
 Open access  Journal Article  DOI:10.1080/00224065.2013.11917924

Optimal Blocking for General Resolution-3 Designs — Source link 

Eric D. Schoen, Bagus Sartono, Peter Goos

Published on: 01 Apr 2013 - Journal of Quality Technology (ASQ)

Topics: Blocking (statistics), Orthogonal array and Aliasing (computing)

Related papers:

 Integer programming approaches to find row–column arrangements of two-level orthogonal experimental designs

 Complete Enumeration of Pure-Level and Mixed-Level Orthogonal Arrays

 Blocking Orthogonal Designs With Mixed Integer Linear Programming

 Blocked Nonregular Two-Level Factorial Designs

 Row-column arrangements of regular and nonregular fractional factorial two-level designs

Share this paper:    

View more about this paper here: https://typeset.io/papers/optimal-blocking-for-general-resolution-3-designs-
34garf19t9

https://typeset.io/
https://www.doi.org/10.1080/00224065.2013.11917924
https://typeset.io/papers/optimal-blocking-for-general-resolution-3-designs-34garf19t9
https://typeset.io/authors/eric-d-schoen-4uompl3tn9
https://typeset.io/authors/bagus-sartono-1hat16tdt2
https://typeset.io/authors/peter-goos-2916lf5gfu
https://typeset.io/journals/journal-of-quality-technology-12781n31
https://typeset.io/topics/blocking-statistics-37i2fvab
https://typeset.io/topics/orthogonal-array-18j00p7k
https://typeset.io/topics/aliasing-computing-1x1bwnl4
https://typeset.io/papers/integer-programming-approaches-to-find-row-column-1a2rppmgu4
https://typeset.io/papers/complete-enumeration-of-pure-level-and-mixed-level-32od4gab9n
https://typeset.io/papers/blocking-orthogonal-designs-with-mixed-integer-linear-4oyzxc7cfn
https://typeset.io/papers/blocked-nonregular-two-level-factorial-designs-40qq1vhdp3
https://typeset.io/papers/row-column-arrangements-of-regular-and-nonregular-fractional-37c2n7b71k
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/optimal-blocking-for-general-resolution-3-designs-34garf19t9
https://twitter.com/intent/tweet?text=Optimal%20Blocking%20for%20General%20Resolution-3%20Designs&url=https://typeset.io/papers/optimal-blocking-for-general-resolution-3-designs-34garf19t9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/optimal-blocking-for-general-resolution-3-designs-34garf19t9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/optimal-blocking-for-general-resolution-3-designs-34garf19t9
https://typeset.io/papers/optimal-blocking-for-general-resolution-3-designs-34garf19t9


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEPARTMENT OF ENVIRONMENT, 

TECHNOLOGY AND TECHNOLOGY MANAGEMENT 

 

Optimal Blocking for General Resolution-3 Designs 

 

Eric D. Schoen, Bagus Sartono & Peter Goos 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITY OF ANTWERP 
Faculty of Applied Economics 

Stadscampus 

Prinsstraat 13, B.226 

BE-2000 Antwerpen 

Tel. +32 (0)3 265 40 32 

Fax +32 (0)3 265 47 99 

http://www.ua.ac.be/tew   

http://www.ua.ac.be/tew


  

 

 

 

FACULTY OF APPLIED ECONOMICS 
 

 

 

 

 

 

 

 

 

 

 

DEPARTMENT OF ENVIRONMENT, 

TECHNOLOGY AND TECHNOLOGY MANAGEMENT 
 

Optimal Blocking for General Resolution-3 Designs 
 

Eric D. Schoen, Bagus Sartono & Peter Goos 

 

 

RESEARCH PAPER 2012-025 

NOVEMBER 2012 

 

 

 
 
 

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium 

Research Administration – room B.226 

phone: (32) 3 265 40 32 

fax: (32) 3 265 47 99 

e-mail: joeri.nys@ua.ac.be  

 
The papers can be also found at our website: 

www.ua.ac.be/tew (research > working papers) & 

www.repec.org/ (Research papers in economics - REPEC) 

 

 
 

D/2012/1169/025 

mailto:joeri.nys@ua.ac.be
http://www.ua.ac.be/tew
http://www.repec.org/


Optimal Blocking for General Resolution-3 Designs

Eric D. Schoen1,2, Bagus Sartono1, and Peter Goos1,3

1University of Antwerp, Belgium

2TNO, Research Group Quality and Safety, Zeist, Netherlands

3Erasmus University Rotterdam, Netherlands

June 30, 2012

Abstract

This paper presents a general method for finding optimal blocking arrangements of pure-level and mixed-

level orthogonal designs of resolution 3. The method requires enumeration of all non-isomorphic ‘parent

designs’ that include the treatment factors as well as the future blocking factor. For all these designs,

word-length frequency vectors expressing the aliasing between main effects and two-factor interactions

as well as the aliasing among two-factor interactions are calculated. The same is done for all projections

into ‘child designs’ obtained by dropping any possible blocking factor. The word-length frequency vectors

of the parent and child designs then allow the selection of blocking arrangements that are optimal with

respect to five criteria appropriate for blocking resolution-3 orthogonal designs. We provide optimal

blocking arrangements for orthogonal pure-level and mixed-level designs of 12, 16, 18, 20 and 27 runs.

KEY WORDS: Aliasing; Confounding; Generalized Word-Length Pattern; Orthogonal Array; Strength 2

1 Introduction

Effect estimates from a series of experimental runs can be sensitive to heterogeneous operating conditions.

For example, chemical experiments are generally conducted with a limited number of reactors, where each

of the reactors is used for a subset of the experimental runs. The challenge then is to group the runs so that

uncontrollable differences between the reactors do not affect the estimates of the effects of the treatment

factors. We call the groups of experimental runs blocks and the allocation of the runs to the blocks blocking.

In this article, we focus on blocking pure-level and mixed-level orthogonal designs of resolution 3 or strength 2.
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Early work on blocking designs for industrial experiments was carried out in the late 1950s. This resulted

in blocking arrangements of regular two-level designs produced by the National Bureau of Standards (1957),

and of regular three-level designs listed by Connor and Zelen (1959). Later work concentrated on defining

optimality criteria for blocking (Bisgaard, 1994; Sun et al., 1997; Sitter et al., 1997; Cheng and Wu, 2002).

These criteria are based on the defining contrast subgroup, a mathematical construct that only exists for

the sub-class of regular fractional factorial designs. Criteria for blocking two-level nonregular designs, which

generalize those for regular two-level designs, were proposed by Cheng et al. (2004).

Finding blocking arrangements for nonregular three-level designs and mixed-level designs requires new

methodology. The same is true for all two-level designs with a number of blocks other than a power of two.

In this paper, we propose five different criteria for selecting blocking arrangements for general fractional

factorial designs of resolution 3, as well as a method for finding blocking arrangements that are optimal

with respect to these criteria. Two of the five blocking criteria we use are new, while the remaining three

are adaptations of existing criteria in the literature. The blocking criteria we propose are based on the

assumption that a blocking factor does not interact with the treatment factors, while treatment factors may

or may not interact with other treatment factors.

Like Cheng et al. (2004), we start from an exhaustive enumeration of designs. However, unlike the

method of Cheng et al. (2004), which can only be used to find arrangements of two-level designs in a number

of blocks that is a power of two, our approach permits the blocking of general factorial designs of resolution

3 in any number of blocks that is compatible with orthogonal blocking. For instance, our approach can be

used to arrange 20-run two-level orthogonal designs in five blocks of four runs, to arrange a 12-run two-level

orthogonal design in three blocks of four runs, and to arrange a 27-run design in nine blocks of three runs.

To illustrate our blocking approach, consider the design of a 27-run chemical experiment with eight

three-level treatment factors and three blocks of nine runs. Such a design is suitable when three reactors

are employed for the experiment. In total, the experiment has nine three-level factors, eight of which are

treatment factors and one of which is the blocking factor. We call the design for the treatment factors a

‘child design’ and the full design, involving the treatment factors and the blocking factor, the ‘parent design’.

Three parent designs are displayed in Table 1. The levels of the treatment factors are represented by 0, 1,

and 2, whereas the three levels of the blocking factor are labeled ‘Reactor 1’, ‘Reactor 2’ and ‘Reactor 3’. In

each of the designs, the treatment factors are orthogonal to each other and to the blocking factor. Because

of the orthogonality of the treatment factors to the blocking factor, the estimates of the main effects of the

treatment factors are not affected by block differences.

The three parent designs in Table 1 are nonregular orthogonal designs with nine three-level factors and

27 runs. Schoen et al. (2010) showed that there are 9793 different designs of this type. The blocking
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Table 1: Three optimally blocked 38 designs in 3 blocks of size 9

ID Reactor 1 Reactor 2 Reactor 3

1 0 0 0 0 0 0 0 0 0 1 0 1 2 0 2 1 0 2 0 1 1 2 0 2
0 0 1 1 1 1 1 1 0 1 1 0 0 2 1 2 0 2 1 2 2 0 1 0
0 0 2 2 2 2 2 2 0 1 2 2 1 1 0 0 0 2 2 0 0 1 2 1
1 1 0 0 1 1 2 2 1 2 0 1 0 1 1 0 1 0 0 2 2 1 0 1
1 1 1 1 2 2 0 0 1 2 1 2 1 2 2 1 1 0 1 1 0 0 2 2
1 1 2 2 0 0 1 1 1 2 2 0 2 0 0 2 1 0 2 0 1 2 1 0
2 2 0 0 2 2 1 1 2 0 0 2 1 0 1 2 2 1 0 2 0 2 2 0
2 2 1 2 0 1 0 2 2 0 1 0 2 1 2 0 2 1 1 0 1 0 0 1
2 2 2 1 1 0 2 0 2 0 2 1 0 2 0 1 2 1 2 1 2 1 1 2

2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 1 1 1 1 2 2 0
0 0 0 1 1 1 1 1 0 2 2 0 0 2 2 1 0 1 1 2 2 0 0 1
0 1 1 0 0 1 1 2 0 2 2 1 2 0 1 0 0 2 2 2 1 1 0 2
1 1 2 0 2 0 2 2 1 0 1 0 1 2 0 2 1 0 1 1 0 0 2 1
1 1 2 2 1 2 1 1 1 0 1 2 2 1 1 0 1 2 0 0 1 1 2 0
1 2 0 1 2 2 0 1 1 1 2 1 0 1 0 0 1 2 0 2 0 0 1 2
2 0 2 2 1 0 2 0 2 1 0 1 1 0 0 2 2 0 2 0 2 1 0 1
2 2 1 1 2 1 2 2 2 1 0 2 0 1 2 1 2 0 2 1 0 2 1 2
2 2 1 2 0 2 0 0 2 2 1 0 1 0 1 1 2 1 0 0 2 2 1 0

3 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 1 0 1 2 2 0 2 0 2
0 0 0 1 1 1 1 1 0 1 1 2 1 1 1 0 0 2 1 0 2 2 1 1
0 1 1 0 0 1 2 2 0 2 0 1 2 0 2 2 0 2 2 1 1 0 0 0
1 0 1 1 2 2 0 2 1 0 2 0 0 0 1 1 1 0 2 0 1 1 2 2
1 1 2 2 2 0 1 0 1 1 0 1 0 2 2 0 1 1 1 1 1 0 2 1
1 2 0 2 1 2 1 2 1 2 1 0 2 1 0 0 1 2 0 2 0 1 0 1
2 1 2 1 2 1 0 1 2 0 1 2 1 0 0 2 2 0 0 2 2 1 2 0
2 2 1 2 0 0 2 1 2 1 0 0 1 2 0 1 2 0 1 1 0 2 1 0
2 2 2 0 1 2 2 0 2 2 2 1 0 1 1 2 2 1 0 0 2 0 1 2

arrangements presented in the table are optimal according to the different criteria that we utilize in this

paper to select optimally blocked designs.

