are known for + = 0,1,...,L — 1. For a stationary process the source
variance 0% and o}, must be related by

ow = 0x(1 - p})(1 - p}). (35)

The image frame is blocked into blocks of size L x L. These blocks are then operated
on by the 2D-DCT defined by

L-1L-1

Y(m,n) = -]25 cm)cm) ¥ 3 X, 1).

=0 5=0
2t + 1)mn 27 + 1)nm
cos( 2L) cos( 2L) ,

m,n=0,1,...,L -1, (36)

where C(0) = 1/v2 and C(m) = 1 for m = 1,2,...,L — 1. The inverse transform

10



(2D-IDCT) is defined by

2 L-1L-1

X(i,4) = 7 X ¥ C(m)C(n)Y(m,n).

m=0n=0
(Z+1)ymr (27 + 1)nn
€05 “—— 7 —— cos ~—— 7,

i,j=0,1,...,L —1. (37)

The 2D-DCT is a separable orthonormal transformation and the analysis of
Section II extends to two dimensions along exactly the same lines. In particular,
the source is now represented by a matrix X and by using the orthonormality of
the transformation, we can express the average squared-error distortion as

1 L-1L-1

DO=75 3 ¥ dunlrm), (38)

m=0 n=0

where r is now the bit allocation matriz, and d;,,(rmn) is the optimal distortion
incurred in transmitting the (m,n)* transform coefficient across the channel using
rmn bits. The optimal bit allocation algorithm now requires L3 steps to complete
the allocation, where L*¥ is again the total number of bits that are to be allocated
to the image block of size L x L.

Since the source is assumed to be Gaussian, each of the transform coefficients are
also Gaussian, which implies that the component distortions may all be expressed
in terms of a set of (at most) rp,,, variance-normalized distortion functions as

dyn(tmn) = 02, dosr(fmn), myn=0,1,...,L —1. (39)

Here, d;,,.(r) is the minimum distortion achievable by a zero-memory encoder/decoder
pair designed for a unit-variance Gaussian source as a function of the transmission
rate, r. Also o2, is the variance of the (m,n)* transform coefficient.

For the 2D-DCT and the 2-D Gauss-Markov model the variance 0%, may be
expressed [1] as the product of 0?(m) and 02(n) which are defined by

A 2a,x L-1L-1 L.
oi(m) = TC’(m)ZEP':"'

=0 j=0
21+ 1)mn 27+ 1)mn
cos( 2L) cos( 2L) ,

m=0,1,...,L -1, (40)

and
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2 L-1L-1 .
or(n) & FECn) Y 3 ot

$=0 =0
(2t +1)nr (27 + 1)n7
8T °* 2L "’
n=0,1,...,L—1, (41)

respectively.

In order to compute the theoretically predicted performance for the assumed
2-D Gauss-Markov image model, we have estimated the values of p,, p. and o%
from the “GIRL” and the “MOON” images, each of size 256 x 256. These values
are summarized in Table 1. The variances of the transform coefficients (for an
L x L transform) have then been computed using (40) and(41), following which,
the optimal bit allocation vector and the corresponding performance results have
been obtained using the steepest descent algorithm with rp,. set to 8 bits. Results
based on the 2-D Gauss-Markov model have also been computed for a reference
system in which the transform coefficients are quantized by Lloyd-Max quantizers
designed for a Gaussian source and encoded using the natural binary code. The bit
allocation matrix used here is the one that is optimal for the case when no channel
errors are present (fmsz = 8). These results, referred to as the numerical results
are presented in Tables 2 and 3 for the “MOON” image at rates of 1 bit/pixel and
0.5 bit/pixel respectively, and in Tables 6 and 7 for the “GIRL” image at rates of
1 bit/pixel and 0.5 bit/pixel respectively. Each of these tables contains results for
block sizes of 32 x 32, 16 x 16 and 8 x 8, at values of ¢ = 0.0, 0.005, 0.01 and 0.05.