The remainder of this paper is organized as follows. In Section 2, we review the optimality criteria for

completely randomized designs on which our criteria for blocking are based. We introduce our optimality

criteria for blocking in Section 3. In Section 4, we describe how we can use different ways of sorting completely

randomized designs for the purpose of blocking. We apply that approach in Section 5 to generate the best

blocking arrangements for mixed-level and pure-level designs with 12, 16, 18, 20, and 27 runs, and describe

the results. We conclude the paper with a brief discussion of the limitations of our approach, and two

technical appendices in which we compare some of our results for 16 and 27 runs to those of Cheng et al.

(2004) and Xu et al. (2004), respectively.
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2 Criteria for completely randomized designs

The goal of this paper is to find optimal blocking arrangements of general resolution-3 designs with N runs

and k treatment factors. Hedayat et al. (1999) show that these designs are orthogonal arrays of strength 2.

Formally, an orthogonal array is a rectangular arrangement of symbols in N rows and k columns, with sj

different symbols in its jth column. An array of strength 2 has the property that, for all pairs of columns,

all pairs of symbols occur equally often (Rao, 1947). We denote the class of strength-2 arrays with N rows,

k columns and sj levels for the jth column by OA(N ; s1 . . . sk).

Xu and Wu (2001) propose the generalized word-length pattern (GWLP) to classify orthogonal arrays

of any strength, number of factors, and numbers of factor levels. The GWLP of a design with k factors and

strength t ≥ 2 is a vector (A3, A4, A5, . . . , Ak). We call an element Ai of the GWLP the generalized word

count of length i. It is calculated as follows. First, for each factor j in the design, sj − 1 orthogonal main-

effect contrast vectors with length
√
N are constructed. Second, the element-wise products are calculated

of all sets of i main-effect contrast vectors corresponding to i different main effects. Third, for each set of

i contrasts vectors, the element-wise products are summed and the resulting sum is squared. Finally, the

squared sums corresponding to all sets are summed and divided by N2.

The A3 value quantifies the extent to which main-effect contrast vectors are aliased with two-factor

interaction contrast vectors, and each other Ai value, where i > 3, measures the extent to which main-effect

contrast vectors are aliased with (i− 1)-factor interaction contrast vectors and q-factor interaction contrast

vectors are aliased with (i − q)-factor interaction contrast vectors (for q ranging from 2 to i − 2). Both

the word-length pattern for regular prime-level designs (Box et al., 2005; Wu and Hamada, 2009) and the

extended word-length pattern for nonregular two-level designs (Tang and Deng, 1999; Deng and Tang, 1999)

are special cases of the GWLP.

The resolution of a design is defined as the smallest p for which Ap > 0. All the designs discussed in

this paper have at least resolution 3. To distinguish between designs of equal resolution, Xu and Wu (2001)

use a generalized aberration (GA) criterion similar to the aberration criterion for regular fractional factorial

two-level designs (Fries and Hunter, 1980). A minimum GA design sequentially minimizes the entries of the

GWLP from left to right.

For the designs studied in this paper, aliasing of main-effect contrast vectors with two-factor interaction

contrast vectors and among two-factor interaction contrast vectors are key issues. This is because, usually,

the interest in industrial experimentation is in main effects and two-factor interactions, while higher-order

interaction effects are considered negligible. We therefore restrict our attention to the first two elements of

the GWLP, A3 and A4. As an illustration, the A3 and A4 values of the three eight-factor child designs in
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Table 2: Properties of the eight-factor child designs in Table 1. The elements of the FAc
3
vector correspond

to A3 values of 2, 2/3, 14/27, 4/9, 8/27, and 0.

ID Ac
3

Ac
4

FAc
3

1 16 60 2 18 0 0 0 36
2 16 60 2 18 0 0 0 36
3 20.30 45.85 0 1 11 16 23 5

Table 1 are shown in the second and third column of Table 2. We call these values Ac
3
and Ac

4
values, where

the superscript ‘c’ is short for child design.

The eight-factor child designs from parent designs 1 and 2 have minimum GA. Each one of the two child

designs can be obtained from the other by switching columns and relabeling levels. Therefore, the two child

designs are isomorphic. They outperform the eight-factor child design obtained from parent design 3 in

terms of the GA criterion because they have a smaller Ac
3
value.

Designs of resolution 3 are very often used for screening purposes, in which case only a few of the k

treatment factors are expected to be active. Therefore, the statistical properties of low-order projections of

the k-factor designs are of utmost importance. The lower the order of the projections, the more important

their properties for screening purposes. Since all projections of any orthogonal design into one factor result in

an equireplicated one-factor design and all projections of any resolution-3 design into two factors result in at

least one replicate of a full factorial design, projections into one and two factors cannot be used to distinguish

between different designs of resolution 3. Therefore, the most important projection is the projection into

three factors.

To quantify the projection properties of a design into three factors, Xu et al. (2004) propose to determine

the A3 value of the projections. If there are k factors in total, then the number of projections into three

factors equals k(k− 1)(k− 2)/6. Each of these projections yields a certain A3 value. Usually, there are only

a limited number of different A3 values. We call the vector of frequencies with which each of these A3 values

occurs in a three-factor projection FA3. This vector is a generalization of the confounding frequency vector

introduced by Deng and Tang (1999) for nonregular two-level designs.

The FA3 vectors of the three eight-factor child designs in Table 1 are listed in the last six columns of

Table 2. We denote these vectors by FAc
3
to stress that they correspond to child designs. The six different

A3 values obtained for the 56 3-factor projections of the three designs were 2, 2/3, 14/27, 4/9, 8/27 and 0.

The value of 2 is particularly unfavorable. It means that, in the corresponding three-factor projection, the

main effect of any one factor is completely aliased with a component of the two-factor interaction of the two

other factors.
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The child designs obtained from parent designs 1 and 2 both have a frequency distribution equal to

FAc
3
= (2, 18, 0, 0, 0, 36). For the child design from parent design 3, the frequency distribution is given by

FAc
3
= (0, 1, 11, 16, 23, 5). So, the worst three-factor projections of the child designs from parent designs

1 and 2 have A3 values of 2 and 2/3. Two of the 56 projections into three factors have an A3 value of

2, and 18 of the projections have an A3 value of 2/3. The child design from parent design 3 has better

projection properties because none of its projections into three factors has an A3 value of 2, and only one

of its projections has an A3 value of 2/3. In general, designs that have small frequencies for large A3 values

are preferable. The design that has the best projection properties, as measured by the FA3 distribution, is

said to have minimum projection aberration or minimum PA. Clearly, the child design from parent design 3

is the better option in Table 2 in terms of the PA criterion.

What is most interesting about the GA and PA criteria is that they favor different designs. The child

designs from parents 1 and 2 are the best in terms of the GA criterion, whereas the child design from parent

3 is better in terms of the PA criterion.

In Table 2, the last element of the FAc
3
vector gives the frequency of three-factor projections with an A3

value of zero. In the remainder of this paper, we omit this frequency, because it is redundant. Indeed, it can

always be calculated as the difference between k(k − 1)(k − 2)/6 and the sum of all other frequencies in the

FA3 vector.

3 Blocking optimality

A key feature of screening experiments is that not all the main effects and two-factor interaction effects can be

estimated simultaneously. When the experiment is blocked, this undesirable feature of screening experiments

is even worse because a proper data analysis requires the estimation of block effects on top of the main effects

of the treatment factors and the two-factor interaction effects. In this paper, we consider only blocking

arrangements for which the main effects of the treatment factors can be estimated independently from the

block effects. This is because we wish to prioritize estimation of main effects. In a blocked experiment,

besides being aliased with main-effect contrast vectors and other two-factor interaction contrast vectors, any

two-factor interaction contrast vector can also be confounded with block contrast vectors. As a result, the

challenge is to find blocking patterns that have as little aliasing as possible between main-effect contrast

vectors and two-factor interaction contrast vectors and among the two-factor interaction contrast vectors (as

in the absence of blocking), and an optimal confounding pattern between the two-factor interaction contrast

vectors and the block contrast vectors.
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3.1 Pure- and mixed-type words

When a design involves a blocking factor, there are contrast vectors involving the blocking factor and those

that do not involve the blocking factor. Therefore, any Ai value of a parent design, which we denote by Ap
i

(where the superscript ‘p’ is short for parent design), partly corresponds to the first type of contrast vectors

and partly to the second type. Following Cheng and Wu (2002), we call the portion of Ai that corresponds

to contrasts involving the blocking factor mixed-type word counts and the portion of Ai that corresponds

to contrasts not involving the blocking factor pure-type word counts. This distinction is important for the

evaluation of a given blocking arrangement, because it is less important to have low mixed-type word counts

than it is to have low pure-type word counts. This is due to the fact that blocking factors are assumed not to

interact with treatment factors. Mixed-type word counts quantify the extent to which there is confounding

between the treatment factors’ interaction contrast vectors on the one hand, and block contrast vectors on

the other hand, but also to what extent there is confounding between treatment × block contrast vectors

and treatment contrast vectors. Mixed-type word counts are therefore only partially relevant.

A crucial insight for the purpose of this paper is that the pure-type word count of length i of a parent

design equals Ac
i , the word count of length i of the child design. In the remainder of this paper, we denote

the mixed-type word count of length i by Ai−1,1. It is easy to see that Ap
i = Ac

i +Ai−1,1.

3.2 Five criteria

There has been extensive discussion in the literature about the importance of mixed-type and pure-type

word counts in design selection criteria. An overview of this discussion is given in Cheng et al. (2004) and Ai

and Zhang (2004). While all authors agree that the Ac
3
value should be minimized first, there is considerable

debate about the order of importance of the Ac
4
, A21, and A31 values.

Assuming that words of length i ≥ 5 can be ignored, we identified five sensible design selection criteria.

The first four criteria are based on two different orders of importance of the Ac
3
, Ac

4
, A21, and A31 values,

while the fifth criterion is based on the properties of the designs when projected into three factors. We list

the five criteria in Table 3. Using the criteria requires minimizing the entries in the table from left to right.

W1- and W2-criteria

The criteria labeled W1 and W2 in Table 3 were used by Cheng and Wu (2002) and Cheng et al. (2004).

These criteria are classical criteria because they both seek to minimize the most severe types of aliasing

and confounding. Which of the two criteria is preferable depends on the experimental context. Sometimes,

confounding of two-factor interaction effects with blocks is considered more serious than aliasing among
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Table 3: Five criteria for selecting optimal blocking arrangements. Entries have to be minimized from left
to right.

Criterion Minimization Vector

W1 Ac
3

Ac
4

A21 A31

W2 Ac
3

A21 Ac
4

A31

W−

1
Ac

3
Ac

4
−A21 A31

W−

2
Ac

3
−A21 Ac

4
A31

W3 FAc
3

FA21

two-factor interaction effects. In that case, criterion W2 is preferred. In other experiments, criterion W1

might be the preferred criterion.

W−

1
- and W−

2
-criteria

To the best of our knowledge, the W−

1
- and W−

2
-criteria are new to the literature. The novel feature of these

criteria is that they seek to maximize the confounding between the two-factor interaction effects and the

blocking factor, while they still aim at minimizing the aliasing of main effects of treatment factors with their

two-factor interactions, aliasing of two-factor interactions with other two-factor interactions and confounding

of three-factor interactions with blocks. In Table 3, we have made this clear by using the entry −A21 instead

of A21 for the W−

1
- and W−

2
-criteria. As a matter of fact, minimizing −A21 is the same as maximizing the

mixed-type word count of length 3, A21.

The W−

1
- and W−

2
-criteria are useful when we use a main-effects only model to detect active factors, in

cases with insufficient degrees of freedom to estimate two-factor interaction effects. This is because, when the

A21 value is large, there are fewer two-factor interaction effects that may inflate the residual error variance

in a model involving block effects and main effects. In that case, all other things being equal, the power for

detecting active factors is increased.

We illustrate the advantage of maximizing A21 with a small simulation study that involves the first two

designs of Table 1. Both designs are arrangements of an eight-factor 27-run design in three blocks of size

nine. The design with ID 1 in the table is W1-optimal, whereas the design with ID 2 is W−

1
-optimal. For

each of the two designs, we first normalized the interaction contrast vectors to a length of one. We then

generated 5000 sets of responses assuming that the two-factor interaction coefficients are from a standard

normal distribution. For each of the 5000 data sets, we estimated a model including block effects and

main effects, and quantified the mean squares value for the blocks, the main effects and the residual error.

Side-by-side box plots of the mean squares for the 5000 data sets are shown in Figure 1.

The figure shows that using the W−

1
-optimal blocking arrangement leads to a larger value of the mean

8



Figure 1: Comparison of mean squares for blocks, main effects and residual error for a W1-optimal and a
W−

1
-optimal blocking arrangement of a 27-run design involving eight three-level factors, assuming a model

involving block effects and main effects is fitted.

squares for the blocks than the W1-optimal blocking arrangement. Conversely, the W−

1
-optimal blocking

arrangement leads to a smaller value of the mean squares for the residual error than the W1-optimal blocking

arrangement. Finally, the mean squares for the main effects remain unchanged. In 56% of the simulations,

the error mean squares for the W1-optimal design were higher than the error mean squares for the W−

1
-

optimal alternative. In 50% of the simulations, the increase in mean squares was 11% or more. A drop

in the mean squares for the residual error results in a smaller estimate for the residual error variance, and

therefore in a larger value for the test statistics for the main effects. As a result, the power for detecting

main effects increases. For this reason, the W−

1
-optimal blocking arrangement is more suitable for detecting

active main effects than the W1-optimal arrangement. Since the child designs of the W1- and W−

1
-optimal

designs are isomorphic in this example, the differences in mean squares are entirely due to the blocking.

Note that, in Figure 1, the drop in the mean squares for the residual error is smaller than the increase

in the mean squares for the blocks. This is due to the fact that, in the main-effects model we utilized to

analyze the simulated data, eight degrees of freedom are associated with the mean squares for the residual

error, while only two degrees of freedom are associated with blocks. In a case with a larger number of blocks

and a smaller number of degrees of freedom for the residual error, the decrease in the mean squares value

for the residual error would be larger relative to the increase in the mean squares value for the blocks.
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Table 4: GWLP-based characteristics of the blocked designs in Table 1.

ID Ac
3

Ac
4

A21 A31 Ap
3

Ap
4

1 16 60 8 48 24 108
2 16 60 14 24 30 84
3 20.30 45.85 10.11 36.82 30.41 82.67

W3-criterion

The final criterion we use is based on the projections of designs into three factors. We label that criterion

W3. The W3-criterion is similar in spirit to the PA criterion discussed in the Section 2, but it distinguishes

between the frequency vector for the pure-type word counts of length 3, FAc
3
, and the frequency vector for

the mixed-type word counts of that length, FA21. More specifically, the W3-criterion requires sequentially

minimizing the elements of FAc
3
, followed by sequentially minimizing the elements of FA21. The criterion

is a simplified version of the WG
2
-criterion proposed by Cheng et al. (2004) for blocking two-level designs.

Application

To illustrate the application of the five blocking criteria, consider again the three designs in Table 1. The

GWLP-based characteristics of these designs are shown in Table 4. Of the three designs, the one labeled 1

performs best in terms of W1- and W2-criteria. In terms of the W−

1
- and W−

2
-criteria, the design labeled 2

is best.

The word-length frequency vectors required to determine the designs that are best with respect to the

W3-criterion are given in Table 5. Of the three designs, the design labeled 3 is best according to the pure-

type word-length frequency vector FAc
3
, because it has a zero frequency for A3 = 2. As a result, for each

projection into three factors, the model with all main effects and all two-factor interaction effects is estimable.

Design 2 has a zero frequency of A3 = 2 in the mixed-type word-length frequency vector FA21. Although

that design has a frequency of two for A3 = 2 in the pure-type word-length frequency vector FAc
3
, it is a

compromise between the two other designs, because it has a better FA21 vector than design 1 (see Table 5)

and a better Ac
3
value than design 3 (see Table 4).

4 Finding optimal blocking arrangements

In this section, we explain how to determine the optimal blocking arrangements according to the W1-, W
−

1
-,

W2-, W
−

2
- and W3-criteria. Two key concepts in our approach are the child design and the parent design.

The child design is an orthogonal array denoted by OA(N ; s1 . . . sk). The parent design is an orthogonal
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Table 5: Pure-type and mixed-type word-length frequency vectors FAc
3
, FA21 and FAp

3
for the three-factor

projections of the designs in Table 1.

A3 values

ID 2 2/3 14/27 4/9 8/27

1 FAc
3

2 18 0 0 0
FA21 1 9 0 0 0

FAp
3

3 27 0 0 0

2 FAc
3

2 18 0 0 0
FA21 0 7 14 0 7

FAp
3

2 25 14 0 7

3 FAc
3

0 1 11 16 23
FA21 0 1 7 5 13

FAp
3

0 2 18 21 36

array with one extra column for the blocking factor. Since we denote the number of blocks by b, that extra

column should have b levels. We denote this kind of array by OA(N ; s1 . . . skb). This is important because all

possible ways of blocking k-factor child designs can be obtained by enumerating all non-isomorphic parent

designs of the type OA(N ; s1 . . . skb), and studying all possible projections of these parent designs into

designs with one fewer b-level column. A key feature of this approach, which is known as single replacement

in the literature, is that it ensures orthogonality of the blocking factor with respect to the main effects of

the k treatment factors. This is consistent with our prioritization of the main-effects estimation.

Our use of single replacement for any number of blocks b is possible due to the work of Schoen et al.

(2010), whose enumeration algorithm enabled us to obtain complete catalogs of all non-isomorphic pure-level

and mixed-level orthogonal arrays, which can serve as parent and child designs.

4.1 Determining A
c

3
, A21, A

c

4
and A31 values and FA

c

3
and FA21 vectors

The first step in finding optimal blocking arrangements is to determine the Ac
3
, A21, A

c
4
and A31 values and

the pure-type and mixed-type word-length frequency vectors FAc
3
and FA21. We start by computing the Ap

3

and Ap
4
values, and the word length frequency vector, FAp

3
, of the parent designs. The challenge then is to

split the Ap
3
values into Ac

3
and A21 values, the Ap

4
values into Ac

4
and A31 values, and the FAp

3
vectors into

FAc
3
and FA21 vectors. The most convenient way to achieve this is by computing the A3 and A4 values of

any possible child design that can be obtained from the parent designs by dropping a b-level factor. The A21

and A31 values are then calculated as A21 = Ap
3
−Ac

3
and A31 = Ap

4
−Ac

4
, respectively. In a similar fashion,

11



we computed the mixed-type word-length frequency vector FA21 as the element-wise difference between the

FA3 vectors of the parent designs and those of the child designs.

We illustrate this approach for parent design 1 in Table 1. This design involves nine three-level factors

in total, eight treatment factors and one blocking factor. The nine-factor design is a parent design with

Ap
3
= 24 and Ap

4
= 108. Its FAp

3
frequency vector is (3, 27, 0, 0, 0), with elements corresponding to the A3

values 2, 2/3, 14/27, 4/9 and 8/27 for the three-factor projections. As shown in Table 2, the child design

obtained by dropping the blocking factor for design 1 in Table 1 has Ac
3
= 16 and Ac

4
= 60. Therefore, the

blocking arrangement for design 1 in Table 1 has A21 = 24− 16 = 8 and A31 = 108− 60 = 48.

Table 2 also shows that the FAc
3
frequency vector is (2, 18, 0, 0, 0). As a result, the frequency vector for

the mixed-type counts, FA21, is (3− 2, 27− 18, 0, 0, 0) or (1, 9, 0, 0, 0). This is shown in Table 5, along with

the results for parent designs 2 and 3.