Monte-Carlo simulation results for real-world images have also been obtained,
without any modeling assumptions. Here each image of size 256x256 has been
blocked off into blocks of size L x L. Each block has then been transformed, and
the variances of the transform coefficients have been estimated from the transformed
image data. We assume the mean and variance data of the transform coefficients
is available at the receiver, and that when zero bits are allocated to any trans-
form coefficient, it is decoded to its mean value in the receiver. Simulations have
also been run for the reference system which was described earlier. Examples of
reconstructed image quality obtained through simulations are illustrated in Fig-
ures 3—-8. These figures illustrate the performance of the optimal systems for values
of ¢ = 0.005, ¢ = 0.01 and ¢ = 0.05, for a block size of 32 x 32, at an average rate
of 1 bit/pixel. To consider the effects of mismatch on the system performance, we
have also included the performance of the optimal systems, designed for the values
of ¢ mentioned above, when a noiseless channel is present. The performance results
obtained through simulations are summarized in Tables 4 and 5 for the “MOON”
image and in Tables 8 and 9 for the “GIRL” image. These results are presented for
block sizes of 32 x 32, 16 x 16 and 8 x 8, at values of ¢ = 0.0, 0.005, 0.01 and 0.05.

It is obvious from the numerical and simulation results that the optimal system
results in improvements in signal-to-noise ratio over the reference system. These
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improvements are particularly significant for very noisy channels. To be specific,
the numerical results for the “GIRL” image indicate performance improvements of
approximately 8 dB at a rate of 1 bit/pixel, for a block size of 8 x 8 and a channel
crossover probability of 0.005. The performance improvements are seen to increase
as the block size increases and as the crossover probability increases. By comparing
corresponding values for the “GIRL” and the “MOON” image it can also be seen
that the improvements are larger for the “GIRL” image which possesses the higher
correlation coefficients of the two images considered. An interesting point is that
the performance of the reference system does not always improve as the block size is
increased or as the the bit rate is increased for a fized channel crossover probability.
It does however for the optimal system, a result that is intuitively satisfying.

To illustrate the effect of the noisy channel on the bit allocation matrix we have
also presented in Figures 9-11 sample bit allocation matrices at 1 bit/pixel for the
optimal system designed for values of ¢ = 0.0, 0.01 and 0.05 . The size of these bit
allocation matrices is 32 x 32 and they have been obtained for the 2-D Gauss-Markov
image model having the same correlation coefficients as the “GIRL” image. The
sample bit allocations for the optimal system indicate that as the channel crossover
probability increases, there is a tendency to allocate more bits to the high energy
coefficients (those in the top left corner of the matrix) and thus provide greater
channel protection to these coefficients at the expense of more distortion for the
lower energy coefficients.

The trends in the simulation results are seen to be similar to those in the nu-
merical results, though the performance improvements are not quite as large. For
example, an improvement of 2.3 dB is observed by simulating the system for the
“GIRL” image, at a rate of 1 bit/pixel, a block size of 8 x 8 and for a crossover
probability of 0.005. The corresponding figure predicted by the numerical results
is approximately 8 dB. We believe that the difference in the numerical results and
the simulation results, is most probably a result of inappropriate modeling of the
source. The Gaussian assumption is not always a good one as shown in [6]. But
what is probably more important is the fact that nonstationary image models are
inherently superior to stationary image models [7]. It would be useful to note here
that the system optimization method is general enough to handle situations where
the transform coefficients are non-Gaussian, with (possibly) distinct p.d.f.’s.

The examples of reconstructed image quality at 1 bit/pixel, confirm the trends
indicated by the numerical and simulation results. The image quality for the optimal
system is definitely superior to that of the reference system, and the improvements
in quality are more noticeable for the highly correlated “GIRL” image than for the
“MOON” image.

V- Summary and Conclusions

We have optimized the performance of the 2-D discrete cosine transform coding
scheme over a noisy channel by (i) optimizing the bit allocation among the transform
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coefficients and (ii) designing optimal encoder/decoder pairs for transmission of the
transform coefficients over a noisy channel.

We have obtained theoretically predicted performance results based on an as-
sumed 2-D Gauss-Markov model, as well as simulation results for a real-world image.
In both cases it is shown that the optimal system offers noticeable performance
improvements over the conventional system based on Lloyd-Max quantization of
the transform coefficients. The performance improvements are more noticeable at
higher bit rates and for noisier channels.
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IMAGE | MEAN | VARIANCE | pg pc
MOON | 127.23 823.78 0.9017 | 0.9090
GIRL 73.57 1816.56 0.9790 | 0.9746
Table 1: Image Statistics.

BLOCK €e=0.0 e = 0.005 ¢ =0.01 ¢ = 0.05
SIZE REF. | OPT. | REF. | OPT. | REF. { OPT. | REF. | OPT.
8 x8 MSE | 18.77 | 18.77 | 57.37 | 29.36 | 95.79 | 35.29 | 396.75 | 78.26
8 x8 SNR | 16.42 { 16.42 | 11.57 | 14.48 | 9.34 | 13.68 3.17 10.22

16 x 16 | MSE | 14.38 | 14.38 | 53.80 | 23.97 | 93.04 | 29.30 | 400.43 | 69.58

16 x 16 | SNR | 17.58 | 17.58 | 11.85 | 15.36 | 9.47 | 1449 | 3.13 10.73

32 x32 | MSE | 12.64 | 12.64 | 5250 | 21.44 | 92.19 | 26.42 | 402.99 | 65.71

32x32 | SNR | 18.14 | 18.14 | 11.96 | 15.85 | 9.51 | 14.94 | 3.105 | 10.98

Table 2: Numerical Results; 1 bit/pixel; “MOON” Image.

BLOCK € =0.0 € = 0.005 € =0.01 € =0.05
SIZE REF. | OPT. | REF. | OPT. | REF. | OPT. | REF. | OPT.
8x8 |[MSE|52.69 ]| 52.69 | 84.88 | 67.99 | 116.94 | 76.60 | 368.47 | 125.65
8x8 |SNR|[11.94|1194 | 9.87 | 10.83 | 8.48 | 1032 | 3.49 8.17

16 x 16 | MSE | 40.28 | 40.28 | 75.80 | 52.91 | 111.16 | 59.91 | 388.27 | 105.88

16 x 16 | SNR | 13.11 | 13.11 | 10.36 | 11.92 | 8.70 | 11.38 | 3.27 8.91

32x32 | MSE | 34.84 | 34.84 | 70.74 | 46.51 | 106.48 | 53.03 | 386.58 | 97.77

32x32 | SNR {13.74 | 13.74 | 8.59 | 1248 | 8.88 | 1191 | 3.29 9.26
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BLOCK e=0.0 € = 0.005 € =0.01 € = 0.05
SIZE REF. | OPT. | REF. | OPT. | REF. | OPT. | REF. | OPT.
8§x8 MSE | 62.24 | 62.24 | 102.44 | 79.77 | 147.90 | 88.28 | 443.52 | 143.90
8§x8 SNR | 11.22 | 11.22 | 9.05 | 10.14 7.46 9.70 2.69 7.58

16 x 16 | MSE | 46.04 | 46.04 | 80.19 | 69.92 | 143.59 | 75.71 | 447.05 | 124.80

16 x 16 | SNR | 12.53 | 12.53 | 10.11 | 10.71 7.59 | 10.37 | 2.65 8.20

32 x32 | MSE | 31.95 | 31.95 | 75.83 | 43.87 | 130.76 | 50.32 | 481.38 | 100.46

32x32 | SNR | 14.11 | 14.11 | 1036 | 12.73 | 7.99 | 12.14 | 2.33 9.14

Table 4: Simulation Results; 1 bit/pixel; “MOON” Image.