4.2 Determining the optimal blocking arrangements

Design 1 in Table 1 is a minimum GA design for nine three-level factors and 27 runs. In addition, its

eight-factor projection obtained by dropping the blocking factor is a minimum GA design for eight three-

level factors and 27 runs. Therefore, the design sequentially minimizes (Ac
3
, Ac

4
, Ap

3
, Ap

4
). This is equivalent

to sequentially minimizing (Ac
3
, Ac

4
, Ap

3
− Ac

3
, Ap

4
− Ac

4
), or (Ac

3
, Ac

4
, A21, A31). As a result, the blocking

arrangement given in Table 1 for design 1 is the best blocking arrangement in terms of the W1-criterion.

The blocking arrangement obtained from parent design 1 is also optimal in terms of the W2-criterion.

Optimization of this criterion requires sequential minimization of (Ac
3
, A21, A

c
4
, A31), which is equivalent to

sequential minimization of (Ac
3
, Ap

3
, Ac

4
, Ap

4
). The fact that the blocking arrangement is optimal in terms of

both the W1-criterion and the W2-criterion is due to the fact that all eight-factor designs with minimum Ac
3

value have the same Ac
4
value. Therefore, sequentially minimizing (Ac

3
, Ac

4
, Ap

3
, Ap

4
) to find the best design in

terms of the W1-criterion gives exactly the same results as sequentially minimizing (Ac
3
, Ap

3
, Ac

4
, Ap

4
) to find

the best design in terms of the W2-criterion. However, it will not generally be the case that the W1- and

W2-criteria favor the same design.

The nine-factor parent design 2 in Table 1 has Ap
3
and Ap

4
values of 30 and 84, respectively. Dropping

the blocking factor of the design results in a minimum GA design for eight factors. Design 2 has the worst

possible Ap
3
value among all parent designs that project into the minimum GA eight-factor child design. So,

the blocking arrangement is such that the vector (Ac
3
, Ac

4
,−Ap

3
, Ap

4
) is sequentially minimized. Therefore,

it is optimal in terms of the W−

1
-criterion. Due to the fact that all eight-factor designs with minimum Ac

3

value have the same Ac
4
value, the blocking arrangement is also optimal in terms of the W−

2
-criterion.

Finally, the nine-factor parent design 3 in Table 1 has an FAp
3
vector equal to (0, 2, 18, 21, 36). It therefore

12



sequentially minimizes the FAp
3
vector. Dropping the blocking factor of the design results in an eight-factor

projection that is ranked third in the FA3 ranking of all eight-factor child designs. The resulting eight-factor

child design is, however, the best ranked one among all eight-factor designs that can be obtained from any

nine-factor design by means of projection. In other words, it sequentially minimizes the FAc
3
vector among

all child designs. Because parent design 3 has the best FAp
3
ranking among all possible nine-factor parent

designs and projects into the best child design, its blocking arrangement in Table 1 sequentially minimizes

(FAc
3
, FAp

3
). This is equivalent to minimizing (FAc

3
, FAp

3
− FAc

3
) or (FAc

3
, FA21). Using the blocking

factor of design 3 therefore leads to the best blocking arrangement according to the W3-criterion. The FA21

frequency vector is (0, 2− 1, 18− 11, 21− 16, 36− 23) or (0, 1, 7, 5, 13).

The different minimization vectors in Table 3 make it easy to determine optimal blocking arrangements.

For given numbers of treatment factors k and numbers of levels s1, . . . , sk, we first create all non-isomorphic

parent designs of the type OA(N ; s1 . . . skb) and determine their Ap
3
, Ap

4
and FAp

3
values. We then create all

possible child designs by dropping a b-level factor and determine their Ac
3
and Ac

4
values, the corresponding

A21 and A31 values, the FAc
3
vector and the corresponding FA21-vector. The optimal blocking arrangements

according to the W1-, W
−

1
-, W2-, W

−

2
- and W3-criteria can then be found by sequentially minimizing the

entries in Table 3.

In many of the scenarios we investigated, we found that there are several blocking arrangements which

have the same values for Ac
3
, Ac

4
, Ap

3
and Ap

4
, but different word-length frequency vectors FAc

3
and FAp

3
.

Generally, designs that sequentially minimize the FAc
3
and FAp

3
vectors increase the quality of the three-

factor projections. Therefore, we used these vectors as tie-breakers to distinguish between designs that are

optimal in terms of the W1-, W
−

1
-, W2- and W−

2
-criteria. Of all W1-, W

−

1
-, W2- and W−

2
-optimal designs,

we only report the ones that minimize the FAc
3
and FAp

3
vectors. This explains why, in a few cases, we

report fewer designs than Cheng et al. (2004).

5 Optimal blocking arrangements for designs with 12-27 runs

In this section, we apply our blocking method to catalogs of all non-isomorphic orthogonal designs with

12, 16, 18, 20, and 27 runs that include at least one factor at more than two levels. We do not address

arrangements of two-level designs in two blocks because these were studied earlier by Cheng et al. (2004,

CLY). However, we do address the arrangement of two-level 16-run designs in four blocks, because these can

be derived from designs of the type OA(16; 412n). We use this type of design to point out differences between

our methodology and CLY’s methodology. Files containing all optimal blocking arrangements reported in

this section are available electronically from the authors.
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The design tables in this section identify all parent designs by three basic characteristics. First, a simple

ID is given. Second, the R1 ranking gives the rank of a design after sequentially sorting the designs in

ascending order of the A3 and A4 values and the FA3 vector. Third, the R2 ranking gives the rank of a

design after sequential sorting the designs in ascending order of the FA3 vector and the A4 value. The

designs with R1 = 1 are recommended when more than three active factors are expected. The designs with

R2 = 1 are recommended when at most three factors are expected to be active.

In the tables, the basic characteristics of the designs are followed by the A3 and A4 values and the FA3

vector. Finally, each table involves one or two columns describing the blocking arrangements that can be

obtained from the parent designs. In Section 5.1, we explain in detail how the tables with optimal blocking

arrangements can be used.

5.1 Designs with 12 runs

Wang and Wu (1992) were the first to list the complete series of non-isomorphic designs of the type OA(12; 3×

2n). Table 6 shows the designs we recommend for blocking purposes. The R1 and R2 rankings of the designs

are identical. The A3 values for three-factor projections corresponding to the three elements of the FA3

vector are 1, 2/3, and 1/9.

A design of the type OA(12; 3 × 2n) can be used to arrange a 3 × 2n−1 design in two blocks of size 6,

or to arrange a 2n design in three blocks of size 4. The columns labeled ‘2 blocks’ and ‘3 blocks’ give the

blocking arrangements that are optimal with respect to each of the five optimality criteria we defined. We

Table 6: Optimal blocking arrangements based on parent designs of the type OA(12; 3×2n). Elements of the
FA3 vector correspond to A3 values of 1, 2/3, and 1/9. An ‘x’ indicates W1- and W2-optimal arrangements;
a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘z’ indicates W3-optimal arrangements.

n ID R1, R2 A3 A4 FA3 2 blocks 3 blocks

4 1 1 1.778 1 0 2 4 1:2;xyz xyz
3 1 1 0.111 0.889 0 0 1 1:1;xz xz

2 2 0.778 0.222 0 1 1
2 1 1 0 - 0 0 0 1:1;xz xz

Table 7: Properties of two-level child designs obtained from parent designs of the type OA(12; 3 × 2n).
Elements of the FA3 vector correspond to A3 values of 1, 2/3, and 1/9.

n Rp
1

A3 A4 FA3

4 1 0.444 0.111 0 0 4
3 1 0.111 - 0 0 1
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explain how to use the table by example.

The entries in the column labeled ‘2 blocks’ are of the form ‘p:q;{criteria}’. The first digit, p, indicates

which column of the parent design has to be used for the blocking factor. The second digit, q, is the

R1 rank of the child design obtained by dropping the column corresponding to the blocking factor, and

{criteria} specifies the set of criteria for which the resulting blocking arrangement is optimal. Consider,

first, the single design of the type OA(12; 3 × 24). It is impossible to project this design into the design

of the type OA(12; 3 × 23) with R1 = 1 by dropping one of its two-level columns. However, by dropping

the first two-level column, the OA(12; 3 × 24) design projects into the OA(12; 3 × 23) design with R1 = 2.

This explains the entry ‘1:2’ in the column labeled ‘2 blocks’. The OA(12; 3 × 23) child design is reported

in Table 6 as well, in the row for n = 3 and R1 = 2. Dropping any other two-level column than the first

one from the OA(12; 3 × 24) design also results in the OA(12; 3 × 23) child design with R1 = 2. So, there

is a single parent design, and it projects into a single child design. Therefore, the blocking arrangement is

optimal according to all five optimality criteria considered here. This is indicated by the letters x, y, and z

after the semicolon in the column labeled ‘2 blocks’. The A21 value and the FA21 vector for this blocking

arrangement can be found by subtracting the A3 value and the FA3 frequencies of the child design from the

A3 value and the FA3 frequencies of the parent design, respectively. This yields A21 = 1.778 − 0.778 = 1

and FA21 = (0− 0, 2− 1, 4− 1) = (0, 1, 3).

By dropping the three-level factor of the OA(12; 3×24) parent design, we obtain a child design of the type

OA(12; 24). We have displayed the A3 and A4 values and the FA3 vectors of the child design in Table 7. The

24 child design has A3 and A4 values of 0.444 and 0.111, respectively, and an FA3 vector equal to (0, 0, 4).

Again, the A21 value and the FA21 vector can be found by subtracting the entries of the child design from

those of the parent design. This yields A21 = 1.778−0.444 = 1.333 and FA21 = (0−0, 2−0, 4−4) = (0, 2, 0).

There are three different designs of the type OA(12; 3 × 23). Two of these are listed in Table 6. Their

two-level parts consist of a full 23 design combined with one regular half-fraction of that design. The

OA(12; 3×23) design with R1 = 1 can be used to obtain the best blocking arrangement in terms of the W1-,

W2- and W3-criteria, for two as well as for three blocks. The properties of the OA(12; 23) child design in

the three-blocks case are given in Table 7. The OA(12; 3× 23) design with R1 = 2 is reported only because

it is the child design corresponding to the OA(12; 3× 24) parent design. In other words, the OA(12; 3× 23)

design with R1 = 2 can be arranged in two blocks of size 6, using the OA(12; 3× 24) as a parent design.

Using the three-level factor of the OA(12; 3 × 23) design with R1 = 2 as a blocking factor results in an

optimal blocking arrangement in terms of the W−

1
- and W−

2
-criteria. However, we do not recommend these

criteria in this case, for the following reason. The rationale of the W−

1
- and W−

2
-criteria is to minimize the

inflation of the residual error by two-factor interactions in a model containing main effects and block effects
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only. However, any OA(12; 23) design arranged in three blocks of size four allows us to fit a model containing

all main effects and all two-factor interactions, with three degrees of freedom for estimating the residual error

variance. Hence, in this case, the W−

1
- and W−

2
-criteria, which assume that there are not enough degrees of

freedom for estimating a model including all two-factor interaction effects, are not needed.

The OA(12; 3× 23) design with R1 = 3 is not shown in Table 6, even though it can be used to obtain a

W−

1
- and W−

2
-optimal arrangement of a OA(12; 3×22) design in two blocks. Here too, we do not recommend

the W−

1
- and W−

2
-criteria, because the number of runs is large enough to estimate the block effects, the main

effects and the two-factor interaction effects, with one degree of freedom for the residual error variance.

Finally, there are two designs of the type OA(12; 3 × 22). The recommended one is the full factorial

design, which can be arranged in three blocks of size four by assigning the three replicates of the 22 factorial

design to the three blocks, and in two blocks of size six by assigning the two replicates of the 3× 2 factorial

design to the two blocks. The resulting blocking arrangements are optimal in terms of the W1-, W2- and

W3-criteria.

The second design of the type OA(12; 3× 22) results in blocking arrangements that are optimal in terms

of the W−

1
- and W−

2
-criteria. However, these criteria again are not appropriate because the number of runs

is sufficiently large to estimate a model including all two-factor interaction effects. Therefore, the second

OA(12; 3× 22) design is not shown in Table 6.

Table 8: Optimal blocking arrangements based on parent designs of the type OA(16; 432n). Elements of the
FA3 vector correspond to A3 values of 3, 1, 1/2, and 1/4. An ‘x’ indicatesW1- andW2-optimal arrangements;
a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘z’ indicates W3-optimal arrangements.

n ID R1 R2 A3 A4 FA3 2 blocks 4 blocks

6 1 1 1 32 51 1 21 12 8 1:1;xyz 1:1;xyz
5 1 1 1 25 32 1 17 8 4 4:1;xyz 1:1;xyz
4 1 1 2 19 18 1 14 4 0 3:1;xy

2 3 1 19 18.5 1 13 5 2 1:3;z 1:2;z
3 4 3 19 19 1 16 0 0 1:1;xy

3 1 1 2 13 12 1 10 0 0 1:1;xz 1:2;x
2 2 1 13.75 9.75 1 9 3 1
3 3 3 14 9 1 10 2 0 1:1;yz
4 4 4 14 9 1 11 0 0 1:1;y

2 1 1 1 9 5 1 6 0 0 1:1;xz 1:1;xz
2 3 3 10 3 1 7 0 0 1:1;y 1:1;y

1 1 1 1 6 1 1 3 0 0 1:1;xyz 1:1;xyz
0 1 1 1 3 0 1 0 0 0 1:1;xyz

16



5.2 Designs with 16 runs

The blocking of pure two-level 16-run designs has been studied extensively by CLY. In many studies, however,

experimenters also want to include factors with more than two levels. Tables 8–10 present parent designs as

well as optimal blocking arrangements for cases with two-level factors and one or more additional four-level

factors. In addition, Table 10 also shows the optimal arrangements of pure two-level designs in four blocks.

While these blocking arrangements have been studied by CLY already, we decided to report a table with

the best blocking arrangements found using our five criteria for this case for three reasons. First, the table

facilitates a comparison of our methodology with the methodology of CLY. Second, we found an attractive

blocking arrangement for the well-known resolution-5 25−1 design that was not given by CLY. Third, two of

our criteria were not used by CLY.

A design is listed in Tables 8–10 if it is best according to the R1 or R2 ranking, if it yields an optimal

blocking arrangement, or if it is the child design of an optimal blocking arrangement. Table 8 contains

Table 9: Optimal blocking arrangements based on parent designs of the type OA(16; 422n). Elements of the
FA3 vector correspond to A3 values of 1, 1/2, and 1/4. An ‘x’ indicates W1- and W2-optimal arrangements;
a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘z’ indicates W3-optimal arrangements.

n ID R1 R2 A3 A4 FA3 2 blocks 4 blocks

9 1 1 1 33 69 15 24 24 1;1;xyz 1:1;xyz
8 1 1 1 26 47 12 20 16 1:1;xy,3:9;z 2:1;xyz
7 1 1 3 20 30 10 16 8 2:1;xy,1:5;z

2 9 1 20 31 10 14 12
3 10 4 20 31 11 12 12 3:1;xyz

6 1 1 1 14 21 8 8 8 1:1;xz
2 5 8 15 17 9 12 0 2:1;xy
3 12 14 15 18 12 4 4 1:2;y
4 16 6 15 18.5 9 9 6 1:3;z

5 1 1 1 10 12 6 6 4 1:2;z
2 2 4 10 12 7 4 4 3:1;x
3 12 10 11 9 7 8 0 1:1;xyz
4 21 21 11 10 11 0 0 1:1;y

4 1 1 8 6 8 6 0 0 1:2;x 1:2;x
2 2 1 6.5 7 4 4 2 1:1;z
3 12 7 7.5 4.5 5 5 0 1:1;z
4 19 19 8 4 8 0 0 1:1;y 1:1;y

3 1 1 1 4 3 3 2 0 1:1;xz 1:1;xz
2 2 5 4 3 4 0 0 1:1;x
3 8 9 5 1 5 0 0 1:1;y
4 10 10 6 1 6 0 0 1:1;y

2 1 1 1 2 1 2 0 0 1:1;xz 1:1;xz
2 3 3 3 0 3 0 0 1:1;y

1 1 1 1 1 - 1 0 0 1:1;xyz 1:1;xz

17



the results for designs of the type OA(16; 432n). Such designs can be used to arrange designs of the type

OA(16; 422n) in four blocks of size four, or to arrange OA(16; 432n−1) designs in two blocks of size eight.

The Ac
3
and Ac

4
values, and the FAc

3
vector, for the arrangements in two blocks can be found in Table 8 as

well. The Ac
3
and Ac

4
values, and the FAc

3
vector, for the arrangements in four blocks are given in Table 9.

Even in the small series of OA(16; 432n) designs, there is a remarkable differentiation in optimality

features. For example, there are four non-isomorphic OA(16; 4323) designs. The design with ranking R2 = 1

does not yield an optimal blocking arrangement according to any of the criteria, while the remaining three

designs are needed to obtain an optimal blocking arrangement for each of our five optimality criteria.

Table 9 presents the results for the designs of the type OA(16; 422n). An OA(16; 422n) design can be used

to arrange OA(16; 4× 2n) designs in four blocks and to arrange OA(16; 422n−1) designs in two blocks. The

child designs for the cases involving four blocks are given in Table 10, whereas those for the cases involving

two blocks are given in Table 9 itself. For the OA(16; 422n) parent design for eight two-level factors, i.e. for

n = 8, Table 9 gives two different optimal arrangements in two blocks, depending on the column used for the

blocking factor. Using the design’s first column for the blocking factor results in a blocking arrangement that

is W1-, W2-, W
−

1
and W−

2
-optimal, whereas using the design’s third column for the blocking factor results

in a blocking arrangement that is W3-optimal. This explains the entry ‘1:1;xy,3:9;z’ in Table 9. Similarly,

the first parent design for seven two-level factors (n = 7) gives two different optimal arrangements in four

blocks.

Table 10 presents the results for designs of the type OA(16; 4 × 2n). The parent designs for optimal

arrangements in four blocks have child designs whose characteristics are given in Table 11.

The arrangements in four blocks in Table 10 permit a direct comparison of our results with those of CLY.

In Table 10, we mark the designs not found by these authors with an asterisk. Remarkably, our W1-optimal

design with five two-level factors is one of these designs. Its treatment factors form a regular resolution-5 25−1

design. The W1-optimal blocking arrangement, however, is nonregular because its FA21 vector is (0, 6, 0),

where the frequency of 6 corresponds to an A3 value of 0.5. The best blocking arrangement of the regular

resolution-5 25−1 design reported by CLY has an FA21 vector of (1, 4, 0), and therefore confounds one two-

factor interaction effect with the blocks. OurW1-optimal design does not confound any two-factor interaction

effect with the blocks completely, and is therefore preferable. We provide an extensive comparison of all

other arrangements of 16-run two-level designs in four blocks we obtained with these of CLY in Appendix A.

The case involving five two-level factors (n = 5) and four blocks in Table 10 shows, for the first time in

this paper, that W−

1
-optimal designs can differ from W−

2
-optimal designs. The W1-optimal design for this

case is also different from the W2-optimal design.

We do not list W−

1
- or W−

2
-optimal designs for cases involving three and four two-level factors in four
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blocks, because it is possible to estimate all the main effects and two-factor interactions using the W1- or

W2-optimal designs. As a result, there is no added value in utilizing the W−

1
- or W−

2
-optimal blocking

arrangements in these scenarios.

There is also a set of designs of the type OA(16; 8 × 2n) involving up to eight two-level factors, which

can be used to run an OA(16; 8 × 2n−1) design in two blocks of size eight or an OA(16; 2n) design in eight

blocks of size two. The only non-isomorphic OA(16; 8 × 2n) designs with three, five, six, seven or eight

two-level factors can be constructed by folding over an eight-run full factorial or fractional factorial design,

Table 10: Optimal blocking arrangements based on parent designs of the type OA(16; 4×2n). Elements of the
FA3 vector correspond to A3 values of 1, 1/2, and 1/4. An ‘x’ indicates W1- and W2-optimal arrangements;
an ‘x1’ indicates W1-optimal arrangements; an ‘x2’ indicates W2-optimal arrangements; a ‘y’ indicates W−

1
-

and W−

2
-optimal arrangements; a ‘y1’ indicates W−

1
-optimal arrangements; a ‘y2’ indicates W−

2
-optimal

arrangements; a ‘z’ indicates W3-optimal arrangements. Two-level designs in four blocks marked with an
asterisk, and all mixed-level designs in two-blocks, were not found previously.

n ID R1 R2 A3 A4 FA3 2 blocks 4 blocks

12 1 1 1 34 87 6 24 64 1:1;xyz xyz
11 1 1 1 27 62 3 24 48 1:1;xyz xyz
10 1 1 1 21 42 1 24 32 1:11;z xyz

2 16 2 21 43 3 18 36 5:1;xy
9 1 1 3 15 30 3 12 24 1:1;x

2 11 1 16 26 0 24 16 1:37;z xyz
3 23 2 16 28 1 18 24 4:1;y

8 1 1 3 11 19 1 12 16
2 3 11 11 19 3 8 16 5:1;x
3 34 2 12 14 0 24 0 xyz
4 37 1 12 16 0 18 12 2:5;z
5 66 28 12 18 4 8 16 1:1;y