BLOCK e=0.0 € = 0.005 e = 0.01 e = 0.05
SIZE REF. | OPT. | REF. | OPT. | REF. | OPT. | REF. | OPT.
8x8 MSE | 99.34 | 99.34 | 140.42 | 115.90 | 173.56 | 124.16 | 437.47 | 175.63
8 x8 SNR | 9.19 | 9.19 7.68 8.52 6.76 8.22 2.75 6.71

16 x 16 | MSE | 75.95 | 75.95 | 118.12 | 101.20 | 157.12 | 106.15 | 442.16 | 154.56

16 x 16 | SNR | 10.35 | 10.35 | 8.44 9.11 7.20 8.90 2.70 7.27

32 x32 | MSE | 56.40 | 56.40 | 96.12 | 68.68 | 136.14 | 75.47 | 490.22 | 124.68

32x32 | SNR | 11.65| 11.65 | 9.33 10.79 7.82 10.38 2.25 8.20

Table 5: Simulation Results; 0.5 bits/pixel; “MOON” Image.
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BLOCK e=0.0 ¢ = 0.005 € = 0.01 € = 0.05
SIZE REF. | OPT. | REF. | OPT. | REF. | OPT.| REF. | OPT.
8§x8 MSE | 480 | 480 | 111.62 | 17.43 | 217.89 | 24.86 | 1047.69 | 99.98
8x8 SNR | 25.78 | 25.78 | 12.12 | 20.18 | 9.21 | 18.64 2.39 12.59

16 x 16 | MSE | 2.776 | 2.776 | 109.27 | 14.24 | 215.22 | 21.02 | 1042.72 | 93.36

16 x 16 | SNR | 28.16 | 28.16 | 12.21 | 21.06 | 9.26 | 19.37 241 12.89

32x32 | MSE | 2.14 2.14 | 11002 { 13.11 | 217.34 | 19.61 | 1055.37 | 91.01

32x32 | SNR | 29.29 | 29.29 | 12.18 | 21.42 | 9.22 19.67 2.36 13.00

Table 6: Numerical Results; 1 bit/pixel; “GIRL” Image.

BLOCK €e=0.0 e = 0.005 € =0.01 € = 0.05
SIZE REF.| OPT.| REF. | OPT. | REF. | OPT.| REF. | OPT.
8 x8 MSE | 21.61 | 21.61 | 111.69 | 37.54 | 201.35 | 46.91 | 903.31 | 126.81
8§x8 SNR | 19.25 | 19.25 | 12.11 | 16.85 | 9.55 15.88 3.03 11.56

16 x 16 | MSE | 10.13 | 10.13 | 114.84 | 23.60 | 219.02 | 31.50 | 1032.73 | 108.10

16 x 16 | SNR | 22.54 | 22.54 | 1199 | 18.86 | 9.19 17.61 2.45 12.25

32x32 | MSE| 7.16 | 7.16 |110.41 | 19.61 | 213.14 | 26.98 | 1015.93 | 101.37

32x32 | SNR | 24.04 | 24.04 | 12.16 | 19.67 | 9.31 | 18.28 2.52 12.53

Table 7: Numerical Results; 0.5 bits/pixel; “GIRL” Image.
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BLOCK e=0.0 € = 0.005 e =0.01 e = 0.05
SIZE REF. | OPT. | REF. | OPT. | REF. | OPT. | REF. | OPT.
8§x8 MSE | 47.00 | 47.00 | 119.29 | 70.19 | 211.67 | 84.24 | 842.22 | 190.63
8x8 SNR | 15.87 | 15.87 | 11.83 | 14.13 | 9.34 | 13.34 | 3.34 9.79

16 x 16 | MSE | 35.79 | 35.79 | 112.92 | 60.17 | 247.04 | 77.46 | 895.70 | 184.35

16 x 16 | SNR | 17.05 | 17.05 | 12.06 | 14.80 | 8.66 | 13.70 | 3.07 9.94

32x32 | MSE | 24.74 | 24.74 | 105.02 | 49.86 | 273.60 | 67.51 | 981.89 | 148.11

32x32 | SNR | 18.66 | 18.66 | 12.38 | 15.62 | 8.22 14.30 | 2.67 10.89

Table 8: Simulation Results; 1 bit/pixel; “GIRL” Image.