7 1 1 24 7 13 3 4 8 3:1;xy
2 3 6 7.5 12 1 8 10 1:3;z
3 5 1 8 10 0 12 8
4 64 5 9 7 0 18 0 xyz

6 1 1 46 3 11 3 0 0 1:2;x x
2 3 1 4.5 8 0 6 6
3 4 3 5 6 0 8 4 2:1;yz
4 46 7 6 3 0 12 0 z
5 71 47 7 3 3 8 0 y*

5 1 1 1 2 5 0 4 0 1:1;xz x2z
2 2 30 2 5 2 0 0
3 6 6 3 3 0 6 0 x1y1*
4 43 48 4 2 4 0 0 1:2;y
5 50 38 6 1 6 0 0 y2*

4 1 1 1 1 2 0 2 0 1:1;xz xz
2 2 11 1 2 1 0 0
3 15 21 2 1 2 0 0 1:1;y

3 1 1 1 0 1 0 0 0 1:1;xz xz
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and linking each fold-over pair to a different level of the eight-level factor. There are two non-isomorphic

OA(16; 8 × 24) designs, both of which have an A3 value of 6. The two-level part of one of these designs is

a replicated half fraction of the 24 design. Therefore, this design has an A4 value of 1. The other design,

which is the better of the two, has a full factorial 24 design for the two-level factors, which results in a zero

A4 value. For that design, the eight-level factor can be constructed using any three two-factor interactions

of the two-level factors.

In each case, there is only one possible way to obtain an orthogonally blocked design involving two blocks

of size eight from the OA(16; 8 × 2n) design. That arrangement can be obtained by using any two-level

factor as the blocking factor. In case n = 4, the best blocking pattern is obtained from the OA(16; 8 × 24)

with a zero A4 value. For constructing 16-run designs involving eight blocks of size two, there is only one

possibility, that is by using the eight-level factor as the blocking factor. In case n = 4, it is again best to use

the OA(16; 8× 24) design with a zero A4 value.

5.3 Designs with 18 runs

In this subsection, we provide optimal blocking arrangements of 18-run designs. These designs permit the

study of up to seven three-level factors, and an additional two-level factor, and the study of one six-level factor

with up to six three-level factors. The designs, denoted by OA(18; 3n × 2), OA(18; 3n) and OA(18; 6× 3n),

have been studied extensively before. Schoen (2009) provides a recent overview of the literature on 18-run

designs and a comprehensive characterization of the designs. The blocking of these 18-run designs has,

Table 11: Properties of two-level child designs obtained from parent designs of the type OA(16; 4 × 2n).
Elements of the FA3 vector correspond to A3 values of 1, 1/2, and 1/4. The column labeled Rp

1
gives the

R1 ranks of the parent designs in Table 10.

n Rp
1

A3 A4 FA3

12 1 16 39 0 0 64
11 1 12 26 0 0 48
10 1 8 18 0 0 32
9 11 4 14 0 0 16
8 34 0 14 0 0 0
7 64 0 7 0 0 0
6 1 0 3 0 0 0

46 0 3 0 0 0
71 0 3 0 0 0

5 1 0 1 0 0 0
6 0 0 0 0 0
50 0 1 0 0 0

4 1 0 0 0 0 0
3 1 0 0 0 0 0
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however, not received any attention in the literature. The optimal blocking arrangements we obtained are

given in Tables 12–14.

Table 12 shows the best blocking arrangements obtained from designs of the type OA(18; 3n × 2). These

designs can be used to arrange OA(18; 3n) designs in two blocks and to arrange OA(18; 3n−1 × 2) designs in

three blocks. Remarkably, the parent designs that give the best arrangements in two blocks are different from

the parent designs that give the best arrangements in three blocks in all but one case. Another noteworthy

result is that Taguchi’s L18 array, which is the design with n = 7 and R1 = 3 in Table 12, cannot be used to

obtain an optimal arrangement in two blocks. The child designs of the optimal arrangements in two blocks

are the three-level designs with R1 = 1 in Table 13. Table 12 shows that the corresponding parent designs

also have R1 = 1 for n = 7 and 6, but, for n = 5 and 4, R1 equals 5 and 4, respectively. Finally, the optimal

arrangement in three blocks derived from a parent design with n = 3 has a full factorial 32 × 2 child design.

There is no extensive confounding of the two-factor interactions with the blocks for this arrangement. Since

two degrees of freedom are available for estimating the residual error variance in case a model including

two-factor interactions is estimated, we do not recommend using the W−

1
- or W−

2
-criterion in this scenario.

Except for the case where n = 7 and R1 = 1 and the case where n = 4 and R1 = 4, all the designs in

Table 12 can be derived from Taguchi’s L18 array by dropping one or more columns.

Optimal arrangements of pure three-level 18-run designs in three blocks of size six are given in Table 13.

For all designs, the first column is used for the blocking factor. The child designs of all optimal blocking

Table 12: Optimal blocking arrangements based on parent designs of the type OA(18; 3n × 2). Elements of
the FA3 vector correspond to A3 values of 2, 1, 2/3, 1/2, and 4/9. An ‘x’ indicates W1- and W2-optimal
arrangements; a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘z’ indicates W3-optimal arrangements.

n ID R1 R2 A3 A4 FA3 2 blocks 3 blocks

7 1 1 1 28 52.5 1 0 21 16 9 1:1;xyz
2 3 3 28 52.5 1 6 9 28 0 1:1;xyz

6 1 1 1 16 28.5 0 0 9 20 0 1:1;xyz
2 3 3 16.67 25.83 0 0 15 8 6 1:3;z
3 5 5 17 24.5 0 6 6 14 0 3:1;xy

5 1 1 11 8.5 12 0 3 3 7 0 5:1;x
2 3 1 8.67 11.5 0 0 6 4 6
3 4 2 8.78 11.17 0 0 6 6 4 1:4;z
4 5 3 9 10.5 0 0 6 10 0 1:1;xyz
5 19 13 10 7.5 0 6 3 4 0 3:1;y

4 1 1 33 3.5 4.5 0 3 0 1 0 1:1;xz
2 4 1 3.78 3.94 0 0 0 4 4 1:1;xz
3 10 8 4 3.5 0 0 3 2 2 1:1;y
4 26 12 4.67 2.17 0 0 4 4 0 1:1;y

3 1 1 1 0.5 1.5 0 0 0 1 0 1:1;xz 1:1;xz
2 10 8 1.83 0.17 0 0 2 1 0 1:1;y
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arrangements have R1 = R2 = 1. The seven-factor design with R1 = R2 = 1 in Table 13 does not yield any

optimal blocking pattern, but it is included in the table because it is the child design of the first optimal

blocking arrangement involving two blocks in Table 12.

Finally, Table 14 gives optimal blocking arrangements of OA(18; 3n) designs in six blocks of size three

and of OA(18; 6× 3n−1) designs in three blocks of size six. Dropping any three-level column of any design in

Table 14 results in the same projection, so that every possible arrangement in three blocks is optimal with

respect to each of our five criteria. As there is only one six-level factor, using that factor as a blocking factor

yields designs that are optimal with respect to each of our five criteria as well.

5.4 Designs with 20 runs

In this section, we discuss optimal blocking arrangements for 20-run designs. Optimal blocking arrangements

of pure two-level OA(20; 2n) designs in two blocks of size ten are given by CLY. In Table 15, we present

optimal arrangements of OA(20; 2n) designs in five blocks of size four, and optimal arrangements of OA(20; 5×

2n) designs in two blocks of size ten. In Table 16, we give the A3 and A4 values and the FA3 vector of

Table 13: Optimal blocking arrangements based on parent designs of the type OA(18; 3n). Elements of the
FA3 vector correspond to A3 values of 2, 1, 2/3, and 1/2. An ‘x’ indicatesW1- andW2-optimal arrangements;
a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘z’ indicates W3-optimal arrangements.

n ID R1, R2 A3 A4 FA3 3 blocks

7 1 1 22.0 34.5 1 0 18 16
2 3 22.0 34.5 1 6 0 28 1:1;xyz

6 1 1 10.0 22.5 0 0 0 20 1:1;xz
2 8 13.0 13.5 1 3 0 16 1:1;y

5 1 1 5.0 7.5 0 0 0 10 1:1;xz
2 10 8.0 1.5 0 6 0 4 1:1;y

4 1 1 2.0 1.5 0 0 0 4 1:1;xz
2 9 3.5 0.0 1 0 0 3 1:1;y

3 1 1 0.5 0.0 0 0 0 1 1:1;xyz

Table 14: Optimal blocking arrangements based on parent designs of the type OA(18; 6× 3n). Elements of
the FA3 vector correspond to A3 values of 2 and 1/2. An ‘x’ indicates W1- and W2-optimal arrangements;
a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘z’ indicates W3-optimal arrangements.

n R1 A3 A4 FA3 3 blocks 6 blocks

6 1 40.0 52.5 15 20 1:1;xyz 1:1;xyz
5 1 25.0 22.5 10 10 1:1;xyz 1:1;xyz
4 1 14.0 7.5 6 4 1:1;xyz 1:1;xyz
3 1 6.5 1.5 2 2 1:1;xyz 1:1;xyz
2 1 2.0 - 1 0 1:1;xyz 1:1;xyz
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the two-level child designs obtained by dropping the five-level column from the parent designs that give the

optimal arrangements in blocks of size four.

Table 15 shows one case where the W−

1
-optimal blocking arrangement differs from the W−

2
-optimal one.

For six two-level factors (n = 6) and five blocks, the design with R1 = 3 allows a blocking arrangement with

Ac
3
, Ac

4
, A21 and A31 values of 0.8, 0.6, 4.8−0.8 = 4 and 5.8−0.6 = 5.2, respectively, while the design ranked

ninth allows an arrangement with Ac
3
, Ac

4
, A21 and A31 values of 0.8, 0.92, 5.2−0.8 = 4.4 and 4.92−0.92 = 4,

respectively. The former blocking arrangement is W−

1
-optimal (because it has a smaller Ac

4
value), whereas

the latter is W−

2
-optimal (because it has a larger A21 value).

Table 15: Optimal blocking arrangements based on parent designs of the type OA(20; 5 × 2n). Elements
of the FA3 vector correspond to A3 values of 1, 4/5, 2/5, 9/25, and 1/25. An ‘x’ indicates W1- and W2-
optimal arrangements; a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘y1’ indicates W−

1
-optimal

arrangements; a ‘y2’ indicates W
−

2
-optimal arrangements; a ‘z’ indicates W3-optimal arrangements.

n ID R1 R2 A3 A4 FA3 2 blocks 5 blocks

8 1 1 1 10.88 16.24 0 0 20 2 54 1:1;xyz xyz
7 1 1 1 7.72 9.64 0 0 15 1 34 2:6;xz xyz

2 2 2 8.04 9.32 0 0 15 2 33 1:6;y
6 1 1 1 4.72 6.2 0 0 9 1 19

2 3 5 4.8 5.8 0 0 10 0 20 1:1;xyz xy1z
3 6 5 5.12 5.4 0 0 10 1 19
4 9 12 5.2 4.92 0 0 11 0 20 y2

5 1 1 1 2.4 3.8 0 0 5 0 10 1:1;xz xz
2 9 10 3.2 2.6 0 0 7 0 10 1:1;y
3 16 18 3.6 1.8 0 2 4 0 10 y

4 1 1 1 1.36 1.48 0 0 3 0 4 1:3;xz xz
2 9 5 1.76 1.08 0 0 4 0 4 1:3;y

3 1 1 1 0.04 0.96 0 0 0 0 1 1:1;xz xz
2 3 3 0.44 0.56 0 0 1 0 1

2 1 1 1 0 - 0 0 0 0 0 1:1;xz xz

Table 16: Properties of two-level child designs obtained from parent of designs of the type OA(20; 5 × 2n).
Elements of the FA3 vector correspond to A3 values of 1, 4/5, 2/5, 9/25, and 1/25. The column labeled Rp

1

gives the R1 ranks of the parent designs in Table 15

n Rp
1

A3 A4 FA3

8 1 2.88 4.72 0 0 0 2 54
7 1 1.72 2.36 0 0 0 1 34
6 3 0.80 0.60 0 0 0 0 20

9 0.80 0.92 0 0 0 0 20
5 1 0.40 0.20 0 0 0 0 10

16 0.40 0.20 0 0 0 0 10
4 1 0.16 0.04 0 0 0 0 4
3 1 0.04 - 0 0 0 0 1

23



Finally, we neither give W−

1
-optimal or W−

2
-optimal five-block arrangements for up to four two-level

factors, nor W−

1
-optimal or W−

2
-optimal two-block arrangements with up to two two-level factors and one

five-level factor, as it is possible to fit a model with all main effects and two-factor interaction effects in these

cases.

5.5 Designs with 27 runs

Three-level designs with 27 runs can be used to study the effects of up to 13 factors. There are 68 non-

isomorphic 13-factor designs in 27 runs (Lam and Tonchev, 1996). Their projective properties in the absence

of blocking have been extensively studied by Xu et al. (2004). To find the optimal blocking arrangements, we

started from a complete enumeration of all non-isomorphic designs for four up to 13 factors. While evaluating

these designs, we encountered several 27-run designs that have better FA3 vectors than the designs listed

in Xu et al. (2004). We discuss this in detail in Appendix B. In this section, we focus on the best blocking

arrangements.

Table 17 lists the optimal blocking arrangements for 27-run three-level designs in three blocks of size

nine. One remarkable result is that, in five cases, three different parent designs are needed to cover the five

blocking optimality criteria. Another remarkable result is that the child designs of the W1-, W2-, W
−

1
- and

W−

2
-optimal blocking arrangements for n = 6 have R1 = 4 only. This clearly demonstrates that starting

from the best child design does not guarantee finding an optimal blocking arrangement.

We obtained similar results for the W3-optimal blocking arrangements of ten-factor, eight-factor and

seven-factor child designs. The child design of the W3-optimal arrangement obtained from the 11-factor

parent design with R1 = R3 = 3 is only 275th in the R1 ranking and only 5th in the R2 ranking of all

ten-factor designs. This is due to the fact that none of the ten-factor designs with a better R1 or R2 ranking

can be obtained by projection from an 11-factor design. Therefore, they cannot be arranged in blocks so

that the main effects can be estimated independently from the block effects.

The eight-factor child design corresponding to the W3-optimal blocking arrangement obtained from the

nine-factor parent design with R1 = 2645 and R2 = 1 is 5259th in the R1 ranking and third in the R2

ranking of all eight-factor designs. Neither the first nor the second design in the R2 ranking of all eight-

factor designs can be obtained from a nine-factor parent design by projection. Finally, the seven-factor child

design corresponding to the W3-optimal blocking arrangement obtained from the eight-factor parent design

with R1 = 7153 and R2 = 360 is 2903rd in the R1 ranking and 89th in the R2 ranking of all seven-factor

designs. None of the seven-factor designs with a better R1 or R2 ranking can be obtained by projection from

an eight-factor design, and, hence, no desirable blocking arrangement exists for them.

In all other cases, the child designs corresponding to optimal blocking arrangements are listed first in
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the R1 or R2 rankings. So, in many cases, it is possible to find desirable blocking arrangements for the best

possible child designs.

Table 18 lists the orthogonal blocking arrangements obtained from designs of the type OA(27; 9 × 3n).

These designs allow us to arrange OA(27; 3n) designs in nine blocks of size three, and to arrange OA(27; 9×

3n−1) designs in three blocks of size nine. For the arrangements in three blocks of size nine, the characteristics

of the child designs are listed in Table 18 too. For the arrangements in nine blocks of size three, the child

Table 17: Optimal blocking arrangements based on parent designs of the type OA(27; 3n). Elements of
the FA3 vector correspond to A3 values of 2, 20/27, 2/3, 14/27, 4/9, and 8/27. An ‘x’ indicates W1- and
W2-optimal arrangements; a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘z’ indicates W3-optimal

arrangements.

n ID R1 R2 A3 A4 FA3 3 blocks

13 1 1 1 104 468 0 0 52 0 156 0 1:1;xyz
12 1 1 1 80 324 0 0 40 0 120 0 1:1;xyz
11 1 1 1 60 216 0 0 30 0 90 0 1:275;z

2 78 78 60 216 2 0 40 0 60 9 7:1;xy
10 1 1 607 42 144 2 0 33 0 36 0

2 6 1272 42 144 3 0 36 18 0 9 4:1;xy
3 275 5 43.33 138.67 0 0 21 0 66 0
4 1214 1 44 136 0 0 3 27 27 54 1:2645;z

9 1 1 4885 24 108 3 0 27 0 0 0 1:1;x
2 680 4003 30 84 2 0 25 14 0 7 4:1;y
3 2645 1 30.44 82.67 0 0 2 18 21 36 1:5259;z

8 1 1 13835 16 60 2 0 18 0 0 0 1:1;x
2 2530 1 19.85 47.41 0 0 0 16 12 21
3 5259 3 20.3 45.85 0 0 1 11 16 23
4 7153 360 20.52 45.41 0 1 1 12 15 21 1:2903;z
5 14783 14394 22 42 3 0 24 0 0 0 1:1;y

7 1 1 71407 10 30 1 0 12 0 0 0
2 3 77742 10 30 2 0 9 0 0 0 5:1;x
3 2903 89 12 24.44 0 0 0 10 15 6
4 7745 7 12.3 23.93 0 0 0 4 7 24 1:1944;z
5 8841 1 12.3 25.04 0 0 0 0 15 19
6 78098 78908 16 18 8 0 0 0 0 0 1:1;y

6 1 1 62510 4 18 2 0 0 0 0 0 1:4;x
2 7 15037 5.33 14 0 0 8 0 0 0
3 599 67 10 6 0 0 0 1 4 13 4:42;z
4 1944 1 6.15 11.78 0 0 0 0 3 17
5 62548 62550 6.37 11.56 5 0 0 0 0 0 1:4;y

5 1 1 849 2 6 0 0 1 0 3 0
2 2 2110 2 6 0 0 3 0 0 0 1:1;x
3 4 6060 2 6 1 0 0 0 0 0
4 42 1 2.67 4.67 0 0 0 0 0 9
5 44 66 2.67 4.67 0 0 0 0 6 0 1:1;z
6 49 2362 2.67 4.67 0 0 4 0 0 0
7 2591 6111 4 2 2 0 0 0 0 0 1:1;y

4 1 1 1 0 2 0 0 0 0 0 0 1:1;xz
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designs’ A3 and A4 values and their FA3 vector are listed in Table 17.

All but one W1-, W2-, W
−

1
- and W−

2
-optimal blocking arrangements have child designs with R1 = 1.

The only exception is for n = 5 and nine blocks. The 35 child design for that case has an FA3 vector of

(1, 0, 0, 0, 0, 0), while the best 5-factor design in the R1 ranking has an FA3 vector of (0, 0, 1, 0, 3, 0). Note

from the list of six-factor designs in Table 17 that the latter design cannot be blocked orthogonally in three

blocks either.

Most W3-optimal blocking arrangements in Table 18 have child designs with R2 = 1. The two exceptions

are the W3-optimal arrangements for six and five three-level factors and nine blocks. The six-factor child

design has R2 = 15037, and the five-factor child design has R2 = 2362. Clearly, there is a high price to be

paid here for orthogonal blocking in nine blocks in terms of the R2 ranking of the child designs.

6 Discussion

In this paper, we proposed a simple method to arrange orthogonal designs of resolution 3 or strength 2 in

blocks. The starting point of our method is an exhaustive catalog of non-isomorphic parent designs. We

then use single replacement of a column in the designs by the blocking factor.

The method works well even when the catalogs have tens of thousands of arrays. However, it is com-

putationally infeasible for cases involving even larger numbers of arrays. For instance, for 24 runs, there

are 52,912,678 non-isomorphic designs for 11 two-level factors and 51,154,497 non-isomorphic designs for

Table 18: Optimal blocking arrangements based on parent designs of the type OA(27; 9× 3n). Elements of
the FA3 vector correspond to A3 values of 2 and 2/3. An ‘x’ indicates W1- and W2-optimal arrangements;
a ‘y’ indicates W−

1
- and W−

2
-optimal arrangements; a ‘z’ indicates W3-optimal arrangements.

n ID R1 R2 A3 A4 FA3 3 blocks 9 blocks

9 1 1 1 96 252 39 27 1:1;xyz 1:1;xyz
8 1 1 1 72 156 30 18 1:1;xyz 1:1;xyz
7 1 1 1 52 90 22 12 1:3;z 1:1;xyz

2 3 3 52 90 23 9 7:1;xy
6 1 1 6 34 54 17 0 1:1;x 1:1;xy

2 3 1 35.33 48.67 15 8 1:3;z 1:7;z
3 7 7 36 46 18 0 6:1;y

5 1 1 4 22 24 11 0 1:1;xz 1:4;xy
2 3 1 22.67 22 10 4 1:49;z
3 7 7 24 18 12 0 1:1;y

4 1 1 1 12 10 6 0 1:1;xz 1:1;xyz
2 5 5 14 6 7 0 1:1;y

3 1 1 1 6 2 3 0 1:1;xz 1:1;xyz
2 5 5 8 0 4 0 1:1;y

2 1 1 1 2 - 1 0 1:1;xyz 1:1;xyz
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12 two-level factors (Schoen et al., 2010). These numbers are too large to identify all optimal blocking

arrangements with our method.