BLOCK e=0.0 e = 0.005 ¢ =0.01 € =0.05
SIZE REF.| OPT.| REF. | OPT. | REF. | OPT. | REF. | OPT.
8x8 MSE | 80.12 | 80.12 | 152.11 | 109.67 | 252.78 | 124.40 | 827.09 | 231.58
8x8 SNR | 13.55 | 13.55 | 10.77 | 12.19 8.56 11.64 3.42 8.95

16 x 16 | MSE | 65.25 | 65.25 | 127.21 | 90.99 | 246.77 | 109.70 | 838.02 | 217.56

16 x 16 | SNR | 14.45 | 14.45 | 11.55 | 13.00 8.67 12.19 3.36 9.22

32 x32 | MSE | 48.65 | 48.65 | 133.36 | 75.70 | 313.66 | 94.81 | 984.55 | 176.07

32x32 | SNR | 15.72 | 15.72 | 11.34 | 13.80 7.63 12.82 2.66 10.14

Table 9: Simulation Results; 0.5 bits/pixel; “GIRL” Image.
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ORIGINAL PAGE 13
OF POOR QUALITY

Original “GIRL”
Image.

Opt. designed for € = 0.005,

Actual € = 0.00.

Ref. designed for ¢ = 0.00.

Figure 3: The Original “GIRL” Image and Simulation Results at 1 bit/pixel, Block
Size = 32 x 32, for the Optimum System (Opt.), and for the Reference System

(Ref.).
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ORIGINAL PAGE IS
OF PO g ALTTY

Opt. designed for ¢ = 0.01, Opt. designed for € = 0.05,
Actual € = 0.00. Actual € = 0.0.

Opt.designed for € = 0.005, Ref.,
Actual € = 0.005. Actual € = 0.005.

Figure 4: Simulation Results for the “GIRL” Image at 1 bit/pixel, Block
Size= 32 x 32.
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ORIGINAL PaGE |5
OF POOR QUALITY

Opt. designed for € = 0.01, Ref.,
Actual € = 0.01. Actual € = 0.01.

Opt. designed for € = 0.05, Ref.,
Actual € = 0.05. Actual € = 0.05.

Figure 5: Simulation Results for the “GIRL” Image at 1 bit/pixel, Block
Size= 32 x 32.

22




ORIGINAL; PAGE 1S
OF POOR QUALITY

Original “MOON”
Image.

Opt. designed for ¢ = 0.005,
Actual € = 0.00.

Figure 6: The Original “MOON” Image and Simulation Results at 1 bit/pixel, Block
Size = 32x 32, for the Optimum System (Opt.), and for the Reference System (Ref.).
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ORIGINAL PAGE 15
OF POOR DUALITY

Opt. designed for e = 0.01,
Actual € = 0.00.

Opt.designed for € = 0.005,
Actual ¢ = 0.005.

Opt. designed for ¢ = 0.05,
Actual € = 0.0.

Ref.,
Actual € = 0.005.

Figure 7: Simulation Results for the “MOON” Image at 1 bit/pixel, Block

Size= 32 x 32.
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DRIGINAL pPAGE IS
DE POOR QUALITY

Opt. designed for ¢ = 0.01,

Actual e = 0.01.

Opt. designed for € = 0.05,
Actual € = 0.05.

Ref.,
Actual € = 0.01.

Ref.,
Actual € = 0.05.

Figure 8: Simulation Results for the “MOON” Image at 1 bit/pixel, Block

Size= 32 x 32.
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Figure 9: Sample Bit Allocation Matrix for the Optimal System, Block Size 32 x 32,

€ = 0.0, 1 bit/pixel.
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Figure 10: Sample Bit Allocation Matrix for the Optimal System, Block Size 32 x 32,

€ = 0.01, 1 bit/pixel.
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Figure 11: Sample Bit Allocation Matrix for the Optimal System, Block Size 32 x 32,

€ = 0.05, 1 bit /pixel.
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