Applying our method will also be problematic for finding optimal blocking arrangements of resolution-4

or strength-3 orthogonal designs. This is because it is sufficient for the parent design to have resolution 3, but

the child design must have resolution 4. For example, to arrange a resolution-4 design of the type OA(54; 35)

in three blocks of size 18, we would need a complete catalog of all resolution-3 non-isomorphic parent designs

of the type OA(54; 36). Not only is generating such a catalog computationally very intensive, but the

resolution of every possible child design would have to be determined as well. This is also computationally

demanding. As a result, for designs with a resolution of 4 or more, alternative blocking strategies are needed.

Appendix A. Comparison with Cheng et al. (2004)

We listed the W1-, W2-, W
−

1
-, W−

2
- and W3-optimal arrangements of 16-run two-level designs in four blocks

of size four in Table 10. In this appendix, we compare our results with those of Cheng et al. (2004, CLY).

A1. The FA3 vector of designs of the type OA(16; 4× 2n)

At first sight, there is a discrepancy between our work and that of CLY. This is due to the fact that our

method sometimes results in an FA21 vector with a non-zero entry for A3 = 0.5, while the possible A3 values

of three-factor designs are either 1, 0.25, or 0 for pure two-level designs in 16 runs. Therefore, none of the

designs in CLY have A3 values of 0.5.

As an example, consider the difference of the FA3 vector of the OA(16; 4× 2n) parent design with ID 1

in Table 10 with the corresponding vector of the child design in Table 11. In our approach, the FA21-vector

is (6− 0, 24− 0, 64− 64) or (6, 24, 0), with elements corresponding to the A3 values 1, 0.5 and 0.25. In the

approach of CLY, the same blocked design has an FA21-vector of (6,48), with elements corresponding to the

A3 values 1 and 0.25. It turns out that CLY’s frequency for an A3 value of 0.25 is the sum of our frequency

for an A3 value of 0.25 and twice our frequency for an A3 value of 0.5.

To see this, it is important to realize that we started from a catalog of non-isomorphic orthogonal 16-run

designs, involving n two-level factors and one four-level factor. We applied the single replacement method

to this catalog of designs. CLY, however, started from a catalog of two-level designs, replacing two two-level

factors with a four-level blocking factor.

In our approach, we encountered two types of three-factor projections. The first type involved three

two-level factors, whereas the second type involved two two-level factors and the four-level factor. It is the
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Table 19: A3 values and FA3 vectors of the three possible non-isomorphic projections into two two-level
factors and one four-level factor.

Projection This Paper CLY
A3 1 0.5 0 1 0.25 0

(i) FA3 0 0 1 0 0 4
(ii) FA3 0 1 0 0 2 2
(iii) FA3 1 0 0 1 0 3

second type of projection that causes the difference between our approach and that of CLY.

There are three non-isomorphic three-factor projections involving the four-level factor. If we denote the

two-level pseudo-factors corresponding to the four-level factor by a1 and a2 and the ordinary two-level factors

by B and C, then the three-factor projections are either (i) a full factorial 4 × 22 design, (ii) an eight-run

fractional factorial design with defining relation I = a1BC combined with an eight-run fractional factorial

design with defining relation I = a2BC, and (iii) a duplicated eight-run fractional factorial design with

defining relation I = a1BC. The A3 values of these projections are 0, 0.5, and 1, respectively.

We illustrate the calculation of these A3 values using projection (ii), because this is where the difference

between our approach and that of CLY occurs. The A3 value is obtained as follows. The sum of the element-

wise products of the contrast columns a1, B and C equals 8 because the three-factor interaction contrast

vector a1BC is aliased with the intercept in one half of the design and orthogonal to the intercept in the

other half of the design. Following the definition of the A3 value in Xu and Wu (2001), this contributes

an amount of (8/16)2 = 0.25 to the A3 value of the projection. Similarly, the sum of the element-wise

products of the contrast columns a2, B and C equals 8 because the three-factor interaction contrast vector

a2BC is also aliased with the intercept in one half of the design and orthogonal to the intercept in the other

half of the design. This also contributes an amount of (8/16)2 = 0.25 to the A3 value of the projection.

Finally, the element-wise products of the contrast columns a1, a2 and B is zero, as is the sum of the element-

wise product of the contrast columns a1, a2 and C. As a result, the total A3 value for this projection is

0.25+0.25+0+0=0.5.

In contrast with our approach, CLY do not sum the four A3 values obtained from a1, a2, B and C. So,

for the projection (ii) into one four-level factor and two two-level factors, they use the four A3 values of 0,

0, 0.25 and 0.25 separately. As a result, they do not have a value of 0.5.

The FA3 vectors and A3 values for the projection (i) into a full factorial design and the projection (iii)

into a duplicated fractional factorial design can be derived in a similar fashion. For each of the projections,

we compare our approach with the approach of CLY in Table 19. We conclude that the frequency of the A3

value of 0.25 in CLY can be obtained by adding twice our frequency for an A3 value of 0.5 to our frequency
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for an A3 value of 0.25. The frequency of the A3 value of 1 in our approach matches that in CLY’s approach.

A2. Design comparison

For each of the cases with 12, 9, 8 and 7 two-level factors, Table 10 contains one optimal arrangement in four

blocks. In contrast, CLY report two blocking arrangements, because they consider rankings based on the Ai

values entirely separately from rankings based on the FAi vectors. Their first arrangement in four blocks is

best according to their Ai-based ranking, and their second arrangement is optimal according to both their

Ai-based ranking and their FAi-based ranking. Our R1 ranking, which forms the basis for selecting W1-

and W2-optimal designs, uses the FA3 vector to distinguish between designs that have the same A3 and A4

values. Therefore, the 12-, 9-, 8- and 7-factor designs we report correspond to the designs that are optimal

according to CLY’s FAi-based criterion.

For the 11-factor case involving four blocks, our Table 10 again contains a single blocking arrangement,

whereas CLY give two designs. Here too, our design corresponds to the second one listed by CLY. We did

not identify their first design because we did not use the FA4 vector in our work. This is because we found

that the different A4 values of four-factor projections in designs with factors acting at more than two levels

can be very close to each other. Therefore, the practical importance of a classification based on an FA4

vector is questionable for these designs. Note that two-level designs, as opposed to multi-level designs, can

only have a few clearly distinct A4 values, and classification based on FA4 is indeed useful.

For the 10-factor case involving four blocks, CLY list three blocking arrangements. Our Table 10 reports

their third design only. For the reason why we did not identify their first design, we refer to the 12-, 9-, 8-

and 7-factor cases. For the reason why we did not identify their second design, we refer to the 11-factor case.

For the case involving six factors, we identified a W1- and W2-optimal blocking arrangement, as well as

a design that gives a W3-optimal blocking arrangement. Both designs were also given by CLY. Compared

to CLY, we identify an additional blocking arrangement which is W−

1
- and W−

2
-optimal. The W−

1
- and

W−

2
-criteria were not used by CLY, which explains why they did not report that blocking arrangement.

Note that, in all cases with more than six factors, the W1-, W2-, W−

1
-, W−

2
- and W3-optimal blocking

arrangements coincide. This is no longer the case when the number of factors is at most six.

For the case involving five factors, CLY list four blocking arrangements, while we report only three.

Only one of our designs is listed by CLY. The first and third blocking arrangement in CLY are both W1-

optimal, provided only Ai values are used to rank the blocking arrangements. Our approach to identify

W1-optimal blocking arrangements is based on A3 and A4 values, and on the FA3 vector to break possible

ties, and resulted in a single W1-optimal blocking arrangement that outperforms those identified by CLY;
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see the discussion of Table 10 in Section 5.2. That blocking arrangement is also optimal in terms of the

W−

1
-criterion.

The second and fourth five-factor blocking arrangement given by CLY are W2-optimal. The second

blocking arrangement is only optimal when the ranking is based only on Ai values, while the fourth design is

optimal both when using Ai values and FAi vectors. Our mixed ranking identified a W2-optimal design that

corresponds with the fourth CLY design. Note that the FA21 and FA31 vectors for the second five-factor

CLY design are incorrect. The correct FA21 vector is (2,0) and the correct FA31 vector is (4,0), where the

elements correspond to the A3 values 1 and 0.25, respectively, following the notation of CLY.

Finally, our third five-factor blocking arrangement is based on the W−

2
- criterion, which was not consid-

ered by CLY.

Appendix B. Comparison with Xu et al. (2004)

Xu et al. (2004) studied the A3 values and the FA3 vectors of all projections from the 68 non-isomorphic

OA(27; 313) designs reported by Lam and Tonchev (1996) as well as of 1000 randomly generated orthogonal

designs with 5 to 10 factors, and listed the best ones. In our search for optimal blocking arrangements, we

used the complete enumeration of all 27-run non-isomorphic orthogonal designs instead. For this reason, we

were able to identify several designs with better properties in the absence of blocking than those listed by

Xu et al. (2004).

Our global search confirmed that Xu et al. (2004) found designs with minimum A3 values. For each

number of factors, n, in Table 17, the minimum A3 value is given in the row with R1 = 1. For the case of 10

factors, we were able to find several designs that have a better FA3 vector than the best design reported by

Xu et al. (2004). Their design has a frequency of three for A3 = 2, a frequency of nine for A3 = 30/27 and

a zero frequency for A3 = 20/27 among all three-factor projections. Two of the 10-factor designs we found

with better FA3 vectors are shown in Table 17. The one with R1 = 1 has a frequency of two for A3 = 2, a

zero frequency for A3 = 30/27 and a frequency of 33 for A3 = 20/27. The one with R1 = 6 has a frequency

of three for A3 = 2, a zero frequency for A3 = 30/27 and a frequency of 36 for A3 = 20/27. Note that none

of the three-factor projections for any of the designs in Table 17 resulted in an A3 value of 30/27. Finally,

all the designs with 5-10 factors that are first in the R2 ranking in Table 17 have a better FA3 vector than

the corresponding designs reported by Xu et al. (2004).

In conclusion, by going through the complete catalog of all non-isomorphic 27-run three-level designs, we

found several attractive designs that were hitherto not known.
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